1
|
Schmitz LM, Lang T, Steuer A, Koppelmann L, Di Pizio A, Arnold N, Behrens M. Taste-Guided Isolation of Bitter Compounds from the Mushroom Amaropostia stiptica Activates a Subset of Human Bitter Taste Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4850-4858. [PMID: 39945763 PMCID: PMC11869282 DOI: 10.1021/acs.jafc.4c12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Bitter taste perception cautions humans against the ingestion of potentially toxic compounds. However, current knowledge about natural bitter substances and their activation of human bitter taste receptors (TAS2Rs) is biased toward substances from flowering plants, whereas other sources are underrepresented. Although numerous mushrooms taste bitter, the corresponding substances and receptors are unexplored. Three previously undescribed triterpene glucosides, named oligoporins D-F, together with the known oligoporins A and B, were isolated from Amaropostia stiptica. The structures of oligoporins D-F were determined using spectroscopic analyses. The isolated oligoporins and the bitter indolalkaloid infractopicrin from Cortinarius infractus were functionally screened with all TAS2Rs. For all compounds, at least one responding receptor was identified. Oligoporin D activated TAS2R46 already at a submicromolar concentration and thus belongs to the family of most potent bitter agonists. The addition of mushroom compounds to the list of cognate TAS2R activators lowers the existing bias of knowledge about bitter agonists.
Collapse
Affiliation(s)
- Lea M. Schmitz
- Leibniz
Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Tatjana Lang
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
| | - Alexandra Steuer
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | - Luisa Koppelmann
- Leibniz
Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Antonella Di Pizio
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
- Chemoinformatics
and Protein Modelling, Department of Molecular Life Sciences, School
of Life Sciences, Technical University of
Munich, 85354 Freising, Germany
| | - Norbert Arnold
- Leibniz
Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Maik Behrens
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, 85354 Freising, Germany
| |
Collapse
|
2
|
Luo KY, Zhang X, Dai YC, Yuan Y. Four new species of Phanerochaete (Polyporales, Basidiomycota) from China. MycoKeys 2024; 111:41-64. [PMID: 39664201 PMCID: PMC11632354 DOI: 10.3897/mycokeys.111.133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Four new wood-inhabiting fungi viz. Phanerochaetecastanea, P.citrinoalba, P.citrinorhizomorpha, and P.wuyiensis spp. nov. - are proposed based on a combination of morphological features and molecular evidence. Phanerochaetecastanea is characterized by soft coriaceous basidiomata detachable from the substrate, becoming reddish brown in KOH, subulate cystidia with an obtuse apex. Phanerochaetecitrinoalba is characterized by the coriaceous basidiomata with smooth, cracking hymenial surface, sterile margins with yellowish to whitish rhizomorphs, a monomitic hyphal system, generative hyphae mostly with simple septa and occasionally with clamp connections at basal hyphae. Phanerochaetecitrinorhizomorpha is characterized by soft coriaceous basidiomata with a salmon to peach hymenial surface, a sterile margin with yellowish rhizomorphs, simple septate generative hyphae, and clavate to subfusiform or subulate cystidia with an obtuse apex. Phanerochaetewuyiensis is characterized by membranaceous basidiomata with smooth or locally tuberculate hymenial surface and the whitish rhizomorphs, generative hyphae with both simple septa and clamp connections at basal hyphae, cystidia projecting above hymenium. DNA sequences of the ITS and LSU markers of the studied samples were generated, and phylogenetic analyses were performed with Maximum Likelihood and Bayesian Inference methods. The phylogenetic tree inferred from the concatenated ITS+nLSU dataset highlighted the placement of the four new species in the genus Phanerochaete (Phanerochaetaceae, Polyporales). Phylogenetically related and morphologically similar species to these four new species are discussed. Furthermore, an identification key to accepted species of Phanerochaete in China is given.
Collapse
Affiliation(s)
- Kai-Yue Luo
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Xin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Yu-Cheng Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Yuan Yuan
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
3
|
Xu TM, Wu DM, Gao N, Zeng L, Xu YH, Fan XP, Sun YF, Cui BK. Five New Species of Wood-Decaying Brown-Rot Fungi within Postiaceae (Polyporales, Basidiomycota) from Xinjiang, Northwest China. J Fungi (Basel) 2024; 10:655. [PMID: 39330415 PMCID: PMC11433077 DOI: 10.3390/jof10090655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Brown-rot fungi are an important group of wood-decaying fungi, but there has been limited research on the species diversity of brown-rot fungi in Xinjiang, China. During an investigation of brown-rot fungi in Xinjiang, from July 2018 to July 2023, five new species belonging to the family Postiaceae were discovered based on morphological and molecular evidence. Amaropostia altaiensis is characterized by a conchate pileus, circular pores (5-8 per mm), and growing on Populus. Amaropostia tianshanensis is characterized by a flabelliform-to-conchate pileus, angular pores (5-6 per mm), and growing on Picfea. Cyanosporus latisporus is characterized by a hirsute and dark greyish blue pileal surface with fresh, larger pores (3-6 per mm) and broad basidiospores (4.3-5.9 × 1.4-2 µm). Cyanosporus tianshanensis is characterized by a smooth and white-to-cream pileal surface with fresh, smaller pores (6-9 per mm). Osteina altaiensis is characterized by a light mouse-grey-to-honey-yellow pileal surface, smaller pores (4-6 per mm), and slightly wide basidiospores (5-6 × 1.7-2.2 µm). Each of these five new species form independent lineages in phylogenetic analyses based on the seven gene loci (ITS + nLSU + nSSU + mtSSU + TEF1 + RPB1 + RPB2). This research enriches the diversity of brown-rot fungi species, while also demonstrating the substantial discovery potential and research value of brown-rot fungi in Xinjiang.
Collapse
Affiliation(s)
- Tai-Min Xu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Dong-Mei Wu
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Neng Gao
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Long Zeng
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yi-Hua Xu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Xiang-Ping Fan
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yi-Fei Sun
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Bao-Kai Cui
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Wang CG, Liu S, Ghobad-Nejhad M, Liu HG, Dai YC, Yuan Y. Three new species of Cyanosporus (Polyporales, Basidiomycota) from China. MycoKeys 2024; 107:249-272. [PMID: 39169990 PMCID: PMC11336382 DOI: 10.3897/mycokeys.107.126139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Cyanosporus is a cosmopolitan genus characterized by effused-reflexed to pileate basidiomata with a bluish tint and allantoid to cylindrical basidiospores which are negative to weakly positive in Melzer's reagent and Cotton Blue, causing a brown rot. Three new species of Cyanosporus, namely, C.linzhiensis, C.miscanthi and C.tabuliformis are described and illustrated. Phylogenies on Cyanosporus are reconstructed with seven loci DNA sequences including ITS, nLSU, nSSU, mtSSU, RPB1, RPB2 and TEF1 based on phylogenetic analyses combined with morphological examination. The description for the new species is given. The main morphological characteristics of all 38 accepted species in Cyanosporus are summarized.
Collapse
Affiliation(s)
- Chao-Ge Wang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Shun Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, ChinaPeking UniversityBeijingChina
| | - Masoomeh Ghobad-Nejhad
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran 3353-5111, IranIranian Research Organization for Science and TechnologyTehranIran
| | - Hong-Gao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, ChinaZhaotong UniversityZhaotongChina
| | - Yu-Cheng Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Yuan Yuan
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
5
|
Zhang X, Zhou HM, Ghobad-Nejhad M, Liu HG, Vlasák J, Dai YC, Yuan Y. Molecular and morphological data reveal two new polypores (Polyporales, Basidiomycota) with reddish brown to orange basidiomata from China. MycoKeys 2024; 107:75-94. [PMID: 39045085 PMCID: PMC11263816 DOI: 10.3897/mycokeys.107.126176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
Two taxonomically controversial polypore genera with reddish brown to orange basidiomata that stain reddish with KOH solution, Aurantiporus and Hapalopilus, are revised based on additional sampling, morphological examination, and phylogenetic analysis of a combined dataset of ITS1-5.8S-ITS2-nLSU sequences. Hapalopilus is a monophyletic genus belonging to Phanerochaetaceae, whereas Aurantiporus is a polyphyletic genus belonging to Meruliaceae. Hapalopilus and Aurantiporus s. str. are circumscribed, and two new species - Aurantiporusorientalis and Hapalopilustabuliformis - are described and illustrated from temperate China. In addition, four new combinations, viz. Aurantiporusalboaurantius, A.mutans, A.tropicus and Luteoporiaalbocitrina, are proposed based on morphology and phylogenetic analysis. The relationships between Aurantiporus and Hapalopilus are discussed.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Hong-Min Zhou
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, ChinaSouthwest Forestry UniversityKunmingChina
| | - Masoomeh Ghobad-Nejhad
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran 3353-5111, IranIranian Research Organization for Science and Technology (IROST)TehranIran
| | - Hong-Gao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, ChinaZhaotong UniversityZhaotongChina
| | - Josef Vlasák
- Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-370 05 České Budějovice, Czech RepublicBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Yu-Cheng Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Yuan Yuan
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
6
|
Wang CG, Chen J, Liu HG, Dai YC, Yuan Y. Two new species of Perenniporia sensu lato (Polyporales, Basidiomycota) from China and two new combinations in Crassisporus. MycoKeys 2024; 105:97-118. [PMID: 38708026 PMCID: PMC11066504 DOI: 10.3897/mycokeys.105.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Phylogenetic and morphological analyses on Perenniporia s.l. were carried out. Phylogenies on Perenniporia s.l. are reconstructed with two loci DNA sequences including the internal transcribed spacer (ITS) regions and the large subunit (nLSU). Two new species from Yunnan Province, southwest China, Perenniporiaprunicola and P.rosicola in Perenniporia s.l., are illustrated and described. Perenniporiaprunicola is characterised by the perennial and resupinate basidiomata with a clay pink pore surface when fresh, a trimitic hyphal system, the presence of clavate to fusiform hymenial cystidia, ellipsoid to broadly ellipsoid basidiospores measuring 4.8-6.2 × 3.6-4.5 µm. Perenniporiarosicola is characterised by annual and resupinate basidiomata with a white pore surface when fresh, a dimitic hyphal system, the presence of dendrohyphidia, broadly ellipsoid to subglobose basidiospores measuring 5-5.8 × 4-5.2 μm. In addition, Crassisporus is a genus in Perenniporia s.l., in which two new combinations Crassisporusminutus and C.mollissimus are proposed. Main morphological characteristics of species related to new taxa are also provided.
