1
|
Savković Ž, Popović S, Stupar M. Unveiling the Subterranean Symphony: A Comprehensive Study of Cave Fungi Revealed Through National Center for Biotechnology Sequences. J Fungi (Basel) 2025; 11:286. [PMID: 40278107 PMCID: PMC12028181 DOI: 10.3390/jof11040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Caves can be regarded as extreme environments, and fungi are known as omnipresent and highly adaptable organisms that can easily colonize such environments. The primary objective of this study was to use the statistical analysis of sequences stored in the NCBI database, together with related metadata, to find and uncover statistically significant distribution patterns of fungi occupying different substrata inside the caves. The obtained list included a total of 1447 sequences corresponding to fungi isolated from various substrata within cave environments around the world, which corresponds to 445 fungal species, members of the 394 genera. Ascomycota was the most dominant phylum and Eurotiomycetes the dominant class of fungal dwellers in these environments. The highest species richness is detected for the genus Penicillium (57), followed by Aspergillus (51). On the other hand, the most frequently documented single species was Pseudogymnoascus destructans, isolated mostly from hibernating bats and guano, followed by Penicillium chrysogenum. Because caves have stable, nutrient-limited, low-competition microhabitats that support unusual or cryptic species, many new fungal taxa have been reported as well (such as Aspergillus, Apiotrichum, and Cephalotrichum species). Finally, cutting-edge molecular technologies and better sampling methods are revealing hitherto undiscovered fungal diversity in caves worldwide.
Collapse
Affiliation(s)
| | | | - Miloš Stupar
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (Ž.S.); (S.P.)
| |
Collapse
|
2
|
Naveed M, Jabeen S, Ijaz H, Azeem M, Khan M, Ullah S. Russula iqbalii sp. nov., Identified in R. subsect. Maculatinae from Pakistan, Based on Morphology, Microscopy, and Phylogeny. Microsc Res Tech 2025; 88:986-998. [PMID: 39632681 DOI: 10.1002/jemt.24761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Russula iqbalii sp. nov. was collected from the District Swat, Pakistan. This species was characterized by its purplish brown pileus having smooth to sulcate-striate margins, stipe smooth to fibrillose and smaller basidiospores with prominent warts, that are isolated to fused in long chains. Comparative morphology and molecular phylogeny based on nrDNA-ITS sequences revealed that it is distinct from previously known taxa in the genus and represents a new species in Russula subsection Maculatinae, section Russula, within the subgenus Russula.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sana Jabeen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Hira Ijaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Memoona Azeem
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Mehboobullah Khan
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sadiq Ullah
- Government Dr. Khan Shaheed Degree College Kabal, Swat, Pakistan
| |
Collapse
|
3
|
Wu C, Fan J, Hu D, Sun H, Lu G, Wang Y, Yang Y. The Three-Dimensional Structure of the Genome of the Dark Septate Endophyte Exophiala tremulae and Its Symbiosis Effect on Alpine Meadow Plant Growth. J Fungi (Basel) 2025; 11:246. [PMID: 40278067 PMCID: PMC12028334 DOI: 10.3390/jof11040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 04/26/2025] Open
Abstract
The establishment of artificial grassland is a good pathway for resolving serious social and economic problems in the Qinghai-Tibet Plateau. Some beneficial indigenous microbes may be used to improve productivity in artificial grassland. The genome of the indigenous dark septate fungus, Exophiala tremulae CICC2537, was sequenced and assembled at the chromosome level using the PacBio sequencing platform, with the assistance of the Hi-C technique for scaffolding, and its 3D genome structures were investigated. The genome size of E. tremulae is 51.903848 Mb, and it contains eight chromosomes. A total of 12,277 protein-coding genes were predicted, and 11,932 genes (97.19%) were annotated. As for the distribution of exon and intron number and the distribution of gene GC and CDS GC, E. tremulae showed similar distribution patterns to the other investigated members of the genus Exophiala. The analysis of carbohydrate-active enzymes showed that E. tremulae possesses the greatest number of enzymes with auxiliary activities and the lowest number of enzymes with carbohydrate-binding modules among the investigated fungi. The total number of candidate effector proteins was 3337, out of which cytoplasmic and apoplastic effector proteins made up 3100 and 163, respectively. The whole genome of E. tremulae contained 40 compartment As and 76 compartment Bs, and there was no significant difference in GC content in its compartment As and Bs. The whole genome of E. tremulae was predicted to contain 155 topologically associating domains (TADs), and their average length was 250,000 bp, but there were no significant differences in the numbers of genes and the GC content per bin localized within the boundaries and interiors of TADs. Comparative genome analysis showed that E. tremulae diverged from Exophiala mesophila about 34.1 (30.0-39.1) Myr ago, and from Exophiala calicioides about 85.6 (76.1-90.6) Myr ago. Compared with all the investigated fungi, the numbers of contraction and expansion gene families in the E. tremulae genome were 13 and 89, respectively, and the numbers of contraction and expansion genes were 14 and 670, respectively. Our work provides a basis for the use of the dark septate fungus in alpine artificial grassland and further research into its symbiosis mechanisms, which may improve the growth of plant species used in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China; (C.W.); (Y.Y.)
| | - Junjie Fan
- College of Life Science, Yangtze University, Jingzhou 434025, China; (J.F.); (Y.W.)
| | - Die Hu
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China; (C.W.); (Y.Y.)
| | - Honggang Sun
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China;
| | - Guangxin Lu
- College of Agriculture & Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Yun Wang
- College of Life Science, Yangtze University, Jingzhou 434025, China; (J.F.); (Y.W.)
| | - Yujie Yang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China; (C.W.); (Y.Y.)
| |
Collapse
|
4
|
Childress MK, Dragone NB, Young BD, Adams BJ, Fierer N, Quandt CA. Three new Pseudogymnoascus species ( Pseudeurotiaceae, Thelebolales) described from Antarctic soils. IMA Fungus 2025; 16:e142219. [PMID: 40162003 PMCID: PMC11953729 DOI: 10.3897/imafungus.16.e142219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
The genus Pseudogymnoascus includes several species frequently isolated from extreme environments worldwide, including cold environments such as Antarctica. This study describes three new species of Pseudogymnoascus-P.russus sp. nov., P.irelandiae sp. nov., and P.ramosus sp. nov.-isolated from Antarctic soils. These species represent the first Pseudogymnoascus taxa to be formally described from Antarctic soil samples, expanding our understanding of fungal biodiversity in this extreme environment. Microscopic descriptions of asexual structures from living cultures, along with measurements of cultural characteristics and growth on various media types at different temperatures, identify three distinct new species. In addition, phylogenetic analyses based on five gene regions (ITS, LSU, MCM7, RPB2, TEF1) and whole-genome proteomes place these new species within three distinct previously described clades: P.irelandiae in clade K, P.ramosus in clade Q, and P.russus in clade B. These results provide further evidence of the extensive undescribed diversity of Pseudogymnoascus in high-latitude soils. This study contributes to the growing body of knowledge on Antarctic mycology and the broader ecology of psychrophilic and psychrotolerant fungi.
Collapse
Affiliation(s)
- Mary K. Childress
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Nicholas B. Dragone
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin D. Young
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Byron J. Adams
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
5
|
Ahmadpour A, Heidarian Z, Ghosta Y, Alavi Z, Alavi F, Manamgoda DS, Karunarathna SC, Rampelotto PH. Morphological and molecular characterization of Curvularia species from Iran, with description of two novel species and two new records. Mycologia 2025; 117:261-285. [PMID: 39992890 DOI: 10.1080/00275514.2025.2450754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/05/2025] [Indexed: 02/26/2025]
Abstract
Curvularia species exhibit a wide range of ecological roles, including plant, animal, or human pathogens, as well as epiphytes, saprophytes, or endophytes, predominantly associated with cultivated cereals. In this study, several fungal isolates with similar characteristics in the genus Curvularia were recovered from various poaceous hosts (Poales plants) in different locations in Iran during 2012‒2022. Based on the morphological characteristics and multilocus phylogeny of the translation elongation factor-1 alpha (TEF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the internal transcribed spacer (ITS-rDNA) genes, the studied isolates were assigned to five species, of which Curvularia caspica, sp. nov. and C. cyperi, sp. nov. are introduced as novel species and Curvularia nodulosa and C. oryzae are new records for Iran's mycobiota. Molecular studies revealed a closer relationship between one of the studied species (Curvularia sp.) and C. frankliniae. However, due to the absence of detailed morphological characteristics for C. frankliniae, morphological comparisons were not feasible. To precisely establish their phylogenetic position, more isolates need to be analyzed. Consequently, the studied species was identified as Curvularia sp. in this study. Additionally, a new clade, "papendorfii," was established to accommodate 11 species that share common morphological characteristics and form a distinct clade in phylogenetic analyses. The morphology, habitat, distribution, and evolutionary relationships of each species with other Curvularia species were analyzed, accompanied by detailed illustrations and descriptions. This comprehensive study offers valuable insights into the diversity and distribution of Curvularia species, enhancing our understanding of fungal ecology and taxonomy.
Collapse
Affiliation(s)
- Abdollah Ahmadpour
- Higher Education Center of Shahid Bakeri, Urmia University, Miyandoab, Iran
| | - Zeinab Heidarian
- Higher Education Center of Shahid Bakeri, Urmia University, Miyandoab, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Zahra Alavi
- Higher Education Center of Shahid Bakeri, Urmia University, Miyandoab, Iran
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Fatemeh Alavi
- Higher Education Center of Shahid Bakeri, Urmia University, Miyandoab, Iran
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Dimuthu S Manamgoda
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biology and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, People's Republic of China
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics, Core FacilityInstitute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre 91501970, Brazil
| |
Collapse
|
6
|
Eisvand P, Mehrabi-Koushki M. Additional new species of Preussia from forest trees in Iran. Antonie Van Leeuwenhoek 2025; 118:52. [PMID: 39913032 DOI: 10.1007/s10482-025-02064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Forest trees were known to be hosts for a large number of pathogenic and non-pathogenic fungi. Species of Preussia have a cosmopolitan distribution and are geographically widespread, occurring in diverse ecosystems. In this study, 12 Preussia isolates were obtained from disease symptoms in three Zagrosian forest trees in Iran, including Cerasus microcarpa, Crataegus sp., and Pistacia atlantica. These isolates were identified based on morphological and phylogenetic analyses subjected to DNA sequencing of four DNA loci including the internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), partial nuclear 28S ribosomal DNA (LSU), partial translation elongation factor 1a (tef1), and part of the beta-tubulin (tub2). Accordingly, four new Preussia species within the family Sporormiaceae were proposed as follow: P. crataegi, P. iranica, P. pianica, and P. pistaciae spp. nov. Asexual morph of P. crataegi, P. pianica, and P. pistaciae were described and illustrated, as well as, sexual morph of P. iranica. Up to now, no other species of Preussia and its allied genera in the family Sporormiaceae have been reported from these hosts. This study expanded our knowledge of species diversity of Preussia in the world.
Collapse
Affiliation(s)
- Payam Eisvand
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
| | - Mehdi Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran.
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
7
|
Hasnaoui B, Fohrer F, Parola P, Berenger JM. Common insect pests in homes and cultural heritage sites. PeerJ 2025; 13:e18700. [PMID: 39822973 PMCID: PMC11737333 DOI: 10.7717/peerj.18700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/21/2024] [Indexed: 01/19/2025] Open
Abstract
Insect pests represent a threat to the integrity of historic buildings and homes, causing serious losses and irreversible damage. These pests can cause extensive damage to organic materials, including wood, textiles, and paper. Beetles, termites, booklice, moths, and cockroaches are just some of the main insect pests that are frequently found in historic buildings and homes. Beetle species such as the furniture beetle and the powderpost beetle are well recognised for their capacity to infest and feed on wood. Termite infestations can remain undetected and cause considerable damage that may even lead to the complete destruction of a building's structural integrity. Cloth moth larvae are known to damage textiles, including carpets, furniture, clothes, and tapestries. Some wood-destroying species of cockroaches have the potential to harm historic buildings. Booklice have the ability to eat cellulose fibres found in archived articles and artefacts stored in heritage buildings, causing deterioration and damage to documents over time. This article reviews the literature and presents an overview of the major insect pests belonging to five known orders Coleoptera, Blattodea, Lepidoptera, Zygentoma (long-tailed silverfish) and Psocoptera, which pose a threat to households, museums, depositories, libraries, and cultural heritage buildings. We also discuss their biology, their impact on human health, and the various potential approaches to identifying them.
Collapse
Affiliation(s)
- Bouthaina Hasnaoui
- IHU Méditerranée Infection, Marseille, Provence-Alpes-Côte d’Azur, France
- Aix Marseille University, AP-HM, RITMES, Marseille, France
| | - Fabien Fohrer
- Centre Interdisciplinaire de Conservation et de Restauration du Patrimoine, Marseille, Provence-Alpes-Côte d’Azur, France
| | - Philippe Parola
- IHU Méditerranée Infection, Marseille, Provence-Alpes-Côte d’Azur, France
- Aix Marseille University, AP-HM, RITMES, Marseille, France
| | - Jean-Michel Berenger
- IHU Méditerranée Infection, Marseille, Provence-Alpes-Côte d’Azur, France
- Aix Marseille University, AP-HM, RITMES, Marseille, France
| |
Collapse
|
8
|
Barreto G, Souza-Motta C, Silva G, Groenewald J, Crous P, Bezerra J. Meristematic and meristematic-like fungi in Dothideomycetes. Fungal Syst Evol 2024; 14:77-88. [PMID: 39830295 PMCID: PMC11736082 DOI: 10.3114/fuse.2024.14.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/26/2024] [Indexed: 01/22/2025] Open
Abstract
Meristematic fungi are mainly defined as having aggregates of thick-walled, melanised cells enlarging and reproducing by isodiametric division. Dothideomycetes black meristematic and meristematic-like fungi have been allied to Myriangiales, which currently has two accepted families, Myriangiaceae and Elsinoaceae, with fungi mainly regarded as pathogens, parasites, saprobes and epiphytes of different plant species. This study aimed to verify the phylogenetic position using four nuclear markers (SSU, LSU, ITS and RPB2) of the incertae sedis genera associated with Myriangiales, namely Endosporium, Gobabebomyces, Lembosiniella and Phaeosclera, and the new genus, Endophytium gen. nov. (including E. albocacti sp. nov. and E. cacti sp. nov.), established for endophytic fungi occurring in cacti in Brazil. Based on morphology, lifestyle and phylogenetic inferences, these black meristematic and meristematic-like fungi cannot be accommodated in Myriangiales. Combining these results, three new orders and two new families are introduced: Endophytiales ord. nov. (including Endophytiaceae fam. nov. for Endophytium gen. nov.), Endosporiales ord. nov. (including Endosporiaceae for Endosporium) and Phaeosclerales ord. nov. (including Phaeoscleraceae fam. nov. for Phaeosclera). Gobabebomyces and Lembosiniella remained incertae sedis due to their disposition in the phylogenetic tree, that moved among clades accordingly with the gene analysed. Our results show that the inclusion of endophytic fungi obtained from plants in dry forests can contribute to the discovery of new taxa, clarify the phylogenetic position of allied taxa and confer information to the estimation of national and global fungal diversity. Citation: Barreto GG, Souza-Motta CM, Silva GA, Groenewald JZ, Crous PW, Bezerra JDP (2024). Meristematic and meristematic-like fungi in Dothideomycetes. Fungal Systematics and Evolution 14: 77-88. doi: 10.3114/fuse.2024.14.05.
Collapse
Affiliation(s)
- G.G. Barreto
- Programa de Pós-graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana (UEFS), Av. Transnordestina, s/n, Novo Horizonte, 44036-900, Feira de Santana, Bahia, Brazil
| | - C.M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, CCB, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - G.A. Silva
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, CCB, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia (LabMicol), Departamento de Biociências e Tecnologia (DEBIOTEC), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, CEP: 74605-050, Goiânia, GO, Brazil
| |
Collapse
|
9
|
Avchar R, Shinde S, Kashid Y, Gangani P, Sharma A. Exophiala zingiberis sp. nov., a novel cellulase-producing black yeast-like fungi isolated from ginger in India. Int J Syst Evol Microbiol 2024; 74. [PMID: 39699938 DOI: 10.1099/ijsem.0.006614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The genus Exophiala, known for its melanized, yeast-like appearance, includes a diverse group of fungi with significant implications across various fields. An isolate representing a novel species was identified within this genus from a ginger tuber from India, based on morphological characteristics and molecular phylogenetic analysis. Phylogenetic analysis of the D1/D2 domain of the 26S LSU rRNA gene, SSU rRNA gene and the internal transcribed spacer (ITS) region confirmed this strain as a new species. It was named Exophiala zingiberis sp. nov. (MycoBank no. MB 855415), with MCC 9960T designated as the holotype and PYCC 9834 as the isotype. Exophiala zingiberis was positioned as a sister species to a clade that includes Exophiala castellanii, Exophiala mali and three additional species. Phylogenetic analysis indicates that while E. zingiberis shares a common ancestor with these species, it is genetically distinct, underscoring its novel status. The type strain of this novel species differs from Exophiala yuxiensis YMF1.07354T, the most closely related species, by 19 nucleotide substitutions (3.6% sequence variation) in the D1/D2 region (549 bp compared) and 104 nucleotide substitutions and 44 gaps (27.1% sequence variation) in the ITS region (546 bp compared).
