1
|
Barreto MQ, Garbelotti CV, Lopes DCB, Soares JDM, Ward RJ. Xylose isomerase: From fundamental research to applied enzyme technology. J Biotechnol 2025; 404:39-54. [PMID: 40204218 DOI: 10.1016/j.jbiotec.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/22/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Xylose isomerases (XI, EC 5.3.1.5) are key enzymes for the metabolism of pentoses by microorganisms. The importance of XIs goes beyond academic biochemical research and the catalysis of aldo-ketose conversion by XIs is among the most successful examples of industrial enzyme technology in a market that generates multibillion dollar annual revenues. Here we present an in-depth review of how structural information has contributed to the current understanding of XI catalysis, and discuss topics related to the ongoing efforts to elucidate key aspects of the catalytic mechanism. An overview of XI immobilization is also provided that illustrates how the discoveries in basic enzyme technology research can generate opportunities for novel uses of XI, and we review not only historical aspects but also more recent applications in HFCS, biofuels and other applications. The systems biology revolution will impact all aspects of XI research and application, and we finalize by reviewing the contemporary efforts of metabolic and protein engineering using XI and the future roles of the enzyme in the expanding bioeconomy.
Collapse
Affiliation(s)
- Matheus Quintana Barreto
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Carolina Victal Garbelotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Douglas Christian Borges Lopes
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jéssica de Moura Soares
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Wen X, Lin H, Liu G, Ning Y, Xu X, Hu H, Ren Y, Li C, Zhang C, Dong N, Song X, Lin J, Lin J. Eco-friendly production, separation and purification of D-tagatose and D-allulose from whey powder via one-pot whole-cells biotransformation, yeast fermentation and chromatography. Food Res Int 2025; 207:116109. [PMID: 40086967 DOI: 10.1016/j.foodres.2025.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Whey powder (WP), a dairy by-product with high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), presents challenges due to its high production, low-value utilization, and environmental pollution. Based on the idea of turning waste into treasure, high-value use of WP was studied. Firstly, an engineered Bacillus subtilis co-expressing β-galactosidase (β-Gal) and L-arabinose isomerase (LAI) was constructed, which ultimately yielded 77.5 g/L D-tagatose from 500 g/L lactose. Subsequently, an engineered Escherichia coli co-expressing glucose isomerase (GI) and D-allulose 3-epimerase (DAE) was used together with above recombinant B. subtilis in a one-pot whole-cell biotransformation, and 29.11 g/L D-tagatose and 11.45 g/L D-allulose were derived from 200 g/L WP (equating to 140 g/L lactose) with yield of 0.29 g rare sugars/g lactose. In addition, the d-glucose, d-fructose and D-galactose in the reaction solution were removed by Saccharomyces cerevisiae S288C fermentation, and finally chromatography was used in separation of D-tagatose and D-allulose to obtain the purified products with 97.5 % and 95.0 % purities, respectively. This study showcases the eco-friendly production of D-tagatose and D-allulose from WP, with their separation and purification via yeast fermentation and chromatography successfully carried out for the first time.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| | - Huibin Lin
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Guangwen Liu
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Yuhang Ning
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Xixian Xu
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Hongtao Hu
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Yilin Ren
- Qingdao Longding Biotech Limited Company, Qingdao 266108, China
| | - Can Li
- School of Biological Engineering, Qilu University of Technology, Jinan 250353, China
| | - Chengjia Zhang
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Nannan Dong
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China.
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China.
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| |
Collapse
|
3
|
Waheed Iqbal M, Tang X, Riaz T, Mahmood S, Zhang Y, Zhao M, Yun J, Li J, Qi X. Exploiting the biocatalytic potential of co-expressed l-fucose isomerase and d-tagatose 3-epimerase for the biosynthesis of 6-deoxy-l-sorbose. Bioorg Chem 2024; 145:107189. [PMID: 38350272 DOI: 10.1016/j.bioorg.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
6-Deoxy-l-sorbose (6-DLS) is an imperative rare sugar employed in food, agriculture, pharmaceutical and cosmetic industeries. However, it is a synthetic and very expensive rare sugars, previously synthesized by chemo-enzymatic methods through a long chain of chemical processes. Recently, enzymatic synthesis of rare sugars has attracted a lot of attention due to its advantages over synthetic methods. In this work, a promising approach for the synthesis of 6-DLS from an inexpensive sugar l-fucose was identified. The genes for l-fucose isomerase from Paenibacillus rhizosphaerae (Pr-LFI) and genes for d-tagatose-3-epimerase from Caballeronia fortuita (Cf-DTE) have been used for cloning and co-expression in Escherichia coli, developed a recombinant plasmid harboring pANY1-Pr-LFI/Cf-DTE vector. The recombinant co-expression system exhibited an optimum activity at 50 °C of temperature and pH 6.5 in the presence of Co2+ metal ion which inflated the catalytic activity by 6.8 folds as compared to control group with no metal ions. The recombinant co-expressed system was stable up to more than 50 % relative activity after 12 h and revealed a melting temperature (Tm) of 63.38 °C exhibiting half-life of 13.17 h at 50 °C. The co-expression system exhibited, 4.93, 11.41 and 16.21 g/L of 6-DLS production from initial l-fucose concentration of 30, 70 and 100 g/L, which equates to conversion yield of 16.44 %, 16.30 % and 16.21 % respectively. Generally, this study offers a promising strategy for the biological production of 6-DLS from an inexpensive substrate l-fucose in slightly acidic conditions with the aid of co-expression system harboring Pr-LFI and CF-DTE genes.
Collapse
Affiliation(s)
- Muhammad Waheed Iqbal
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| | - Jia Li
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
4
|
Gao Y, Chen Z, Nakanishi H, Li Z. Highly Efficient Synthesis of Rare Sugars from Glycerol in Endotoxin-Free ClearColi by Fermentation. Foods 2023; 12:3078. [PMID: 37628077 PMCID: PMC10453619 DOI: 10.3390/foods12163078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Rare sugars possess potential applications as low-calorie sweeteners, especially for anti-obesity and anti-diabetes. In this study, a fermentation biosystem based on the "DHAP-dependent aldolases strategy" was established for D-allulose and D-sorbose production from glycerol in endotoxin-free ClearColi BL21 (DE3). Several engineering strategies were adopted to enhance rare sugar production. Firstly, the combination of different plasmids for aldO, rhaD, and yqaB expression was optimized. Then, the artificially constructed ribosomal binding site (RBS) libraries of aldO, rhaD, and yqaB genes were assembled individually and combinatorially. In addition, a peroxidase was overexpressed to eliminate the damage or toxicity from hydrogen peroxide generated by alditol oxidase (AldO). Finally, stepwise improvements in rare sugar synthesis were elevated to 15.01 g/L with a high yield of 0.75 g/g glycerol in a 3 L fermenter. This research enables the effective production of rare sugars from raw glycerol in high yields.
Collapse
Affiliation(s)
- Yahui Gao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Chahed A, Nesler A, Esmaeel Q, Barka EA, Perazzolli M. The Amount of the Rare Sugar Tagatose on Tomato Leaves Decreases after Spray Application under Greenhouse Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2781. [PMID: 36297805 PMCID: PMC9607558 DOI: 10.3390/plants11202781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Tagatose is a rare sugar that suppresses plant diseases, such as late blight of tomato, caused by Phytophthora infestans. Tagatose can be metabolized by some microorganisms and no information is available on its persistence on tomato leaves. The aim of this study was to assess the persistence of tagatose on tomato leaves under commercial greenhouse conditions. The amount of tagatose on tomato leaves and the inhibitory activity against P. infestans decreased seven days after spray application in the absence of rain wash-off. Potential tagatose-degrading bacteria were isolated from tomato leaves, and they belonged to Acinetobacter sp., Bacillus sp., Comamonas sp., Enterobacter sp., Methylobacterium sp., Microbacterium sp., Pantoea sp., Plantibacter sp., Pseudomonas sp., Ralstonia sp., Rhodococcus sp., Sphingobium sp., and Sphingomonas sp. Thus, indigenous phyllosphere microorganisms could partially metabolize tagatose laid on plant leaves after spray application, reducing the persistence of this fungal inhibitor on tomato leaves.