Collapse
Affiliation(s)
- Chao-Ge Wang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jian Chen
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Hong-Gao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, China
| | - Yu-Cheng Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuan Yuan
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Hussain S, Nisar M, Sher H. Taxonomic study and diversity of Postia s.lat. in Swat, Pakistan: addition of five brown rot Polypores to the country. Arch Microbiol 2024; 206:66. [PMID: 38227204 DOI: 10.1007/s00203-023-03795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
Brown rot Polypores are ecologically significant as they play a crucial role in maintaining the carbon cycle and contribute to humus formation in forest ecosystems through their lignocellulose degradation ability. It is important to note that some species can significantly impact timber, potentially causing decay in economically valuable wood. Many Asian countries including Pakistan are still under the exploratory phase and have undocumented species diversity in Polypore fungi. In the current study, collections representing five different species belonging to two families, Postiaceae and Adustoporiaceae, were subjected to detailed morphoanatomical and molecular analyses. A combined matrix of two gene datasets (ITS and nrLSU) was analyzed using three different phylogenetic methods viz. Maximum Parsimony (MP), Maximum Likelihood (ML), and Bayesian inference (BI). Our study presents descriptions of five previously undocumented brown rot Polypore species from the country including Fuscopostia fragilis (Fr.) B.K. Cui, L.L. Shen & Y.C. Dai, Amaropostia stiptica (Pers.) B.K. Cui, L.L. Shen & Y.C. Dai, Cyanosporus piceicola B.K. Cui, L.L. Shen & Y.C. Dai, Spongiporus balsameus (Peck) A. David, Rhodonia placenta (Fr.) Niemelä, K.H. Larss. & Schigel. Regarding the molecular data, nodes of our subject sequences were substantially supported and fell under their respective species clades with high ML bootstrap values (≥ 95), MP bootstrap ≥ 74 and BI probabilities ≥ 0.98. Findings of the study will not only contribute to our understanding of local Polypores species diversity but also enhance knowledge of geographical distribution in global context.
Collapse
Affiliation(s)
- Shahid Hussain
- Department of Botany, University of Malakand, 18800, Chakdara Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| | - Mohammad Nisar
- Department of Botany, University of Malakand, 18800, Chakdara Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Swat, Khyber Pakhtunkhwa, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Wang CG, Vlasák J, Jin C, Si J. Phylogeny and diversity of Rigidoporus ( Hymenochaetales, Basidiomycota), including three new species from Asia. Front Cell Infect Microbiol 2023; 13:1216277. [PMID: 37408611 PMCID: PMC10318112 DOI: 10.3389/fcimb.2023.1216277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Phylogenetic and morphological analyses on Rigidoporus were carried out. The genus Rigidoporus (Hymenochaetales, Basidiomycota), typified by R. microporus (Fr.) Overeem. (synonym Polyporus micromegas Mont.), was established by Murrill in 1905. The genus is mainly characterized by annual to perennial, resupinate, effused-reflexed to pileate or stipitate basidiomata with azonate or concentrically zonate and sulcate upper surface, a monomitic to pseudo-dimitic hyphal structure, simple-septate generative hyphae, and ellipsoid to globose basidiospores. Phylogeny on species of the genus is reconstructed with two loci DNA sequences including the internal transcribed spacer regions and the large subunit. Three new species in Rigidoporus are described and illustrated from Asia, and one new combination in the genus is proposed. The main morphological characteristics of the currently accepted species of Rigidoporus are provided.
Collapse
Affiliation(s)
- Chao-Ge Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Josef Vlasák
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Can Jin
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Xu TM, Sun YF, Liu S, Song CG, Gao N, Wu DM, Cui BK. Ceriporiopsistianshanensis (Polyporales, Agaricomycetes) and Sideratianshanensis (Hymenochaetales, Agaricomycetes), two new species of wood-inhabiting fungi from Xinjiang, Northwest China. MycoKeys 2023; 98:1-18. [PMID: 37287766 PMCID: PMC10242528 DOI: 10.3897/mycokeys.98.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Wood-inhabiting fungi are abundant in China, but their distribution is uneven, with more fungi in southwest China and fewer fungi in northwest China. During the investigation of wood-inhabiting fungi in Xinjiang, we collected a large number of specimens. Eight specimens growing on Piceaschrenkiana were collected from Tianshan Mountains, and they were described as two new species in Ceriporiopsis and Sidera based on morphological characters and molecular evidence. Ceriporiopsistianshanensis is characterized by a cream to salmon-buff pore surface, larger pores measuring 1-3 per mm, and broadly ellipsoid basidiospores 5-6.5 × 3-4 μm. Sideratianshanensis is characterized by annual to perennial basidiocarps, measuring 15 mm thick, pores 5-7 per mm, cream to rosy buff pore surface, and allantoid basidiospores 3-3.5 × 1-1.4 µm. Detailed illustrations and descriptions of the novel species are provided.
Collapse
Affiliation(s)
- Tai-Min Xu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Yi-Fei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Shun Liu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Chang-Ge Song
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Neng Gao
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, ChinaBiotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation SciencesShiheziChina
| | - Dong-Mei Wu
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832000, ChinaBiotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation SciencesShiheziChina
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
10
|
Cai LQ, Zhao CL. Molecular phylogeny and morphology reveal a new wood-rotting fungal species, Sistotrema yunnanense sp. nov. from the Yunnan-Guizhou Plateau. MYCOSCIENCE 2023; 64:101-108. [PMID: 37397608 PMCID: PMC10308066 DOI: 10.47371/mycosci.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023]
Abstract
Wood-rotting fungi are important components of woody plant ecosystems and play an active role in the decomposition and turnover of nutrients from wood, and are among the major groups of Basidiomycota. In this study, a new species of wood-rotting fungus, Sistotrema yunnanense, was proposed based on morphological characteristics and molecular evidence. It is characterized by resupinate basidiomata, a monomitic hyphal system having generative hyphae with clamp connections, suburniform to urniform basidia, and short-cylindrical to oblong ellipsoid basidiospores (4.5-6.5 × 3-4 µm). Phylogenetic analyses performed using the large subunit nuc rDNA indicated that S. yunnanense was nested within the genus Sistotrema s.l. of the family Hydnaceae, within the order Cantharellales.
Collapse
Affiliation(s)
- Li-Qiong Cai
- Key Laboratory of Forest Disaster Warning and Control in Universities of Yunnan Province, Southwest Forestry University
| | - Chang-Lin Zhao
- Key Laboratory of Forest Disaster Warning and Control in Universities of Yunnan Province, Southwest Forestry University
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Science
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University
| |
Collapse
|
11
|
Li Y, He SH. Taxonomy and phylogeny of brown-rot corticioid fungi in China: Coniophora beijingensis and Veluticeps subfasciculata spp. nov. Front Microbiol 2023; 14:1133236. [PMID: 37007473 PMCID: PMC10060534 DOI: 10.3389/fmicb.2023.1133236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Brown-rot fungi account for a small portion of the wood-decaying fungi. There are a few corticioid genera causing brown rot of wood, and their species diversity is still under investigated and studied, especially in subtropical and tropical areas. Two new brown-rot corticioid fungi, Coniophora beijingensis and Veluticeps subfasciculata were found during the investigation of corticioid fungi in China. Phylogenetic analyses of the two genera were carried out separately based on ITS-28S sequence data. Coniophora beijingensis was collected from Beijing, north China, from different kinds of angiosperm and gymnosperm trees, and is characterized by possessing a monomitic hyphal system with colorless hyphae and relatively small pale yellow basidiospores 7–8.6 μm× 4.5–6 μm. Veluticeps subfasciculata was collected from Guizhou and Sichuan Provinces, southwestern China, on Cupressus and is characterized by the resupinate to effused-reflexed basidiomes with a colliculose hymenophore, nodose-septate generative hyphae, fasciculate skeletocystidia and subcylindrical to subfusiform basidiospores 8–11 μm × 2.5–3.5 μm. Descriptions and illustrations are provided for the two new species, and identification keys to Coniophora and Veluticeps species in China are given. Coniophora fusispora is reported in China for the first time.
Collapse
|
12
|
Mao WL, Wu YD, Liu HG, Yuan Y, Dai YC. A contribution to Porogramme (Polyporaceae, Agaricomycetes) and related genera. IMA Fungus 2023; 14:5. [PMID: 36882814 PMCID: PMC9990255 DOI: 10.1186/s43008-023-00110-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
The polypores with shallow pores from tropical Asia and America are studied. Our molecular phylogeny based on the internal transcribed spacer (ITS), the large subunit nuclear ribosomal RNA gene (nLSU), the translation elongation factor 1-α gene (TEF1), and the largest subunit of RNA polymerase II (RPB1) demonstrates six clades are formed among Porogramme and related genera. Two new genera, Cyanoporus and Pseudogrammothele, are established, and the six clades represent Porogramme, Cyanoporus, Grammothele, Epithele, Theleporus, and Pseudogrammothele, respectively. The molecular clock analyses estimate the divergence times of the six clades based on a dataset (ITS + LSU + TEF1 + RPB1 + RPB2), and we recognize the mean stem ages of the six genera are earlier than 50 Mya. Three new species in Porogramme were morphologically and phylogenetically confirmed, and they are described as P. austroasiana, P. cylindrica, and P. yunnanensis. Phylogenetic analysis shows that type species of Tinctoporellus and Porogramme are nested in the same clade, and Tinctoporellus is treated as a synonym of Porogramme. Based on our phylogeny, twelve new combinations are proposed, and the differences between the new species and similar or related species are discussed.