Collapse
Affiliation(s)
- Rameshwar Avchar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, Maharashtra, India
| | | | - Yaminee Kashid
- Rayat Institute of Research and Development, Satara 415001, Maharashtra, India
| | - Parang Gangani
- Modern College, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, Maharashtra, India
| |
Collapse
|
10
|
Nguyen T, de A. Santiago A, Hallsworth J, Cordeiro T, Voigt K, Kirk P, Crous P, Júnior M, Elsztein C, Lee H. New Mucorales from opposite ends of the world. Stud Mycol 2024; 109:273-321. [PMID: 39717656 PMCID: PMC11663423 DOI: 10.3114/sim.2024.109.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/07/2024] [Indexed: 12/25/2024] Open
Abstract
The Mucorales is a group of ancient fungi with global distribution. In the current study we accessed mucoralean fungi isolated from two countries on opposite sides of the Earth and in different hemispheres: South Korea and Brazil. Mucorales isolates were obtained from freshwater, soil, invertebrates, and fruit seeds and identified using phenotypic techniques combined with the DNA sequence data. These analyses revealed 15 new species including one that we affiliated to a newly proposed genus, Neofennellomyces. Names proposed for these 15 new species are Absidia cheongyangensis, A. fluvii, A. kunryangriensis, A. paracylindrospora, A. tarda, A. variiprojecta, A. variispora, Backusella varians, Mucor albicolonia, M. aurantiacus, M. cryophilus, M. glutinatus, M. paraorantomantidis, M. timomeni, and Neofennellomyces jeongsukae. Of these new species, 12 were isolated from South Korea: A. cheongyangensis, A. fluvii, A. kunryangriensis, A. paracylindrospora, B. varians, M. albicolonia, M. aurantiacus, M. cryophilus, M. glutinatus, M. paraorantomantidis, M. timomeni, and N. jeongsukae, and three from Brazil: A. tarda, A. variiprojecta, and A. variispora. Niche specificity of these fungi is discussed including newly recorded invertebrate hosts and a new geographic distribution for species of Backusella, Circinella, Cunninghamella, and Mucor. Given these findings, we provide an inventory of Mucorales. Taxonomic novelties: New genus: Neofennellomyces Hyang B. Lee & T.T.T. Nguyen. New species: Absidia cheongyangensis Hyang B. Lee & T.T.T. Nguyen, Absidia fluvii Hyang B. Lee, A.L. Santiago, P.M. Kirk, K. Voigt & T.T.T. Nguyen, Absidia kunryangriensis Hyang B. Lee & T.T.T. Nguyen, Absidia paracylindrospora Hyang B. Lee & T.T.T. Nguyen, Absidia tarda T.R.L. Cordeiro, Hyang B. Lee & A.L. Santiago, Absidia variiprojecta T.R.L. Cordeiro & A.L. Santiago, Absidia variispora T.R.L. Cordeiro & A.L. Santiago, Backusella varians Hyang B. Lee & T.T.T. Nguyen, Mucor aurantiacus Hyang B. Lee & T.T.T. Nguyen, Mucor cryophilus Hyang B. Lee & T.T.T. Nguyen, Mucor albicolonia Hyang B. Lee & T.T.T. Nguyen, Mucor glutinatus Hyang B. Lee & T.T.T. Nguyen, Mucor paraorantomantidis Hyang B. Lee & T.T.T. Nguyen, Mucor timomeni Hyang B. Lee & T.T.T. Nguyen, Neofennellomyces jeongsukae Hyang B. Lee & T.T.T. Nguyen. Citation: Nguyen TTT, de A. Santiago ALCM, Hallsworth JE, Cordeiro TRL, Voigt K, Kirk PM, Crous PW, Júnior MAM, Elsztein C, Lee HB (2024). New Mucorales from opposite ends of the world. Studies in Mycology 109: 273-321. doi: 10.3114/sim.2024.109.04.
Collapse
Affiliation(s)
- T.T.T. Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - A.L.C.M. de A. Santiago
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. da Engenharia, s/n, Recife 50740-600, Pernambuco, Brazil
| | - J.E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
| | - T.R.L. Cordeiro
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. da Engenharia, s/n, Recife 50740-600, Pernambuco, Brazil
| | - K. Voigt
- JMRC at Leibniz Institute for Natural Product Research and Infection Biology e.V. HKI and Friedrich Schiller University Jena, 07745 Jena, Germany
| | - P.M. Kirk
- Biodiversity Informatics and Spatial Analysis, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey TW9 3DS, UK
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands
| | - M.A.M. Júnior
- Departamento de Genética, Universidade Federal de Pernambuco. Av. Prof. Nelson Chaves, s/n, 50670-420, Recife, Pernambuco, Brazil
| | - C. Elsztein
- Departamento de Genética, Universidade Federal de Pernambuco. Av. Prof. Nelson Chaves, s/n, 50670-420, Recife, Pernambuco, Brazil
| | - H.B. Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
11
|
Liu NG, Hyde KD, Sun YR, Bhat DJ, Jones EBG, Jumpathong J, Lin CG, Lu YZ, Yang J, Liu LL, Liu ZY, Liu JK. Notes, outline, taxonomy and phylogeny of brown-spored hyphomycetes. FUNGAL DIVERS 2024; 129:1-281. [DOI: 10.1007/s13225-024-00539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/23/2024] [Indexed: 01/05/2025]
|
12
|
Santa-Brigída R, Santos ARO, Martins MB, Rosa LH, Lachance MA, Rosa CA. Kodamaea schenbergiae f.a., sp. nov. and Suhomyces schwaniae f.a., sp. nov., two yeast species isolated from mushrooms and associated insects in a Brazilian Amazonian rainforest biome. Int J Syst Evol Microbiol 2024; 74. [PMID: 39607848 DOI: 10.1099/ijsem.0.006587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Thirty yeast isolates belonging to the genera Kodamaea and Suhomyces were isolated from mushrooms and associated drosophilids collected in a Brazilian Amazonian rainforest biome. Analyses of the sequences of the intergenic spacer region and the D1/D2 domains of the large subunit rRNA gene showed that these isolates represent two distinct species. The first, represented by ten isolates, is phylogenetically related to Kodamaea plutei and Kodamaea lidongshanica based on the sequences of the D1/D2 domains. The name Kodamaea schenbergiae f.a., sp. nov. (Holotype CBS 18628T; MycoBank MB855624) is proposed to accommodate the species. The second species was represented by 20 isolates (13 isolates from drosophilids and 7 from mushrooms). This novel species is phylogenetically related to Suhomyces bolitotheri, Suhomyces rilaensis and Suhomyces choctaworum. The name Suhomyces schwaniae f.a., sp. nov. (Holotype CBS 18800T; MycoBank MB855625) is proposed to accommodate the species. Both novel species did not produce asci or evidence of conjugation when cultured individually or in pairs. The isolation of these yeasts associated with mushrooms and drosophilids in the Amazonian biome suggests that these substrates are the habitat of both species.
Collapse
Affiliation(s)
- Rosangela Santa-Brigída
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
13
|
Sun Y, Zhang Y, Pan S, Cong H, Jiang J. The yeast Dothiora sorbi IOJ-3 naturally produced various filamentous sectors with distinct abilities by undergoing DNA demethylation. Fungal Biol 2024; 128:2177-2189. [PMID: 39384287 DOI: 10.1016/j.funbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Some fungi have demonstrated the ability to adapt rapidly to changing environments by exhibiting morphological plasticity, a trait influenced by species and environmental factors. Here, an anamorphic yeast strain IOJ-3 exhibited unique sectorization characteristics, naturally producing diverse filamentous sectors when cultivated on potato dextrose agar (PDA) medium or natural culture medium for durations exceeding 13 days. The strain IOJ-3 and its filamentous sectors were identified as Dothiora sorbi. The morphology of the sectors was consistent and heritable. The life cycle of strain IOJ-3 was investigated through microscopic observation, emphasizing the development of conidiogenous cells as a crucial stage, from which filamentous sectors originate. Some physiological characteristics of IOJ-3 and filamentous sectors are compared, and strain IOJ-3 has a higher antibiotic tolerance than two filamentous sectors, IOJ-3a expands faster on the culture medium, and IOJ-3b can penetrate cellophane. A transcriptomic analysis was conducted to investigate the differentially expressed genes between the yeast form IOJ-3 and its two filamentous sectors, revealing a total of 594 genes that exhibited consistent differential expression relative to IOJ-3, including 44 silencing genes in IOJ-3 that were activated. Gene Ontology analysis indicated that these differentially expressed genes were primarily associated with the cellular component category. Furthermore, adding 5-Azacytidine accelerated filamentous sectorization and increased the proportion of filamentous cells of strain IOJ-3 in PD liquid media, suggesting that the filamentous sectorization observed in strain IOJ-3 is linked to processes of DNA demethylation. In conclusion, this study sheds light on the biological characteristics of D. sorbi regarding morphological transitions and provides substantial direction for exploring genes related to fungal filamentous development.
Collapse
Affiliation(s)
- Yong Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, China.
| | - Yijia Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Suwan Pan
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Hao Cong
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jihong Jiang
- School of Life Science, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
14
|
Liu S, Cai DY, Hui FL. Cyberlindnera qingyuanensis f.a., sp. nov., a yeast species isolated from rotting wood. Int J Syst Evol Microbiol 2024; 74. [PMID: 39207228 DOI: 10.1099/ijsem.0.006507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Two yeast strains were isolated from rotting wood samples collected on Qingyuan Mountain, Fujian Province, PR China. Phylogenetic analysis, based on the concatenated sequences of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit rRNA gene, revealed that these two strains represent a novel species of the genus Cyberlindnera. The proposed name for this new species is Cyberlindnera qingyuanensis f.a., sp. nov. (holotype: GDMCC 2.300; ex-type: PYCC 9925) although the formation of ascospores was not observed. The novel species differs from its close relative Cyberlindnera galapagoensis by 7.7% sequence divergence (37 substitutions and seven indels) in the D1/D2 domain and 9.7% sequence divergence (42 substitutions and 34 indels) in the ITS region, respectively. Additionally, Cyb. qingyuanensis differs from its close relative Cyb. galapagoensis by its ability to grow in cellobiose, l-rhamnose, ribitol, galactitol, and dl-lactate, its growth at 37 °C, and its inability to ferment raffinose. The Mycobank number is MB 854693.
Collapse
Affiliation(s)
- Shan Liu
- School of Life Science, Nanyang Normal University, Nanyang 473061, PR China
| | - Dan-Yang Cai
- School of Life Science, Nanyang Normal University, Nanyang 473061, PR China
| | - Feng-Li Hui
- School of Life Science, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
15
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
16
|
Wang ZQ, Ma JM, Yang ZL, Zhao J, Yu ZY, Li JH, Yu H. Morphological and Phylogenetic Analyses Reveal Three New Species of Entomopathogenic Fungi Belonging to Clavicipitaceae (Hypocreales, Ascomycota). J Fungi (Basel) 2024; 10:423. [PMID: 38921409 PMCID: PMC11204714 DOI: 10.3390/jof10060423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
This study aims to report three new species of Conoideocrella and Moelleriella from Yunnan Province, Southwestern China. Species of Conoideocrella and Moelleriella parasitize scale insects (Coccidae and Lecaniidae, Hemiptera) and whiteflies (Aleyrodidae, Hemiptera). Based on the phylogenetic analyses of the three-gene nrLSU, tef-1α, and rpb1, it showed one new record species (Conoideocrella tenuis) and one new species (Conoideocrella fenshuilingensis sp. nov.) in the genus Conoideocrella, and two new species, i.e., Moelleriella longzhuensis sp. nov. and Moelleriella jinuoana sp. nov. in the genus Moelleriella. The three new species were each clustered into separate clades that distinguished themselves from one another. All of them were distinguishable from their allied species based on their morphology. Morphological descriptions, illustrations, and comparisons of the allied taxa of the four species are provided in the present paper. In addition, calculations of intraspecific and interspecific genetic distances were performed for Moelleriella and Conoideocrella.
Collapse
Affiliation(s)
- Zhi-Qin Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; (Z.-Q.W.); (J.-M.M.); (Z.-L.Y.); (J.Z.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
| | - Jin-Mei Ma
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; (Z.-Q.W.); (J.-M.M.); (Z.-L.Y.); (J.Z.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
| | - Zhi-Li Yang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; (Z.-Q.W.); (J.-M.M.); (Z.-L.Y.); (J.Z.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
| | - Jing Zhao
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; (Z.-Q.W.); (J.-M.M.); (Z.-L.Y.); (J.Z.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
| | - Zhi-Yong Yu
- Yunnan Jinping Fenshuiling National Nature Reserve, Honghe 661500, China; (Z.-Y.Y.); (J.-H.L.)
| | - Jian-Hong Li
- Yunnan Jinping Fenshuiling National Nature Reserve, Honghe 661500, China; (Z.-Y.Y.); (J.-H.L.)
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; (Z.-Q.W.); (J.-M.M.); (Z.-L.Y.); (J.Z.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
| |
Collapse
|
17
|
Senwanna C, Hongsanan S, Khuna S, Kumla J, Yarasheva M, Gafforov Y, Abdurazakov A, Suwannarach N. Insights into the molecular phylogeny and morphology of three novel Dothiora species, along with a worldwide checklist of Dothiora. Front Cell Infect Microbiol 2024; 14:1367673. [PMID: 38707512 PMCID: PMC11067756 DOI: 10.3389/fcimb.2024.1367673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 05/07/2024] Open
Abstract
Most species of Dothiora are known from the dead parts of various host plants as saprobic fungi in terrestrial habitats occurring in tropical and temperate regions. In the present study, samples of Dothiora were collected from dead twigs and branches of Capparis spinosa, Rhaponticum repens, and an unknown angiosperm plant from the Tashkent and Jizzakh regions of Uzbekistan. Multi-gene phylogenetic analyses based on a combined ITS, LSU, SSU, TEF1, and TUB2 sequence data revealed their taxonomic positions within the Dothideaceae. Three new species of Dothiora, namely, Dothiora capparis, Dothiora rhapontici, and Dothiora uzbekistanica were proposed by molecular and morphological data. Likewise, the phylogenetic relationship and morphology of Dothiora are discussed. In addition, we provide a list of accepted Dothiora species, including host information, distribution, morphology descriptions, and availability of sequence data, to enhance the current knowledge of the diversity within Dothiora.
Collapse
Affiliation(s)
- Chanokned Senwanna
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Sinang Hongsanan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Surapong Khuna
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Manzura Yarasheva
- Department of Education and Training Management, Tashkent International University of Education, Tashkent, Uzbekistan
| | - Yusufjon Gafforov
- Central Asian Center for Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Aziz Abdurazakov
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, Andijan, Uzbekistan
| | - Nakarin Suwannarach
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Vadthanarat S, Raghoonundon B, Lumyong S, Raspé O. Rostrupomyces, a new genus to accommodate Xerocomussisongkhramensis, and a new Hemileccinum species (Xerocomoideae, Boletaceae) from Thailand. MycoKeys 2024; 103:129-165. [PMID: 38584717 PMCID: PMC10995610 DOI: 10.3897/mycokeys.103.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
A new genus, Rostrupomyces is established to accommodate Xerocomussisongkhramensis based on multiple protein-coding genes (atp6, cox3, tef1, and rpb2) analyses of a wide taxon sampling of Boletaceae. In our phylogeny, the new genus was sister to Rubinosporus in subfamily Xerocomoideae, phylogenetically distant from Xerocomus, which was highly supported as sister to Phylloporus in the same subfamily Xerocomoideae. Rostrupomyces is different from other genera in Boletaceae by the following combination of characters: rugulose to subrugulose pileus surface, white pores when young becoming pale yellow in age, subscabrous stipe surface scattered with granulose squamules, white basal mycelium, unchanging color in any parts, yellowish brown spore print, and broadly ellipsoid to ellipsoid, smooth basidiospores. In addition, Hemileccinuminferius, also from subfamily Xerocomoideae, is newly described. Detailed descriptions and illustrations of the new genus and new species are presented.