Collapse
Affiliation(s)
- Abdessalem Chahed
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
- Bi-PA nv, Technologielaan 7, 1840 Londerzeel, Belgium
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France
| | - Andrea Nesler
- Bi-PA nv, Technologielaan 7, 1840 Londerzeel, Belgium
| | - Qassim Esmaeel
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France
| | - Essaid Ait Barka
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| |
Collapse
|
6
|
Witte MD, Minnaard AJ. Site-Selective Modification of (Oligo)Saccharides. ACS Catal 2022; 12:12195-12205. [PMID: 36249871 PMCID: PMC9552177 DOI: 10.1021/acscatal.2c03876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Oligosaccharides, either as such or as part of glycolipids, glycopeptides, or glycoproteins, are ubiquitous in nature and fulfill important roles in the living cell. Also in medicine and to some extent in materials, oligosaccharides play an important role. In order to study their function, modifying naturally occurring oligosaccharides, and building in reactive groups and reporter groups in oligosaccharides, are key strategies. The development of oligosaccharides as drugs, or vaccines, requires the introduction of subtle modifications in the structure of oligosaccharides to optimize efficacy and, in the case of antibiotics, circumvent bacterial resistance. Provided the natural oligosaccharide is available, site-selective modification is an attractive approach as total synthesis of the target is often very laborious. Researchers in catalysis areas, such as transition-metal catalysis, enzyme catalysis, organocatalysis, and photoredox catalysis, have made considerable progress in the development of site-selective and late-stage modification methods for mono- and oligosaccharides. It is foreseen that the fields of enzymatic modification of glycans and the chemical modification of (oligo)saccharides will approach and potentially meet each other, but there is a lot to learn and discover before this will be the case.
Collapse
Affiliation(s)
- Martin D. Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
7
|
Teng KC, Tseng KY, Tzeng ZH, Hung SC. A concise synthesis of l-gulose and its C-6 derivatives. Bioorg Med Chem 2022; 73:117029. [PMID: 36174449 DOI: 10.1016/j.bmc.2022.117029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022]
Abstract
A convenient route for the preparation of l-gulose and its C-6 derivatives starting from commercially available 2,3:5,6-diisopropylidene-d-mannofuranose via C-5 epimerization as the key step was developed. 1-O-Benzylation followed by regioselective hydrolysis of the 5,6-isopropylidene group furnished benzyl 2,3-isopropylidene-α-d-mannofuranoside, which was subjected upon regioselective one-pot 6-O-benzoylation and 5-O-mesylation, providing the corresponding 5-OMs-6-OBz derivative in excellent selectivity. Treatment of this mesylate compound with potassium t-butoxide to remove the benzoyl group followed by intramolecular SN2 inversion led to benzyl 5,6-anhydro-2,3-isopropylidene-β-l-gulofuranoside, which could undergo not only nucleophilic substitutions to open the epoxide ring to give various C-6 derivatives, but also acidic hydrolysis to yield 1,6-anhydro-β-l-gulopyranose for further transformation into l-gulopyranosyl pentaacetate.
Collapse
Affiliation(s)
- Kai-Ching Teng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Department of Applied Science, National Taitung University, Taitung 95092, Taiwan
| | - Kuei-Yao Tseng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| | - Zheng-Hao Tzeng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Department of Applied Science, National Taitung University, Taitung 95092, Taiwan; Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
8
|
Wen X, Ning Y, Lin H, Ren Y, Li C, Liu Y, Zhang C, Lin J, Lin J. d-Allulose (d-psicose) biotransformation from d-glucose, separation by simulated moving bed chromatography (SMBC) and purification by crystallization. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Singh A, Rai SK, Yadav SK. Metal-based micro-composite of L-arabinose isomerase and L-ribose isomerase for the sustainable synthesis of L-ribose and D-talose. Colloids Surf B Biointerfaces 2022; 217:112637. [PMID: 35728372 DOI: 10.1016/j.colsurfb.2022.112637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/20/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022]
Abstract
The biocatalysts are broadly explored in the biological transformation processes. The enzyme cascade catalysis involves various catalytic activities in a sequential process to produce the desired product including the formation of reaction intermediates. Enzyme immobilization is a method in which enzymes are confined within a support or matrix either physically or chemically to enhance their relative stability and catalytic activity in the enzyme cascade catalysis. In view of this, L-arabinose isomerase (L-AI) and L-ribose isomerase (L-RI) were immobilized on zeolite based metal framework as a micro-composite construct (DEMC@L-AI+L-RI) using linker, and metal ions. Such immobilization could be of great significance and provide several advantages like mesoporous surface for enzyme adsorption, desirable functionality in the production of products in enzyme cascade reaction, high storage stability and enhanced recyclability. The developed DEMC@L-AI+L-RI was characterized using SEM, FTIR, CLSM and TGA. The immobilization yield was 32% and loading of enzyme was 22% on the surface of micro-composite. The DEMC@L-AI+L-RI showed relatively stable catalytic activity at pH 5-6 and temperature 40 °C. The catalytic efficiency (kcat/Km) of both the enzymes was increased by 1.5-fold after immobilization. With the immobilized biocatalyst, bioconversion of L-arabinose to L-ribose was 22.6% and D-galactose to D-talose was 15.2%. The reusability of developed biocatalyst for more than six cycles was observed for more than 50% yield of the sugars. The conversion of biomass sugars from beetroot and onion waste residues was 20% and 14% to produce ribose and talose, respectively.
Collapse
Affiliation(s)
- Aishwarya Singh
- Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing, Sector 81, Knowledge City, Mohali 140306, India; Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Shushil Kumar Rai
- Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing, Sector 81, Knowledge City, Mohali 140306, India
| | - Sudesh Kumar Yadav
- Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing, Sector 81, Knowledge City, Mohali 140306, India; Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India.
