1
|
Gröger R, Heiler T, Schimmel T, Walheim S. Tip-Induced Nanopatterning of Ultrathin Polymer Brushes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2204962. [PMID: 37026430 DOI: 10.1002/smll.202204962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/02/2023] [Indexed: 06/19/2023]
Abstract
Patterned, ultra-thin surface layers can serve as templates for positioning nanoparticlesor targeted self-assembly of molecular structures, for example, block-copolymers. This work investigates the high-resolution, atomic force microscopebased patterning of 2 nm thick vinyl-terminated polystyrene brush layers and evaluates the line broadening due to tip degradation. This work compares the patterning properties with those of a silane-based fluorinated self-assembled monolayer (SAM), using molecular heteropatterns generated by modified polymer blend lithography (brush/SAM-PBL). Stable line widths of 20 nm (FWHM) over lengths of over 20000 µm indicate greatly reduced tip wear, compared to expectations on uncoated SiOx surfaces. The polymer brush acts as a molecularly thin lubricating layer, thus enabling a 5000 fold increase in tip lifetime, and the brush is bonded weakly enough that it can be removed with surgical accuracy. On traditionally used SAMs, either the tip wear is very high or the molecules are not completely removed. Polymer Phase Amplified Brush Editing is presented, which uses directed self-assembly to amplify the aspect ratio of the molecular structures by a factor of 4. The structures thus amplified allow transfer into silicon/metal heterostructures, fabricating 30 nm deep, all-silicon diffraction gratings that could withstand focused high-power 405 nm laser irradiation.
Collapse
Affiliation(s)
- Roland Gröger
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
- Center for Single-Atom Technologies (C.SAT), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
| | - Tobias Heiler
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
| | - Thomas Schimmel
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
- Center for Single-Atom Technologies (C.SAT), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Materials Research Center for Energy Systems (MZE), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
| | - Stefan Walheim
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
- Center for Single-Atom Technologies (C.SAT), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Banta RA, Collins TW, Curley R, O'Connell J, Young PW, Holmes JD, Flynn EJ. Regulated phase separation in nanopatterned protein-polysaccharide thin films by spin coating. Colloids Surf B Biointerfaces 2020; 190:110967. [DOI: 10.1016/j.colsurfb.2020.110967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
|
3
|
Hossain IM, Donie YJ, Schmager R, Abdelkhalik MS, Rienäcker M, Wietler TF, Peibst R, Karabanov A, Schwenzer JA, Moghadamzadeh S, Lemmer U, Richards BS, Gomard G, Paetzold UW. Nanostructured front electrodes for perovskite/c-Si tandem photovoltaics. OPTICS EXPRESS 2020; 28:8878-8897. [PMID: 32225505 DOI: 10.1364/oe.382253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
The rise in the power conversion efficiency (PCE) of perovskite solar cells has triggered enormous interest in perovskite-based tandem photovoltaics. One key challenge is to achieve high transmission of low energy photons into the bottom cell. Here, nanostructured front electrodes for 4-terminal perovskite/crystalline-silicon (perovskite/c-Si) tandem solar cells are developed by conformal deposition of indium tin oxide (ITO) on self-assembled polystyrene nanopillars. The nanostructured ITO is optimized for reduced reflection and increased transmission with a tradeoff in increased sheet resistance. In the optimum case, the nanostructured ITO electrodes enhance the transmittance by ∼7% (relative) compared to planar references. Perovskite/c-Si tandem devices with nanostructured ITO exhibit enhanced short-circuit current density (2.9 mA/cm2 absolute) and PCE (1.7% absolute) in the bottom c-Si solar cell compared to the reference. The improved light in-coupling is more pronounced for elevated angle of incidence. Energy yield enhancement up to ∼10% (relative) is achieved for perovskite/c-Si tandem architecture with the nanostructured ITO electrodes. It is also shown that these nanostructured ITO electrodes are also compatible with various other perovskite-based tandem architectures and bear the potential to improve the PCE up to 27.0%.