Collapse
Affiliation(s)
- Santhiti Vadthanarat
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | | | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Olivier Raspé
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium
| |
Collapse
|
19
|
Barnés-Guirado M, Stchigel AM, Cano-Lira JF. A New Genus of the Microascaceae (Ascomycota) Family from a Hypersaline Lagoon in Spain and the Delimitation of the Genus Wardomyces. J Fungi (Basel) 2024; 10:236. [PMID: 38667907 PMCID: PMC11051006 DOI: 10.3390/jof10040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The Saladas de Sástago-Bujaraloz is an endorheic and arheic complex of lagoons located in the Ebro Basin and protected by the Ramsar Convention on Wetlands. Due to the semi-arid climate of the region and the high salinity of their waters, these lagoons constitute an extreme environment. We surveyed the biodiversity of salt-tolerant and halophilic fungi residents of the Laguna de Pito, a lagoon belonging to this complex. Therefore, we collected several samples of water, sediments, and soil of the periphery. Throughout the study, we isolated 21 fungal species, including a strain morphologically related to the family Microascaceae. However, this strain did not morphologically match any of genera within this family. After an in-depth morphological characterization and phylogenetic analysis using a concatenated sequence dataset of four phylogenetically informative molecular markers (the internal transcribed spacer region (ITS) of the nuclear ribosomal DNA (nrDNA); the D1-D2 domains of the 28S gene of the nuclear ribosomal RNA (LSU); and a fragment of the translation elongation factor 1-alpha (EF-1α) and the β-tubulin (tub2) genes), we established the new genus Dactyliodendromyces, with Dactyliodendromyces holomorphus as its species. Additionally, as a result of our taxonomic study, we reclassified the paraphyletic genus Wardomyces into three different genera: Wardomyces sensu stricto, Parawardomyces gen. nov., and Pseudowardomyces gen. nov., with Parawardomyces ovalis (formerly Wardomyces ovalis) and Pseudowardomyces humicola (formerly Wardomyces humicola) as the type species of their respective genera. Furthermore, we propose new combinations, including Parawardomyces giganteus (formerly Wardomyces giganteus) and Pseudowardomyces pulvinatus (formerly Wardomyces pulvinatus).
Collapse
Affiliation(s)
| | - Alberto Miguel Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain; (M.B.-G.); (J.F.C.-L.)
| | | |
Collapse
|
20
|
Peng XC, Wen TC, Wei DP, Liao YH, Wang Y, Zhang X, Wang GY, Zhou Y, Tangtrakulwanich K, Liang JD. Two new species and one new combination of Ophiocordyceps (Hypocreales, Ophiocordycipitaceae) in Guizhou. MycoKeys 2024; 102:245-266. [PMID: 38463694 PMCID: PMC10921062 DOI: 10.3897/mycokeys.102.113351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/27/2024] [Indexed: 03/12/2024] Open
Abstract
Ophiocordyceps is the largest genus in Ophiocordycipitaceae and has a broad distribution with high diversity in subtropical and tropical regions. In this study, two new species, pathogenic on lepidopteran larvae are introduced, based on morphological observation and molecular phylogeny. Ophiocordycepsfenggangensissp. nov. is characterised by having fibrous, stalked stroma with a sterile tip, immersed perithecia, cylindrical asci and filiform ascospores disarticulating into secondary spores. Ophiocordycepsliangiisp. nov. has the characteristics of fibrous, brown, stipitate, filiform stroma, superficial perithecia, cylindrical asci and cylindrical-filiform, non-disarticulating ascospores. A new combination Ophiocordycepsmusicaudata (syn. Cordycepsmusicaudata) is established employing molecular analysis and morphological characteristics. Ophiocordycepsmusicaudata is characterised by wiry, stipitate, solitary, paired to multiple stromata, yellowish, branched fertile part, brown stipe, immersed perithecia, cylindrical asci and cylindrical-filiform, non-disarticulating ascospores.
Collapse
Affiliation(s)
- Xing-Can Peng
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
- Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ting-Chi Wen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - De-Ping Wei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yu-Hong Liao
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Guizhou Key Laboratory of Edible Fungi Breeding, Guiyang 550006, China
| | - Yi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
- Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Gui-Ying Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yun Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Khanobporn Tangtrakulwanich
- Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jian-Dong Liang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
21
|
Birnbaum C, Dearnaley J, Egidi E, Frew A, Hopkins A, Powell J, Aguilar-Trigueros C, Liddicoat C, Albornoz F, Heuck MK, Dadzie FA, Florence L, Singh P, Mansfield T, Rajapaksha K, Stewart J, Rallo P, Peddle SD, Chiarenza G. Integrating soil microbial communities into fundamental ecology, conservation, and restoration: examples from Australia: Ecological Society of Australia (ESA) and Society of Conservation Biology Oceania (SCBO) joint Conference, Wollongong, Australia, 28 November-2 December 2022. THE NEW PHYTOLOGIST 2024; 241:974-981. [PMID: 38098200 DOI: 10.1111/nph.19440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Affiliation(s)
- Christina Birnbaum
- School of Agriculture & Environmental Science, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- Center for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4370, Australia
| | - John Dearnaley
- School of Agriculture & Environmental Science, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- Center for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4370, Australia
| | - Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Adam Frew
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Anna Hopkins
- School of Science, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Jeff Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Carlos Aguilar-Trigueros
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Craig Liddicoat
- College of Science and Engineering, Flinders University, Sturt Road Bedford Park, Adelaide, SA, 5042, Australia
- School of Public Health, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - Meike K Heuck
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Frederick A Dadzie
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Luke Florence
- Department of Environment & Genetics, La Trobe University, Science Drive, Bundoora, VIC, 3086, Australia
| | - Pankaj Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6000, Australia
| | - Tomas Mansfield
- Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Kumari Rajapaksha
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Jana Stewart
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Paola Rallo
- Department of Terrestrial Ecology, Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | - Shawn D Peddle
- College of Science and Engineering, Flinders University, Sturt Road Bedford Park, Adelaide, SA, 5042, Australia
| | - Giancarlo Chiarenza
- Evolution and Ecology Research Center, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
22
|
Torres-Garcia D, Gené J, García D, Cano-Lira JF. Insights into Some Onygenalean Fungi from Freshwater Sediments in Spain and Description of Novel Taxa. J Fungi (Basel) 2023; 9:1129. [PMID: 38132730 PMCID: PMC10744713 DOI: 10.3390/jof9121129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
During the course of a project investigating culturable Ascomycota diversity from freshwater sediments in Spain, we isolated 63 strains of cycloheximide-resistant fungi belonging to the order Onygenales. These well-known ascomycetes, able to infect both humans and animals, are commonly found in terrestrial habitats, colonizing keratin-rich soils or dung. Little is known about their diversity in aquatic environments. Combining morphological features and sequence analyses of the ITS and LSU regions of the nrDNA, we identified 14 species distributed in the genera Aphanoascus, Arachniotus, Arthroderma, Arthropsis, Emmonsiellopsis, Gymnoascoideus, Leucothecium, Malbranchea, and Myriodontium. Furthermore, three novel species for the genus Malbranchea are proposed as M. echinulata sp. nov., M. irregularis sp. nov., and M. sinuata sp. nov. The new genera Albidomyces and Neoarthropsis are introduced based on Arachniotus albicans and Arthropsis hispanica, respectively. Neoarthropsis sexualis sp. nov. is characterized and differentiated morphologically from its counterpart by the production of a sexual morph. The novel family Neoarthropsidaceae is proposed for the genera Albidomyes, Apinisia, Arachnotheca, Myriodontium, and Neoarthropsis, based on their phylogenetic relationships and phenotypic and ecological traits. Pseudoamaurascopsis gen. nov. is introduced to accommodate P. spiralis sp. nov., a fungus with unclear taxonomy related to Amaurascopsis and Polytolypa. We traced the ecology and global distribution of the novel fungi through ITS environmental sequences deposited in the GlobalFungi database. Studying the fungal diversity from freshwater sediments not only contributes to filling gaps in the relationships and taxonomy of the Ascomycota but also gives us insights into the fungal community that might represent a putative risk to the health of animals and humans inhabiting or transient in aquatic environments.
Collapse
Affiliation(s)
| | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.T.-G.); (D.G.); (J.F.C.-L.)
| | | | | |
Collapse
|
23
|
Ferdinandez HS, Manamgoda DS, Udayanga D, Munasinghe MS, Castlebury LA. Molecular phylogeny and morphology reveal two new graminicolous species, Curvularia aurantiasp. nov. and C. vidyodayana sp. nov. with new records of Curvularia spp . from Sri Lanka. Fungal Syst Evol 2023; 12:219-246. [PMID: 38455951 PMCID: PMC10918625 DOI: 10.3114/fuse.2023.12.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/28/2023] [Indexed: 03/09/2024] Open
Abstract
Despite being a small island, Sri Lanka is rich in fungal diversity. Most of the fungi from Sri Lanka have been identified as pathogens of vegetables, fruits, and plantation crops to date. The pleosporalean genus Curvularia (Dothideomycetes) includes phytopathogenic, saprobic, endophytic, and human/animal opportunistic pathogenic fungal species. The majority of the plant-associated Curvularia species are known from poaceous hosts. During the current study, 22 geographical locations of the country were explored and collections were made from 10 different poaceous hosts. Morphology and molecular phylogeny based on three loci, including nuclear internal transcribed spacers 1 and 2 with 5.8S nrDNA (ITS), glyceraldehyde-3-phosphate dehydrogenase (gapdh), and translation elongation factor 1-α (tef1) supported the description of two new species of fungi described herein as C. aurantia sp. nov. and C. vidyodayana sp. nov. Moreover, novel host-fungal association records for C. chiangmaiensis, C. falsilunata, C. lonarensis, C. plantarum, and C. pseudobrachyspora are updated herein. In addition, five species within the genus Curvularia, viz., C. asiatica, C. geniculata, C. lunata, C. muehlenbeckiae, and C. verruculosa represent new records of fungi from Sri Lanka. Citation: Ferdinandez HS, Manamgoda DS, Udayanga D, Munasinghe MS, Castlebury LA (2023). Molecular phylogeny and morphology reveal two new graminicolous species, Curvularia aurantia sp. nov. and C. vidyodayana sp. nov. with new records of Curvularia spp. from Sri Lanka. Fungal Systematics and Evolution 12: 219-246. doi: 10.3114/fuse.2023.12.11.
Collapse
Affiliation(s)
- H S Ferdinandez
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - D S Manamgoda
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - D Udayanga
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M S Munasinghe
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - L A Castlebury
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
24
|
Halling R, Fechner N, Holmes G, Davoodian N. Kgaria ( Boletaceae, Boletoideae) gen. nov. in Australia: Neither a Tylopilus nor a Porphyrellus. Fungal Syst Evol 2023; 12:31-45. [PMID: 38455954 PMCID: PMC10918407 DOI: 10.3114/fuse.2023.12.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/23/2023] [Indexed: 03/09/2024] Open
Abstract
Kgaria is described as a new porphyrellus-like genus of Boletaceae to accommodate Tylopilus cyanogranulifer, a dark brown to dull lilac/violet, or rarely, nearly black bolete with a series of oxidation reactions progressing from blue to red then nearly black and a dark brown spore deposit. Idiosyncratic blue-green pigment encrustations (cyanogranules) and a similarly colored reaction of the hyphae located on pileus and stipe surfaces are also diagnostic. Phylogenetic analyses of nuclear large-subunit rDNA (nrLSU), translation elongation factor 1-alpha (tef-1), and the second largest subunit of RNA polymerase II (rpb2) infer Kgaria as a unique generic lineage with two species, one of which is newly described (K. similis). Tylopilus olivaceoporus, originally described at the same time and as distinct from T. cyanogranulifer, appears to be conspecific with the latter. Some darkly pigmented taxa with similar oxidation reactions that were recently described from Brazil, Guyana, and China are further supported by morphology and molecular data as discrete lineages in separate genera in subfamily Boletoideae. Citation: Halling RE, Fechner NA, Holmes G, Davoodian N (2023). Kgaria (Boletaceae, Boletoideae) gen. nov. in Australia: Neither a Tylopilus nor a Porphyrellus. Fungal Systematics and Evolution 12: 31-45. doi: 10.3114/fuse.2023.12.02.
Collapse
Affiliation(s)
- R.E. Halling
- Department of Research & Conservation, Denver Botanic Gardens, 909 York St, Denver CO 80206 USA; Institute of Systematic Botany, New York Botanical Garden, 2900 Southern Blvd, Bronx, NY 10458, USA
| | - N.A. Fechner
- Queensland Herbarium, Mt Coot-tha Road, Toowong, Brisbane, QLD 4066, Australia
| | - G. Holmes
- Royal Botanic Gardens Victoria, South Yarra, VIC 3141, Australia
| | - N. Davoodian
- Royal Botanic Gardens Victoria, South Yarra, VIC 3141, Australia
| |
Collapse
|
25
|
Abad Z, Burgess T, Bourret T, Bensch K, Cacciola S, Scanu B, Mathew R, Kasiborski B, Srivastava S, Kageyama K, Bienapfl J, Verkleij G, Broders K, Schena L, Redford A. Phytophthora : taxonomic and phylogenetic revision of the genus. Stud Mycol 2023; 106:259-348. [PMID: 38298569 PMCID: PMC10825748 DOI: 10.3114/sim.2023.106.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/19/2023] [Indexed: 02/02/2024] Open
Abstract
Many members of the Oomycota genus Phytophthora cause economic and environmental impact diseases in nurseries, horticulture, forest, and natural ecosystems and many are of regulatory concern around the world. At present, there are 223 described species, including eight unculturable and three lost species. Twenty-eight species need to be redescribed or validated. A lectotype, epitype or neotype was selected for 20 species, and a redescription based on the morphological/molecular characters and phylogenetic placement is provided. In addition, the names of five species are validated: P. cajani, P. honggalleglyana (Synonym: P. hydropathica), P. megakarya, P. pisi and P. pseudopolonica for which morphology and phylogeny are given. Two species, P. ×multiformis and P. uniformis are presented as new combinations. Phytophthora palmivora is treated with a representative strain as both lecto- and epitypification are pending. This manuscript provides the updated multigene phylogeny and molecular toolbox with seven genes (ITS rDNA, β-tub, COI, EF1α, HSP90, L10, and YPT1) generated from the type specimens of 212 validly published, and culturable species (including nine hybrid taxa). The genome information of 23 types published to date is also included. Several aspects of the taxonomic revision and phylogenetic re-evaluation of the genus including species concepts, concept and position of the phylogenetic clades recognized within Phytophthora are discussed. Some of the contents of this manuscript, including factsheets for the 212 species, are associated with the "IDphy: molecular and morphological identification of Phytophthora based on the types" online resource (https://idtools.org/tools/1056/index.cfm). The first version of the IDphy online resource released to the public in September 2019 contained 161 species. In conjunction with this publication, we are updating the IDphy online resource to version 2 to include the 51 species recently described. The current status of the 223 described species is provided along with information on type specimens with details of the host (substrate), location, year of collection and publications. Additional information is provided regarding the ex-type culture(s) for the 212 valid culturable species and the diagnostic molecular toolbox with seven genes that includes the two metabarcoding genes (ITS and COI) that are important for Sanger sequencing and also very valuable Molecular Operational Taxonomic Units (MOTU) for second and third generation metabarcoding High-throughput sequencing (HTS) technologies. The IDphy online resource will continue to be updated annually to include new descriptions. This manuscript in conjunction with IDphy represents a monographic study and the most updated revision of the taxonomy and phylogeny of Phytophthora, widely considered one of the most important genera of plant pathogens. Taxonomic novelties: New species: Phytophthora cajani K.S. Amin, Baldev & F.J. Williams ex Abad, Phytophthora honggalleglyana Abad, Phytophthora megakarya Brasier & M.J. Griffin ex Abad, Phytophthora pisi Heyman ex Abad, Phytophthora pseudopolonica W.W. Li, W.X. Huai & W.X. Zhao ex Abad & Kasiborski; New combinations: Phytophthora ×multiformis (Brasier & S.A. Kirk) Abad, Phytophthora uniformis (Brasier & S.A. Kirk) Abad; Epitypifications (basionyms): Peronospora cactorum Lebert & Cohn, Pythiacystis citrophthora R.E. Sm. & E.H. Sm., Phytophthora colocasiae Racib., Phytophthora drechsleri Tucker, Phytophthora erythroseptica Pethybr., Phytophthora fragariae Hickman, Phytophthora hibernalis Carne, Phytophthora ilicis Buddenh. & Roy A. Young, Phytophthora inundata Brasier et al., Phytophthora megasperma Drechsler, Phytophthora mexicana Hotson & Hartge, Phytophthora nicotianae Breda de Haan, Phytophthora phaseoli Thaxt., Phytophthora porri Foister, Phytophthora primulae J.A. Toml., Phytophthora sojae Kaufm. & Gerd., Phytophthora vignae Purss, Pythiomorpha gonapodyides H.E. Petersen; Lectotypifications (basionym): Peronospora cactorum Lebert & Cohn, Pythiacystis citrophthora R.E. Sm. & E.H. Sm., Phytophthora colocasiae Racib., Phytophthora drechsleri Tucker, Phytophthora erythroseptica Pethybr., Phytophthora fragariae Hickman, Phytophthora hibernalis Carne, Phytophthora ilicis Buddenh. & Roy A. Young, Phytophthora megasperma Drechsler, Phytophthora mexicana Hotson & Hartge, Phytophthora nicotianae Breda de Haan, Phytophthora phaseoli Thaxt., Phytophthora porri Foister, Phytophthora primulae J.A. Toml., Phytophthora sojae Kaufm. & Gerd., Phytophthora vignae Purss, Pythiomorpha gonapodyides H.E. Petersen; Neotypifications (basionym): Phloeophthora syringae Kleb., Phytophthora meadii McRae Citation: Abad ZG, Burgess TI, Bourret T, Bensch K, Cacciola S, Scanu B, Mathew R, Kasiborski B, Srivastava S, Kageyama K, Bienapfl JC, Verkleij G, Broders K, Schena L, Redford AJ (2023). Phytophthora: taxonomic and phylogenetic revision of the genus. Studies in Mycology 106: 259-348. doi: 10.3114/sim.2023.106.05.