| |
Collapse
|
10
|
Parıldı E, Kola O, Özcan BD, Akkaya MR, Dikkaya E. Recombinant D‐tagatose 3‐epimerase production and converting fructose into allulose. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erva Parıldı
- Department of Food Engineering, Faculty of Engineering Adana Alparslan Türkeş Science and Technology University Sarıçam Turkey
| | - Osman Kola
- Department of Food Engineering, Faculty of Engineering Adana Alparslan Türkeş Science and Technology University Sarıçam Turkey
| | - Bahri Devrim Özcan
- Department of Animal Science, Faculty of Agriculture Çukurova University Sarıçam Turkey
| | - Murat Reis Akkaya
- Department of Food Engineering, Faculty of Engineering Adana Alparslan Türkeş Science and Technology University Sarıçam Turkey
| | - Elif Dikkaya
- Department of Animal Science, Faculty of Agriculture Çukurova University Sarıçam Turkey
| |
Collapse
|
11
|
Zhao J, Guo Y, Li Q, Chen J, Niu D, Liu J. Reconstruction of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Efficient Biosynthesis of Allitol from d-Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3775-3784. [PMID: 35298165 DOI: 10.1021/acs.jafc.2c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combined catalysis of glucose isomerase (GI), d-psicose 3-epimerase (DPEase), ribitol dehydrogenase (RDH), and formate dehydrogenase (FDH) provides a convenient route for the biosynthesis of allitol from d-glucose; however, the low catalytic efficiency restricts its industrial applications. Here, the supplementation of 0.32 g/L NAD+ significantly promoted the cell catalytic activity by 1.18-fold, suggesting that the insufficient intracellular NAD(H) content was a limiting factor in allitol production. Glucose dehydrogenase (GDH) with 18.13-fold higher activity than FDH was used for reconstructing a cofactor self-sufficient system, which was combined with the overexpression of the rate-limiting genes involved in NAD+ salvage metabolic flow to expand the available intracellular NAD(H) pool. Then, the multienzyme self-assembly system with SpyTag and SpyCatcher effectively channeled intermediates, leading to an 81.1% increase in allitol titer to 15.03 g/L from 25 g/L d-glucose. This study provided a facilitated strategy for large-scale and efficient biosynthesis of allitol from a low-cost substrate.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yan Guo
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qiufeng Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jing Chen
- South Subtropical Agricultural Scientific Research Institute of Guangxi, Longzhou, Guangxi 532415, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
12
|
Li X, Wu J, Tang W. General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2- trans-Diols to 1,2- cis-Diols. J Am Chem Soc 2022; 144:3727-3736. [PMID: 35168319 DOI: 10.1021/jacs.1c13399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human glycans are primarily composed of nine common sugar building blocks. On the other hand, several hundred monosaccharides have been discovered in bacteria and most of them are not readily available. The ability to access these rare sugars and the corresponding glycoconjugates can facilitate the studies of various fundamentally important biological processes in bacteria, including interactions between microbiota and the human host. Many rare sugars also exist in a variety of natural products and pharmaceutical reagents with significant biological activities. Although several methods have been developed for the synthesis of rare monosaccharides, most of them involve lengthy steps. Herein, we report an efficient and general strategy that can provide access to rare sugars from commercially available common monosaccharides via a one-step Ru(II)-catalyzed and boron-mediated selective epimerization of 1,2-trans-diols to 1,2-cis-diols. The formation of boronate esters drives the equilibrium toward 1,2-cis-diol products, which can be immediately used for further selective functionalization and glycosylation. The utility of this strategy was demonstrated by the efficient construction of glycoside skeletons in natural products or bioactive compounds.
Collapse
Affiliation(s)
- Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jicheng Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Wen X, Lin H, Ren Y, Li C, Zhang C, Lin J, Lin J. Allitol bioproduction by recombinant Escherichia coli with NADH regeneration system co-expressing ribitol dehydrogenase (RDH) and formate dehydrogenase (FDH) in individual or in fusion. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
14
|
Desmons S, Grayson-Steel K, Nuñez-Dallos N, Vendier L, Hurtado J, Clapés P, Fauré R, Dumon C, Bontemps S. Enantioselective Reductive Oligomerization of Carbon Dioxide into l-Erythrulose via a Chemoenzymatic Catalysis. J Am Chem Soc 2021; 143:16274-16283. [PMID: 34546049 DOI: 10.1021/jacs.1c07872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A cell-free enantioselective transformation of the carbon atom of CO2 has never been reported. In the urgent context of transforming CO2 into products of high value, the enantiocontrolled synthesis of chiral compounds from CO2 would be highly desirable. Using an original hybrid chemoenzymatic catalytic process, we report herein the reductive oligomerization of CO2 into C3 (dihydroxyacetone, DHA) and C4 (l-erythrulose) carbohydrates, with perfect enantioselectivity of the latter chiral product. This was achieved with the key intermediacy of formaldehyde. CO2 is first reduced selectively by 4e- by an iron-catalyzed hydroboration reaction, leading to the isolation and complete characterization of a new bis(boryl)acetal compound derived from dimesitylborane. In an aqueous buffer solution at 30 °C, this compound readily releases formaldehyde, which is then involved in selective enzymatic transformations, giving rise either (i) to DHA using a formolase (FLS) catalysis or (ii) to l-erythrulose with a cascade reaction combining FLS and d-fructose-6-phosphate aldolase (FSA) A129S variant. Finally, the nature of the synthesized products is noteworthy, since carbohydrates are of high interest for the chemical and pharmaceutical industries. The present results prove that the cell-free de novo synthesis of carbohydrates from CO2 as a sustainable carbon source is a possible alternative pathway in addition to the intensely studied biomass extraction and de novo syntheses from fossil resources.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France.,TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | | | - Nelson Nuñez-Dallos
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France.,Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France
| | - John Hurtado
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Pere Clapés
- Biological Chemistry Department, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
15
|
Chahed A, Lazazzara V, Moretto M, Nesler A, Corneo PE, Barka EA, Pertot I, Puopolo G, Perazzolli M. The Differential Growth Inhibition of Phytophthora spp. Caused by the Rare Sugar Tagatose Is Associated With Species-Specific Metabolic and Transcriptional Changes. Front Microbiol 2021; 12:711545. [PMID: 34305881 PMCID: PMC8292896 DOI: 10.3389/fmicb.2021.711545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
Tagatose is a rare sugar with no negative impacts on human health and selective inhibitory effects on plant-associated microorganisms. Tagatose inhibited mycelial growth and negatively affected mitochondrial processes in Phytophthora infestans, but not in Phytophthora cinnamomi. The aim of this study was to elucidate metabolic changes and transcriptional reprogramming activated by P. infestans and P. cinnamomi in response to tagatose, in order to clarify the differential inhibitory mechanisms of tagatose and the species-specific reactions to this rare sugar. Phytophthora infestans and P. cinnamomi activated distinct metabolic and transcriptional changes in response to the rare sugar. Tagatose negatively affected mycelial growth, sugar content and amino acid content in P. infestans with a severe transcriptional reprogramming that included the downregulation of genes involved in transport, sugar metabolism, signal transduction, and growth-related process. Conversely, tagatose incubation upregulated genes related to transport, energy metabolism, sugar metabolism and oxidative stress in P. cinnamomi with no negative effects on mycelial growth, sugar content and amino acid content. Differential inhibitory effects of tagatose on Phytophthora spp. were associated with an attempted reaction of P. infestans, which was not sufficient to attenuate the negative impacts of the rare sugar and with an efficient response of P. cinnamomi with the reprogramming of multiple metabolic processes, such as genes related to glucose transport, pentose metabolism, tricarboxylic acid cycle, reactive oxygen species detoxification, mitochondrial and alternative respiration processes. Knowledge on the differential response of Phytophthora spp. to tagatose represent a step forward in the understanding functional roles of rare sugars.
Collapse
Affiliation(s)
- Abdessalem Chahed
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Bi-PA nv, Londerzeel, Belgium.,Department of Induced Resistance and Plant Bioprotection, University of Reims, Reims, France
| | - Valentina Lazazzara
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Andrea Nesler
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Bi-PA nv, Londerzeel, Belgium
| | - Paola Elisa Corneo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Essaid Ait Barka
- Department of Induced Resistance and Plant Bioprotection, University of Reims, Reims, France
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Gerardo Puopolo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
16
|
Jia DX, Sun CY, Jin YT, Liu ZQ, Zheng YG, Li M, Wang HY, Chen DS. Properties of d-allulose 3-epimerase mined from Novibacillus thermophilus and its application to synthesis of d-allulose. Enzyme Microb Technol 2021; 148:109816. [PMID: 34116747 DOI: 10.1016/j.enzmictec.2021.109816] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/15/2021] [Accepted: 05/01/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Dong-Xu Jia
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Chen-Yi Sun
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Yi-Ting Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324032, PR China
| | - Hong-Yan Wang
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324032, PR China
| | - De-Shui Chen
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324032, PR China
| |
Collapse
|
17
|
Efficient whole-cell biosynthesis of l-gulose by coupling mannitol-1-dehydrogenase with NADH oxidase. Enzyme Microb Technol 2021; 148:109815. [PMID: 34116746 DOI: 10.1016/j.enzmictec.2021.109815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/26/2020] [Accepted: 05/01/2021] [Indexed: 12/24/2022]
Abstract
L-Gulose is a rare aldohexose to serve as a building block for anticancer drug bleomycin and nucleoside-based antivirals. However, preparative inaccessibility and high cost have hindered its pharmaceutical application. Despite a regio- and stereo-selective enzymatic synthesis of l-gulose from d-sorbitol using a variant of NAD+-dependent mannitol-1-dehydrogenase from Apium graveolens (mMDH) was explored, low efficiency and productivity caused by NADH accumulation or insufficient amount of NAD+ limited the practical utility of this process. In this study, a stable and efficient NADH oxidase from Bacillus cereus (bcNOX) was found to be more compatible with mMDH to recycle NAD+ in E. coli cells for l-gulose biosynthesis. After a systematic optimization of the whole-cell system, efficient biosynthesis of l-gulose was achieved. Starting with 70 g/L of readily available and cheap d-sorbitol resulted in a volumetric productivity of 5.5 g/L/d. This whole-cell approach enables practical, efficient and environmentally friendly biosynthesis of l-gulose and exhibits the potential of becoming a biocatalytic strategy for various enzymatic oxidative transformations.