Collapse
|
4
|
Narasimhan V, Siddique RH, Hoffmann M, Kumar S, Choo H. Enhanced broadband fluorescence detection of nucleic acids using multipolar gap-plasmons on biomimetic Au metasurfaces. NANOSCALE 2019; 11:13750-13757. [PMID: 31140518 DOI: 10.1039/c9nr03178b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent studies on metal-insulator-metal-based plasmonic antennas have shown that emitters could couple with higher-order gap-plasmon modes in sub-10-nm gaps to overcome quenching. However, these gaps are often physically inaccessible for functionalization and are not scalably manufacturable. Here, using a simple biomimetic batch-fabrication, a plasmonic metasurface is created consisting of closely-coupled nanodisks and nanoholes in a metal-insulator-metal arrangement. The quadrupolar mode of this system exhibits strong broadband resonance in the visible-near-infrared regime with minimal absorptive losses and effectively supresses quenching, making it highly suitable for broadband plasmon-enhanced fluorescence. Functionalizing the accessible insulator nanogap, analytes are selectively immobilized onto the plasmonic hotspot enabling highly-localized detection. Sensing the streptavidin-biotin complex, a 91-, 288-, 403- and 501-fold fluorescence enhancement is observed for Alexa Fluor 555, 647, 750 and 790, respectively. Finally, the detection of single-stranded DNA (gag, CD4 and CCR5) analogues of genes studied in the pathogenesis of HIV-1 between 10 pM-10 μM concentrations and then CD4 mRNA in the lysate of transiently-transfected cells with a 5.4-fold increase in fluorescence intensity relative to an untransfected control is demonstrated. This outcome promises the use of biomimetic Au metasurfaces as platforms for robust detection of low-abundance nucleic acids.
Collapse
Affiliation(s)
- Vinayak Narasimhan
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Radwanul Hasan Siddique
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Magnus Hoffmann
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shailabh Kumar
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Hyuck Choo
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Silk fibroin-poly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109890. [PMID: 31500018 DOI: 10.1016/j.msec.2019.109890] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
A protein-polymer blend system based on silkworm silk fibroin (SF) and polylactic acid (PLA) was systematically investigated to understand the interaction and miscibility of proteins and synthetic biocompatible polymers in the macro- and micro-meter scales, which can dramatically control the cell responses and enzyme biodegradation on the biomaterial interface. Silk fibroin, a semicrystalline protein with beta-sheet crystals, provides controllable crystal content and biodegradability; while noncrystallizable PDLLA provides hydrophobicity and thermal stability in the system. Differential scanning calorimetry (DSC) combined with scanning electron microscope (SEM) showed that the morphology of the blend films was uniform on a macroscopic scale, yet with tunable micro-phase patterns at different mixing ratios. Fourier transform infrared analysis (FTIR) revealed that structures of the blend system, such as beta-sheet crystal content, gradually changed with the mixing ratios. All blended samples have better stability than pure SF and PLA samples as evidenced by thermogravimetric analysis. Protease XIV enzymatic study showed that the biodegradability of the blend samples varied with their blending ratios and microscale morphologies. Significantly, the topology of the micro-phase patterns on the blends can promote cell attachment and manipulate the cell growth and proliferation. This study provided a useful platform for understanding the fabrication strategies of protein-synthetic polymer composites that have direct biomedical and green chemistry applications.
Collapse
|
6
|
Łojkowski M, Walheim S, Jokubauskas P, Schimmel T, Święszkowski W. Tuning the Wettability of a Thin Polymer Film by Gradually Changing the Geometry of Nanoscale Pore Edges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5987-5996. [PMID: 30946782 DOI: 10.1021/acs.langmuir.9b00467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlling wetting of solids by liquids attracts attention because of its scientific and technological importance. In this paper, the wettability of a highly uniform porous poly(methyl methacrylate) film on a silicon substrate containing a high density of randomly distributed self-similar pores was gradually tuned by changing the shape of nanometric crownlike structures around the pores. Fine-tuning the topography of these thin films was performed by isothermal annealing. The equilibrium contact angle of a water droplet placed on the surface of the films could be varied from 72 to 102°. The contact angle changes were assumed to be a consequence of changes in surface topography in the nanoscale. A simple method of a quantitative description of the change of the topography of these films was developed. Critical dimensions of these films were determined in horizontal and vertical directions relative to the surface plane. The slope coefficient (SC) describing how sharp the structures are, is defined as the ratio between the critical dimensions: the root-mean-square roughness σ and the autocorrelation length ξ. For SC > 0.08, the contact angle increased proportionally to the value of SC, whereas for SC < 0.08, the contact angle proportionally decreased. At the highest SC values, the contact angles were 6-10% higher than those predicted for flat porous surfaces using the Cassie-Baxter equation. We suggest that this discrepancy is due to the capillary tension caused by the submicron-scale undulation of the triple line, which was found to be proportional to the height of the crownlike pore edges and the value of SC. The same effect is responsible for the linear dependence of the contact angle on the SC value.