Collapse
Affiliation(s)
- Z.G. Abad
- USDA APHIS PPQ S&T Plant Pathogen Confirmatory Diagnostics Laboratory, USA;
| | - T.I. Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia;
| | - T. Bourret
- Department of Plant Pathology, University of California, Davis, CA, USA,
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT Utrecht, Netherlands,
| | - S.O. Cacciola
- Department of Agricultural, Food and Environment, University of Catania, Italy;
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Italy;
| | - R. Mathew
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - B. Kasiborski
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - S. Srivastava
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - K. Kageyama
- River Basin Research Center, Gifu University, Japan,
| | - J.C. Bienapfl
- USDA APHIS PPQ S&T Plant Pathogen Confirmatory Diagnostics Laboratory, USA;
| | - G. Verkleij
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT Utrecht, Netherlands,
| | - K. Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, 61604, USA;
| | - L. Schena
- Dipartimento di Agraria, Mediterranean University of Reggio Calabria, Italy,
| | - A.J. Redford
- USDA APHIS PPQ S&T Identification Technology Program, USA
| |
Collapse
|
26
|
Preedanon S, Suetrong S, Srihom C, Somrithipol S, Kobmoo N, Saengkaewsuk S, Srikitikulchai P, Klaysuban A, Nuankaew S, Chuaseeharonnachai C, Chainuwong B, Muangsong C, Zhang Z, Cai L, Boonyuen N. Eight novel cave fungi in Thailand's Satun Geopark. Fungal Syst Evol 2023; 12:1-30. [PMID: 38455950 PMCID: PMC10915585 DOI: 10.3114/fuse.2023.12.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 03/09/2024] Open
Abstract
Karst caves are unique oligotrophic ecosystems characterised by the scarcity of organic litter, darkness, low to moderate temperatures, and high humidity, supporting diverse fungal communities. Despite their importance, little is known about the fungi in karst caves in Thailand. In 2019, we explored the culturable mycobiota associated with three selected types of substrates (air, soil/sediment and organic litter samples) from two karst caves, the Le Stegodon and Phu Pha Phet Caves, in the Satun UNESCO Global Geopark in southern Thailand. Based on morphological characters and multilocus phylogenetic analyses, eight new species (Actinomortierella caverna, Hypoxylon phuphaphetense, Leptobacillium latisporum, Malbranchea phuphaphetensis, Scedosporium satunense, Sesquicillium cavernum, Thelonectria satunensis and Umbelopsis satunensis) were described, illustrated, and compared to closely related species. These new fungal taxa form independent lineages distinct from other previously described species and classified into eight different families across six orders and two phyla (Ascomycota and Mucoromycota). This paper provides additional evidence that the karst caves located within the Satun UNESCO Global Geopark, situated in the southern region of Thailand, harbour a diverse range of newly discovered species. Citation: Preedanon S, Suetrong S, Srihom C, Somrithipol S, Kobmoo N, Saengkaewsuk S, Srikitikulchai P, Klaysuban A, Nuankaew S, Chuaseeharonnachai C, Chainuwong B, Muangsong C, Zhang ZF, Cai L, Boonyuen N (2023). Eight novel cave fungi in Thailand's Satun Geopark. Fungal Systematics and Evolution 12: 1-30. doi: 10.3114/fuse.2023.12.01.
Collapse
Affiliation(s)
- S. Preedanon
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Suetrong
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - C. Srihom
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Somrithipol
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - N. Kobmoo
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Saengkaewsuk
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - P. Srikitikulchai
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - A. Klaysuban
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Nuankaew
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - C. Chuaseeharonnachai
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - B. Chainuwong
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - C. Muangsong
- Innovation for Social and Environmental Management, Mahidol University (MU), Amnatcharoen Campus, Amnatcharoen 37000, Thailand
| | - Z.F. Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 51145, China
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - N. Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
27
|
Xie ML, Feng N, Lin WF, Su WY, Li Y, Yang ZQ. Morphological and Phylogenetic Characterization of Three Novel Thaxterogaster ( Cortinariaceae) Species from China with an Emphasis on Their Subtropical Distribution. J Fungi (Basel) 2023; 9:1058. [PMID: 37998864 PMCID: PMC10671986 DOI: 10.3390/jof9111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Three new phlegmaciod species of Thaxterogaster, T. borealicremeolinus, T. rufopurpureus, and T. sinopurpurascens spp. nov., from subtropical China were described based on their morphological characteristics and molecular data. Thaxterogaster borealicremeolinus belongs to the sect. Cremeolinae and differs from the other species in this section in its larger basidiospores and its habitat in the Northern Hemisphere associated with Quercus sp. trees. Thaxterogaster rufopurpureus and T. sinopurpurascens belong to sect. Purpurascentes, in which T. rufopurpureus is characterized by a pileus with a reddish-brown coloration when mature and a clavate stipe, while T. sinopurpurascens is characterized by a violet basidiomata, except for a greyish orange to brown pileus, the distinctly marginate bulb of its stipe, and its distribution in subtropical China. The phylogenetic analyses were performed based on nrITS, and detailed descriptions of the new species are provided herein.
Collapse
Affiliation(s)
- Meng-Le Xie
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (M.-L.X.); (N.F.)
| | - Na Feng
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (M.-L.X.); (N.F.)
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Science, Zhejiang University, Hangzhou 310058, China;
| | - Wen-Ying Su
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China;
| | - Yi Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (M.-L.X.); (N.F.)
| | - Zhen-Quan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (M.-L.X.); (N.F.)
| |
Collapse
|
28
|
Zhu HY, Wei YH, Guo LC, Wei XY, Li JN, Zhang RP, Liu XZ, Bai FY. Vishniacozyma pseudocarnescens sp. nov., a new anamorphic tremellomycetous yeast species. Int J Syst Evol Microbiol 2023; 73. [PMID: 37847534 DOI: 10.1099/ijsem.0.006076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Three strains belonging to the basidiomycetous yeast genus Vishniacozyma were isolated from marine water samples collected from intertidal zones in Liaoning province, northeast China. Phylogenetic analyses based on the sequences of the small subunit (SSU) ribosomal DNA (rDNA), the D1/D2 domain of the large subunit (LSU) ribosomal DNA (rDNA), the internal transcribed spacer region (ITS), the two subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1), and the mitochondrial gene cytochrome b (CYTB) showed that these strains together with 20 strains from various geographic and ecological origins from other regions of the world represent a novel species in the genus Vishniacozyma. We propose the name Vishniacozyma pseudocarnescens sp. nov. (holotype CGMCC 2.6457) for the new species, which differs phenotypically from its close relatives V. carnescens, V. tephrensis, and V. victoriae by its ability to grow at 30 °C and on 50 % (w/v) glucose-yeast extract agar.
Collapse
Affiliation(s)
- Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liang-Chen Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xu-Yang Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Jun-Ning Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin-Zhan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
29
|
Ansari L, Asgari B, Zare R, Zamanizadeh HR. Penicillium rhizophilum, a novel species in the section Exilicaulis isolated from the rhizosphere of sugarcane in Southwest Iran. Int J Syst Evol Microbiol 2023; 73. [PMID: 37676702 DOI: 10.1099/ijsem.0.006028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
During a survey of species diversity of Penicillium and Talaromyces in sugarcane (Saccharum officinarum) rhizosphere in the Khuzestan province of Iran [1], 195 strains were examined, from which 187 belonged to Penicillium (11 species) and eight to Talaromyces (one species). In the present study, three strains of Penicillium belonging to section Exilicaulis series Restricta, identified as P. restrictum by Ansari et al. [1], were subjected to a phylogenetic study. The multilocus phylogeny of partial β-tubulin, calmodulin and RNA polymerase II second largest subunit genes enabled the recognition of one new phylogenetic species that is here formally described as Penicillium rhizophilum sp. nov. This species is phylogenetically distinct in series Restricta, but it does not show significant morphological differences from other species previously classified in the series. Therefore, we here placed bias on the phylogenetic species concept. The holotype of Penicillium rhizophilum sp. nov. is IRAN 18169F and the ex-type culture is LA30T (=IRAN 4042CT=CBS 149737T).
Collapse
Affiliation(s)
- Laleh Ansari
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bita Asgari
- Department of Botany, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Rasoul Zare
- Department of Botany, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Hamid Reza Zamanizadeh
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Kim JS, Lee M, Ki DW, Kwon SW, Ko YJ, Kim JS, Yun BS, Kim SJ. Production of a New Biosurfactant by a New Yeast Species Isolated from Prunus mume Sieb. et Zucc. J Microbiol Biotechnol 2023; 33:1023-1029. [PMID: 37280777 PMCID: PMC10468678 DOI: 10.4014/jmb.2205.05052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/21/2023] [Accepted: 04/21/2023] [Indexed: 06/08/2023]
Abstract
Biosurfactants reduce surface and interfacial tension due to their amphiphilic properties and are an eco-friendly alternative for chemical surfactants. In this study, a new yeast strain JAF-11 that produces a biosurfactant was selected using drop collapse method, and the properties of the extracts were investigated. The nucleotide sequences of the strain were compared with closely related strains and identified based on the D1/D2 domain of the large subunit ribosomal DNA (LSU) and internal transcribed spacer (ITS) regions. Neodothiora populina CPC 39399T, the closest species with strain JAF-11, showed a sequence similarity of 97.75% for LSU and 94.27% for ITS, respectively. The result suggests that the strain JAF-11 represents a distinct species that cannot be assigned to any existing genus or species in the family Dothideaceae. Strain JAF-11 produced a biosurfactant reducing the surface tension of water from 72 mN/m to 34.5 mN/m on the sixth day of culture and the result of measuring the critical micelle concentration (CMC) by extracting the crude biosurfactant was found to be 24 mg/l. The molecular weight 502 of the purified biosurfactant was confirmed by measuring the fast atom bombardment mass spectrum. The chemical structure was analyzed by measuring 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMRs of the compound. The molecular formula was C26H46O9, and it was composed of one octanoyl group and two hexanoyl groups to myo-inositol moiety. The new biosurfactant is the first report of a compound produced by a new yeast strain, JAF-11.
Collapse
Affiliation(s)
- Jeong-Seon Kim
- Agricultural Microbiology Division. National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Division of Biotechnology and Advanced institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Miran Lee
- Agricultural Microbiology Division. National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Dae-Won Ki
- Division of Biotechnology and Advanced institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division. National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Young-Joon Ko
- Agricultural Microbiology Division. National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jong-Shik Kim
- Marine industry research institute for east sea rim, Uljin-gun, Geongsangbuk-do 36315, Republic of Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Soo-Jin Kim
- Agricultural Microbiology Division. National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
31
|
Li X, Han SL, Zhang YY, Cai L, Zhao P. Heteroverticillium phytelephatis gen. et sp. nov. intercepted from nuts of Phytelephas macrocarpa, with an updated phylogenetic assessment of Nectriaceae. Mycology 2023; 14:155-174. [PMID: 37583458 PMCID: PMC10424595 DOI: 10.1080/21501203.2023.2210603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/01/2023] [Indexed: 08/17/2023] Open
Abstract
An entry postal parcel with mature nuts of Phytelephas macrocarpa from Togo was inspected at Dalian Customs (China) in December 2021, and four strains were isolated from symptomatic tissues of the nuts. Based on morphological observations and molecular phylogenetic analyses, above strains were identified as a new species which is mainly characterised by the verticillately branching conidiophores. Based on multi-locus phylogenetic analyses, this new species forms a monophyletic clade closely related to Corallomycetella, Paracremonium and Xenoacremonium but could not be accommodated in any known genera of Nectriaceae. Thus, a new genus Heteroverticillium is established to accommodate this new species (H. phytelephatis). To our knowledge, this is the first time that Chinese customs have intercepted a new fungal genus. In addition, we provided an updated backbone tree for the generic relationships in Nectriaceae, which may largely assist future identification of nectriaceous fungi to genus level in quarantine inspections. Based on our analysis, Varicosporellopsis is likely a late synonym of Paracremonium.