Collapse
Affiliation(s)
- Wei-Lin Mao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Ying-Da Wu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.,Key Laboratory of Forest and Grassland Fire Risk Prevention, Ministry of Emergency Management, China Fire and Rescue Institute, Beijing, 102202, China
| | | | - Yuan Yuan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Yu-Cheng Dai
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
13
|
Jayawardena RS, Hyde KD, Wang S, Sun YR, Suwannarach N, Sysouphanthong P, Abdel-Wahab MA, Abdel-Aziz FA, Abeywickrama PD, Abreu VP, Armand A, Aptroot A, Bao DF, Begerow D, Bellanger JM, Bezerra JDP, Bundhun D, Calabon MS, Cao T, Cantillo T, Carvalho JLVR, Chaiwan N, Chen CC, Courtecuisse R, Cui BK, Damm U, Denchev CM, Denchev TT, Deng CY, Devadatha B, de Silva NI, dos Santos LA, Dubey NK, Dumez S, Ferdinandez HS, Firmino AL, Gafforov Y, Gajanayake AJ, Gomdola D, Gunaseelan S, Shucheng-He, Htet ZH, Kaliyaperumal M, Kemler M, Kezo K, Kularathnage ND, Leonardi M, Li JP, Liao C, Liu S, Loizides M, Luangharn T, Ma J, Madrid H, Mahadevakumar S, Maharachchikumbura SSN, Manamgoda DS, Martín MP, Mekala N, Moreau PA, Mu YH, Pahoua P, Pem D, Pereira OL, Phonrob W, Phukhamsakda C, Raza M, Ren GC, Rinaldi AC, Rossi W, Samarakoon BC, Samarakoon MC, Sarma VV, Senanayake IC, Singh A, Souza MF, Souza-Motta CM, Spielmann AA, Su W, Tang X, Tian X, Thambugala KM, Thongklang N, Tennakoon DS, Wannathes N, Wei D, Welti S, Wijesinghe SN, Yang H, Yang Y, Yuan HS, Zhang H, Zhang J, Balasuriya A, Bhunjun CS, Bulgakov TS, Cai L, Camporesi E, Chomnunti P, Deepika YS, et alJayawardena RS, Hyde KD, Wang S, Sun YR, Suwannarach N, Sysouphanthong P, Abdel-Wahab MA, Abdel-Aziz FA, Abeywickrama PD, Abreu VP, Armand A, Aptroot A, Bao DF, Begerow D, Bellanger JM, Bezerra JDP, Bundhun D, Calabon MS, Cao T, Cantillo T, Carvalho JLVR, Chaiwan N, Chen CC, Courtecuisse R, Cui BK, Damm U, Denchev CM, Denchev TT, Deng CY, Devadatha B, de Silva NI, dos Santos LA, Dubey NK, Dumez S, Ferdinandez HS, Firmino AL, Gafforov Y, Gajanayake AJ, Gomdola D, Gunaseelan S, Shucheng-He, Htet ZH, Kaliyaperumal M, Kemler M, Kezo K, Kularathnage ND, Leonardi M, Li JP, Liao C, Liu S, Loizides M, Luangharn T, Ma J, Madrid H, Mahadevakumar S, Maharachchikumbura SSN, Manamgoda DS, Martín MP, Mekala N, Moreau PA, Mu YH, Pahoua P, Pem D, Pereira OL, Phonrob W, Phukhamsakda C, Raza M, Ren GC, Rinaldi AC, Rossi W, Samarakoon BC, Samarakoon MC, Sarma VV, Senanayake IC, Singh A, Souza MF, Souza-Motta CM, Spielmann AA, Su W, Tang X, Tian X, Thambugala KM, Thongklang N, Tennakoon DS, Wannathes N, Wei D, Welti S, Wijesinghe SN, Yang H, Yang Y, Yuan HS, Zhang H, Zhang J, Balasuriya A, Bhunjun CS, Bulgakov TS, Cai L, Camporesi E, Chomnunti P, Deepika YS, Doilom M, Duan WJ, Han SL, Huanraluek N, Jones EBG, Lakshmidevi N, Li Y, Lumyong S, Luo ZL, Khuna S, Kumla J, Manawasinghe IS, Mapook A, Punyaboon W, Tibpromma S, Lu YZ, Yan J, Wang Y. Fungal diversity notes 1512-1610: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2023; 117:1-272. [PMID: 36852303 PMCID: PMC9948003 DOI: 10.1007/s13225-022-00513-0] [Show More Authors] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 02/25/2023]
Abstract
This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise Angustimassarina kunmingense, Asterina lopi, Asterina brigadeirensis, Bartalinia bidenticola, Bartalinia caryotae, Buellia pruinocalcarea, Coltricia insularis, Colletotrichum flexuosum, Colletotrichum thasutense, Coniochaeta caraganae, Coniothyrium yuccicola, Dematipyriforma aquatic, Dematipyriforma globispora, Dematipyriforma nilotica, Distoseptispora bambusicola, Fulvifomes jawadhuvensis, Fulvifomes malaiyanurensis, Fulvifomes thiruvannamalaiensis, Fusarium purpurea, Gerronema atrovirens, Gerronema flavum, Gerronema keralense, Gerronema kuruvense, Grammothele taiwanensis, Hongkongmyces changchunensis, Hypoxylon inaequale, Kirschsteiniothelia acutisporum, Kirschsteiniothelia crustaceum, Kirschsteiniothelia extensum, Kirschsteiniothelia septemseptatum, Kirschsteiniothelia spatiosum, Lecanora immersocalcarea, Lepiota subthailandica, Lindgomyces guizhouensis, Marthe asmius pallidoaurantiacus, Marasmius tangerinus, Neovaginatispora mangiferae, Pararamichloridium aquisubtropicum, Pestalotiopsis piraubensis, Phacidium chinaum, Phaeoisaria goiasensis, Phaeoseptum thailandicum, Pleurothecium aquisubtropicum, Pseudocercospora vernoniae, Pyrenophora verruculosa, Rhachomyces cruralis, Rhachomyces hyperommae, Rhachomyces magrinii, Rhachomyces platyprosophi, Rhizomarasmius cunninghamietorum, Skeletocutis cangshanensis, Skeletocutis subchrysella, Sporisorium anadelphiae-leptocomae, Tetraploa dashaoensis, Tomentella exiguelata, Tomentella fuscoaraneosa, Tricholomopsis lechatii, Vaginatispora flavispora and Wetmoreana blastidiocalcarea. The new combination is Torula sundara. The 39 new records on hosts and geographical distribution comprise Apiospora guiyangensis, Aplosporella artocarpi, Ascochyta medicaginicola, Astrocystis bambusicola, Athelia rolfsii, Bambusicola bambusae, Bipolaris luttrellii, Botryosphaeria dothidea, Chlorophyllum squamulosum, Colletotrichum aeschynomenes, Colletotrichum pandanicola, Coprinopsis cinerea, Corylicola italica, Curvularia alcornii, Curvularia senegalensis, Diaporthe foeniculina, Diaporthe longicolla, Diaporthe phaseolorum, Diatrypella quercina, Fusarium brachygibbosum, Helicoma aquaticum, Lepiota metulispora, Lepiota pongduadensis, Lepiota subvenenata, Melanconiella meridionalis, Monotosporella erecta, Nodulosphaeria digitalis, Palmiascoma gregariascomum, Periconia byssoides, Periconia cortaderiae, Pleopunctum ellipsoideum, Psilocybe keralensis, Scedosporium apiospermum, Scedosporium dehoogii, Scedosporium marina, Spegazzinia deightonii, Torula fici, Wiesneriomyces laurinus and Xylaria venosula. All these taxa are supported by morphological and multigene phylogenetic analyses. This article allows the researchers to publish fungal collections which are important for future studies. An updated, accurate and timely report of fungus-host and fungus-geography is important. We also provide an updated list of fungal taxa published in the previous fungal diversity notes. In this list, erroneous taxa and synonyms are marked and corrected accordingly.