Collapse
Affiliation(s)
- Maciej Łojkowski
- Faculty of Materials Science and Engineering , Warsaw University of Technology , Wołoska 141 , 02-507 Warsaw , Poland
| | - Stefan Walheim
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , Eggenstein-Leopoldshafen , 76344 Baden-Württemberg, DE , Germany
- Institute of Applied Physics , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , Karlsruhe , 76131 DE , Germany
| | - Petras Jokubauskas
- Faculty of Geology, Institute of Geochemistry, Mineralogy and Petrology , University of Warsaw , Żwirki i Wigury 93 , 02-089 Warsaw , Poland
| | - Thomas Schimmel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , Eggenstein-Leopoldshafen , 76344 Baden-Württemberg, DE , Germany
- Institute of Applied Physics , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , Karlsruhe , 76131 DE , Germany
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering , Warsaw University of Technology , Wołoska 141 , 02-507 Warsaw , Poland
| |
Collapse
|
7
|
Berson J, Moosmann M, Walheim S, Schimmel T. Mechanically Induced Switching of Molecular Layers. NANO LETTERS 2019; 19:816-822. [PMID: 30694068 DOI: 10.1021/acs.nanolett.8b03987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Within the field of switchable surfaces, azobenzenes are an extensively studied group of molecules, known for reversibly changing conformation upon illumination with light of different wavelengths. Relying on the ability of the molecules to change properties and structure as a response to external stimuli, they have been incorporated in various devices, such as molecular switches and motors. In contrast to the well-documented switching by light irradiation, we report the discovery of mechanically triggered switching of self-assembled azobenzene monolayers, resulting in changes of surface wettability, adhesion, and friction. This mechanically induced cis-trans isomerization is triggered either locally and selectively by AFM or macroscopically by particle impact. The process is optically reversible, enabling consecutive switching cycles. Collective switching behavior was also observed, propagating from the original point of impact in a domino-like manner. Finally, local force application facilitated nondestructive and erasable nanopatterning, the cis-trans nanolithography.
Collapse
Affiliation(s)
- Jonathan Berson
- Institute of Nanotechnology and Institute of Applied Physics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Markus Moosmann
- Institute of Nanotechnology and Institute of Applied Physics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Stefan Walheim
- Institute of Nanotechnology and Institute of Applied Physics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Thomas Schimmel
- Institute of Nanotechnology and Institute of Applied Physics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| |
Collapse
|
8
|
Maoz R, Berson J, Burshtain D, Nelson P, Zinger A, Bitton O, Sagiv J. Interfacial Electron Beam Lithography: Chemical Monolayer Nanopatterning via Electron-Beam-Induced Interfacial Solid-Phase Oxidation. ACS NANO 2018; 12:9680-9692. [PMID: 30215511 DOI: 10.1021/acsnano.8b03416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemical nanopatterning-the deliberate nanoscale modification of the chemical nature of a solid surface-is conveniently realized using organic monolayer coatings to impart well-defined chemical functionalities to selected surface regions of the coated solid. Most monolayer patterning methods, however, exploit destructive processes that introduce topographic as well as other undesired structural and chemical transformations along with the desired surface chemical modification. In particular in electron beam lithography (EBL), organic monolayers have been used mainly as ultrathin resists capable of improving the resolution of patterning via local deposition or removal of material. On the basis of the recent discovery of a class of radiation-induced interfacial chemical transformations confined to the contact surface between two solids, we have advanced a direct, nondestructive EBL approach to chemical nanopatterning-interfacial electron beam lithography (IEBL)-demonstrated here by the e-beam-induced local oxidation of the -CH3 surface moieties of a highly ordered self-assembled n-alkylsilane monolayer to -COOH while fully preserving the monolayer structural integrity and molecular organization. In this conceptually different EBL process, the traditional resist is replaced by a thin film coating that acts as a site-activated reagent/catalyst in the chemical modification of the coated surface, here the top surface of the to-be-patterned monolayer. Structural and chemical transformations induced in the thin film coating and the underlying monolayer upon exposure to the electron beam were elucidated using a semiquantitative surface characterization methodology that combines multimode AFM imaging with postpatterning surface chemical modifications and quantitative micro-FTIR measurements. IEBL offers attractive opportunities in chemical nanopatterning, for example, by enabling the application of the advanced EBL technology to the straightforward nanoscale functionalization of the simplest commonly used organosilane monolayers.