Collapse
Affiliation(s)
- Xin Li
- Technology Center of Dalian Customs District, Dalian, People’s Republic of China
| | - Shi-Ling Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yin-Yin Zhang
- Technology Center of Dalian Customs District, Dalian, People’s Republic of China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Peng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
32
|
Crous PW, Osieck ER, Shivas RG, Tan YP, Bishop-Hurley SL, Esteve-Raventós F, Larsson E, Luangsa-Ard JJ, Pancorbo F, Balashov S, Baseia IG, Boekhout T, Chandranayaka S, Cowan DA, Cruz RHSF, Czachura P, De la Peña-Lastra S, Dovana F, Drury B, Fell J, Flakus A, Fotedar R, Jurjević Ž, Kolecka A, Mack J, Maggs-Kölling G, Mahadevakumar S, Mateos A, Mongkolsamrit S, Noisripoom W, Plaza M, Overy DP, Piątek M, Sandoval-Denis M, Vauras J, Wingfield MJ, Abell SE, Ahmadpour A, Akulov A, Alavi F, Alavi Z, Altés A, Alvarado P, Anand G, Ashtekar N, Assyov B, Banc-Prandi G, Barbosa KD, Barreto GG, Bellanger JM, Bezerra JL, Bhat DJ, Bilański P, Bose T, Bozok F, Chaves J, Costa-Rezende DH, Danteswari C, Darmostuk V, Delgado G, Denman S, Eichmeier A, Etayo J, Eyssartier G, Faulwetter S, Ganga KGG, Ghosta Y, Goh J, Góis JS, Gramaje D, Granit L, Groenewald M, Gulden G, Gusmão LFP, Hammerbacher A, Heidarian Z, Hywel-Jones N, Jankowiak R, Kaliyaperumal M, Kaygusuz O, Kezo K, Khonsanit A, Kumar S, Kuo CH, Læssøe T, Latha KPD, Loizides M, Luo SM, Maciá-Vicente JG, Manimohan P, Marbach PAS, Marinho P, Marney TS, Marques G, Martín MP, Miller AN, Mondello F, Moreno G, Mufeeda KT, Mun HY, et alCrous PW, Osieck ER, Shivas RG, Tan YP, Bishop-Hurley SL, Esteve-Raventós F, Larsson E, Luangsa-Ard JJ, Pancorbo F, Balashov S, Baseia IG, Boekhout T, Chandranayaka S, Cowan DA, Cruz RHSF, Czachura P, De la Peña-Lastra S, Dovana F, Drury B, Fell J, Flakus A, Fotedar R, Jurjević Ž, Kolecka A, Mack J, Maggs-Kölling G, Mahadevakumar S, Mateos A, Mongkolsamrit S, Noisripoom W, Plaza M, Overy DP, Piątek M, Sandoval-Denis M, Vauras J, Wingfield MJ, Abell SE, Ahmadpour A, Akulov A, Alavi F, Alavi Z, Altés A, Alvarado P, Anand G, Ashtekar N, Assyov B, Banc-Prandi G, Barbosa KD, Barreto GG, Bellanger JM, Bezerra JL, Bhat DJ, Bilański P, Bose T, Bozok F, Chaves J, Costa-Rezende DH, Danteswari C, Darmostuk V, Delgado G, Denman S, Eichmeier A, Etayo J, Eyssartier G, Faulwetter S, Ganga KGG, Ghosta Y, Goh J, Góis JS, Gramaje D, Granit L, Groenewald M, Gulden G, Gusmão LFP, Hammerbacher A, Heidarian Z, Hywel-Jones N, Jankowiak R, Kaliyaperumal M, Kaygusuz O, Kezo K, Khonsanit A, Kumar S, Kuo CH, Læssøe T, Latha KPD, Loizides M, Luo SM, Maciá-Vicente JG, Manimohan P, Marbach PAS, Marinho P, Marney TS, Marques G, Martín MP, Miller AN, Mondello F, Moreno G, Mufeeda KT, Mun HY, Nau T, Nkomo T, Okrasińska A, Oliveira JPAF, Oliveira RL, Ortiz DA, Pawłowska J, Pérez-De-Gregorio MÀ, Podile AR, Portugal A, Privitera N, Rajeshkumar KC, Rauf I, Rian B, Rigueiro-Rodríguez A, Rivas-Torres GF, Rodriguez-Flakus P, Romero-Gordillo M, Saar I, Saba M, Santos CD, Sarma PVSRN, Siquier JL, Sleiman S, Spetik M, Sridhar KR, Stryjak-Bogacka M, Szczepańska K, Taşkın H, Tennakoon DS, Thanakitpipattana D, Trovão J, Türkekul I, van Iperen AL, van 't Hof P, Vasquez G, Visagie CM, Wingfield BD, Wong PTW, Yang WX, Yarar M, Yarden O, Yilmaz N, Zhang N, Zhu YN, Groenewald JZ. Fungal Planet description sheets: 1478-1549. PERSOONIA 2023; 50:158-310. [PMID: 38567263 PMCID: PMC10983837 DOI: 10.3767/persoonia.2023.50.05] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/10/2023] [Indexed: 04/04/2024]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Australia, Aschersonia mackerrasiae on whitefly, Cladosporium corticola on bark of Melaleuca quinquenervia, Penicillium nudgee from soil under Melaleuca quinquenervia, Pseudocercospora blackwoodiae on leaf spot of Persoonia falcata, and Pseudocercospora dalyelliae on leaf spot of Senna alata. Bolivia, Aspicilia lutzoniana on fully submersed siliceous schist in high-mountain streams, and Niesslia parviseta on the lower part and apothecial discs of Erioderma barbellatum on a twig. Brazil, Cyathus bonsai on decaying wood, Geastrum albofibrosum from moist soil with leaf litter, Laetiporus pratigiensis on a trunk of a living unknown hardwood tree species, and Scytalidium synnematicum on dead twigs of unidentified plant. Bulgaria, Amanita abscondita on sandy soil in a plantation of Quercus suber. Canada, Penicillium acericola on dead bark of Acer saccharum, and Penicillium corticola on dead bark of Acer saccharum. China, Colletotrichum qingyuanense on fruit lesion of Capsicum annuum. Denmark, Helminthosphaeria leptospora on corticioid Neohypochnicium cremicolor. Ecuador (Galapagos), Phaeosphaeria scalesiae on Scalesia sp. Finland, Inocybe jacobssonii on calcareous soils in dry forests and park habitats. France, Cortinarius rufomyrrheus on sandy soil under Pinus pinaster, and Periconia neominutissima on leaves of Poaceae. India, Coprinopsis fragilis on decaying bark of logs, Filoboletus keralensis on unidentified woody substrate, Penicillium sankaranii from soil, Physisporinus tamilnaduensis on the trunk of Azadirachta indica, and Poronia nagaraholensis on elephant dung. Iran, Neosetophoma fici on infected leaves of Ficus elastica. Israel, Cnidariophoma eilatica (incl. Cnidariophoma gen. nov.) from Stylophora pistillata. Italy, Lyophyllum obscurum on acidic soil. Namibia, Aureobasidium faidherbiae on dead leaf of Faidherbia albida, and Aureobasidium welwitschiae on dead leaves of Welwitschia mirabilis. Netherlands, Gaeumannomycella caricigena on dead culms of Carex elongata, Houtenomyces caricicola (incl. Houtenomyces gen. nov.) on culms of Carex disticha, Neodacampia ulmea (incl. Neodacampia gen. nov.) on branch of Ulmus laevis, Niesslia phragmiticola on dead standing culms of Phragmites australis, Pseudopyricularia caricicola on culms of Carex disticha, and Rhodoveronaea nieuwwulvenica on dead bamboo sticks. Norway, Arrhenia similis half-buried and moss-covered pieces of rotting wood in grass-grown path. Pakistan, Mallocybe ahmadii on soil. Poland, Beskidomyces laricis (incl. Beskidomyces gen. nov.) from resin of Larix decidua ssp. polonica, Lapidomyces epipinicola from sooty mould community on Pinus nigra, and Leptographium granulatum from a gallery of Dendroctonus micans on Picea abies. Portugal, Geoglossum azoricum on mossy areas of laurel forest areas planted with Cryptomeria japonica, and Lunasporangiospora lusitanica from a biofilm covering a biodeteriorated limestone wall. Qatar, Alternaria halotolerans from hypersaline sea water, and Alternaria qatarensis from water sample collected from hypersaline lagoon. South Africa, Alfaria thamnochorti on culm of Thamnochortus fraternus, Knufia aloeicola on Aloe gariepensis, Muriseptatomyces restionacearum (incl. Muriseptatomyces gen. nov.) on culms of Restionaceae, Neocladosporium arctotis on nest of cases of bag worm moths (Lepidoptera, Psychidae) on Arctotis auriculata, Neodevriesia scadoxi on leaves of Scadoxus puniceus, Paraloratospora schoenoplecti on stems of Schoenoplectus lacustris, Tulasnella epidendrea from the roots of Epidendrum × obrienianum, and Xenoidriella cinnamomi (incl. Xenoidriella gen. nov.) on leaf of Cinnamomum camphora. South Korea, Lemonniera fraxinea on decaying leaves of Fraxinus sp. from pond. Spain, Atheniella lauri on the bark of fallen trees of Laurus nobilis, Halocryptovalsa endophytica from surface-sterilised, asymptomatic roots of Salicornia patula, Inocybe amygdaliolens on soil in mixed forest, Inocybe pityusarum on calcareous soil in mixed forest, Inocybe roseobulbipes on acidic soils, Neonectria borealis from roots of Vitis berlandieri × Vitis rupestris, Sympoventuria eucalyptorum on leaves of Eucalyptus sp., and Tuber conchae from soil. Sweden, Inocybe bidumensis on calcareous soil. Thailand, Cordyceps sandindaengensis on Lepidoptera pupa, buried in soil, Ophiocordyceps kuchinaraiensis on Coleoptera larva, buried in soil, and Samsoniella winandae on Lepidoptera pupa, buried in soil. Taiwan region (China), Neophaeosphaeria livistonae on dead leaf of Livistona rotundifolia. Türkiye, Melanogaster anatolicus on clay loamy soils. UK, Basingstokeomyces allii (incl. Basingstokeomyces gen. nov.) on leaves of Allium schoenoprasum. Ukraine, Xenosphaeropsis corni on recently dead stem of Cornus alba. USA, Nothotrichosporon aquaticum (incl. Nothotrichosporon gen. nov.) from water, and Periconia philadelphiana from swab of coil surface. Morphological and culture characteristics for these new taxa are supported by DNA barcodes. Citation: Crous PW, Osieck ER, Shivas RG, et al. 2023. Fungal Planet description sheets: 1478-1549. Persoonia 50: 158- 310. https://doi.org/10.3767/persoonia.2023.50.05.
Collapse
Affiliation(s)
- P W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - E R Osieck
- Jkvr. C.M. van Asch van Wijcklaan 19, 3972 ST Driebergen-Rijsenburg, Netherlands
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Y P Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - S L Bishop-Hurley
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - F Esteve-Raventós
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica). 28805 Alcalá de Henares, Madrid, Spain
| | - E Larsson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 461, SE40530 Göteborg, Sweden
| | - J J Luangsa-Ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - F Pancorbo
- Sociedad Micológica de Madrid, Real Jardín Botánico, C/ Claudio Moyano 1, 28014 Madrid, Spain
| | - S Balashov
- EMSLAnalytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - I G Baseia
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - T Boekhout
- College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | - S Chandranayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore - 570006, Karnataka, India
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - R H S F Cruz
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, 47810-047, Brazil
| | - P Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | | | - F Dovana
- Via Quargnento, 17, 15029 Solero, Italy
| | - B Drury
- Queensland College of Teachers, Mount Alvernia College, Kedron 4031, Queensland, Australia
| | - J Fell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Key Biscayne, Florida, USA
| | - A Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - R Fotedar
- Department of Genetic Engineering, Biotechnology Centre, Ministry of Environment, Doha, State of Qatar
| | - Ž Jurjević
- EMSLAnalytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - A Kolecka
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508AD Utrecht, The Netherlands
| | - J Mack
- Ottawa Research & Development Centre, Agriculture &AgriFood Canada, 960 Carling Ave., Ottawa, Ontario, Canada, K1A 0C6
| | - G Maggs-Kölling
- Gobabeb Namib Research Institute, Walvis Bay, Namibia
- Unit for Environmental Sciences and Management, North-West University, P. Bag X1290, Potchefstroom, 2520, South Africa
| | - S Mahadevakumar
- Forest Pathology Department, Forest Health Division, KSCSTE-Kerala Forest Research Institute, Peechi - 680653, Thrissur, Kerala, India
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - A Mateos
- Sociedad Micológica Extremeña, C/ Sagitario 14, 10001 Cáceres, Spain
| | - S Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - W Noisripoom
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - M Plaza
- C/ La Angostura, 20, 11370 Los Barrios, Cádiz, Spain
| | - D P Overy
- Ottawa Research & Development Centre, Agriculture &AgriFood Canada, 960 Carling Ave., Ottawa, Ontario, Canada, K1A 0C6
| | - M Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508AD Utrecht, The Netherlands
| | - J Vauras
- Biological Collections of Åbo Akademi University, Biodiversity Unit, Herbarium, FI-20014 University of Turku, Finland
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - S E Abell
- Australian Tropical Herbarium, James Cook University, Smithfield 4878, Queensland, Australia
| | - A Ahmadpour
- Higher Education Centre of Shahid Bakeri, Urmia University, Miyandoab, Iran
| | - A Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
| | - F Alavi
- Higher Education Centre of Shahid Bakeri, Urmia University, Miyandoab, Iran
| | - Z Alavi
- Higher Education Centre of Shahid Bakeri, Urmia University, Miyandoab, Iran
| | - A Altés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica). 28805 Alcalá de Henares, Madrid, Spain
| | - P Alvarado
- ALVALAB, Dr. Fernando Bongera st., Severo Ochoa bldg. S1.04, 33006 Oviedo, Spain
| | - G Anand
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) group, MACS Agharkar Research Institute, GG Agharkar Road, Pune, Maharashtra State 411004, India
| | - N Ashtekar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) group, MACS Agharkar Research Institute, GG Agharkar Road, Pune, Maharashtra State 411004, India
| | - B Assyov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria
| | - G Banc-Prandi
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - K D Barbosa
- Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, 59072-970, Natal, Rio Grande do Norte, Brazil
| | - G G Barreto
- Department of Biology, State University of Feira de Santana, Transnordestina s/n, Novo Horizonte, 44036-900, Feira de Santana, Brazil
| | - J-M Bellanger
- CEFE, CNRS, Université de Montpellier, EPHE, IRD, INSERM, Campus CNRS, 1919 Route de Mende, F-34293 Montpellier, France
| | - J L Bezerra
- Federal University of Pernambuco, Pernambuco, Brazil
| | - D J Bhat
- College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | - P Bilański
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - T Bose
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F Bozok
- Department of Biology, Faculty ofArts and Science, Osmaniye KorkutAta University, 80000 Osmaniye, Türkiye
| | - J Chaves
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Diego de Robles s/n, 170901, Quito, Ecuador
- San Francisco State University, Department of Biology, 1600 Holloway Av, San Francisco CA 94132, USA
| | - D H Costa-Rezende
- Department of Biology, State University of Feira de Santana, Transnordestina s/n, Novo Horizonte, 44036-900, Feira de Santana, Brazil
| | - C Danteswari
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - V Darmostuk
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - G Delgado
- Eurofins Built Environment, 6110 W. 34th St, Houston, TX 77092, USA
| | - S Denman
- Forest Research, Alice Holt Lodge, Farnham, Surrey, UK
| | - A Eichmeier
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - J Etayo
- Navarro Villoslada 16, 3º cha., E-31003 Pamplona, Navarra, Spain
| | - G Eyssartier
- Institut de systématique, évolution, biodiversité (UMR 7205-MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles), 45 rue Buffon, F-75005 Paris, France
| | - S Faulwetter
- Department of Geology, University of Patras, 26504 Rio Patras, Greece
| | - K G G Ganga
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - Y Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - J Goh
- Fungal Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources, Korea
| | - J S Góis
- Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, 59072-970, Natal, Rio Grande do Norte, Brazil
| | - D Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, 26007 Logroño, Spain
| | - L Granit
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel & Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - M Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508AD Utrecht, The Netherlands
| | - G Gulden
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway
| | - L F P Gusmão
- Department of Biology, State University of Feira de Santana, Transnordestina s/n, Novo Horizonte, 44036-900, Feira de Santana, Brazil
| | - A Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| | - Z Heidarian
- Higher Education Centre of Shahid Bakeri, Urmia University, Miyandoab, Iran
| | - N Hywel-Jones
- Zhejiang BioAsia Institute of Life Sciences, Pinghu 314200, Zhejiang, People's Republic of China
| | - R Jankowiak
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - M Kaliyaperumal
- CAS in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - O Kaygusuz
- Department of Plant and Animal Production, Atabey Vocational School, Isparta University of Applied Sciences, 32670 Isparta, Türkiye
| | - K Kezo
- CAS in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - A Khonsanit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - S Kumar
- Forest Pathology Department, Forest Health Division, KSCSTE-Kerala Forest Research Institute, Peechi - 680653, Thrissur, Kerala, India
| | - C H Kuo
- Department of Plant Medicine, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - T Læssøe
- Globe Institute/Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - K P D Latha
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | | | - S M Luo
- University of Sydney, Plant Breeding Institute, 107 Cobbitty Rd, Cobbitty, New South Wales, Australia
| | - J G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Department of Microbial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - P Manimohan
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - P A S Marbach
- Recôncavo da Bahia Federal University, Bahia, Brazil
| | - P Marinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - T S Marney
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - G Marques
- CITAB-University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - M P Martín
- Departamento de Micología, Real Jardín Botánico RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - A N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - F Mondello
- Via B. da Neocastro, 26, 98123 Messina, Italy
| | - G Moreno
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica). 28805 Alcalá de Henares, Madrid, Spain
| | - K T Mufeeda
- Forest Pathology Department, Forest Health Division, KSCSTE-Kerala Forest Research Institute, Peechi - 680653, Thrissur, Kerala, India
| | - H Y Mun
- Fungal Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources, Korea
| | - T Nau
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - T Nkomo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - R L Oliveira
- Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, 59072-970, Natal, Rio Grande do Norte, Brazil
| | - D A Ortiz
- Universidad San Francisco de Quito USFQ, Galapagos Science Center GSC, San Cristóbal 200101, Galápagos, Ecuador
| | - J Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - A R Podile
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - A Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
- Fitolab - Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - N Privitera
- Associazione Micologica Bresadola Gruppo di Catania, Via Macallè 18, I-95125 Catania, Italy
| | - K C Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) group, MACS Agharkar Research Institute, GG Agharkar Road, Pune, Maharashtra State 411004, India
| | - I Rauf
- Department of Plant Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - B Rian
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway
| | | | - G F Rivas-Torres
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Diego de Robles s/n, 170901, Quito, Ecuador
- Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Universidad San Francisco de Quito USFQ, Galapagos Science Center GSC, San Cristóbal 200101, Galápagos, Ecuador
| | - P Rodriguez-Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | | | - I Saar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi Street 2, 50409 Tartu, Estonia
| | - M Saba
- Department of Plant Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - C D Santos
- Federal Institute of the Sertão Pernambucano, Pernambuco, Brazil
| | - P V S R N Sarma
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - J L Siquier
- Interdisciplinary Ecology Group, University of the Balearic Islands, crtra. to Valldemossa km 7.5, 07122 Mallorca, Spain
| | - S Sleiman
- Project Manager, Council of Environment, Akkar, North Lebanon
| | - M Spetik
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - K R Sridhar
- Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore - 574199, Karnataka, India
| | - M Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - K Szczepańska
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, PL-50-363 Wrocław, Poland
| | - H Taşkın
- Department of Horticulture, Faculty of Agriculture, Cukurova University, 01330 Adana, Türkiye
| | - D S Tennakoon
- Faculty of Science, Department of Biology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - D Thanakitpipattana
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - J Trovão
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| | - I Türkekul
- Department of Biology, Faculty of Science and Arts, Gaziosmanpaşa University, 60010 Tokat, Türkiye
| | - A L van Iperen
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508AD Utrecht, The Netherlands
| | - P van 't Hof
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Diego de Robles s/n, 170901, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Galapagos Science Center GSC, San Cristóbal 200101, Galápagos, Ecuador
| | - G Vasquez
- Department of Biology, Geology and Environmental Science, University of Catania, Via A. Longo 19, I-95125 Catania, Italy
| | - C M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P T W Wong
- University of Sydney, Plant Breeding Institute, 107 Cobbitty Rd, Cobbitty, New South Wales, Australia
| | - W X Yang
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei Province, China
| | - M Yarar
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, 01330 Adana, Türkiye
| | - O Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel & Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - N Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - N Zhang
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei Province, China
| | - Y N Zhu
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei Province, China
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508AD Utrecht, The Netherlands
| |
Collapse
|
33
|
Crous P, Akulov A, Balashov S, Boers J, Braun U, Castillo J, Delgado M, Denman S, Erhard A, Gusella G, Jurjević Ž, Kruse J, Malloch D, Osieck E, Polizzi G, Schumacher R, Slootweg E, Starink-Willemse M, van Iperen A, Verkley G, Groenewald J. New and Interesting Fungi. 6. Fungal Syst Evol 2023; 11:109-156. [PMID: 38545457 PMCID: PMC10966675 DOI: 10.3114/fuse.2023.11.09] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 11/09/2024] Open
Abstract
Three new genera, six new species, three combinations, six epitypes, and 25 interesting new host and / or geographical records are introduced in this study. New genera: Neoleptodontidium (based on Neoleptodontidium aquaticum), and Nothoramularia (based on Nothoramularia ragnhildianicola). New species: Acremonium aquaticum (from cooling pad water, USA, Cladophialophora laricicola (on dead wood of Larix sp., Netherlands), Cyphellophora neerlandica (on lichen on brick wall, Netherlands), Geonectria muralis (on moss growing on a wall, Netherlands), Harposporium illinoisense (from rockwool, USA), and Neoleptodontidium aquaticum (from hydroponic water, USA). New combinations: Cyphellophora deltoidea (based on Anthopsis deltoidea), Neoleptodontidium aciculare (based on Leptodontidium aciculare), and Nothoramularia ragnhildianicola (based on Ramularia ragnhildianicola). Epitypes: Cephaliophora tropica (from water, USA), Miricatena prunicola (on leaves of Prunus serotina, Netherlands), Nothoramularia ragnhildianicola (on Ragnhildiana ferruginea, parasitic on Artemisia vulgaris, Germany), Phyllosticta multicorniculata (on needles of Abietis balsamea, Canada), Thyronectria caraganae (on twigs of Caragana arborescens, Ukraine), and Trichosphaeria pilosa (on decayed Salix branch, Netherlands). Furthermore, the higher order phylogeny of three genera regarded as incertae sedis is resolved, namely Cephaliophora (Ascodesmidaceae, Pezizales), Miricatena (Helotiales, Leotiomycetes), and Trichosphaeria (Trichosphaeriaceae, Trichosphaeriales), with Trichosphaeriaceae being an older name for Plectosphaerellaceae. Citation: Crous PW, Akulov A, Balashov S, Boers J, Braun U, Castillo J, Delgado MA, Denman S, Erhard A, Gusella G, Jurjević Ž, Kruse J, Malloch DW, Osieck ER, Polizzi G, Schumacher RK, Slootweg E, Starink-Willemse M, van Iperen AL, Verkley GJM, Groenewald JZ (2023). New and Interesting Fungi. 6. Fungal Systematics and Evolution 11: 109-156. doi: 10.3114/fuse.2023.11.09.