Collapse
Affiliation(s)
- Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Song Wang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Ya-Ru Sun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O.Box: 811, Vientiane Capital, Lao PDR
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Pranami D. Abeywickrama
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Vanessa P. Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - André Aptroot
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 Yunnan China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Dominik Begerow
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jean-Michel Bellanger
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, INSERM, 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jadson D. P. Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, S/N, Setor Universitário, Goiânia, GO CEP: 74605-050 Brazil
| | - Digvijayini Bundhun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, 5023 Miagao, Iloilo Philippines
| | - Ting Cao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Taimy Cantillo
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, Feira de Santana, BA 44036-900 Brazil
| | - João L. V. R. Carvalho
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Napalai Chaiwan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Che-Chih Chen
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, 11529 Taipei Taiwan
| | - Régis Courtecuisse
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Ulrike Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Chun Y. Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Bandarupalli Devadatha
- Virus Diagnostic and Research Lab, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517501 India
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
| | - Nimali I. de Silva
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Lidiane A. dos Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Nawal K. Dubey
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Sylvain Dumez
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Himashi S. Ferdinandez
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - André L. Firmino
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Monte Carmelo, Minas Gerais Brazil
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- AKFA University, 264 Milliy Bog Street, Tashkent, Uzbekistan 111221
| | - Achala J. Gajanayake
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Deecksha Gomdola
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sugantha Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Shucheng-He
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Zin H. Htet
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Malarvizhi Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Martin Kemler
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Kezhocuyi Kezo
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Nuwan D. Kularathnage
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Marco Leonardi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Ji-Peng Li
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Chunfang Liao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Shun Liu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | | | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Jian Ma
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Hugo Madrid
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Sede Iquique, Av. Luis Emilio Recabarren, 2477 Iquique, Chile
| | - S. Mahadevakumar
- Forest Pathology Department, KSCSTE-Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
- Botanical Survey of India, Andaman and Nicobar Regional Centre, Haddo, Port Blair, South Andaman 744102 India
| | | | - Dimuthu S. Manamgoda
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - María P. Martín
- Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Niranjan Mekala
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Papum Pare, Itanagar, Arunachal Pradesh 791112 India
| | | | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Pasouvang Pahoua
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Olinto L. Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Wiphawanee Phonrob
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - Chayanard Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Mubashar Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Walter Rossi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Binu C. Samarakoon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Vemuri V. Sarma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry 605014 India
| | - Indunil C. Senanayake
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Archana Singh
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Maria F. Souza
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Cristina M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Adriano A. Spielmann
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Xia Tang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - XingGuo Tian
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Kasun M. Thambugala
- Generics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, 10250 Nugegoda Sri Lanka
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Danushka S. Tennakoon
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nopparat Wannathes
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - DingPeng Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Stéphane Welti
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hongde Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Yunhui Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
| | - Huang Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Jingyi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Abhaya Balasuriya
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Timur S. Bulgakov
- Department of Plant Protection, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Jana Fabriciusa Str. 2/28, Krasnodar Region, Sochi, Russia 354002
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Erio Camporesi
- A.M.B, Circolo Micologico ‘‘Giovanni Carini’’, C.P. 314, 25121 Brescia, Italy
- A.M.B. Gruppo, Micologico Forlivese ‘‘Antonio Cicognani’’, via Roma 18, 47121 Forlì, Italy
- Società per gli Studi Naturalistici Della Romagna, C.P. 143, 48012 Bagnacavallo, RA Italy
| | - Putarak Chomnunti
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Y. S. Deepika
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Mingkwan Doilom
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Wei-Jun Duan
- Ningbo Academy of Inspection and Quarantine, Ningbo, Zhejiang, 315012 PR China
- Ningbo Customs District, Ningbo, 315012 Zhejiang PR China
| | - Shi-Ling Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - N. Lakshmidevi
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Yu Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Zong-Long Luo
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Surapong Khuna
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Wilawan Punyaboon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Yong-Zhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - JiYe Yan
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| |
Collapse
|
14
|
Liu S, Zhou JL, Song J, Sun YF, Dai YC, Cui BK. Climacocystaceae fam. nov. and Gloeoporellaceae fam. nov., two new families of Polyporales (Basidiomycota). Front Microbiol 2023; 14:1115761. [PMID: 36819032 PMCID: PMC9935835 DOI: 10.3389/fmicb.2023.1115761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Polyporales is a diverse group of Agaricomycetes including more than 2,500 species belonging to 255 genera and 18 families. Recently, many studies focused on the classification of Polyporales, but the familial placements of some taxa remain uncertain. In this study, two new families, Climacocystaceae and Gloeoporellaceae of Polyporales, are proposed based on morphological characters and molecular data. Phylogenetic analyses of the two new families are inferred from the DNA sequences of the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II gene (RPB1), the second largest subunit of RNA polymerase II gene (RPB2), and the translation elongation factor 1-α gene (TEF1). Furthermore, the divergence time of Polyporales was estimated as an additional taxonomic criterion based on the conserved regions of five DNA fragments (5.8S, nLSU, RPB1, RPB2, and TEF1). Bayesian evolutionary analysis revealed that the ancestor of Polyporales splits with a mean stem age of 136.53 Mya with a 95% highest posterior density (HPD) of 118.08-158.06 Mya. The mean stem ages of the families within Polyporales originated between 66.02 and 119.22 Mya, of which Climacocystaceae occurred in a mean stem age of 77.49 Mya with a 95% HPD of 61.45-93.16 Mya, and Gloeoporellaceae occurred in a mean stem age of 88.06 Mya with a 95% HPD of 67.15-107.76 Mya.
Collapse
Affiliation(s)
- Shun Liu
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Jun-Liang Zhou
- International Exchange and Cooperation Department, Kunming University, Kunming, Yunnan, China
| | - Jie Song
- Department of Horticulture and Food, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Yi-Fei Sun
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Yu-Cheng Dai
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Bao-Kai Cui
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China,*Correspondence: Bao-Kai Cui,
| |
Collapse
|
15
|
Liu S, Sun YF, Ji X, Song CG, Xu TM, Cui BK. Molecular phylogeny and taxonomy of the remarkable genus Leptoporus (Polyporales, Basidiomycota) with description of a new species from Southwest China. Front Cell Infect Microbiol 2023; 12:1116035. [PMID: 36755851 PMCID: PMC9901564 DOI: 10.3389/fcimb.2022.1116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Leptoporus is a rare and remarkable genus, mainly occurring in coniferous forests in the Northern Hemisphere. Recent phylogenetic studies showed that Leptoporus belongs to Irpicaceae in the phlebioid clade. It is worth noting that most species in the phlebioid clade can cause white-rot decay, except for the Leptoporus species, which can cause a brown-rot decay. In this study, we performed phylogenetic and taxonomic studies of Leptoporus and related genera. Molecular phylogenetic analyses were conducted based on sequences from multiple loci including the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II gene (RPB1), the second largest subunit of RNA polymerase II gene (RPB2), and the translation elongation factor 1-α gene (TEF1). Combined with morphological characteristics, a new species, Leptoporus submollis sp. nov., is discovered and illustrated from Southwest China.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Song CG, Sun YF, Liu S, Chen YY, Cui BK. Phylogenetic Analyses and Morphological Studies Reveal Four New Species of Phellodon (Bankeraceae, Thelephorales) from China. J Fungi (Basel) 2022; 9:jof9010030. [PMID: 36675852 PMCID: PMC9861862 DOI: 10.3390/jof9010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Phellodon is a genus of ectomycorrhizal fungi with important ecological roles and exploitable biological activities. In this study, four new species of Phellodon, P. caesius, P. henanensis, P. concentricus and P. subgriseofuscus, are described from China based on morphological characters and molecular evidence. The phylogenetic analyses of Phellodon were carried out based on the ITS + nLSU gene regions and the combined sequence dataset of ITS + nLSU + nSSU + RPB1 + RPB2 gene regions. Phellodon caesius is characterized by its dark bluish-grey, dark grey to black grey pileus, ash grey to dark bluish-grey spines, and the presence of both simple septa and clamp connections on generative hyphae of stipe. Phellodon concentricus is characterized by its zonate pileal surface, dark grey context in pileus, and spongy basidiomata. Phellodon henanensis is characterized by its ash grey, light vinaceous grey to light brown pileal surface, thin context in pileus, and the presence of both simple septa and clamp connections on generative hyphae of spines. Phellodon subgriseofuscus is characterized by its fuscous to black pileal surface, white to light brown spines, and vinaceous grey context. Illustrated descriptions and the ecological habits of the novel species are provided.
Collapse
Affiliation(s)
- Chang-Ge Song
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yi-Fei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shun Liu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuan-Yuan Chen
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: ; Tel./Fax: +86-10-6233-6309
| |
Collapse
|
17
|
Zhou M, Liu ZB, Lim YW, Cho Y, Yang RH, Bao DP, Zhao CL, Li DW, Vlasák J, Dai YC. Two new species of Fistulina (Agaricales, Basidiomycota) from the Northern Hemisphere. Front Microbiol 2022; 13:1063038. [PMID: 36569068 PMCID: PMC9777173 DOI: 10.3389/fmicb.2022.1063038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Phylogenetic and morphological analyses on samples of Fistulina from East Asia and North America were carried out, and two new species were described, namely, Fistulina americana and Fistulina orientalis, both previously known as Fistulina hepatica. The former is characterized by lateral stipitate basidiocarps, relatively small pores (7-8 per mm), a monomitic hyphal system with both clamp connections and simple septa, and ellipsoid basidiospores of 4-4.8 × 3-3.3 μm, and the species has been found on Quercus in North-East USA. F. orientalis is characterized by lateral stipitate basidiocarps, very small pores (11-12 per mm) with pruinose dissepiments, a monomitic hyphal system with both clamp connections and simple septa, and ovoid to subglobose basidiospores of 3-4 × 2.7-3 μm, and the species has been found on Castanopsis in East Asia. Phylogenetically, samples of F. americana and F. orientalis form two new lineages nested in the Fistulina clade.
Collapse
Affiliation(s)
- Meng Zhou
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Zhan-Bo Liu
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Young Woon Lim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Yoonhee Cho
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Rui-Heng Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Da-Peng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chang-Lin Zhao
- College of Biodiversity Conservation and Utilisation, Southwest Forestry University, Kunming, Yunnan, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT, United States
| | - Josef Vlasák
- Biology Centre of the Academy of Sciences of the Czechia, České Budějovice, Czechia
| | - Yu-Cheng Dai
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China,*Correspondence: Yu-Cheng Dai,
| |
Collapse
|
18
|
Wang YR, Dai YC, Liu HG, Vlasák J, Buchanan P, Yuan Y, Wu YD. A new contribution to Megasporoporia sensu lato: Six new species and three new combinations. Front Microbiol 2022; 13:1046777. [PMID: 36569086 PMCID: PMC9777752 DOI: 10.3389/fmicb.2022.1046777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
Megasporoporia sensu lato has recently been intensively studied in China and South America, and four independent clades representing four genera have been recognized phylogenetically. In this study, more samples, mostly from subtropical and tropical Asia, Oceania, and East Africa, are analyzed. A phylogeny based on a 4-gene dataset of sequences (ITS + nLSU + mtSSU + tef) has confirmed the presence of four genera in Megasporoporia sensu lato: Jorgewrightia, Mariorajchenbergia, Megasporia, and Megasporoporia sensu stricto. Six new species, Jorgewrightia austroasiana, Jorgewrightia irregularis, Jorgewrightia tenuis, Mariorajchenbergia subleucoplaca, Megasporia olivacea, and Megasporia sinuosa, are described based on morphology and phylogenetic analysis. Three new combinations are proposed, viz. Jorgewrightia kirkii, Mariorajchenbergia epitephra, and Mariorajchenbergia leucoplaca. To date, 36 species of Megasporoporia sensu lato are accepted and an identification key to these species is provided. In addition, the identification of Dichomitus amazonicus, Dichomitus cylindrosporus, and Megasporoporia hexagonoides is discussed.