Collapse
Affiliation(s)
- Rivka Maoz
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Jonathan Berson
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Doron Burshtain
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Peter Nelson
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Ariel Zinger
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Ora Bitton
- Department of Chemical Research Support , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Jacob Sagiv
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 7610001 , Israel
| |
Collapse
|
9
|
Narasimhan V, Siddique RH, Lee JO, Kumar S, Ndjamen B, Du J, Hong N, Sretavan D, Choo H. Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices. NATURE NANOTECHNOLOGY 2018; 13:512-519. [PMID: 29713074 PMCID: PMC5992053 DOI: 10.1038/s41565-018-0111-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/06/2018] [Indexed: 05/24/2023]
Abstract
Numerous living organisms possess biophotonic nanostructures that provide colouration and other diverse functions for survival. While such structures have been actively studied and replicated in the laboratory, it remains unclear whether they can be used for biomedical applications. Here, we show a transparent photonic nanostructure inspired by the longtail glasswing butterfly (Chorinea faunus) and demonstrate its use in intraocular pressure (IOP) sensors in vivo. We exploit the phase separation between two immiscible polymers (poly(methyl methacrylate) and polystyrene) to form nanostructured features on top of a Si3N4 substrate. The membrane thus formed shows good angle-independent white-light transmission, strong hydrophilicity and anti-biofouling properties, which prevent adhesion of proteins, bacteria and eukaryotic cells. We then developed a microscale implantable IOP sensor using our photonic membrane as an optomechanical sensing element. Finally, we performed in vivo testing on New Zealand white rabbits, which showed that our device reduces the mean IOP measurement variation compared with conventional rebound tonometry without signs of inflammation.
Collapse
Affiliation(s)
- Vinayak Narasimhan
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Jeong Oen Lee
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shailabh Kumar
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Blaise Ndjamen
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Juan Du
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Natalie Hong
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Sretavan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.
| | - Hyuck Choo
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
Donie YJ, Smeets M, Egel A, Lentz F, Preinfalk JB, Mertens A, Smirnov V, Lemmer U, Bittkau K, Gomard G. Light trapping in thin film silicon solar cells via phase separated disordered nanopillars. NANOSCALE 2018; 10:6651-6659. [PMID: 29582026 DOI: 10.1039/c8nr00455b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we have improved the absorption properties of thin film solar cells by introducing light trapping reflectors deposited onto self-assembled nanostructures. The latter consist of a disordered array of nanopillars and are fabricated by polymer blend lithography. Their broadband light scattering properties are exploited to enhance the photocurrent density of thin film devices, here based on hydrogenated amorphous silicon active layers. We demonstrate that these light scattering nanopillars yield a short-circuit current density increase of +33%rel with respect to equivalent solar cells processed on a planar reflector. Moreover, we experimentally show that they outperform randomly textured substrates that are commonly used for achieving efficient light trapping. Complementary optical simulations are conducted on an accurate 3D model to analyze the superior light harvesting properties of the nanopillar array and to derive general design rules. Our approach allows one to easily tune the morphology of the self-assembled nanostructures, is up-scalable and operated at room temperature, and is applicable to other photovoltaic technologies.
Collapse
Affiliation(s)
- Yidenekachew J Donie
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bubendorf A, Walheim S, Schimmel T, Meyer E. A robust AFM-based method for locally measuring the elasticity of samples. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1-10. [PMID: 29379694 PMCID: PMC5769082 DOI: 10.3762/bjnano.9.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Investigation of the local sample elasticity is of high importance in many scientific domains. In 2014, Herruzo et al. published a new method based on frequency-modulation atomic force microscopy to locally determine the elasticity of samples (Nat. Commun.2014, 5, 3126). This method gives evidence for the linearity of the relation between the frequency shift of the cantilever first flexural mode Δf1 and the square of the frequency shift of the second flexural mode Δf22. In the present work, we showed that a similar linear relation exists when measuring in contact mode with a certain load FN and propose a new method for determining the elastic modulus of samples from this relation. The measurements were performed in non-dry air at ambient temperature on three different polymers (polystyrene, polypropylene and linear low-density polyethylene) and a self-assembled monolayer of 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) on a silicon oxide substrate perforated with circular holes prepared by polymer blend lithography. For all samples the relation was evidenced by recording Δf1, Δf2 and FN as a function of the Z-displacement curves of the piezoelectric scanner. The occurence of a plastic deformation followed by an elastic deformation is shown and explained. The necessary load FN for measuring in the elastic domain was assessed for each sample, used for mapping the frequency shifts Δf1 and Δf2 and for determining the elastic modulus from Δf22/Δf1. The method was used to give an estimate of the Young's modulus of the FDTS thin film.