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
| | - S. Balashov
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - J. Boers
- Poststraat 50-104, 6701 AZ, Wageningen, Netherlands
| | - U. Braun
- Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany
| | - J. Castillo
- España, Leonardo da Vinci 19, 43850 Cambrils, Spain
| | | | - S. Denman
- Forest Research, Alice Holt Lodge, Farnham, Surrey, UK
| | - A. Erhard
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - G. Gusella
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, via S. Sofia 100, 95123 Catania, Italy
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - J. Kruse
- Pfalzmuseum für Naturkunde – POLLICHIA-Museum, Hermann-Schäfer-Str. 17, 67098 Bad Dürkheim, Germany
| | - D.W. Malloch
- New Brunswick Museum, 277 Douglas Ave., Saint John, New Brunswick, Canada E2K 1E5
| | - E.R. Osieck
- Jkvr. C.M. van Asch van Wijcklaan 19, 3972 ST Driebergen-Rijsenburg, Netherlands
| | - G. Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, via S. Sofia 100, 95123 Catania, Italy
| | | | - E. Slootweg
- Diedenweg 111-II, 6706 CL, Wageningen, Netherlands
| | - M. Starink-Willemse
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - A.L. van Iperen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - G.J.M. Verkley
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
34
|
Hou L, Giraldo A, Groenewald J, Rämä T, Summerbell R, Huang G, Cai L, Crous P. Redisposition of acremonium-like fungi in Hypocreales. Stud Mycol 2023; 105:23-203. [PMID: 38895703 PMCID: PMC11182610 DOI: 10.3114/sim.2023.105.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/16/2023] [Indexed: 06/21/2024] Open
Abstract
Acremonium is acknowledged as a highly ubiquitous genus including saprobic, parasitic, or endophytic fungi that inhabit a variety of environments. Species of this genus are extensively exploited in industrial, commercial, pharmaceutical, and biocontrol applications, and proved to be a rich source of novel and bioactive secondary metabolites. Acremonium has been recognised as a taxonomically difficult group of ascomycetes, due to the reduced and high plasticity of morphological characters, wide ecological distribution and substrate range. Recent advances in molecular phylogenies, revealed that Acremonium is highly polyphyletic and members of Acremonium s. lat. belong to at least three distinct orders of Sordariomycetes, of which numerous orders, families and genera with acremonium-like morphs remain undefined. To infer the phylogenetic relationships and establish a natural classification for acremonium-like taxa, systematic analyses were conducted based on a large number of cultures with a global distribution and varied substrates. A total of 633 cultures with acremonium-like morphology, including 261 ex-type cultures from 89 countries and a variety of substrates including soil, plants, fungi, humans, insects, air, and water were examined. An overview phylogenetic tree based on three loci (ITS, LSU, rpb2) was generated to delimit the orders and families. Separate trees based on a combined analysis of four loci (ITS, LSU, rpb2, tef-1α) were used to delimit species at generic and family levels. Combined with the morphological features, host associations and ecological analyses, acremonium-like species evaluated in the present study are currently assigned to 63 genera, and 14 families in Cephalothecales, Glomerellales and Hypocreales, mainly in the families Bionectriaceae, Plectosphaerellaceae and Sarocladiaceae and five new hypocrealean families, namely Chrysonectriaceae, Neoacremoniaceae, Nothoacremoniaceae, Pseudoniessliaceae and Valsonectriaceae. Among them, 17 new genera and 63 new combinations are proposed, with descriptions of 65 new species. Furthermore, one epitype and one neotype are designated to stabilise the taxonomy and use of older names. Results of this study demonstrated that most species of Acremonium s. lat. grouped in genera of Bionectriaceae, including the type A. alternatum. A phylogenetic backbone tree is provided for Bionectriaceae, in which 183 species are recognised and 39 well-supported genera are resolved, including 10 new genera. Additionally, rpb2 and tef-1α are proposed as potential DNA barcodes for the identification of taxa in Bionectriaceae. Taxonomic novelties: New families: Chrysonectriaceae L.W. Hou, L. Cai & Crous, Neoacremoniaceae L.W. Hou, L. Cai & Crous, Nothoacremoniaceae L.W. Hou, L. Cai & Crous, Pseudoniessliaceae L.W. Hou, L. Cai & Crous, Valsonectriaceae L.W. Hou, L. Cai & Crous. New genera: Bionectriaceae: Alloacremonium L.W. Hou, L. Cai & Crous, Gossypinidium L.W. Hou, L. Cai & Crous, Monohydropisphaera L.W. Hou, L. Cai & Crous, Musananaesporium L.W. Hou, L. Cai & Crous, Paragliomastix L.W. Hou, L. Cai & Crous, Proliferophialis L.W. Hou, L. Cai & Crous, Proxiovicillium L.W. Hou, L. Cai & Crous, Ramosiphorum L.W. Hou, L. Cai & Crous, Verruciconidia L.W. Hou, L. Cai & Crous, Waltergamsia L.W. Hou, L. Cai & Crous; Clavicipitaceae: Subuliphorum L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Allomusicillium L.W. Hou, L. Cai & Crous, Parafuscohypha L.W. Hou, L. Cai & Crous; Pseudoniessliaceae: Pseudoniesslia L.W. Hou, L. Cai & Crous; Sarocladiaceae: Polyphialocladium L.W. Hou, L. Cai & Crous. New species: Bionectriaceae: Alloacremonium ferrugineum L.W. Hou, L. Cai & Crous, Al. humicola L.W. Hou, L. Cai & Crous, Acremonium aerium L.W. Hou, L. Cai & Crous, A. brunneisporum L.W. Hou, L. Cai & Crous, A. chlamydosporium L.W. Hou, L. Cai & Crous, A. ellipsoideum L.W. Hou, Rämä, L. Cai & Crous, A. gamsianum L.W. Hou, L. Cai & Crous, A. longiphialidicum L.W. Hou, L. Cai & Crous, A. multiramosum L.W. Hou, Rämä, L. Cai & Crous, A. mycoparasiticum L.W. Hou, L. Cai & Crous, A. stroudii K. Fletcher, F.C. Küpper & P. van West, A. subulatum L.W. Hou, L. Cai & Crous, A. synnematoferum L.W. Hou, Rämä, L. Cai & Crous, Bulbithecium ammophilae L.W. Hou, L. Cai & Crous, B. ellipsoideum L.W. Hou, L. Cai & Crous, B. truncatum L.W. Hou, L. Cai & Crous, Emericellopsis brunneiguttula L.W. Hou, L. Cai & Crous, Gliomastix musae L.W. Hou, L. Cai & Crous, Gossypinidium sporodochiale L.W. Hou, L. Cai & Crous, Hapsidospora stercoraria L.W. Hou, L. Cai & Crous, H. variabilis L.W. Hou, L. Cai & Crous, Mycocitrus odorus L.W. Hou, L. Cai & Crous, Nectriopsis ellipsoidea L.W. Hou, L. Cai & Crous, Paracylindrocarpon aurantiacum L.W. Hou, L. Cai & Crous, Pn. foliicola Lechat & J. Fourn., Paragliomastix rosea L.W. Hou, L. Cai & Crous, Proliferophialis apiculata L.W. Hou, L. Cai & Crous, Protocreopsis finnmarkica L.W. Hou, L. Cai, Rämä & Crous, Proxiovicillium lepidopterorum L.W. Hou, L. Cai & Crous, Ramosiphorum echinoporiae L.W. Hou, L. Cai & Crous, R. polyporicola L.W. Hou, L. Cai & Crous, R. thailandicum L.W. Hou, L. Cai & Crous, Verruciconidia erythroxyli L.W. Hou, L. Cai & Crous, Ve. infuscata L.W. Hou, L. Cai & Crous, Ve. quercina L.W. Hou, L. Cai & Crous, Ve. siccicapita L.W. Hou, L. Cai & Crous, Ve. unguis L.W. Hou, L. Cai & Crous, Waltergamsia alkalina L.W. Hou, L. Cai & Crous, W. catenata L.W. Hou, L. Cai & Crous, W. moroccensis L.W. Hou, L. Cai & Crous, W. obpyriformis L.W. Hou, L. Cai & Crous; Chrysonectriaceae: Chrysonectria crystallifera L.W. Hou, L. Cai & Crous; Nectriaceae: Xenoacremonium allantoideum L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium distortum L.W. Hou, L. Cai & Crous, N. flavum L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium subcylindricum L.W. Hou, L. Cai & Crous, No. vesiculophorum L.W. Hou, L. Cai & Crous; Myrotheciomycetaceae: Trichothecium hongkongense L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Brunneomyces polyphialidus L.W. Hou, L. Cai & Crous, Parafuscohypha proliferata L.W. Hou, L. Cai & Crous; Sarocladiaceae: Chlamydocillium acaciae L.W. Hou, L. Cai & Crous, C. antarcticum L.W. Hou, L. Cai & Crous, C. guttulatum L.W. Hou, L. Cai & Crous, C. lolii L.W. Hou, L. Cai & Crous, C. soli L.W. Hou, L. Cai & Crous, C. terrestre L.W. Hou, L. Cai & Crous, Parasarocladium chondroidum L.W. Hou, L. Cai & Crous,Polyphialocladium fusisporum L.W. Hou, L. Cai & Crous, Sarocladium agarici L.W. Hou, L. Cai & Crous, S. citri L.W. Hou, L. Cai & Crous, S. ferrugineum L.W. Hou, L. Cai & Crous, S. fuscum L.W. Hou, L. Cai & Crous,S. theobromae L.W. Hou, L. Cai & Crous; Valsonectriaceae: Valsonectria crystalligena L.W. Hou, L. Cai & Crous, V. hilaris L.W. Hou, L. Cai & Crous. New combinations: Bionectriaceae: Acremonium purpurascens (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous, Bulbithecium arxii (Malloch) L.W. Hou, L. Cai & Crous, Bu. borodinense (Tad. Ito et al.) L.W. Hou, L. Cai & Crous, Bu. pinkertoniae (W. Gams) L.W. Hou, L. Cai & Crous, Bu. spinosum (Negroni) L.W. Hou, L. Cai & Crous, Emericellopsis exuviara (Sigler et al.) L.W. Hou, L. Cai & Crous, E. fimetaria (Pers.) L.W. Hou, L. Cai & Crous, E. fuci (Summerb. et al.) L.W. Hou, L. Cai & Crous, E. moniliformis (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, E. salmonea (W. Gams & Lodha) L.W. Hou, L. Cai & Crous, E. tubakii (Gams) L.W. Hou, L. Cai & Crous, Fusariella arenula (Berk. & Broome) L.W. Hou, L. Cai & Crous, Hapsidospora chrysogena (Thirum. & Sukapure) L.W. Hou, L. Cai & Crous, H. flava (W. Gams) L.W. Hou, L. Cai & Crous, H. globosa (Malloch & Cain) L.W. Hou, L. Cai & Crous, H. inversa (Malloch & Cain) L.W. Hou, L. Cai & Crous, Hydropisphaera aurantiaca (C.A. Jørg.) L.W. Hou, L. Cai & Crous, Lasionectria atrorubra (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, L. bisepta (W. Gams) L.W. Hou, L. Cai & Crous, L. castaneicola (Lechat & Gardiennet) L.W. Hou, L. Cai & Crous, L. cerealis (P. Karst.) L.W. Hou, L. Cai & Crous, L. olida (W. Gams) L.W. Hou, L. Cai & Crous, Lasionectriopsis dentifera (Samuels) L.W. Hou, L. Cai & Crous, Lasionectriella arenuloides (Samuels) L.W. Hou, L. Cai & Crous, La. marigotensis (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, Monohydropisphaera fusigera (Berk. & Broome) L.W. Hou, L. Cai & Crous, Musananaesporium tectonae (R.F. Castañeda) L.W. Hou, L. Cai & Crous, Mycocitrus zonatus (Sawada) L.W. Hou, L. Cai & Crous, Nectriopsis microspora (Jaap) L.W. Hou, L. Cai & Crous, Ovicillium asperulatum (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, O. variecolor (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, Paracylindrocarpon multiloculatum (Samuels) L.W. Hou, L. Cai & Crous, Pn. multiseptatum (Samuels)L.W. Hou, L. Cai & Crous, Paragliomastix chiangraiensis (J.F. Li et al.) L.W. Hou, L. Cai & Crous, Px. luzulae (Fuckel) L.W. Hou, L. Cai & Crous, Px. znieffensis (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, Protocreopsis rutila (W. Gams) L.W. Hou, L. Cai & Crous, Proxiovicillium blochii (Matr.)L.W. Hou, L. Cai & Crous, Stanjemonium dichromosporum (Gams & Sivasith.) L.W. Hou, L. Cai & Crous, Verruciconidia persicina (Nicot) L.W. Hou, L. Cai & Crous, Ve. verruculosa (W. Gams & Veenb.-Rijks) L.W. Hou, L. Cai & Crous, Waltergamsia citrina (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. dimorphospora (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. epimycota (Samuels) L.W. Hou, L. Cai & Crous, W. fusidioides (Nicot) L.W. Hou, L. Cai & Crous, W. hennebertii (W. Gams) L.W. Hou, L. Cai & Crous, W. parva (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. pilosa (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. zeylanica (Petch) L.W. Hou, L. Cai & Crous; Cephalothecaceae: Phialemonium thermophilum (W. Gams & J. Lacey) L.W. Hou, L. Cai & Crous; Clavicipitaceae: Subuliphorum camptosporum (W. Gams) L.W. Hou, L. Cai & Crous; Coniochaetaceae: Coniochaeta psammospora (W. Gams) L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium exiguum (W. Gams) L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium minutisporum (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous; Ne. taiwanense (K.L. Pang et al.) L.W. Hou, L. Cai & Crous; Ne. vitellinum (W. Gams) L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Allomusicillium domschii (W. Gams) L.W. Hou, L. Cai & Crous, Brunneomyces pseudozeylanicus (W. Gams) L.W. Hou, L. Cai & Crous; Pseudoniessliaceae: Pseudoniesslia minutispora (W. Gams et al.) L.W. Hou, L. Cai & Crous; Sarocladiaceae: Chlamydocillium curvulum (W. Gams) L.W. Hou, L. Cai & Crous, Parasarocladium funiculosum (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous; Valsonectriaceae: Valsonectria inflata (C.H. Dickinson) L.W. Hou, L. Cai & Crous, V. roseola (G. Sm.) L.W. Hou, L. Cai & Crous. Epitype (basionym): Sphaeria violacea J.C. Schmidt ex Fr. Neotype (basionym): Mastigocladium blochii Matr. Citation: Hou LW, Giraldo A, Groenewald JZ, Rämä T, Summerbell RC, Zang P, Cai L, Crous PW (2023). Redisposition of acremonium-like fungi in Hypocreales. Studies in Mycology 105: 23-203. doi: 10.3114/sim.2023.105.02.