Collapse
|
18
|
Mijailovic N, Nesler A, Perazzolli M, Aït Barka E, Aziz A. Rare Sugars: Recent Advances and Their Potential Role in Sustainable Crop Protection. Molecules 2021; 26:molecules26061720. [PMID: 33808719 PMCID: PMC8003523 DOI: 10.3390/molecules26061720] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Rare sugars are monosaccharides with a limited availability in the nature and almost unknown biological functions. The use of industrial enzymatic and microbial processes greatly reduced their production costs, making research on these molecules more accessible. Since then, the number of studies on their medical/clinical applications grew and rare sugars emerged as potential candidates to replace conventional sugars in human nutrition thanks to their beneficial health effects. More recently, the potential use of rare sugars in agriculture was also highlighted. However, overviews and critical evaluations on this topic are missing. This review aims to provide the current knowledge about the effects of rare sugars on the organisms of the farming ecosystem, with an emphasis on their mode of action and practical use as an innovative tool for sustainable agriculture. Some rare sugars can impact the plant growth and immune responses by affecting metabolic homeostasis and the hormonal signaling pathways. These properties could be used for the development of new herbicides, plant growth regulators and resistance inducers. Other rare sugars also showed antinutritional properties on some phytopathogens and biocidal activity against some plant pests, highlighting their promising potential for the development of new sustainable pesticides. Their low risk for human health also makes them safe and ecofriendly alternatives to agrochemicals.
Collapse
Affiliation(s)
- Nikola Mijailovic
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
- Bi-PA nv, Londerzee l1840, Belgium;
| | | | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele all’Adige, Italy
| | - Essaid Aït Barka
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
- Correspondence: ; Tel.: +33-326-918-525
| |
Collapse
|
19
|
Interactions of tagatose with the sugar metabolism are responsible for Phytophthora infestans growth inhibition. Microbiol Res 2021; 247:126724. [PMID: 33640575 DOI: 10.1016/j.micres.2021.126724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
Tagatose is a rare sugar metabolised by a limited number of microorganisms that inhibits a large spectrum of phytopathogens. In particular, tagatose inhibited Phytophthora infestans growth and negatively affected mitochondrial processes. However, the possible effects of tagatose on P. infestans metabolism have not yet been investigated. The aim of this study was to analyse the impact of this rare sugar on the sugar metabolism in P. infestans, in order to better understand its mode of action. Tagatose inhibited the growth of P. infestans with a precise reprogramming of the carbohydrate metabolism that involved a decrease of glucose, glucose-1-phosphate and mannose content and β-glucosidase activity. The combination of tagatose with common sugars led to three different responses and highlighted antagonistic interactions. In particular, glucose partially attenuated the inhibitory effects of tagatose, while fructose fully impaired tagatose-mediated growth inhibition and metabolite changes. Moreover, sucrose did not attenuate tagatose effects, suggesting that the inhibition of sucrose catabolism and the alteration of glucose-related pathways contributed to the growth inhibition caused by tagatose to P. infestans. The interactions of tagatose with the common sugar metabolism were found to be a key mode of action against P. infestans growth, which may represent the basis for the further development of tagatose as an eco-friendly fungicide.
Collapse
|
20
|
Expanding the Enzyme Repertoire for Sugar Nucleotide Epimerization: The CDP-Tyvelose 2-Epimerase from Thermodesulfatator atlanticus for Glucose/Mannose Interconversion. Appl Environ Microbiol 2021; 87:AEM.02131-20. [PMID: 33277270 PMCID: PMC7851689 DOI: 10.1128/aem.02131-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Epimerization of sugar nucleotides is central to the structural diversification of monosaccharide building blocks for cellular biosynthesis. Epimerase applicability to carbohydrate synthesis can be limited, however, by the high degree of substrate specificity exhibited by most sugar nucleotide epimerases. Here, we discovered a promiscuous type of CDP-tyvelose 2-epimerase (TyvE)-like enzyme that promotes C2-epimerization in all nucleotide (CDP, UDP, GDP, ADP, TDP)-activated forms of d-glucose. This new epimerase, originating from Thermodesulfatator atlanticus, is a functional homodimer that contains one tightly bound NAD+/subunit and shows optimum activity at 70°C and pH 9.5. The enzyme exhibits a k cat with CDP-dglucose of ∼1.0 min-1 (pH 7.5, 60°C). To characterize the epimerase kinetically and probe its substrate specificity, we developed chemo-enzymatic syntheses for CDP-dmannose, CDP-6-deoxy-dglucose, CDP-3-deoxy-dglucose and CDP-6-deoxy-dxylo-hexopyranos-4-ulose. Attempts to obtain CDP-dparatose and CDP-dtyvelose were not successful. Using high-resolution carbohydrate analytics and in situ NMR to monitor the enzymatic conversions (60°C, pH 7.5), we show that the CDP-dmannose/CDP-dglucose ratio at equilibrium is 0.67 (± 0.1), determined from the kinetic Haldane relationship and directly from the reaction. We further show that deoxygenation at sugar C6 enhances the enzyme activity 5-fold compared to CDP-dglucose whereas deoxygenation at C3 renders the substrate inactive. Phylogenetic analysis places the T. atlanticus epimerase into a distinct subgroup within the sugar nucleotide epimerase family of SDR (short-chain dehydrogenases/reductases), for which the current study now provides the functional context. Collectively, our results expand an emerging toolbox of epimerase-catalyzed reactions for sugar nucleotide synthesis.IMPORTANCE Epimerases of the sugar nucleotide-modifying class of enzymes have attracted considerable interest in carbohydrate (bio)chemistry, for the mechanistic challenges and the opportunities for synthesis involved in the reactions catalyzed. Discovery of new epimerases with expanded scope of sugar nucleotide substrates used is important to promote the mechanistic inquiry and can facilitate the development of new enzyme applications. Here, a CDP-tyvelose 2-epimerase-like enzyme from Thermodesulfatator atlanticus is shown to catalyze sugar C2 epimerization in CDP-glucose and other nucleotide-activated forms of dglucose. The reactions are new to nature in the context of enzymatic sugar nucleotide modification. The current study explores the substrate scope of the discovered C2-epimerase and, based on modeling, suggests structure-function relationships that may be important for specificity and catalysis.