Collapse
Affiliation(s)
- Alexandre Bubendorf
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Stefan Walheim
- Institute of Nanotechnology (INT) and Institute of Applied Physics (Karlsruhe Institute of Technology (KIT)), Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe, Germany
| | - Thomas Schimmel
- Institute of Nanotechnology (INT) and Institute of Applied Physics (Karlsruhe Institute of Technology (KIT)), Karlsruhe, Germany
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Siddique RH, Donie YJ, Gomard G, Yalamanchili S, Merdzhanova T, Lemmer U, Hölscher H. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers. SCIENCE ADVANCES 2017; 3:e1700232. [PMID: 29057320 PMCID: PMC5648565 DOI: 10.1126/sciadv.1700232] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 09/22/2017] [Indexed: 05/24/2023]
Abstract
The wings of the black butterfly, Pachliopta aristolochiae, are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells.
Collapse
Affiliation(s)
- Radwanul H. Siddique
- Department of Medical Engineering, California Institute of Technology (Caltech), 1200 East California Boulevard, Mail Code 136-93, Pasadena, CA 91125, USA
| | - Yidenekachew J. Donie
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, KIT, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Guillaume Gomard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, KIT, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Sisir Yalamanchili
- Division of Engineering and Applied Sciences, Caltech, Pasadena, CA 91125, USA
| | - Tsvetelina Merdzhanova
- Institut für Energie- und Klimaforschung 5 (IEK 5)–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Uli Lemmer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, KIT, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Hendrik Hölscher
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Siddique RH, Mertens J, Hölscher H, Vignolini S. Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17015. [PMID: 30167271 PMCID: PMC6062228 DOI: 10.1038/lsa.2017.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/31/2017] [Accepted: 02/15/2017] [Indexed: 05/05/2023]
Abstract
Subwavelength metal-dielectric plasmonic metasurfaces enable light management beyond the diffraction limit. However, a cost-effective and reliable fabrication method for such structures remains a major challenge hindering their full exploitation. Here, we propose a simple yet powerful manufacturing route for plasmonic metasurfaces based on a bottom-up approach. The fabricated metasurfaces consist of a dense distribution of randomly oriented nanoscale scatterers composed of aluminum (Al) nanohole-disk pairs, which exhibit angle-independent scattering that is tunable across the entire visible spectrum. The macroscopic response of the metasurfaces is controlled via the properties of an isolated Al nanohole-disk pair at the nanoscale. In addition, the optical field confinement at the scatterers and their random distribution of sizes result in a strongly enhanced Raman signal that enables broadly tunable excitation using a single substrate. This unique combination of a reliable and lithography-free methodology with the use of aluminum permits the exploitation of the full potential of random plasmonic metasurfaces for diagnostics and coloration.
Collapse
Affiliation(s)
- Radwanul Hasan Siddique
- Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe 76344, Germany
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jan Mertens
- Department of Physics, NanoPhotonics Group, Kapitza Building, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Hendrik Hölscher
- Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe 76344, Germany
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
14
|
Llevot A, Steinmüller SO, Bitterer B, Ridder B, Berson J, Walheim S, Schimmel T, Bräse S, Scheiba F, Meier MAR. Sequence-controlled molecular layers on surfaces by thiol–ene chemistry: synthesis and multitechnique characterization. Polym Chem 2017. [DOI: 10.1039/c7py01515a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silicon surfaces were functionalized by thiol–ene chemistry using sequential reactions of different α,ω-dienes and α,ω-dithiols bearing marker moieties.
Collapse
|
15
|
Meier T, Solares SD. Rhodamine-doped nanoporous polymer films as high-performance anti-reflection coatings and optical filters. NANOSCALE 2016; 8:17675-17685. [PMID: 27714057 DOI: 10.1039/c6nr04505g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate a simple and robust procedure for the fabrication of rhodamine-doped nanoporous poly(methyl methacrylate) (PMMA) films, whose optical properties, such as anti-reflection, fluorescence and absorption can be tailored to specific applications. By exploiting phase separation of a binary polymer blend (PMMA and polystyrene), we fabricated foam-like nanoporous films that could be easily and cost-effectively integrated into the fabrication process of optical components. We link film morphology, studied by multifrequency atomic force microscopy (AFM), to the effective refractive index of the films for use as anti-reflection coatings. The film's morphology leads to superior broadband anti-reflection performance compared with homogeneous films. For applications involving optical filters and spectral conversion layers (e.g., for photovoltaic applications), we doped the films with the fluorescent molecule rhodamine, whereby simple variations in the fabrication process enabled us to prepare rhodamine-doped nanoporous PMMA with tunable fluorescence and absorption, without losing the anti-reflective properties. The above combination of optical properties makes the films attractive for a wide range of applications.