Collapse
Affiliation(s)
- L.W. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese
Academy of Sciences, Beijing, 100101, China;
| | - A. Giraldo
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584
CT, The Netherlands;
- Netherlands Institute for Vectors, Invasive plants and Plant health
(NIVIP), NVWA, Wageningen Netherlands;
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584
CT, The Netherlands;
| | - T. Rämä
- The Norwegian College of Fishery Science, Department at Faculty of
Biosciences, Fisheries and Economics, UiT The Arctic University of Norway,
Tromsø, Norway;
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada;
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON,
Canada;
| | - G.Z. Huang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101,
China;
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese
Academy of Sciences, Beijing, 100101, China;
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584
CT, The Netherlands;
- Microbiology, Department of Biology, Utrecht University, Padualaan 8,
Utrecht, 3584 CH, The Netherlands;
- Department of Biochemistry, Genetics and Microbiology, Forestry and
Agricultural Biotechnology Institute (FABI), Faculty of Natural and
Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield,
Pretoria, 0028, South Africa;
- Wageningen University and Research Centre (WUR), Laboratory of
Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, The
Netherlands
| |
Collapse
|
35
|
Crous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Etayo J, Gené J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Piątek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bogacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral HO, Baturo-Cieśniewska A, Begerow D, Beja-Pereira A, Bianchinotti MV, Bilański P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, De Silva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorský A, Pusz W, Raza M, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, et alCrous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Etayo J, Gené J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Piątek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bogacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral HO, Baturo-Cieśniewska A, Begerow D, Beja-Pereira A, Bianchinotti MV, Bilański P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, De Silva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorský A, Pusz W, Raza M, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, Śliwa L, Smith ME, Stefenon VM, Strasiftáková D, Suwannarach N, Szczepańska K, Telleria MT, Tennakoon DS, Thines M, Thorn RG, Urbaniak J, van der Vegte M, Vasan V, Vila-Viçosa C, Voglmayr H, Wrzosek M, Zappelini J, Groenewald JZ. Fungal Planet description sheets: 1550-1613. PERSOONIA 2023; 51:280-417. [PMID: 38665977 PMCID: PMC11041897 DOI: 10.3767/persoonia.2023.51.08] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 04/28/2024]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Argentina, Neocamarosporium halophilum in leaf spots of Atriplex undulata. Australia, Aschersonia merianiae on scale insect (Coccoidea), Curvularia huamulaniae isolated from air, Hevansia mainiae on dead spider, Ophiocordyceps poecilometigena on Poecilometis sp. Bolivia, Lecanora menthoides on sandstone, in open semi-desert montane areas, Sticta monlueckiorum corticolous in a forest, Trichonectria epimegalosporae on apothecia of corticolous Megalospora sulphurata var. sulphurata, Trichonectria puncteliae on the thallus of Punctelia borreri. Brazil, Catenomargarita pseudocercosporicola (incl. Catenomargarita gen. nov.) hyperparasitic on Pseudocercospora fijiensis on leaves of Musa acuminata, Tulasnella restingae on protocorms and roots of Epidendrum fulgens. Bulgaria, Anthracoidea umbrosae on Carex spp. Croatia, Hymenoscyphus radicis from surface-sterilised, asymptomatic roots of Microthlaspi erraticum, Orbilia multiserpentina on wood of decorticated branches of Quercus pubescens. France, Calosporella punctatispora on dead corticated twigs of Aceropalus. French West Indies (Martinique), Eutypella lechatii on dead corticated palm stem. Germany, Arrhenia alcalinophila on loamy soil. Iceland, Cistella blauvikensis on dead grass (Poaceae). India, Fulvifomes maritimus on living Peltophorum pterocarpum, Fulvifomes natarajanii on dead wood of Prosopis juliflora, Fulvifomes subazonatus on trunk of Azadirachta indica, Macrolepiota bharadwajii on moist soil near the forest, Narcissea delicata on decaying elephant dung, Paramyrothecium indicum on living leaves of Hibiscus hispidissimus, Trichoglossum syamviswanathii on moist soil near the base of a bamboo plantation. Iran, Vacuiphoma astragalicola from stem canker of Astragalus sarcocolla. Malaysia, Neoeriomycopsis fissistigmae (incl. Neoeriomycopsidaceae fam. nov.) on leaf spots on flower Fissistigma sp. Namibia, Exophiala lichenicola lichenicolous on Acarospora cf. luederitzensis. Netherlands, Entoloma occultatum on soil, Extremus caricis on dead leaves of Carex sp., Inocybe pseudomytiliodora on loamy soil. Norway, Inocybe guldeniae on calcareous soil, Inocybe rupestroides on gravelly soil. Pakistan, Hymenagaricus brunneodiscus on soil. Philippines, Ophiocordyceps philippinensis parasitic on Asilus sp. Poland, Hawksworthiomyces ciconiae isolated from Ciconia ciconia nest, Plectosphaerella vigrensis from leaf spots on Impatiens noli-tangere, Xenoramularia epitaxicola from sooty mould community on Taxus baccata. Portugal, Inocybe dagamae on clay soil. Saudi Arabia, Diaporthe jazanensis on branches of Coffea arabica. South Africa, Alternaria moraeae on dead leaves of Moraea sp., Bonitomyces buffels-kloofinus (incl. Bonitomyces gen. nov.) on dead twigs of unknown tree, Constrictochalara koukolii on living leaves of Itea rhamnoides colonised by a Meliola sp., Cylindromonium lichenophilum on Parmelina tiliacea, Gamszarella buffelskloofina (incl. Gamszarella gen. nov.) on dead insect, Isthmosporiella africana (incl. Isthmosporiella gen. nov.) on dead twigs of unknown tree, Nothoeucasphaeria buffelskloofina (incl. Nothoeucasphaeria gen. nov.), on dead twigs of unknown tree, Nothomicrothyrium beaucarneae (incl. Nothomicrothyrium gen. nov.) on dead leaves of Beaucarnea stricta, Paramycosphaerella proteae on living leaves of Protea caffra, Querciphoma foliicola on leaf litter, Rachicladosporium conostomii on dead twigs of Conostomium natalense var. glabrum, Rhamphoriopsis synnematosa on dead twig of unknown tree, Waltergamsia mpumalanga on dead leaves of unknown tree. Spain, Amanita fulvogrisea on limestone soil, in mixed forest, Amanita herculis in open Quercus forest, Vuilleminia beltraniae on Cistus symphytifolius. Sweden, Pachyella pulchella on decaying wood on sand-silt riverbank. Thailand, Deniquelata cassiae on dead stem of Cassia fistula, Stomiopeltis thailandica on dead twigs of Magnolia champaca. Ukraine, Circinaria podoliana on natural limestone outcrops, Neonematogonum carpinicola (incl. Neonematogonum gen. nov.) on dead branches of Carpinus betulus. USA, Exophiala wilsonii water from cooling tower, Hygrophorus aesculeticola on soil in mixed forest, and Neocelosporium aereum from air in a house attic. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Costa MM, Kandemir H, et al. 2023. Fungal Planet description sheets: 1550-1613. Persoonia 51: 280-417. doi: 10.3767/persoonia.2023.51.08.
Collapse
Affiliation(s)
- P W Crous
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M M Costa
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - H Kandemir
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Vermaas
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - D Vu
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L Zhao
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - E Arumugam
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - A Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - M Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - S Mahadevakumar
- Forest Pathology Department, Division of Forest Protection, KSCSTE-Kerala Forest Research Institute, Peechi - 680653, Thrissur, Kerala, India
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - R Murugadoss
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Y P Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - S E Abell
- Australian Tropical Herbarium, James Cook University, Smithfield 4878, Queensland, Australia
| | - T S Marney
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - C Danteswari
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - V Darmostuk
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - C M Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - T T Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - J Etayo
- Navarro Villoslada 16, 3° cha., E-31003 Pamplona, Navarra, Spain
| | - J Gené
- Universitat Rovira i Virgili, Facultat de Medicina i Ciéncies de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - S Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - V Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - T Illescas
- Buenos Aires 3 Bajo 1, 14006 Córdoba, Spain
| | - G M Jansen
- Ben Sikkenlaan 9, 6703JC Wageningen, The Netherlands
| | - K Kezo
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - S Kumar
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - E Larsson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 463, SE40530 Göteborg, Sweden
| | - K T Mufeeda
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - M Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - P Rodriguez-Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - P V S R N Sarma
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - M Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - D Torres-Garcia
- Universitat Rovira i Virgili, Facultat de Medicina i Ciéncies de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - J Vauras
- Biological Collections of Åbo Akademi University, Biodiversity Unit, Herbarium, FI-20014 University of Turku, Finland
| | - D A Acal
- Department of Invertebrate Zoology & Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - A Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
| | - K Alhudaib
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - M Asif
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - S Balashov
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - H-O Baral
- Blaihofstr. 42, Tübingen, D-72074, Germany
| | - A Baturo-Cieśniewska
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - D Begerow
- Universität Hamburg, Institute of Plant Science and Microbiology, Organismic Botany and Mycology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - A Beja-Pereira
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- DGAOT, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - M V Bianchinotti
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, CP: 8000, Bahía Blanca, Argentina and Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, CP: 8000, Bahía Blanca, Argentina
| | - P Bilański
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - S Chandranayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru - 570006, Karnataka, India
| | - N Chellappan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - F A Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - P Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - G Delgado
- Eurofins Built Environment, 6110 W. 34th St, Houston, TX 77092, USA
| | - N I De Silva
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - J Dijksterhuis
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - P Eisvand
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
| | - V Fachada
- Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland
- MHNC-UP - Museu de História Natural e da Ciência da Universidade do Porto - Herbário PO, Universidade do Porto. Praça Gomes Teixeira, 4099-002, Porto, Portugal
| | | | - Y Fritsche
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - F Fuljer
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - K G G Ganga
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - M P Guerra
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - K Hansen
- Swedish Museum of Natural History, Department of Botany, P.O. Box 50007, SE-104 05 Stockholm, Sweden
| | - N Hywel-Jones
- Zhejiang BioAsia Institute of Life Sciences, Pinghu 31 4200, Zhejiang, People's Republic of China
| | - A M Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - C R Jacobs
- Nin.Da.Waab.Jig-Walpole Island Heritage Centre, Bkejwanong (Walpole Island First Nation), 2185 River Road North, Walpole Island, Ontario, N8A 4K9, Canada
| | - R Jankowiak
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - A Karich
- Unit of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - M Kemler
- Universität Hamburg, Institute of Plant Science and Microbiology, Organismic Botany and Mycology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - K Kisło
- University of Warsaw, Botanic Garden, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
| | - W Klofac
- Mayerhöfen 28, 3074 Michelbach, Austria
| | - I Krisai-Greilhuber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - K P D Latha
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - R Lebeuf
- 775, rang du Rapide Nord, Saint-Casimir, Quebec, G0A 3L0, Canada
| | - M E Lopes
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - S Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - J G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Department of Microbial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - G Maggs-Kölling
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
- Unit for Environmental Sciences and Management, North-West University, P. Bag X1290, Potchefstroom, 2520, South Africa
| | - D Magistà
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, 70126, Bari, Italy
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126, Bari, Italy
| | - P Manimohan
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - M P Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - E Mazur
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - A Mombert
- 3 rue de la craie, 25640 Corcelle-Mieslot, France
| | - E A Ossowska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland
| | - K Patejuk
- Department of Plant Protection, Wtoctaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wtoctaw, Poland
| | - O L Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - S Piskorski
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - M Plaza
- La Angostura, 20, 11370 Los Barrios, Cádiz, Spain
| | - A R Podile
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - W Pusz
- Department of Plant Protection, Wtoctaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wtoctaw, Poland
| | - M Raza
- Key Laboratory of Integrated Pest Management in Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 83009, China
| | - M Ruszkiewicz-Michalska
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - M Saba
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - R M Sánchez
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, CP: 8000, Bahía Blanca, Argentina and Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, CP: 8000, Bahía Blanca, Argentina
| | - R Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi - 221005, Uttar Pradesh, India
| | - L Śliwa
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA
| | - V M Stefenon
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - D Strasiftáková
- Slovak National Museum-Natural History Museum, Vajanského náb. 2, P.O. Box 13, 81006, Bratislava, Slovakia
| | - N Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - K Szczepańska
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, PL-50-363 Wroclaw, Poland
| | - M T Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - D S Tennakoon
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - M Thines
- Evolutionary Analyses and Biological Archives, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main
- Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution, and Diversity, Max-von-Laue-Str. 9, 60483 Frankfurt am Main, Germany
| | - R G Thorn
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - J Urbaniak
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, PL-50-363 Wroclaw, Poland
| | | | - V Vasan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - C Vila-Viçosa
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- MHNC-UP - Museu de História Natural e da Ciência da Universidade do Porto - Herbário PO, Universidade do Porto. Praça Gomes Teixeira, 4099-002, Porto, Portugal
| | - H Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - M Wrzosek
- University of Warsaw, Botanic Garden, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
| | - J Zappelini
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - J Z Groenewald
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
36
|
Torres-Garcia D, García D, Réblová M, Jurjević Ž, Hubka V, Gené J. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. PERSOONIA 2023; 51:194-228. [PMID: 38665982 PMCID: PMC11041900 DOI: 10.3767/persoonia.2023.51.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 04/28/2024]
Abstract
Black yeasts comprise a group of Ascomycota of the order Chaetothyriales with highly variable morphology, a great diversity of ecological niches and life cycles. Despite the ubiquity of these fungi, their diversity in freshwater sediments is still poorly understood. During a survey of culturable Ascomycota from river and stream sediments in various sampling sites in Spain, we obtained 47 isolates of black yeasts by using potato dextrose agar supplemented with cycloheximide. A preliminary morphological study and sequence analyses of the internal transcribed spacer region (ITS) and the large subunit (LSU) of the nuclear rDNA revealed that most of the isolates belonged to the family Herpotrichiellaceae. We have confidently identified 30 isolates representing the following species: Capronia pulcherrima, Cladophialophora emmonsii, Exophiala equina, Exophiala pisciphila, Exophiala radicis, and Phialophora americana. However, we encountered difficulty in assigning 17 cultures to any known species within Chaetothyriales. Combining phenotypic and multi-locus phylogenetic analyses based on the ITS, LSU, β-tubulin (tub2) and translation elongation factor 1-α (tef1-α) gene markers, we propose the new genus Aciculomyces in the Herpotrichiellaceae to accommodate the novel species Aciculomyces restrictus. Other novel species in this family include Cladophialophora denticulata, Cladophialophora heterospora, Cladophialophora irregularis, Exophiala candelabrata, Exophiala dehoogii, Exophiala ramosa, Exophiala verticillata and Phialophora submersa. The new species Cyphellophora spiralis, closely related to Cyphellophora suttonii, is described, and the phylogeny of the genus Anthopsis in the family Cyphellophoraceae is discussed. By utilizing these four markers, we were able to strengthen the phylogenetic resolution and provide more robust taxonomic assessments within the studied group. Our findings indicate that freshwater sediments may serve as a reservoir for intriguing black yeasts, which warrant further investigation to address gaps in phylogenetic relationships, particularly within Herpotrichiellaceae. Citation: Torres-Garcia D, García D, Réblová M, et al. 2023. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. Persoonia 51: 194-228. doi: 10.3767/persoonia.2023.51.05.