Collapse
Affiliation(s)
- Ya-Rong Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Hong-Gao Liu
- School of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Josef Vlasák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceské Budějovice, Czechia
| | - Peter Buchanan
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
| | - Yuan Yuan
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China,*Correspondence: Yuan Yuan
| | - Ying-Da Wu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China,Key Laboratory of Forest and Grassland Fire Risk Prevention, Ministry of Emergency Management, China Fire and Rescue Institute, Beijing, China,Ying-Da Wu
| |
Collapse
|
19
|
Song CG, Sun YF, Wu DM, Gao N, Liu S, Xu TM, Cui BK. Morphology and molecular phylogeny reveal five new species of Hydnellum (Bankeraceae, Thelephorales) from China. Front Microbiol 2022; 13:1049007. [PMID: 36439794 PMCID: PMC9683478 DOI: 10.3389/fmicb.2022.1049007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 04/05/2024] Open
Abstract
The genus Hydnellum is a kind of ectomycorrhizal fungi that can play a role in the material cycle by connecting the plant roots to the soil, and some species of Hydnellum are medicinal fungi with vital research value. The species diversity of Hydnellum is unclear in China. In this study, five new species of Hydnellum are described from China based on morphological characters and phylogenetic analyses inferred from two datasets of ITS + LSU and ITS + LSU + SSU + RPB2 sequences. H. chocolatum is characterized by its chocolate basidiomata with the fibrillose, spongy to tomentose pileal surface, and subglobose to globose basidiospores measuring (4.5-)5-6 × 4-5(-5.8) μm. H. concentricum is characterized by its zonate pileal surface, thin context, short stipe, presence of both simple septa and clamp connections in generative hyphae of spines, and subglobose to ellipsoidal basidiospores measuring (3.5-)4-5(-5.2) × (3.2-)3.5-5 μm. H. crassipileatum is characterized by its thick pileus with the reddish brown to grayish brown pileal surface, and subglobose to ellipsoidal basidiospores measuring 4-6(-6.5) × 4-5.5 μm. H. melanocarpum is characterized by its vinaceous brown to black pileus with spongy pileal surface, presence of both simple septa and clamp connections in generative hyphae of spines, and subglobose basidiospores measuring 4.5-5.5(-6) × (3.5-)3.8-5.1 μm. H. radiatum is characterized by its radially aligned stripes on pileal surface, grayish brown context, short stipe, and subglobose to ellipsoidal basidiospores measuring (3.5-)4-5 × 3-4.5(-5) μm. Full descriptions, illustrations, and phylogenetic trees to show the placement of the new species are provided.
Collapse
Affiliation(s)
- Chang-Ge Song
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Yi-Fei Sun
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Dong-Mei Wu
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Neng Gao
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Shun Liu
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Tai-Min Xu
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Bao-Kai Cui
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| |
Collapse
|
20
|
Li SN, Xu F, Long P, Liu F, Zhang P, Fan YG, Chen ZH. Five new species of Inosperma from China: Morphological characteristics, phylogenetic analyses, and toxin detection. Front Microbiol 2022; 13:1021583. [PMID: 36386664 PMCID: PMC9659589 DOI: 10.3389/fmicb.2022.1021583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 10/20/2023] Open
Abstract
Many species of Inosperma cause neurotoxic poisoning in humans after consumption around the world. However, the toxic species of Inosperma and its toxin content remain unclear. In the present study, we proposed five new Inosperma species from China, namely, I. longisporum, I. nivalellum, I. sphaerobulbosum, I. squamulosobrunneum, and I. squamulosohinnuleum. Morphological and molecular phylogenetic analyses based on three genes (ITS, nrLSU, rpb2) revealed that these taxa are independent species. A key to 17 species of Inosperma in China is provided. In addition, targeted screening for the most notorious mushroom neurotoxins, muscarine, psilocybin, ibotenic acid, and muscimol, in these five new species was performed by using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Our results show that the neurotoxin contents in these five species varied: I. sphaerobulbosum contains none of the tested neurotoxins; I. nivalellum is muscarine positive; I. longisporum and I. squamulosohinnuleum contain both ibotenic acid and muscimol, and I. squamulosobrunneum only contains muscimol; psilocybin was not detected in these five new species.
Collapse
Affiliation(s)
- Sai-Nan Li
- Mycology Laboratory, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fei Xu
- Department of Physical and Chemical, Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, China
| | - Pan Long
- Mycology Laboratory, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Feng Liu
- Department of Physical and Chemical, Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, China
| | - Ping Zhang
- Mycology Laboratory, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu-Guang Fan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Zuo-Hong Chen
- Mycology Laboratory, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
21
|
Liu S, Chen YY, Sun YF, He XL, Song CG, Si J, Liu DM, Gates G, Cui BK. Systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00511-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Wang CG, Dai YC. Phylogeny and taxonomy of Spongipellis (Polyporales, Basidiomycota) and its micromorphological similar genera. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Zhang YZ, Lin WF, Buyck B, Liang ZQ, Su MS, Chen ZH, Zhang P, Jiang S, An DY, Zeng NK. Morphological and Phylogenetic Evidences Reveal Four New Species of Cantharellus Subgenus Cantharellus (Hydnaceae, Cantharellales) From China. Front Microbiol 2022; 13:900329. [PMID: 35832819 PMCID: PMC9271865 DOI: 10.3389/fmicb.2022.900329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Species of Cantharellus subgenus Cantharellus are interesting and important for their mycorrhizal properties, medicinal values, and edibility. In China, there are many undescribed species of the subgenus. In this study, four new species of subg. Cantharellus, viz. Cantharellus albopileatus, Cantharellus chuiweifanii, Cantharellus pinetorus, and Cantharellus ravus from Hainan and Hunan Provinces, respectively, were described based on morphological and phylogenetic evidence as a contribution to the knowledge of the species diversity in China. Detailed descriptions, color photographs of fresh basidiomata, and line drawings of microstructures of these four new species are presented as well as comparisons with related species.
Collapse
Affiliation(s)
- Yu-Zhuo Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- College of Science, Hainan University, Haikou, China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bart Buyck
- UMR 7205, Institut Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS, Paris, France
| | - Zhi-Qun Liang
- College of Science, Hainan University, Haikou, China
| | - Ming-Sheng Su
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zuo-Hong Chen
- College of Life Science, Hunan Normal University, Changsha, China
| | - Ping Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Shuai Jiang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Yinggeling Substation, Hainan Tropical Rainforest National Park, Baisha, China
| | - Dong-Yu An
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
24
|
Liu S, Song CG, Xu TM, Ji X, Wu DM, Cui BK. Species Diversity, Molecular Phylogeny, and Ecological Habits of Fomitopsis (Polyporales, Basidiomycota). Front Microbiol 2022; 13:859411. [PMID: 35464982 PMCID: PMC9019680 DOI: 10.3389/fmicb.2022.859411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Fomitopsis is a worldwide brown-rot fungal genus of Polyporales, which grows on different gymnosperm and angiosperm trees and has important ecological functions and economic values. In this study, species diversity, phylogenetic relationships, and ecological habits of Fomitopsis were investigated. A total of 195 specimens from 24 countries representing 29 species of Fomitopsis were studied. Based on the morphological characters and phylogenetic evidence of DNA sequences including the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the small subunit of nuclear ribosomal RNA gene (nSSU), the small subunit of mitochondrial rRNA gene (mtSSU), the translation elongation factor 1-α gene (TEF), and the second subunit of RNA polymerase II (RPB2), 30 species are accepted in Fomitopsis, including four new species: F. resupinata, F. srilankensis, F. submeliae and F. yimengensis. Illustrated descriptions of the novel species and the geographical locations of the Fomitopsis species are provided.
Collapse
Affiliation(s)
- Shun Liu
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Chang-Ge Song
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Tai-Min Xu
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Xing Ji
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Dong-Mei Wu
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Bao-Kai Cui
- School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| |
Collapse
|
25
|
Two new species of Ceriporia (Irpicaceae, Basidiomycota) from the Asia Pacific area. Mycol Prog 2022. [DOI: 10.1007/s11557-021-01731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Liu S, Xu TM, Song CG, Zhao CL, Wu DM, Cui BK. Species diversity, molecular phylogeny and ecological habits of Cyanosporus (Polyporales, Basidiomycota) with an emphasis on Chinese collections. MycoKeys 2022; 86:19-46. [DOI: 10.3897/mycokeys.86.78305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/28/2021] [Indexed: 11/12/2022] Open
Abstract
Cyanosporus is a genus widely distributed in Asia, Europe, North America, South America and Oceania. It grows on different angiosperm and gymnosperm trees and can cause brown rot of wood. Blue-tinted basidiomata of Cyanosporus makes it easy to distinguish from other genera, but the similar morphological characters make it difficult to identify species within the genus. Phylogeny and taxonomy of Cyanosporus were carried out based on worldwide samples with an emphasis on Chinese collections, and the species diversity of the genus is updated. Four new species, C. flavus, C. rigidus, C. subungulatus and C. tenuicontextus, are described based on the evidence of morphological characters, distribution areas, host trees and molecular phylogenetic analyses inferred from the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the small subunit of nuclear ribosomal RNA gene (nSSU), the small subunit of mitochondrial rRNA gene (mtSSU), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2), and the translation elongation factor 1-α gene (TEF). Our study expanded the number of Cyanosporus species to 35 around the world including 23 species from China. Detailed descriptions of the four new species and the geographical locations of the Cyanosporus species in China are provided.