Collapse
Affiliation(s)
- Tobias Meier
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Santiago D Solares
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
16
|
Koch C, Eber FJ, Azucena C, Förste A, Walheim S, Schimmel T, Bittner AM, Jeske H, Gliemann H, Eiben S, Geiger FC, Wege C. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:613-29. [PMID: 27335751 PMCID: PMC4901926 DOI: 10.3762/bjnano.7.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/03/2016] [Indexed: 05/22/2023]
Abstract
The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.
Collapse
Affiliation(s)
- Claudia Koch
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fabian J Eber
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Carlos Azucena
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Alexander Förste
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Stefan Walheim
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Thomas Schimmel
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Alexander M Bittner
- CIC Nanogune, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Spain, and Ikerbasque, Maria Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Sabine Eiben
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fania C Geiger
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| |
Collapse
|
17
|
Li Y, Hu K, Han X, Yang Q, Xiong Y, Bai Y, Guo X, Cui Y, Yuan C, Ge H, Chen Y. Phase Separation of Silicon-Containing Polymer/Polystyrene Blends in Spin-Coated Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3670-3678. [PMID: 27052643 DOI: 10.1021/acs.langmuir.6b00447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this Article, two readily available polymers that contain silicon and have different surface tensions, polydimethylsiloxane (PDMS) and polyphenylsilsequioxane (PPSQ), were used to produce polymer blends with polystyrene (PS). Spin-coated thin films of the polymer blends were treated by O2 reactive-ion etching (RIE). The PS constituent was selectively removed by O2 RIE, whereas the silicon-containing phase remained because of the high etching resistance of silicon. This selective removal of PS substantially enhanced the contrast of the phase separation morphologies for better scanning electron microscope (SEM) and atomic force microscope (AFM) measurements. We investigated the effects of the silicon-containing constituents, polymer blend composition, concentration of the polymer blend solution, surface tension of the substrate, and the spin-coating speed on the ultimate morphologies of phase separation. The average domain size, ranging from 100 nm to 10 μm, was tuned through an interplay of these factors. In addition, the polymer blend film was formed on a pure organic layer, through which the aspect ratio of the phase separation morphologies was further amplified by a selective etching process. The formed nanostructures are compatible with existing nanofabrication techniques for pattern transfer onto substrates.
Collapse
Affiliation(s)
- Yang Li
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Kai Hu
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Xiao Han
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Qinyu Yang
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yifeng Xiong
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yuhang Bai
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Xu Guo
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yushuang Cui
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Changsheng Yuan
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Haixiong Ge
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yanfeng Chen
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University , Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
18
|
Huang C, Förste A, Walheim S, Schimmel T. Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch(2). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1205-1211. [PMID: 26171297 PMCID: PMC4464460 DOI: 10.3762/bjnano.6.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 04/22/2015] [Indexed: 05/30/2023]
Abstract
Polymer blend lithography (PBL) is a spin-coating-based technique that makes use of the purely lateral phase separation between two immiscible polymers to fabricate large area nanoscale patterns. In our earlier work (Huang et al. 2012), PBL was demonstrated for the fabrication of patterned self-assembled monolayers. Here, we report a new method based on the technique of polymer blend lithography that allows for the fabrication of metal island arrays or perforated metal films on the nanometer scale, the metal PBL. As the polymer blend system in this work, a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA), dissolved in methyl ethyl ketone (MEK) is used. This system forms a purely lateral structure on the substrate at controlled humidity, which means that PS droplets are formed in a PMMA matrix, whereby both phases have direct contact both to the substrate and to the air interface. Therefore, a subsequent selective dissolution of either the PS or PMMA component leaves behind a nanostructured film which can be used as a lithographic mask. We use this lithographic mask for the fabrication of metal patterns by thermal evaporation of the metal, followed by a lift-off process. As a consequence, the resulting metal nanostructure is an exact replica of the pattern of the selectively removed polymer (either a perforated metal film or metal islands). The minimum diameter of these holes or metal islands demonstrated here is about 50 nm. Au, Pd, Cu, Cr and Al templates were fabricated in this work by metal PBL. The wavelength-selective optical transmission spectra due to the localized surface plasmonic effect of the holes in perforated Al films were investigated and compared to the respective hole diameter histograms.