Collapse
|
21
|
Surapureddi SRK, Ravindhranath K, Sameer Kumar GS, Sappidi SR. Separation and Determination of d-Allose in Presence of Process-Related Impurities by Capillary Electrophoresis. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01842-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Zhang J, Dai Y, Jiang B, Zhang T, Chen J. Dual-enzyme co-immobilization for the one-pot production of glucose 6-phosphate from maltodextrin. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Ocal N, L’enfant M, Charmantray F, Pollegioni L, Martin J, Auffray P, Collin J, Hecquet L. d-Serine as a Key Building Block: Enzymatic Process Development and Smart Applications within the Cascade Enzymatic Concept. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nazim Ocal
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Mélanie L’enfant
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, Università degli Studi dell’Insubria, 21100 Varese, Italy
| | - Juliette Martin
- Protéus by Seqens, 70 Allée Graham Belln, F-30035 Nîmes, France
| | - Pascal Auffray
- Protéus by Seqens, 70 Allée Graham Belln, F-30035 Nîmes, France
| | - Jérôme Collin
- Protéus by Seqens, 70 Allée Graham Belln, F-30035 Nîmes, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
24
|
Chahed A, Nesler A, Navazio L, Baldan B, Busato I, Ait Barka E, Pertot I, Puopolo G, Perazzolli M. The Rare Sugar Tagatose Differentially Inhibits the Growth of Phytophthora infestans and Phytophthora cinnamomi by Interfering With Mitochondrial Processes. Front Microbiol 2020; 11:128. [PMID: 32117150 PMCID: PMC7015900 DOI: 10.3389/fmicb.2020.00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
Rare sugars are monosaccharides with limited availability in nature and their biological functions are largely unknown. Among them, tagatose was developed as a low-calorie sweetener and showed beneficial effects on human health. Tagatose is metabolized by only certain microbial taxa and inhibits the growth of important crop pathogens (e.g., Phytophthora infestans), but its mode of action and the microbial responses are unknown. The aim of this study was to understand the tagatose mode of action against Phytophthora spp., with the final aim of developing new plant protection products. Tagatose inhibited P. infestans growth in vitro and caused severe ultrastructural alterations, with the formation of circular and concentric mitochondrial cristae. Decreased ATP content and reduced oxygen consumption rate (OCR) were found in tagatose-incubated P. infestans as compared to the control, with the consequent accumulation of reactive oxygen species (ROS) and induction of genes related to apoptosis and oxidative stress response. On the other hand, tagatose did not, or only slightly, affect the growth, cellular ultrastructure and mitochondrial processes in Phytophthora cinnamomi, indicating a species-specific response to this rare sugar. The mode of action of tagatose against P. infestans was mainly based on the inhibition of mitochondrial processes and this rare sugar seems to be a promising active substance for the further development of eco-friendly fungicides, thanks to its anti-nutritional properties on some phytopathogens and low risk for human health.
Collapse
Affiliation(s)
- Abdessalem Chahed
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Biological Products for Agriculture (Bi-PA), Londerzeel, Belgium.,Department of Plant Induced Resistance and Bioprotection, University of Reims Champagne-Ardenne, Reims, France
| | - Andrea Nesler
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Biological Products for Agriculture (Bi-PA), Londerzeel, Belgium
| | - Lorella Navazio
- Department of Biology, University of Padua, Padua, Italy.,Botanical Garden, University of Padua, Padua, Italy
| | - Barbara Baldan
- Department of Biology, University of Padua, Padua, Italy.,Botanical Garden, University of Padua, Padua, Italy
| | - Isabella Busato
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Biology, University of Padua, Padua, Italy
| | - Essaid Ait Barka
- Department of Plant Induced Resistance and Bioprotection, University of Reims Champagne-Ardenne, Reims, France
| | - Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
25
|
Li Z, Li F, Cai L, Chen Z, Qin L, Gao XD. One-Pot Multienzyme Synthesis of Rare Ketoses from Glycerol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1347-1353. [PMID: 31961681 DOI: 10.1021/acs.jafc.9b06748] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A facile approach is introduced here for the synthesis of rare ketoses from glycerol and d-/l-glyceraldehyde (d-/l-GA). The reactions were carried out in a one-pot multienzyme fashion in which the only carbon source is glycerol. In the enzymatic cascade, glycerol is phosphorylated and then oxidized at C2 to afford dihydroxyacetone phosphate (DHAP), the key donor for enzymatic aldol reaction. Meanwhile, the primary alcohol of glycerol is also oxidized to give the acceptor molecule GA in situ (d- or l-isomer could be formed stereospecifically with either alditol oxidase or horse liver alcohol dehydrogenase). Different DHAP-dependent aldolases were used to generate the aldol adducts (rare ketohexose phosphates) with various stereoconfigurations and diastereomeric ratios. It is worth noting that the enzyme that catalyzes the phosphorylation reaction in the first step could also help recycle the phosphate in the last step to provide free rare sugar molecules. This study provides a useful method for rare ketose synthesis on a 100 mg to g scale, starting from relatively inexpensive materials which solved the problem of supplying both glycerol 3-phosphate and GA in our previous work. It also demonstrates an example of green synthesis due to highly efficient carbon usage and recycling of cofactors.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Fen Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Li Cai
- Department of Chemistry , University of South Carolina Lancaster , 476 Hubbard Dr , Lancaster , South Carolina 29720 , United States
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Ling Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
26
|
Abstract
2,3,5-Tri-O-benzyl- and 2,3,5-tri-O-methyl-d-ribono-γ-lactone were converted with (methoxyethoxymethoxy)methyl and benzyloxy tributylstannane into the corresponding protected d-psicoses as mixtures of anomers in 31%–72% yield. Treatment of 2,3,5-tri-O-methyl-l-ribono-γ-lactone with benzyloxy tributylstannane afforded the corresponding l-psicose derivative as an anomeric mixture in 72% yield. Both methylated psicoses were further converted into 1,2-O-isopropylidene-3,4,6-tri-O-methyl-d- and l-psicofuranosides, the respective α- and β-anomers of which could be separated and characterized.
Collapse
|
27
|
Ecological impact of a rare sugar on grapevine phyllosphere microbial communities. Microbiol Res 2019; 232:126387. [PMID: 31790975 DOI: 10.1016/j.micres.2019.126387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/14/2023]
Abstract
Plants host a complex microbiota inside or outside their tissues, and phyllosphere microorganisms can be influenced by environmental, nutritional and agronomic factors. Rare sugars are defined as monosaccharides with limited availability in nature and they are metabolised by only few certain microbial taxa. Among rare sugars, tagatose (TAG) is a low-calories sweetener that stimulates and inhibits beneficial and pathogenic bacteria in the human gut microbiota, respectively. Based on this differential effect on human-associated microorganisms, we investigated the effect of TAG treatments on the grapevine phyllosphere microorganisms to evaluate whether it can engineer the microbiota and modify the ratio between beneficial and pathogenic plant-associated microorganisms. TAG treatments changed the structure of the leaf microbiota and they successfully reduced leaf infections of downy mildew (caused by Plasmopara viticola) and powdery mildew (caused by Erysiphe necator) under field conditions. TAG increased the relative abundance of indigenous beneficial microorganisms, such as some potential biocontrol agents, which could partially contribute to disease control. The taxonomic composition of fungal and bacterial leaf populations differed according to grapevine locations, therefore TAG effects on the microbial structure were influenced by the composition of the originally residing microbiota. TAG is a promising biopesticide that could shift the balance of pathogenic and beneficial plant-associated microorganisms, suggesting selective nutritional/anti-nutritional properties for some specific taxa. More specifically, TAG displayed possible plant prebiotic effects on the phyllosphere microbiota and this mechanism of action could represent a novel strategy that can be further developed for sustainable plant protection.