Collapse
|
27
|
Rubellofomes cystidiatus and Spongiporus floriformis newly recorded for India. MYCOTAXON 2021. [DOI: 10.5248/136.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In an effort to document the macrofungi of Kerala state, India, we collected and identified two brown rot polypores, Rubellofomes cystidiatus and Spongiporus floriformis, which represent new records for India. Here we present taxonomic accounts of the two species.
Collapse
|
28
|
Cao B, Haelewaters D, Schoutteten N, Begerow D, Boekhout T, Giachini AJ, Gorjón SP, Gunde-Cimerman N, Hyde KD, Kemler M, Li GJ, Liu DM, Liu XZ, Nuytinck J, Papp V, Savchenko A, Savchenko K, Tedersoo L, Theelen B, Thines M, Tomšovský M, Toome-Heller M, Urón JP, Verbeken A, Vizzini A, Yurkov AM, Zamora JC, Zhao RL. Delimiting species in Basidiomycota: a review. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Zhou M, Wang CG, Wu YD, Liu S, Yuan Y. Two new brown rot polypores from tropical China. MycoKeys 2021; 82:173-197. [PMID: 34475802 PMCID: PMC8390457 DOI: 10.3897/mycokeys.82.68299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
Brown-rot fungi are types of fungi that selectively degrade cellulose and hemicellulose from wood and are perhaps the most important agents involved in the degradation of wood products and dead wood in forest ecosystem. Two new brown-rot species, collected from southern China, are nested within the clades of Fomitopsis sensu stricto and Oligoporus sensu stricto, respectively. Their positions are strongly supported in the Maximum Likelihood phylogenetic tree of the concatenated the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the small subunit of nuclear ribosomal RNA gene (nuSSU), the small subunit of mitochondrial rRNA gene (mtSSU), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor 1-α gene (TEF1) sequences. Fomitopsisbambusae, only found on bamboo, is characterised by its resupinate to effused-reflexed or pileate basidiocarps, small pores (6–9 per mm), the absence of cystidia, short cylindrical to oblong-ellipsoid basidiospores measuring 4.2–6.1 × 2–2.3 μm. Oligoporuspodocarpi is characterised by white to pale cream pore surface, round or sometimes angular pores (5–6 per mm), broadly ellipsoid to reniform basidiospores measuring 3.8–4.2 × 2–2.3 μm and growing on Podocarpus. Illustrated descriptions of these two novel species, Fomitopsisbambusae and Oligoporuspodocarpi, are provided.
Collapse
Affiliation(s)
- Meng Zhou
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| | - Chao-Ge Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| | - Ying-Da Wu
- China Fire and Rescue Institute, Beijing 102202, China China Fire and Rescue Institute Beijing China
| | - Shun Liu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| | - Yuan Yuan
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| |
Collapse
|
30
|
Stalpers JA, Redhead SA, May TW, Rossman AY, Crouch JA, Cubeta MA, Dai YC, Kirschner R, Langer GJ, Larsson KH, Mack J, Norvell LL, Oberwinkler F, Papp V, Roberts P, Rajchenberg M, Seifert KA, Thorn RG. Competing sexual-asexual generic names in Agaricomycotina (Basidiomycota) with recommendations for use. IMA Fungus 2021; 12:22. [PMID: 34380577 PMCID: PMC8359032 DOI: 10.1186/s43008-021-00061-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/03/2021] [Indexed: 11/10/2022] Open
Abstract
With the change to one scientific name for fungal taxa, generic names typified by species with sexual or asexual morph types are being evaluated to determine which names represent the same genus and thus compete for use. In this paper generic names of the Agaricomycotina (Basidiomycota) were evaluated to determine synonymy based on their type. Forty-seven sets of sexually and asexually typified names were determined to be congeneric and recommendations are made for which generic name to use. In most cases the principle of priority is followed. However, 16 generic names are recommended for use that do not have priority and thus need to be protected: Aleurocystis over Matula; Armillaria over Acurtis and Rhizomorpha; Asterophora over Ugola; Botryobasidium over Acladium, Allescheriella, Alysidium, Haplotrichum, Physospora, and Sporocephalium; Coprinellus over Ozonium; Coprinopsis over Rhacophyllus; Dendrocollybia over Sclerostilbum and Tilachlidiopsis; Diacanthodes over Bornetina; Echinoporia over Echinodia; Neolentinus over Digitellus; Postia over Ptychogaster; Riopa over Sporotrichum; Scytinostroma over Artocreas, Michenera, and Stereofomes; Tulasnella over Hormomyces; Typhula over Sclerotium; and Wolfiporia over Gemmularia and Pachyma. Nine species names are proposed for protection: Botryobasidium aureum, B. conspersum, B. croceum, B. simile, Pellicularia lembosporum (syn. B. lembosporum), Phanerochaete chrysosporium, Polyporus metamorphosus (syn. Riopa metamorphosa), Polyporus mylittae (syn. Laccocephalum mylittae), and Polyporus ptychogaster (syn. Postia ptychogaster). Two families are proposed for protection: Psathyrellaceae and Typhulaceae. Three new species names and 30 new combinations are established, and one lectotype is designated.
Collapse
Affiliation(s)
| | - Scott A Redhead
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, CEF, Ottawa, Ontario, K1A OC6, Canada
| | - Tom W May
- Royal Botanic Gardens Victoria, 100 Birdwood Avenue, Melbourne, Victoria, 3004, Australia
| | - Amy Y Rossman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Jo Anne Crouch
- USDA-ARS, Mycology & Nematology Genetic Diversity & Biology Laboratory, Beltsville, MD, 20705, USA
| | - Marc A Cubeta
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Roland Kirschner
- Department of Biomedical Sciences and Engineering, National Central University, Zhongli District, Taoyuan City, 320, Taiwan, Republic of China
| | - Gitta Jutta Langer
- Department of Forest Protection, Northwest German Forest Research Institute (NW-FVA), 37079, Goettingen, Lower Saxony, Germany
| | | | - Jonathan Mack
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, CEF, Ottawa, Ontario, K1A OC6, Canada
| | | | - Franz Oberwinkler
- Lehrstuhl für Spezielle Botanik und Mykologie, Botanisches Institut, Universität, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Viktor Papp
- Department of Botany, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Mario Rajchenberg
- Centro Forestal CIEFAP, C.C. 14, 9200, Esquel, Chubut, Argentina.,National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Keith A Seifert
- Department of Biology, Carlton University, Ottawa, Ontario, K1S 5B6, Canada
| | - R Greg Thorn
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
31
|
Du P, Cao TX, Wu YD, Zhou M, Liu ZB. Two new species of Hymenochaetaceae on Dracaena cambodiana from tropical China. MycoKeys 2021; 80:1-17. [PMID: 34007241 PMCID: PMC8116325 DOI: 10.3897/mycokeys.80.63997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Two new wood-rotting fungi in the family Hymenochaetaceae, Fulvifomesdracaenicolasp. nov. and Hymenochaetedracaenicolasp. nov., are described and illustrated from tropical China based on morphological characteristics and molecular data. It is worth to mention that both of them grow on Dracaenacambodiana which is a kind of angiosperm tree distributed in tropical regions. F.dracaenicola is characterised by perennial, pileate, triquetrous basidioma with yellowish brown fresh pores which becoming honey yellow with silk sheening upon drying, a dimitic hyphal system in trama and monomitic in context, and subglobose basidiospores measuring 4.8–5 × 4–4.1 μm. H.dracaenicola is characterised by annual, resupinate basidioma with a clay buff hymenophore, a dimitic hyphal system, absence of tomentum and cortex, presence of subulate setae, absence of cystidia, presence of cystidioles and simple hyphidia, and oblong ellipsoid basidiospores measuring 5.2–5.8 × 2.5–2.8 µm. The phylogenetic analyses based on ITS + nLSU rDNA sequences confirm the placement of two new species respectively in Fulvifomes and Hymenochaete. Phylogenetically closely related species to the two new species are discussed.
Collapse
Affiliation(s)
- Ping Du
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China Yangtze Normal University Chongqing China
| | - Tian-Xu Cao
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408100, China Yangtze Normal University Chongqing China
| | - Ying-Da Wu
- China Fire and Rescue Institute, Beijing 102202, China China Fire and Rescue Institute Beijing China
| | - Meng Zhou
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| | - Zhan-Bo Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| |
Collapse
|
32
|
Wang CG, Vlasák J, Dai YC. Phylogeny and diversity of Bjerkandera (Polyporales, Basidiomycota), including four new species from South America and Asia. MycoKeys 2021; 79:149-172. [PMID: 33958953 PMCID: PMC8093185 DOI: 10.3897/mycokeys.79.63908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Four new species of Bjerkandera, viz. B.ecuadorensis, B.fulgida, B.minispora, and B.resupinataspp. nov., are described from tropical America and Asia. B.ecuadorensis is characterised by dark grey to black pore surface, a monomitic hyphal system, hyaline to yellowish-brown generative hyphae, and ellipsoid basidiospores measuring 3.9–4.5 × 2.7–3 μm. B.fulgida is distinguished from the other species in the genus by clay buff to pale brown and shiny pore surface. B.minispora is characterised by white tomentose pore mouth and small basidiospores measuring 3.1–4.2 × 2–2.8 μm. B.resupinata is characterised by resupinate basidiomata, pinkish buff to pale brownish pore surface, and ellipsoid to broadly ellipsoid basidiospores measuring 4.5–6 × 3.2–4.1 µm. All these new species grow on angiosperm trunks or rotten wood, and cause a white rot. The closely related taxa to four new species are discussed. An identification key to the ten accepted species of Bjerkandera is provided, and a phylogeny comprising all known Bjerkandera species is provided.