Collapse
Affiliation(s)
- Cheng Huang
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Alexander Förste
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Stefan Walheim
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Thomas Schimmel
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| |
Collapse
|
19
|
Petrosyan R, Bippes CA, Walheim S, Harder D, Fotiadis D, Schimmel T, Alsteens D, Müller DJ. Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores. NANO LETTERS 2015; 15:3624-3633. [PMID: 25879249 DOI: 10.1021/acs.nanolett.5b01223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-molecule force spectroscopy (SMFS) provides detailed insight into the mechanical (un)folding pathways and structural stability of membrane proteins. So far, SMFS could only be applied to membrane proteins embedded in native or synthetic membranes adsorbed to solid supports. This adsorption causes experimental limitations and raises the question to what extent the support influences the results obtained by SMFS. Therefore, we introduce here SMFS from native purple membrane freely spanning across nanopores. We show that correct analysis of the SMFS data requires extending the worm-like chain model, which describes the mechanical stretching of a polypeptide, by the cubic extension model, which describes the bending of a purple membrane exposed to mechanical stress. This new experimental and theoretical approach allows to characterize the stepwise (un)folding of the membrane protein bacteriorhodopsin and to assign the stability of single and grouped secondary structures. The (un)folding and stability of bacteriorhodopsin shows no significant difference between freely spanning and directly supported purple membranes. Importantly, the novel experimental SMFS setup opens an avenue to characterize any protein from freely spanning cellular or synthetic membranes.
Collapse
Affiliation(s)
- Rafayel Petrosyan
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Christian A Bippes
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Stefan Walheim
- †Institute of Applied Physics and Center for Functional Nanostructures (CFN) and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Daniel Harder
- §Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- §Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Thomas Schimmel
- †Institute of Applied Physics and Center for Functional Nanostructures (CFN) and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - David Alsteens
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Daniel J Müller
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| |
Collapse
|
20
|
Fuchise K, Lindemann P, Heißler S, Gliemann H, Trouillet V, Welle A, Berson J, Walheim S, Schimmel T, Meier MAR, Barner-Kowollik C. A photolithographic approach to spatially resolved cross-linked nanolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3242-3253. [PMID: 25705846 DOI: 10.1021/la505011j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The preparation of cross-linked nanosheets with 1-2 nm thickness and predefined shape was achieved by lithographic immobilization of trimethacryloyl thioalkanoates onto the surface of Si wafers, which were functionalized with 2-(phenacylthio)acetamido groups via a photoinduced reaction. Subsequent cross-linking via free radical polymerization as well as a phototriggered Diels-Alder reaction under mild conditions on the surface led to the desired nanosheets. Electrospray ionization mass spectrometry (ESI-MS), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), as well as infrared reflection-absorption spectroscopy (IRRAS) confirmed the success of individual surface-modification and cross-linking reactions. The thickness and lateral size of the cross-linked structures were determined by atomic force microscopy (AFM) for samples prepared on Si wafers functionalized with a self-assembled monolayer of 1H,1H,2H,2H-perfluorodecyl groups bearing circular pores obtained via a polymer blend lithographic approach, which led to the cross-linking reactions occurring in circular nanoareas (diameter of 50-640 nm) yielding an average thickness of 1.2 nm (radical cross-linking), 1.8 nm (radical cross-linking in the presence of 2,2,2-trifluoroethyl methacrylate as a comonomer), and 1.1 nm (photochemical cross-linking) of the nanosheets.
Collapse
Affiliation(s)
- Keita Fuchise
- †Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie (ITPC), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- ‡Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Peter Lindemann
- §Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Heißler
- §Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hartmut Gliemann
- §Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Vanessa Trouillet
- ∥Institut für Angewandte Materialien (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- †Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie (ITPC), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- ⊥Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jonathan Berson
- #Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- ∇Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Stefan Walheim
- #Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- ∇Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Thomas Schimmel
- #Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- ∇Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Michael A R Meier
- ‡Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- †Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie (ITPC), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- ⊥Institut für Biologische Grenzflächen (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Meier T, Förste A, Tavassolizadeh A, Rott K, Meyners D, Gröger R, Reiss G, Quandt E, Schimmel T, Hölscher H. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:451-461. [PMID: 25821686 PMCID: PMC4362309 DOI: 10.3762/bjnano.6.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm(3) is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm(3). In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.