Collapse
|
28
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
29
|
Carpinteyro Díaz AE, Herfindal L, Rathe BA, Sletta KY, Vedeler A, Haavik S, Fossen T. Cytotoxic saponins and other natural products from flowering tops of Narthecium ossifragum L. PHYTOCHEMISTRY 2019; 164:67-77. [PMID: 31100654 DOI: 10.1016/j.phytochem.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
For more than four centuries, the intake of Narthecium ossifragum has been associated with poisoning in domesticated animals. Saponins occurring in flowering tops of the plant are considered to cause kidney damage in calves. At present, there are more than 30 papers on the saponins of N. ossifragum in the literature, although the structures of these compounds have hitherto not been determined. Here, we identify the saponins of N. ossifragum as sarsasapogenin, sarsasapogenin-3-O-β-galactopyranoside, sarsasapogenin-3-O-(2'-O-β-glucopyranosyl-β-galactopyranoside) and sarsasapogenin-3-O-(2'-O-β-glucopyranosyl-3'-O-α-arabinopyranosyl-β-galactopyranoside). Moreover, six aromatic natural products were isolated and characterized from the methanolic extract from flowers of N. ossifragum. Five of these aromatic compounds, chrysoeriol 6-C-β-arabinofuranoside-8-C-β-glucopyranoside, chrysoeriol 6-C-β-arabinopyranosyl-8-C-β-glucopyranoside, chrysoeriol 6-C-β-xylopyranosyl-8-C-β-galactopyranoside, chrysoeriol 6-C-β-galactopyranosyl-8-C-β-glucopyranoside and chrysoeriol 6-C-β-glucopyranosyl-8-C-β-galactopyranoside are undescribed. All compounds were tested for cytotoxicity in mammalian cell lines derived from the heart, kidney, and haematological tissues. The saponins exhibited cytotoxicity in the micromolar range, with proportionally increasing cytotoxicity with increasing number of glycosyl substituents. The most potent compound was the main saponin sarsasapogenin-3-O-(2'-O-β-glucopyranosyl-3'-O-α-arabinopyranosyl-β-galactopyranoside), which produced cell death at concentrations below 3-4 μM in all three cell lines tested. This indicates that the saponins are the toxicants mainly responsible for kidney damage observed in cattle after ingestion of N. ossifragum. Our findings also pave the way for analysis of individual compounds isolated during the biopsies of intoxicated animals.
Collapse
Affiliation(s)
| | - Lars Herfindal
- Department of Clinical Science and Centre for Pharmacy, University of Bergen, Norway
| | - Bendik Auran Rathe
- Department of Clinical Science and Centre for Pharmacy, University of Bergen, Norway
| | | | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Norway
| | - Svein Haavik
- Department of Clinical Science and Centre for Pharmacy, University of Bergen, Norway
| | - Torgils Fossen
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégt. 41, N-5007 Bergen, Norway.
| |
Collapse
|
30
|
Lorillière M, Dumoulin R, L’enfant M, Rambourdin A, Thery V, Nauton L, Fessner WD, Charmantray F, Hecquet L. Evolved Thermostable Transketolase for Stereoselective Two-Carbon Elongation of Non-Phosphorylated Aldoses to Naturally Rare Ketoses. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marion Lorillière
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Romain Dumoulin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Mélanie L’enfant
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Agnès Rambourdin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Vincent Thery
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
31
|
Surapureddi SRK, Kunta R, Sameer Kumar GS, Sappidi SR, Dadke S. A sensitive and high throughput method for the analysis of d-psicose by capillary electrophoresis. Food Chem 2018; 281:36-40. [PMID: 30658762 DOI: 10.1016/j.foodchem.2018.12.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/25/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
d-Psicose/allulose is a rare sugar and it has high potential benefits for pharmaceutical and food industry. The existed analytical methods have its own limitations to quantify fructose and d-psicose mixtures. Hence there is a need for the development of an effective, efficient and sensitive analytical method for quantification of d-psicose in presence of other sugars. Quantification of sugars by capillary electrophoresis (CE) have been previously reported. However, the list does not include d-psicose. In this study, d-psicose is successfully quantified for the first time in the presence of d-fructose and glucose with a good resolution. Standard curves for all the sugars are established in a concentration range of 0.1 mM (0.0018% w/v) to 3.0 mM (0.0540% w/v) with a coefficient of determination of >0.99. The scope of this method can be extended to quantify d-psicose and their processed impurities in food products with minor modifications in sample preparation.
Collapse
Affiliation(s)
- Sri Rama Krishna Surapureddi
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur District, Andhra Pradesh 522502, India; Vimta Labs Ltd, Genome Valley, Hyderabad, Telangana 500085, India
| | - Ravindhranath Kunta
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur District, Andhra Pradesh 522502, India.
| | | | | | | |
Collapse
|
32
|
Herweg E, Schöpping M, Rohr K, Siemen A, Frank O, Hofmann T, Deppenmeier U, Büchs J. Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2018; 259:164-172. [PMID: 29550669 DOI: 10.1016/j.biortech.2018.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Sweeteners improve the dietary properties of many foods. A candidate for a new natural sweetener is 5-ketofructose. In this study a fed-batch process for the production of 5-ketofructose was developed. A Gluconobacter oxydans strain overexpressing a fructose dehydrogenase from G. japonicus was used and the sensory properties of 5-ketofructose were analyzed. The compound showed an identical sweet taste quality as fructose and a similar intrinsic sweet threshold concentration of 16.4 mmol/L. The production of 5-ketofructose was characterized online by monitoring of the respiration activity in shake flasks. Pulsed and continuous fructose feeding was realized in 2 L stirred tank reactors and maximum fructose consumption rates were determined. 5-Ketofructose concentrations of up to 489 g/L, product yields up to 0.98 g5-KF/gfructose and space time yields up to 8.2 g/L/h were reached highlighting the potential of the presented process.
Collapse
Affiliation(s)
- Elena Herweg
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), Germany
| | - Marie Schöpping
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), Germany
| | - Katja Rohr
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), Germany
| | - Anna Siemen
- Bioeconomy Science Center (BioSC), Germany; Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Uwe Deppenmeier
- Bioeconomy Science Center (BioSC), Germany; Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), Germany.
| |
Collapse
|
33
|
Kryshtafovych A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring GW, Koning RI, Lo Leggio L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T. Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016). Proteins 2018; 86 Suppl 1:27-50. [PMID: 28960539 PMCID: PMC5820184 DOI: 10.1002/prot.25392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022]
Abstract
The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment.