Collapse
Affiliation(s)
- Chao-Ge Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| | - Josef Vlasák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Mol. Biol., Branišovská 31, CZ-370 05 České Budějovice, Czech Republic Biology Centre, Czech Academy of Sciences České Budějovice Czech Republic
| | - Yu-Cheng Dai
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| |
Collapse
|
33
|
Liu S, Han ML, Xu TM, Wang Y, Wu DM, Cui BK. Taxonomy and Phylogeny of the Fomitopsis pinicola Complex With Descriptions of Six New Species From East Asia. Front Microbiol 2021; 12:644979. [PMID: 33841369 PMCID: PMC8034269 DOI: 10.3389/fmicb.2021.644979] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Fomitopsis pinicola is a common brown-rot fungal species found in northern hemisphere. It grows on many different gymnosperm and angiosperm trees. Recent studies show that it is a species complex; three species from North America and one species from Europe have been recognized in this complex. In the current study, six new species in the Fomitopsis pinicola complex were discovered from East Asia, based on morphological characters and phylogenetic analyses inferred from the sequence data of the internal transcribed spacer (ITS) regions, the second subunit of RNA polymerase II (RPB2), and the translation elongation factor 1-α gene (TEF). Detailed descriptions of the six new species are provided. Our results also indicates that species of the F. pinicola complex from East Asia usually have limited distribution areas and host specialization.
Collapse
Affiliation(s)
- Shun Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mei-Ling Han
- College of Life Sciences, Langfang Normal University, Langfang, China
| | - Tai-Min Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Dong-Mei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences/Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shihezi, China
| | - Bao-Kai Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
34
|
Zhao W, Zhao CL. The Phylogenetic Relationship Revealed Three New Wood-Inhabiting Fungal Species From Genus Trechispora. Front Microbiol 2021; 12:650195. [PMID: 33815338 PMCID: PMC8009992 DOI: 10.3389/fmicb.2021.650195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Wood-inhabiting fungi play a significant role in wood degradation and the cycle of matter in the ecological system. In the present study, three new wood-inhabiting fungal species, Trechispora bambusicola, Trechispora fimbriata, and Trechispora fissurata spp. nov., are nested in Trechispora, which are proposed based on a combination of morphological features and molecular evidence. Sequences of internal transcribed spacer (ITS) and large subunit (nLSU) regions of the studied samples were generated, and the phylogenetic analyses were performed with maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic analyses inferred from ITS showed that T. bambusicola was sister to Trechispora stevensonii, T. fimbriata grouped with Trechispora nivea, and T. fissurata grouped with Trechispora echinospora. The phylogenetic tree based on ITS + nLSU sequences demonstrated that T. bambusicola formed a single lineage and then grouped with Trechispora rigida and T. stevensonii. T. fimbriata was sister to T. nivea. T. fissurata grouped with Trechispora thelephora.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China.,College of Biodiversity Conservation, Southwest Forestry University, Kunming, China
| | - Chang-Lin Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China.,College of Biodiversity Conservation, Southwest Forestry University, Kunming, China
| |
Collapse
|
35
|
Liu ZB, Zhou M, Yuan Y, Dai YC. Global Diversity and Taxonomy of Sidera (Hymenochaetales, Basidiomycota): Four New Species and Keys to Species of the Genus. J Fungi (Basel) 2021; 7:jof7040251. [PMID: 33810364 PMCID: PMC8066320 DOI: 10.3390/jof7040251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
The genus Sidera is a polypore genus with resupinate, white to cream or buff fresh basidioma, poroid or hydnoid hymenophore, a monomitic or dimitic hyphal system with generative hyphae bearing clamp connections, the presence of rosette-like crystals and allantoid to lunate basidiospores. We study the phylogeny and diversity of Sidera herein by using both morphological and molecular methods. Phylogenetic analyses are based on the ITS dataset, the combined 2-locus dataset (5.8S + nLSU) and 7-locus dataset (ITS + nLSU + RPB1 + RPB2 + TEF1 + mtSSU + nSSU) of 15 taxa of Sidera all over the world. Among them, four species are new to science and described and illustrated in this paper, viz. S. inflata, S. malaysiana, S. punctata and S. roseo-bubalina. In addition, three taxa were treated as Sidera vulgaris sensu lato. An identification key of the 14 accepted species of Sidera worldwide is provided.
Collapse
Affiliation(s)
| | | | - Yuan Yuan
- Correspondence: (Y.Y.); (Y.-C.D.); Tel.: +86-10-6233-6709 (Y.-C.D.)
| | - Yu-Cheng Dai
- Correspondence: (Y.Y.); (Y.-C.D.); Tel.: +86-10-6233-6709 (Y.-C.D.)
| |
Collapse
|
36
|
Liu S, Shen LL, Wang Y, Xu TM, Gates G, Cui BK. Species Diversity and Molecular Phylogeny of Cyanosporus (Polyporales, Basidiomycota). Front Microbiol 2021; 12:631166. [PMID: 33613501 PMCID: PMC7889604 DOI: 10.3389/fmicb.2021.631166] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanosporus is a cosmopolitan brown-rot fungal genus, recognizable by blue-tinted basidiocarps. Species in this genus were usually treated as belonging to the Postia caesia complex, however, recent phylogenetic analyses showed that this complex represents an independent genus. During further studies on Cyanosporus, five new species were discovered based on morphological features and molecular data. Phylogenetic analyses of Cyanosporus were conducted using the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the small subunit of nuclear ribosomal RNA gene (nSSU), the small subunit of mitochondrial rRNA gene (mtSSU), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2), and the translation elongation factor 1-α gene (TEF); illustrated descriptions of the new species are provided. In addition, fifteen species previously belonging to the Postia caesia complex are transferred to Cyanosporus and proposed as new combinations.
Collapse
Affiliation(s)
- Shun Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Lu-Lu Shen
- Yichang Academy of Agricultural Science, Yichang, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Tai-Min Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | | | - Bao-Kai Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,School of Ecology and Nature Conservation, Institute of Microbiology, Beijing Forestry University, Beijing, China
| |
Collapse
|
37
|
Ma X, Huang RX, Zhang Y, Zhao CL. Hyphoderma fissuratum and H. mopanshanense spp. nov. ( Polyporales) from southern China. MYCOSCIENCE 2021; 62:36-41. [PMID: 37090020 PMCID: PMC9157751 DOI: 10.47371/mycosci.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
Two new species, Hyphoderma fissuratum and H. mopanshanense spp. nov., are proposed based on morphological and molecular evidences. Hyphoderma fissuratum is characterized by resupinate basidiomata with cracking hymenial surface, a monomitic hyphal system with generative hyphae bearing clamp connections, IKI-, CB-, and cylindrical, colorless, thin-walled, smooth basidiospores measuring (8.5-10.3 × 3-4 µm). Hyphoderma mopanshanense is characterized by an annual growth habit, slight gray to cream hymenial surface, and fusiform, thick-walled cystidia apically encrusted with crystal. Sequences of ITS and LSU nrRNA gene regions of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony and Bayesian inference methods. These phylogenetic analyses based on molecular data of ITS and nLSU sequences showed that two Hyphoderma new species formed a well supported monophyletic lineage distinct from other related species and then H. fissuratum grouped with H. medioburiense and H. roseocremeum. Hyphoderma mopanshanense grouped with H. setigerum.
Collapse
Affiliation(s)
- Xiang Ma
- College of Biodiversity Conservation, Southwest Forestry University
| | - Ruo-Xia Huang
- College of Biodiversity Conservation, Southwest Forestry University
| | - Ying Zhang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University
| | - Chang-Lin Zhao
- College of Biodiversity Conservation, Southwest Forestry University
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University
| |
Collapse
|
38
|
Chen JJ, Dai YC. Two new species of Physisporinus (Polyporales, Basidiomycota) from Yunnan, Southwest China. Mycol Prog 2021. [DOI: 10.1007/s11557-020-01647-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousaf N, Sun G, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni TB, Conceição LB, Garibay-Orijel R, Villegas-Ríos M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gafforov Y, Pem D, Zhang SN, de Azevedo Santiago ALCM, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Gonçalves CM, Gusmão LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, de Lira CRS, Liu JK(J, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjan M, Oliveira-Filho JRC, Papp V, Pérez-Pazos E, Phillips AJL, Qiu PL, Ren Y, Ruiz RFC, Semwal KC, Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou LW. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00461-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Ma X, Huang RX, Zhang Y, Zhao CL. WITHDRAWN: Hyphoderma fissuratum and H. mopanshanense spp. nov. (Polyporales) from southern China. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Wang CG, Liu SL, Wu F. Two new species of Perenniporia (Polyporales, Basidiomycota). MycoKeys 2020; 69:53-69. [PMID: 32733149 PMCID: PMC7367893 DOI: 10.3897/mycokeys.69.51652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/27/2020] [Indexed: 11/12/2022] Open
Abstract
Two new species of Perenniporia, P. pseudotephropora sp. nov. and P. subcorticola sp. nov., are introduced respectively from Brazil and China based on morphological characteristics and molecular data. Perenniporia pseudotephropora is characterised by perennial, pileate basidiocarps with distinctly stratified tubes, grey pores, tissues becoming dark in KOH, a dimitic hyphal system with slightly dextrinoid arboriform skeletal hyphae and broadly ellipsoid to subglobose, truncate, weakly dextrinoid, cyanophilous basidiospores, measuring 4.9-5.2 × 4-4.8 μm. Perenniporia subcorticola is characterised by resupinate basidiocarps, yellow pores with thick dissepiments, tissues becoming dark in KOH, flexuous skeletal hyphae, ellipsoid, truncate and slightly dextrinoid basidiospores, measuring 4.2-5 × 3.5-4.2 µm. The morphologically-similar species and phylogenetically closely-related species to the two new species are discussed.