Collapse
Affiliation(s)
- Tobias Meier
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Förste
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ali Tavassolizadeh
- Institute for Materials Science, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, 24143 Kiel, Germany
| | - Karsten Rott
- Department of Physics, Bielefeld University, Universitässtraße 25, 33615 Bielefeld, Germany
| | - Dirk Meyners
- Institute for Materials Science, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, 24143 Kiel, Germany
| | - Roland Gröger
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Günter Reiss
- Department of Physics, Bielefeld University, Universitässtraße 25, 33615 Bielefeld, Germany
| | - Eckhard Quandt
- Institute for Materials Science, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, 24143 Kiel, Germany
| | - Thomas Schimmel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Hendrik Hölscher
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
22
|
Blumenstein NJ, Berson J, Walheim S, Atanasova P, Baier J, Bill J, Schimmel T. Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1763-8. [PMID: 26425428 PMCID: PMC4578336 DOI: 10.3762/bjnano.6.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/31/2015] [Indexed: 05/14/2023]
Abstract
We present a promising first example towards controlling the properties of a self-assembling mineral film by means of the functionality and polarity of a substrate template. In the presented case, a zinc oxide film is deposited by chemical bath deposition on a nearly topography-free template structure composed of a pattern of two self-assembled monolayers with different chemical functionality. We demonstrate the template-modulated morphological properties of the growing film, as the surface functionality dictates the granularity of the growing film. This, in turn, is a key property influencing other film properties such as conductivity, piezoelectric activity and the mechanical properties. A very pronounced contrast is observed between areas with an underlying fluorinated, low energy template surface, showing a much more (almost two orders of magnitude) coarse-grained film with a typical agglomerate size of around 75 nm. In contrast, amino-functionalized surface areas induce the growth of a very smooth, fine-grained surface with a roughness of around 1 nm. The observed influence of the template on the resulting clear contrast in morphology of the growing film could be explained by a contrast in surface adhesion energies and surface diffusion rates of the nanoparticles, which nucleate in solution and subsequently deposit on the functionalized substrate.
Collapse
Affiliation(s)
- Nina J Blumenstein
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| | - Jonathan Berson
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, D-76131 Karlsruhe, Germany
| | - Stefan Walheim
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, D-76131 Karlsruhe, Germany
| | - Petia Atanasova
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| | - Johannes Baier
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| | - Thomas Schimmel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, D-76131 Karlsruhe, Germany
| |
Collapse
|
23
|
Abstract
Recent progress in surface science, nanotechnology and biophysics has cast new light on the correlation between the physicochemical properties of biomaterials and the resulting biological response. One experimental tool that promises to generate an increasingly more sophisticated knowledge of how proteins, cells and bacteria interact with nanostructured surfaces is the atomic force microscope (AFM). This unique instrument permits to close in on interfacial events at the scale at which they occur, the nanoscale. This perspective covers recent developments in the exploitation of the AFM, and suggests insights on future opportunities that can arise from the exploitation of this powerful technique.
Collapse
Affiliation(s)
- Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
24
|
Gao JP, Wu W, Rong L, Mao GL, Ning YN, Zhao QL, Huang J, Ma Z. Well-defined monocarboxyl-terminated polystyrene with low molecular weight: A candidate for the fabrication of highly ordered microporous films and microspheres via a static breath-figure process. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.07.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Fischer UC, Hentschel C, Fontein F, Stegemann L, Hoeppener C, Fuchs H, Hoeppener S. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1441-1449. [PMID: 25247126 PMCID: PMC4168865 DOI: 10.3762/bjnano.5.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV-ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.
Collapse
Affiliation(s)
- Ulrich Christian Fischer
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Carsten Hentschel
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Florian Fontein
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Linda Stegemann
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Christiane Hoeppener
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Stefanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Humboldtstr. 10, 07743 Jena, Germany
| |
Collapse
|
26
|
Eisele R, Blumenstein NJ, Baier J, Walheim S, Schimmel T, Bill J. Synthesis and characterization of textured Al-doped zinc oxide films prepared by template-directed deposition. CrystEngComm 2014. [DOI: 10.1039/c3ce41701h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Bashir A, Azzam W, Rohwerder M, Terfort A. Polymorphism in self-assembled terphenylthiolate monolayers on Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13449-13456. [PMID: 24083467 DOI: 10.1021/la403116r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Self-assembled monolayers (SAMs) of terphenylthiol (TPT) on gold Au(111) substrates exhibit well-ordered structures over large scales if they are annealed in ethanol at 40 °C after their formation. Using high-resolution STM, two distinct, ordered phases could be observed. The simpler phase, designated as α-phase, consists of closely packed molecules in the well-known (2√3 × √3)R30° structure. It could be demonstrated that under less suitable imaging conditions this phase can be mistaken as the hexagonal (√3 × √3)R30°, which resolves a discrepancy in between previous reports. The second phase is characterized by a stripe pattern with a periodicity of 2.0 nm and can be described by a point-on-line incommensurate (4 × n) ([Formula: see text]) lattice with n close to 8. This β-phase contains four pairs of terphenylthiolate molecules, which might be held together by either disulfide bonds or the recently discussed S-Au-S motif, and is thus 35% ± 15% less densely packed than the α-phase. The coexistence of these phases explains the variability of spectroscopic results obtained in the past for terphenylthiolate layers, since their relative proportion determines the average thicknesses/tilt angles found in these studies.
Collapse
Affiliation(s)
- Asif Bashir
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | | | | | | |
Collapse
|