Collapse
Affiliation(s)
- Andriy Kryshtafovych
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California, 95616
| | - Reinhard Albrecht
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Pedro Bule
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Alessandro T Caputo
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Ana Luisa Carvalho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Cien⁁cias e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Krzysztof Fidelis
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California, 95616
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Folmer Fredslund
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry/Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology/Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, 93106
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742
| | - Johan C Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Andrzej Joachimiak
- Argonne National Laboratory, Midwest Center for Structural Genomics/Structural Biology Center, Biosciences Division, Argonne, Illinois, 60439
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| | - Gert-Wieland Kohring
- Microbiology, Saarland University, Campus Building A1.5, Saarbrücken, Saarland, D-66123, Germany
| | - Roman I Koning
- Netherlands Centre for Electron Nanoscopy, Institute of Biology Leiden, Leiden University, 2333, CC Leiden, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Karolina Michalska
- Argonne National Laboratory, Midwest Center for Structural Genomics/Structural Biology Center, Biosciences Division, Argonne, Illinois, 60439
| | - John Moult
- Department of Cell Biology and Molecular genetics, University of Maryland, 9600 Gudelsky Drive, Institute for Bioscience and Biotechnology Research, Rockville, Maryland, 20850
| | - Shabir Najmudin
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Marco Nardini
- Department of Biosciences, University of Milano, Milano, 20133, Italy
| | - Valentina Nardone
- Department of Biosciences, University of Milano, Milano, 20133, Italy
| | - Didier Ndeh
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Thanh-Hong Nguyen
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia (CSIC), calle Darwin 3, Madrid, 28049, Spain
| | - Guido Pintacuda
- Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Villeurbanne, 69100, France
| | - Sandra Postel
- University of Maryland School of Medicine, Institute of Human Virology, Baltimore, Maryland, 21201
| | - Mark J van Raaij
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia (CSIC), calle Darwin 3, Madrid, 28049, Spain
| | - Pietro Roversi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, University Road, Leicester, LE1 7RN, UK
| | - Amir Shimon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Abhimanyu K Singh
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Eric J Sundberg
- Department of Medicine and Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Human Virology, Baltimore, Maryland, 21201
| | - Kaspars Tars
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
- Faculty of Biology, Department of Molecular Biology, University of Latvia, Jelgavas 1, Riga, LV-1004, Latvia
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Torsten Schwede
- Biozentrum/SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 50, Basel, 4056, Switzerland
| |
Collapse
|
34
|
Song W, Cai J, Zou X, Wang X, Hu J, Yin J. Applications of controlled inversion strategies in carbohydrate synthesis. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Influence of Low Glycaemic Index Sweeteners on Antioxidant, Sensory, Mechanical, and Physicochemical Properties of a Watermelon Jelly. J FOOD QUALITY 2018. [DOI: 10.1155/2018/8412017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The replacement of sucrose by new noncariogenic and low glycaemic index sweeteners (isomaltulose and tagatose) and the addition of natural watermelon juice in jelly have been assessed in terms of composition, texture, colour, antioxidant activity, microbiology, and sensory properties. These analyses were performed initially and after 15 days of storage. Furthermore, the values were compared with those obtained in the analyses of a commercial watermelon jelly. The results showed that the antioxidant activity increased with the storage time in the control sample and in samples combining isomaltulose and tagatose. In addition, noncariogenic and low glycaemic index sweeteners did not affect the instrumental texture. However, the colour changed, especially in the sample containing tagatose only. Finally, the dessert containing tagatose and isomaltulose in equal proportion achieved a similar score in the sensory evaluation as the commercial one, showing the feasibility of using these sweeteners to reformulate watermelon jelly.
Collapse
|
36
|
TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C 5 and C 6 Epimerization Reactions. Appl Environ Microbiol 2017; 83:AEM.03291-16. [PMID: 28258150 DOI: 10.1128/aem.03291-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/26/2017] [Indexed: 01/11/2023] Open
Abstract
There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity.IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the characterization and functional annotation of a putative nonphosphorylated sugar 3-epimerase from a hyperthermophilic bacterium. Furthermore, we determined its crystal structures in complex with divalent metal ions and l-erythrulose, highlighting its metal-dependent, bifunctional, sugar-isomerizing activity. This hyperthermophilic R3E exhibited d-erythrose/d-threose isomerase activity, with structural features near the substrate-binding site distinct from those of its mesophilic counterparts. Moreover, this metalloenzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose at 70°C. Therefore, TM0416 can be functionally classified as a novel type of promiscuous R3E with a potential for the production of rare sugars for the food and pharmaceutical industries.
Collapse
|
37
|
Beerens K, Van Overtveldt S, Desmet T. The “epimerring” highlights the potential of carbohydrate epimerases for rare sugar production. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1306738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Koen Beerens
- Unit for Biocatalysis and Enzyme Engineering, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Stevie Van Overtveldt
- Unit for Biocatalysis and Enzyme Engineering, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Tom Desmet
- Unit for Biocatalysis and Enzyme Engineering, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
38
|
Mooradian AD, Smith M, Tokuda M. The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin Nutr ESPEN 2017; 18:1-8. [PMID: 29132732 DOI: 10.1016/j.clnesp.2017.01.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/05/2016] [Accepted: 01/12/2017] [Indexed: 01/16/2023]
Abstract
The rapid increase in the prevalence of obesity worldwide has been partially attributed to the overconsumption of added sugars. Recent guidelines call for limiting the consumption of simple sugars to less than 10% of daily caloric consumption. High intensity sweeteners are regulated as food additives and include aspartame, acesulfame-k, neotame, saccharin, sucralose, cyclamate and alitame. Steviol glycosides and Luo Han Guo fruit extracts are high intensity sweeteners that are designated as generally recognized as safe (GRAS). Commonly used non-caloric artificial sweeteners may have unfavorable effect on health including glucose intolerance and failure to cause weight reduction. The nutritive sweeteners include sugar alcohols such as sorbitol, xylitol, lactitol, mannitol, erythritol, trehalose and maltitol. Naturally occurring rare sugars have recently emerged as an alternative category of sweeteners. These monosaccharides and their derivatives are found in nature in small quantities and lack significant calories. This category includes d-allulose (d-psicose), d-tagatose, d-sorbose and d-allose. Limiting consumption of any sweetener may well be the best health advice. Identifying natural sweeteners that have favorable effects on body weight and metabolism may help achieving the current recommendations of restricting simple sugar consumption.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32209, United States.
| | - Meridith Smith
- Department of Medicine, University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Masaaki Tokuda
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
39
|
Yang J, Zhu Y, Men Y, Sun S, Zeng Y, Zhang Y, Sun Y, Ma Y. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9497-9505. [PMID: 27998065 DOI: 10.1021/acs.jafc.6b03423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rare sugars are valuable natural products widely used in pharmaceutical and food industries. In this study, we expected to synthesize rare ketoses from abundant glycerol using dihydroxyacetone phosphate (DHAP)-dependent aldolases. First, a new glycerol assimilation pathway was constructed to synthesize DHAP. The enzymes which convert glycerol to 3-hydroxypropionaldehyde and l-glyceraldehyde were selected, and their corresponding aldehyde synthesis pathways were constructed in vivo. Four aldol pathways based on different aldolases and phosphorylase were gathered. Next, three pathways were assembled and the resulting strains synthesized 5-deoxypsicose, 5-deoxysorbose, and 5-deoxyfructose from glucose and glycerol and produce l-fructose, l-tagatose, l-sorbose, and l-psicose with glycerol as the only carbon source. To achieve higher product titer and yield, the recombinant strains were further engineered and fermentation conditions were optimized. Fed-batch culture of engineered strains obtained 38.1 g/L 5-deoxypsicose with a yield of 0.91 ± 0.04 mol product per mol of glycerol and synthesized 20.8 g/L l-fructose, 10.3 g/L l-tagatose, 1.2 g/L l-sorbose, and 0.95 g/L l-psicose.
Collapse
Affiliation(s)
- Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Shangshang Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Ying Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| |
Collapse
|
40
|
Hassanin HAM, Mu W, Koko MYF, Zhang T, Masamba K, Jiang B. Allitol: production, properties and applications. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hinawi A. M. Hassanin
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 China
| | - Marwa Y. F. Koko
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 China
| | - Kingsley Masamba
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 China
- Department of Food Science and Technology; Lilongwe University of Agriculture and Natural Resources (LUANAR); Bunda College Campus, PO Box 219 Lilongwe Malawi
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 China
| |
Collapse
|
41
|
Jumde VR, Eisink NNHM, Witte MD, Minnaard AJ. C3 Epimerization of Glucose, via Regioselective Oxidation and Reduction. J Org Chem 2016; 81:11439-11443. [DOI: 10.1021/acs.joc.6b02074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Varsha R. Jumde
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Niek N. H. M. Eisink
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Martin D. Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
42
|
Wen L, Huang K, Zheng Y, Liu Y, Zhu H, Wang PG. A two-step strategy for the preparation of 6-deoxy-l-sorbose. Bioorg Med Chem Lett 2016; 26:4358-61. [PMID: 27485385 PMCID: PMC5067164 DOI: 10.1016/j.bmcl.2016.03.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/19/2022]
Abstract
A two-step enzymatic strategy for the efficient and convenient synthesis of 6-deoxy-l-sorbose was reported herein. In the first reaction step, the isomerization of l-fucose (6-deoxy-l-galactose) to l-fuculose (6-deoxy-l-tagatose) catalyzed by l-fucose isomerase (FucI), and the epimerization of l-fuculose to 6-deoxy-l-sorbose catalyzed by d-tagatose 3-epimerase (DTE) were coupled with the targeted phosphorylation of 6-deoxy-l-sorbose by fructose kinase from human (HK) in a one-pot reaction. The resultant 6-deoxy-l-sorbose 1-phosphate was purified by silver nitrate precipitation method. In the second reaction step, the phosphate group of the 6-deoxy-l-sorbose 1-phosphate was hydrolyzed with acid phosphatase (AphA) to produce 6-deoxy-l-sorbose in 81% yield with regard to l-fucose.