Collapse
Affiliation(s)
- Chao-Ge Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Shi-Liang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, ChinaInstitute of MicrobiologyBeijingChina
| | - Fang Wu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
42
|
Du R, Wu F, Gate GM, Dai YC, Tian XM. Taxonomy and phylogeny of Sidera (Hymenochaetales, Basidiomycota): four new species and keys to species of the genus. MycoKeys 2020; 68:115-135. [PMID: 32733146 PMCID: PMC7360635 DOI: 10.3897/mycokeys.68.53561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/10/2020] [Indexed: 11/14/2022] Open
Abstract
Sidera is a polypore genus with white to cream or buff basidiomata, whose species in Hymenochaetales are poorly known. We study the phylogeny and diversity of Sidera based on our recent collections from tropic and subtropic Asian-Pacific regions. Phylogenetic analyses based on the internal transcribed spacer (ITS) and nuclear large subunit (nLSU) ribosomal RNA gene regions indicate that ten terminal lineages are well supported within Sidera. Based on morphological examination and phylogeny, four new species, viz. Sideraminutissima, S.parallela, S.srilankensis and S.tenuis are described, and a new combination, Sideraminutipora, is proposed. All these species are illustrated. Sideraminutissima is characterized by tiny basidiomata with bluish pores when fresh, generative hyphae dominating at the dissepiment edges, the presence of cystidioles, and allantoid basidiospores measuring 3.8–4.4 × 0.9–1.3 μm. Sideraparallela differs from other poroid species in the genus by having parallel tramal hyphae in combination with lunate basidiospores measuring 2.8–3.3 × 0.9–1.2 μm. Siderasrilankensis have generative and skeletal hyphae co-dominating at the dissepiment edges, and lunate basidiospores measuring 3.5–4 × 1–1.3 μm. Sideratenuis is distinguished by small pores (8–10 per mm) and relatively long allantoid basidiospores measuring 4.2–5 × 0.8–1 μm. Sideraminutipora is characterized by buff to olivaceous buff basidiomata when dry, 5–7 pores per mm, rosette-like crystals rare, and allantoid basidiospores measuring 3.7–4.3 × 1–1.3 μm. An identification key to all accepted species is provided.
Collapse
Affiliation(s)
- Rui Du
- School of Ecology and Nature Conservation, PO Box 61, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| | - Fang Wu
- School of Ecology and Nature Conservation, PO Box 61, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| | - Genevieve M Gate
- Tasmanian Institute of Agriculture, Private Bag 98, Hobart, Tasmania 7001, Australia Tasmanian Institute of Agriculture Tasmania Australia
| | - Yu-Cheng Dai
- School of Ecology and Nature Conservation, PO Box 61, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China
| | - Xue-Mei Tian
- Shandong Provincial Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China Qingdao Agricultural University Qingdao China
| |
Collapse
|
43
|
He X, Shi ZJ, Zhao CL. Morphological and molecular identification of two new species of Tubulicrinis (Hymenochaetaceae, Hymenochaetales) from southern China. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Held BW, Salomon CE, Blanchette RA. Diverse subterranean fungi of an underground iron ore mine. PLoS One 2020; 15:e0234208. [PMID: 32497073 PMCID: PMC7272026 DOI: 10.1371/journal.pone.0234208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
Mines and caves are unusual ecosystems containing unique fungi and are greatly understudied compared to other environments. The Soudan Mine in Tower, MN, an iron ore mine that closed in 1963 after operating for 80 years, was sampled to explore fungal diversity and to investigate taxa that tolerate heavy metals for potential bioprocessing technologies or as sources of bioactive molecules for drug discovery and possible biocontrol for white-nose syndrome (WNS) of bats. The mine is 714 m deep, has 18 levels and contains large quantities of wooden timbers, in contrast to many other oligotrophic subterranean environments. Fungi were cultured from samples and the ITS region was sequenced for identification and phylogenetic analysis. Results show Ascomycota are the dominant fungi followed by Basidiomycota and Mucoromycota. Out of 164 identified taxa, 108 belong to the Ascomycota and 26 and 31 to Basidiomycota and Mucoromycota, respectively. There are also 46 taxa that do not match (<97% BLAST GenBank identity) sequenced fungal species. Examples of the most commonly isolated Ascomycota include Scytalidium sp., Mariannaea comptospora, Hypocrea pachybasidioides, Oidiodendron griseum and Pochonia bulbillosa; Basidiomycota include Postia sp., Sistotrema brinkmannii, Calocera sp., Amylocorticiellum sp.; Mucoromycota include Mortierella parvispora, M. gamsii, M. hyaline, M. basiparvispora and Mortierella sp. Unusual growth forms were also found including large quantities of black rhizomorphs of Armillaria sinapina and white mycelial cords of Postia sp. mycelium, as well as Pseudogymnoascus species growing over large areas of mine walls and ceiling. The mine environment is a relatively extreme environment for fungi, with the presence of high levels of heavy metals, complete darkness and poor nutrient availability. Several genera are similar to those isolated in other extreme environments but phylogenetic analyses show differences in species between these environments. Results indicate this subterranean environment hosts a wide diversity of fungi, many of them not found in above ground environments.
Collapse
Affiliation(s)
- Benjamin W. Held
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| | - Christine E. Salomon
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Robert A. Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
45
|
Multi-gene phylogeny and taxonomy of Amauroderma s.lat. ( Ganodermataceae). Persoonia - Molecular Phylogeny and Evolution of Fungi 2020; 44:206-239. [PMID: 33116341 PMCID: PMC7567965 DOI: 10.3767/persoonia.2020.44.08] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/04/2019] [Indexed: 12/03/2022]
Abstract
Amauroderma s.lat. has been defined mainly by the morphological features of non-truncate and double-walled basidiospores with a distinctly ornamented endospore wall. In this work, taxonomic and phylogenetic studies on species of Amauroderma s.lat. are carried out by morphological examination together with ultrastructural observations, and molecular phylogenetic analyses of multiple loci including the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II (RPB1) and the second largest subunit of RNA polymerase II (RPB2), the translation elongation factor 1-α gene (TEF) and the β-tubulin gene (TUB). The results demonstrate that species of Ganodermataceae formed ten clades. Species previously placed in Amauroderma s.lat. are divided into four clades: Amauroderma s.str., Foraminispora, Furtadoa and a new genus Sanguinoderma. The classification of Amauroderma s.lat. is thus revised, six new species are described and illustrated, and eight new combinations are proposed. SEM micrographs of basidiospores of Foraminispora and Sanguinoderma are provided, and the importance of SEM in delimitation of taxa in this study is briefly discussed. Keys to species of Amauroderma s.str., Foraminispora, Furtadoa, and Sanguinoderma are also provided.
Collapse
|
46
|
Two new species of Neofavolus (Polyporales, Basidiomycota) based on morphological characters and molecular evidence. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Chen JZ, Zhao CL. Morphological and molecular identification of four new resupinate species of Lyomyces (Hymenochaetales) from southern China. MycoKeys 2020; 65:101-118. [PMID: 32269481 PMCID: PMC7125236 DOI: 10.3897/mycokeys.65.48660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/04/2020] [Indexed: 11/12/2022] Open
Abstract
Four new wood-inhabiting fungal species, Lyomyces bambusinus, L. cremeus, L. macrosporus and L. wuliangshanensis, are proposed based on a combination of morphological and molecular evidence. Lyomyces bambusinus is characterized by resupinate basidiomata with colliculose to tuberculate hymenial surface and broadly ellipsoid, hyaline, slightly thick-walled, smooth basidiospores. Lyomyces cremeus is characterised by resupinate basidiomata with smooth, cream hymenial surface and ellipsoid, hyaline, thin-walled to slightly thick-walled basidiospores. Lyomyces macrosporus is characterized by pruinose basidiomata with reticulate hymenial surface, presence of three kinds of cystidia and larger basidiospores (6.7-8.9 × 4.4-5.4 µm). Lyomyces wuliangshanensis is characterized by coriaceous basidiomata and ellipsoid, hyaline, slightly thick-walled, smooth basidiospores. The phylogenetic analyses based on molecular data of the internal transcribed spacer (ITS) region sequences revealed that the four new species belonged to Lyomyces. Lyomyces bambusinus grouped with L. sambuci. Lyomyces cremeus clade was sister to a clade comprised of L. microfasciculatus. Lyomyces macrosporus was sister to L. allantosporus. Lyomyces wuliangshanensis was closely related to L. mascarensis.
Collapse
Affiliation(s)
- Jun-Zhu Chen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.,College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China.,Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Chang-Lin Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.,College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China.,Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
48
|
Chen Q, Dai YC. Two new species of Fuscoporia (Hymenochaetales, Basidiomycota) from southern China based on morphological characters and molecular evidence. MycoKeys 2019; 61:75-89. [PMID: 31871407 PMCID: PMC6923280 DOI: 10.3897/mycokeys.61.46799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
Fuscoporia (Hymenochaetaceae) is characterized by annual to perennial, resupinate to pileate basidiocarps, a dimitic hyphal system, presence of hymenial setae, and hyaline, thin-walled, smooth basidiospores. Phylogenetic analyses based on the nLSU and a combined ITS, nLSU and RPB2 datasets of 18 species of Fuscoporia revealed two new lineages that are equated to two new species; Fuscoporia ramulicola sp. nov. grouped together with F. ferrea, F. punctatiformis, F. subferrea and F. yunnanensis with a strong support; Fuscoporia acutimarginata sp. nov. formed a strongly supported lineage distinct from other species. The individual morphological characters of the new species and their related species are discussed. A key to Chinese species of Fuscoporia is provided.
Collapse
Affiliation(s)
- Qian Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
- Institute of Microbiology, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
- Institute of Microbiology, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
49
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
50
|
Liu S, Song CG, Cui BK. Morphological characters and molecular data reveal three new species of Fomitopsis (Basidiomycota). Mycol Prog 2019. [DOI: 10.1007/s11557-019-01527-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|