Collapse
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Kenneth Huang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yuan Zheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yunpeng Liu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
43
|
Liu Z, Yoshihara A, Jenkinson SF, Wormald MR, Estévez RJ, Fleet GWJ, Izumori K. Triacetonide of Glucoheptonic Acid in the Scalable Syntheses of d-Gulose, 6-Deoxy-d-gulose, l-Glucose, 6-Deoxy-l-glucose, and Related Sugars. Org Lett 2016; 18:4112-5. [PMID: 27487167 DOI: 10.1021/acs.orglett.6b02041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ease of separation of petrol-soluble acetonides derived from the triacetonide of methyl glucoheptonate allows scalable syntheses of rare sugars containing the l-gluco or d-gulo structural motif with any oxidation level at the C6 or C1 position of the hexose, usually without chromatography: meso-d-glycero-d-guloheptitol available in two steps is an ideal entry point for the study of the biotechnological production of heptoses.
Collapse
Affiliation(s)
- Zilei Liu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, U.K.,Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford OX1 3QU, U.K
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University , Miki, Kagawa 761-0795, Japan
| | - Sarah F Jenkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, U.K
| | - Mark R Wormald
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford OX1 3QU, U.K
| | - Ramón J Estévez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, U.K
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University , Miki, Kagawa 761-0795, Japan
| |
Collapse
|
44
|
Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Front Microbiol 2016; 7:744. [PMID: 27303369 PMCID: PMC4885859 DOI: 10.3389/fmicb.2016.00744] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/03/2016] [Indexed: 12/01/2022] Open
Abstract
The phylum Acidobacteria is one of the most widespread and abundant on the planet, yet remarkably our knowledge of the role of these diverse organisms in the functioning of terrestrial ecosystems remains surprisingly rudimentary. This blatant knowledge gap stems to a large degree from the difficulties associated with the cultivation of these bacteria by classical means. Given the phylogenetic breadth of the Acidobacteria, which is similar to the metabolically diverse Proteobacteria, it is clear that detailed and functional descriptions of acidobacterial assemblages are necessary. Fortunately, recent advances are providing a glimpse into the ecology of members of the phylum Acidobacteria. These include novel cultivation and enrichment strategies, genomic characterization and analyses of metagenomic DNA from environmental samples. Here, we couple the data from these complementary approaches for a better understanding of their role in the environment, thereby providing some initial insights into the ecology of this important phylum. All cultured acidobacterial type species are heterotrophic, and members of subdivisions 1, 3, and 4 appear to be more versatile in carbohydrate utilization. Genomic and metagenomic data predict a number of ecologically relevant capabilities for some acidobacteria, including the ability to: use of nitrite as N source, respond to soil macro-, micro nutrients and soil acidity, express multiple active transporters, degrade gellan gum and produce exopolysaccharide (EPS). Although these predicted properties allude to a competitive life style in soil, only very few of these prediction shave been confirmed via physiological studies. The increased availability of genomic and physiological information, coupled to distribution data in field surveys and experiments, should direct future progress in unraveling the ecology of this important but still enigmatic phylum.
Collapse
Affiliation(s)
- Anna M Kielak
- Department of Microbial Ecology, The Netherlands Institute of Ecology - Koninklijke Nederlandse Akademie van Wetenschappen Wageningen, Netherlands
| | - Cristine C Barreto
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília Brasília, Brazil
| | - George A Kowalchuk
- Ecology and Biodiversity Group, University of Utrecht Utrecht, Netherlands
| | - Johannes A van Veen
- Department of Microbial Ecology, The Netherlands Institute of Ecology - Koninklijke Nederlandse Akademie van Wetenschappen Wageningen, Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, The Netherlands Institute of Ecology - Koninklijke Nederlandse Akademie van Wetenschappen Wageningen, Netherlands
| |
Collapse
|
45
|
Affiliation(s)
- Tai-Ni Lu
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang
District, New Taipei City 24205, Taiwan Republic of China
| | - Che-Chien Chang
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang
District, New Taipei City 24205, Taiwan Republic of China
| |
Collapse
|
46
|
Van Overtveldt S, Verhaeghe T, Joosten HJ, van den Bergh T, Beerens K, Desmet T. A structural classification of carbohydrate epimerases: From mechanistic insights to practical applications. Biotechnol Adv 2015; 33:1814-28. [DOI: 10.1016/j.biotechadv.2015.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/26/2022]
|
47
|
Wichelecki DJ, Vetting MW, Chou L, Al-Obaidi N, Bouvier JT, Almo SC, Gerlt JA. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58. J Biol Chem 2015; 290:28963-76. [PMID: 26472925 DOI: 10.1074/jbc.m115.686857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 01/27/2023] Open
Abstract
Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool.
Collapse
Affiliation(s)
- Daniel J Wichelecki
- From the Departments of Biochemistry and Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| | - Matthew W Vetting
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Liyushang Chou
- From the Departments of Biochemistry and Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| | - Nawar Al-Obaidi
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jason T Bouvier
- From the Departments of Biochemistry and Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| | - Steven C Almo
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John A Gerlt
- From the Departments of Biochemistry and Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
48
|
Zhang W, Li H, Zhang T, Jiang B, Zhou L, Mu W. Characterization of a d-psicose 3-epimerase from Dorea sp. CAG317 with an acidic pH optimum and a high specific activity. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Li Z, Wu X, Cai L, Duan S, Liu J, Yuan P, Nakanishi H, Gao XD. Enzymatic synthesis of rare sugars with l-rhamnulose-1-phosphate aldolase from Thermotoga maritima MSB8. Bioorg Med Chem Lett 2015; 25:3980-3. [DOI: 10.1016/j.bmcl.2015.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 01/20/2023]
|
50
|
Wen L, Huang K, Wei M, Meisner J, Liu Y, Garner K, Zang L, Wang X, Li X, Fang J, Zhang H, Wang PG. Facile Enzymatic Synthesis of Ketoses. Angew Chem Int Ed Engl 2015; 54:12654-8. [PMID: 26275233 DOI: 10.1002/anie.201505714] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 11/12/2022]
Abstract
Studies of rare ketoses have been hampered by a lack of efficient preparation methods. A convenient, efficient, and cost-effective platform for the facile synthesis of ketoses is described. This method enables the preparation of difficult-to-access ketopentoses and ketohexoses from common and inexpensive starting materials with high yield and purity and without the need for a tedious isomer separation step.
Collapse
Affiliation(s)
- Liuqing Wen
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Kenneth Huang
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Mohui Wei
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Jeffrey Meisner
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA).,Current Address: Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 (USA)
| | - Yunpeng Liu
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Kristina Garner
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Lanlan Zang
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Xuan Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Xu Li
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA)
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong University, Jinan 250100 (China)
| | - Houcheng Zhang
- National Glycoengineering Research Center, Shandong University, Jinan 250100 (China)
| | - Peng George Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30303 (USA). .,National Glycoengineering Research Center, Shandong University, Jinan 250100 (China).
| |
Collapse
|