Collapse
Affiliation(s)
- D. Torres-Garcia
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - D. García
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - M. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, Průhonice, Czech Republic
| | - Ž. Jurjević
- EMSL Analytical, Cinnaminson, New Jersey, USA
| | - V. Hubka
- Charles University, Faculty of Science, Department of Botany, Prague, Czech Republic
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, Prague, Czech Republic
| | - J. Gené
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| |
Collapse
|
37
|
Mao N, Zhao TY, Xu YY, Fan L. Villoboletus persicinus, gen. et sp. nov. (Boletaceae), a bolete with flocculent-covered stipe from northern China. Mycologia 2023; 115:255-262. [PMID: 36692901 DOI: 10.1080/00275514.2022.2153006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Some collections from northern China are proposed as the new genus and species Villoboletus persicinus based on morphological assessments and molecular phylogenetic evidence. It is circumscribed by the pink pileus, white context turning pale blue to bule when exposed, yellow hymenophore surface turning blue when bruised, stipe covered with plenty of flocculent hairs, ellipsoid-fusiform to subfusiform smooth basidiospores, and the presence of hymenial cystidia. Phylogenetic analyses inferred from four gene fragments (28S, tef1, rpb1, and rpb2) revealed a distinct position of this new genus in Boletaceae, but no place to accommodate it at subfamily rank.
Collapse
Affiliation(s)
- Ning Mao
- College of Life Science, Capital Normal University, Haidian, Beijing 100048, China
| | - Tao-Yu Zhao
- College of Life Science, Capital Normal University, Haidian, Beijing 100048, China
| | - Yu-Yan Xu
- College of Life Science, Capital Normal University, Haidian, Beijing 100048, China
| | - Li Fan
- College of Life Science, Capital Normal University, Haidian, Beijing 100048, China
| |
Collapse
|
38
|
Wang Y, Wang LY, Dai D, Qi ZX, Zhang ZH, Liu YJ, Hu JJ, Zhang P, Li Y, Zhang B. Boletaceae in China: Taxonomy and phylogeny reveal a new genus, two new species, and a new record. Front Microbiol 2023; 13:1052948. [PMID: 36817106 PMCID: PMC9932287 DOI: 10.3389/fmicb.2022.1052948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/08/2022] [Indexed: 02/05/2023] Open
Abstract
Boletaceae, the largest family in Boletales, has been attracted by mycologists in the world due to its diverse morphology and complex history of evolution. Although considerable work has been done in the past decades, novel taxa are continually described. The current study aimed to introduce three new taxa and one new record of Boletaceae from China. The morphological descriptions, color photographs, phylogenetic trees to show the positions of the taxa, and comparisons with allied taxa are provided. The new genus Hemilanmaoa is unique in the Pulveroboletus group, and Hemilanmaoa retistipitatus was introduced as the type species. It can be distinguished by its bluing basidioma when injured, a decurrent hymenophore, a stipe covered with distinct reticulations, and a fertile stipitipellis. Porphyrellus pseudocyaneotinctus is characterized by its pileipellis consisting of broadly concatenated cells and thin-walled caulocystidia in Porphyrellus. In Phylloporus, Phylloporus biyangensis can be distinguished by its hymenophores that change to blue when injured and yellow basal mycelium. Lanmaoa angustispora, as a new record, is first reported in Northern China. Internal transcribed spacer (ITS), 28S rDNA (28S), translation elongation factor 1-alpha (tef1-α), RNA polymerase II subunit 1 (rpb1), and RNA polymerase II subunit 2 (rpb2) were employed to execute phylogenetic analyses.
Collapse
Affiliation(s)
- Yang Wang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China,College of Plant Protection, Shenyang Agricultural University, Shenyang, China,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Li-Ying Wang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Dan Dai
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zheng-Xiang Qi
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Zhen-Hao Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Ya-Jie Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Jia-Jun Hu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Peng Zhang
- Mudanjiang Sub-Academy, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, Heilongjiang, China
| | - Yu Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China,College of Plant Protection, Shenyang Agricultural University, Shenyang, China,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, China,*Correspondence: Yu Li,
| | - Bo Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, China,Bo Zhang,
| |
Collapse
|
39
|
Kachalkin AV, Glushakova AM, Tomashevskaya MA. Leucosporidium egoroviorum f.a., sp. nov., a New Yeast Species Isolated from Zucchini. Microbiology (Reading) 2023. [DOI: 10.1134/s0026261722602494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
40
|
Coomber A, Saville A, Carbone I, Ristaino JB. An open-access T-BAS phylogeny for emerging Phytophthora species. PLoS One 2023; 18:e0283540. [PMID: 37011062 PMCID: PMC10069789 DOI: 10.1371/journal.pone.0283540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Phytophthora species cause severe diseases on food, forest, and ornamental crops. Since the genus was described in 1876, it has expanded to comprise over 190 formally described species. There is a need for an open access phylogenetic tool that centralizes diverse streams of sequence data and metadata to facilitate research and identification of Phytophthora species. We used the Tree-Based Alignment Selector Toolkit (T-BAS) to develop a phylogeny of 192 formally described species and 33 informal taxa in the genus Phytophthora using sequences of eight nuclear genes. The phylogenetic tree was inferred using the RAxML maximum likelihood program. A search engine was also developed to identify microsatellite genotypes of P. infestans based on genetic distance to known lineages. The T-BAS tool provides a visualization framework allowing users to place unknown isolates on a curated phylogeny of all Phytophthora species. Critically, the tree can be updated in real-time as new species are described. The tool contains metadata including clade, host species, substrate, sexual characteristics, distribution, and reference literature, which can be visualized on the tree and downloaded for other uses. This phylogenetic resource will allow data sharing among research groups and the database will enable the global Phytophthora community to upload sequences and determine the phylogenetic placement of an isolate within the larger phylogeny and to download sequence data and metadata. The database will be curated by a community of Phytophthora researchers and housed on the T-BAS web portal in the Center for Integrated Fungal Research at NC State. The T-BAS web tool can be leveraged to create similar metadata enhanced phylogenies for other Oomycete, bacterial or fungal pathogens.
Collapse
Affiliation(s)
- Allison Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Functional Genomics Program, NC State University, Raleigh, North Carolina, United States of America
| | - Amanda Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Center for Integrated Fungal Research, NC State University, Raleigh, North Carolina, United States of America
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
41
|
Gallardo-Pillancari E, González C, Barahona-Segovia RM, Ruiz C, Luz C, Humber RA, Montalva C. Natural infection of Chiromyzinae larvae (Diptera: Stratiomyidae) in southern Chile by Tolypocladium valdiviae sp. nov. Fungal Biol 2023; 127:845-853. [PMID: 36746556 DOI: 10.1016/j.funbio.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
A new species from the fungal genus Tolypocladium (Hypocreales: Ophiocordycipitaceae) that infects Stratiomyidae larva from the genus Hylorops is described: Tolypocladium valdiviae Gallardo-Pillancari, Montalva & González. The description is based on both genomic data and morphological characteristics. The sexual stage of T. valdiviae presents fleshy and visible stromata; unlike Tolypocladium ophioglossoides, it is smaller and emerges directly from its host and resembles Tolypocladium longisegmentis and Tolypocladium capitatum, both of which are parasites of deer truffle fungi of the genus Elaphomyces (Ascomycota: Eurotiales). In the anamorphic state, T. valdiviae presents conidiogenous cells similar in shape and arrangement to those of Tolypocladium inflatum, however T. valdiviae produces larger conidiogenous cells and, occasionally, produces chlamydospores. Phylogenetic evidence suggested that T. valdiviae is in a clade close to T. longisegmentis, T. inflatum and T. ophioglossoides, species also recognized to be parasites of fungi of the genus Elaphomyces. The new species is known so far only from Valdivia, southern Chile.
Collapse
Affiliation(s)
- Esteban Gallardo-Pillancari
- Laboratorio de Salud de Bosques, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Biodiversidad y Ecología Del Dosel, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile.
| | - Cristian González
- Laboratorio de Salud de Bosques, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo M Barahona-Segovia
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Av. Fuschlöcher, 1305, Osorno, Chile
| | - Cecilia Ruiz
- Laboratorio de Salud de Bosques, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile
| | - Christian Luz
- Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Richard A Humber
- USDA-ARS Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Cristian Montalva
- Laboratorio de Salud de Bosques, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
42
|
Lv R, Yang X, Qiao M, Fang L, Li J, Yu Z. Exophialayunnanensis and Exophialayuxiensis (Chaetothyriales, Herpotrichiellaceae), two new species of soil-inhabiting Exophiala from Yunnan Province, China. MycoKeys 2022; 94:109-124. [PMID: 36760541 PMCID: PMC9836470 DOI: 10.3897/mycokeys.94.96782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
During a survey of soil fungi collected from Yunnan Province, China, two new species of Exophiala, E.yunnanensis and E.yuxiensis, were isolated from the soil of karst rocky desertification (KRD). The DNA sequences of these respective strains, including internal transcribed spacers (ITS), large subunit nuclear ribosomal RNA (LSU rRNA), partial small subunit (SSU) and β-tubulin (tub2) were sequenced and compared with those from species closely-related to Exophiala. Exophialayunnanensis differs from the phylogenetically closely related E.nagquensis and E.brunnea by its smaller aseptate conidia. Exophialayuxiensis is phylogenetically related to E.lecanii-corni, E.lavatrina and E.mali, but can be distinguished from them by its larger conidia. Full descriptions, illustrations and phylogenetic positions of E.yunnanensis and E.yuxiensis were provided.
Collapse
Affiliation(s)
- Ruili Lv
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Xiaoqian Yang
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Min Qiao
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Linlin Fang
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Jianying Li
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650221, ChinaKunming Edible Fungi Institute of All China Federation of Supply and Marketing CooperativesKunmingChina
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| |
Collapse
|
43
|
Tan YP, Bishop-Hurley SL, Shivas RG, Cowan DA, Maggs-Kölling G, Maharachchikumbura SSN, Pinruan U, Bransgrove KL, De la Peña-Lastra S, Larsson E, Lebel T, Mahadevakumar S, Mateos A, Osieck ER, Rigueiro-Rodríguez A, Sommai S, Ajithkumar K, Akulov A, Anderson FE, Arenas F, Balashov S, Bañares Á, Berger DK, Bianchinotti MV, Bien S, Bilański P, Boxshall AG, Bradshaw M, Broadbridge J, Calaça FJS, Campos-Quiroz C, Carrasco-Fernández J, Castro JF, Chaimongkol S, Chandranayaka S, Chen Y, Comben D, Dearnaley JDW, Ferreira-Sá AS, Dhileepan K, Díaz ML, Divakar PK, Xavier-Santos S, Fernández-Bravo A, Gené J, Guard FE, Guerra M, Gunaseelan S, Houbraken J, Janik-Superson K, Jankowiak R, Jeppson M, Jurjević Ž, Kaliyaperumal M, Kelly LA, Kezo K, Khalid AN, Khamsuntorn P, Kidanemariam D, Kiran M, Lacey E, Langer GJ, López-Llorca LV, Luangsa-Ard JJ, Lueangjaroenkit P, Lumbsch HT, Maciá-Vicente JG, Mamatha Bhanu LS, Marney TS, Marqués-Gálvez JE, Morte A, Naseer A, Navarro-Ródenas A, Oyedele O, Peters S, Piskorski S, Quijada L, Ramírez GH, Raja K, Razzaq A, Rico VJ, Rodríguez A, Ruszkiewicz-Michalska M, Sánchez RM, Santelices C, Savitha AS, Serrano M, Leonardo-Silva L, Solheim H, Somrithipol S, Sreenivasa MY, Stępniewska H, Strapagiel D, Taylor T, Torres-Garcia D, Vauras J, Villarreal M, Visagie CM, Wołkowycki M, Yingkunchao W, et alTan YP, Bishop-Hurley SL, Shivas RG, Cowan DA, Maggs-Kölling G, Maharachchikumbura SSN, Pinruan U, Bransgrove KL, De la Peña-Lastra S, Larsson E, Lebel T, Mahadevakumar S, Mateos A, Osieck ER, Rigueiro-Rodríguez A, Sommai S, Ajithkumar K, Akulov A, Anderson FE, Arenas F, Balashov S, Bañares Á, Berger DK, Bianchinotti MV, Bien S, Bilański P, Boxshall AG, Bradshaw M, Broadbridge J, Calaça FJS, Campos-Quiroz C, Carrasco-Fernández J, Castro JF, Chaimongkol S, Chandranayaka S, Chen Y, Comben D, Dearnaley JDW, Ferreira-Sá AS, Dhileepan K, Díaz ML, Divakar PK, Xavier-Santos S, Fernández-Bravo A, Gené J, Guard FE, Guerra M, Gunaseelan S, Houbraken J, Janik-Superson K, Jankowiak R, Jeppson M, Jurjević Ž, Kaliyaperumal M, Kelly LA, Kezo K, Khalid AN, Khamsuntorn P, Kidanemariam D, Kiran M, Lacey E, Langer GJ, López-Llorca LV, Luangsa-Ard JJ, Lueangjaroenkit P, Lumbsch HT, Maciá-Vicente JG, Mamatha Bhanu LS, Marney TS, Marqués-Gálvez JE, Morte A, Naseer A, Navarro-Ródenas A, Oyedele O, Peters S, Piskorski S, Quijada L, Ramírez GH, Raja K, Razzaq A, Rico VJ, Rodríguez A, Ruszkiewicz-Michalska M, Sánchez RM, Santelices C, Savitha AS, Serrano M, Leonardo-Silva L, Solheim H, Somrithipol S, Sreenivasa MY, Stępniewska H, Strapagiel D, Taylor T, Torres-Garcia D, Vauras J, Villarreal M, Visagie CM, Wołkowycki M, Yingkunchao W, Zapora E, Groenewald JZ, Crous PW. Fungal Planet description sheets: 1436-1477. PERSOONIA 2022; 49:261-350. [PMID: 38234383 PMCID: PMC10792226 DOI: 10.3767/persoonia.2022.49.08] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Argentina, Colletotrichum araujiae on leaves, stems and fruits of Araujia hortorum. Australia, Agaricus pateritonsus on soil, Curvularia fraserae on dying leaf of Bothriochloa insculpta, Curvularia millisiae from yellowing leaf tips of Cyperus aromaticus, Marasmius brunneolorobustus on well-rotted wood, Nigrospora cooperae from necrotic leaf of Heteropogon contortus, Penicillium tealii from the body of a dead spider, Pseudocercospora robertsiorum from leaf spots of Senna tora, Talaromyces atkinsoniae from gills of Marasmius crinis-equi and Zasmidium pearceae from leaf spots of Smilaxglyciphylla. Brazil, Preussia bezerrensis from air. Chile, Paraconiothyrium kelleni from the rhizosphere of Fragaria chiloensis subsp. chiloensis f. chiloensis. Finland, Inocybe udicola on soil in mixed forest with Betula pendula, Populus tremula, Picea abies and Alnus incana. France, Myrmecridium normannianum on dead culm of unidentified Poaceae. Germany, Vexillomyces fraxinicola from symptomless stem wood of Fraxinus excelsior. India, Diaporthe limoniae on infected fruit of Limonia acidissima, Didymella naikii on leaves of Cajanus cajan, and Fulvifomes mangroviensis on basal trunk of Aegiceras corniculatum. Indonesia, Penicillium ezekielii from Zea mays kernels. Namibia, Neocamarosporium calicoremae and Neocladosporium calicoremae on stems of Calicorema capitata, and Pleiochaeta adenolobi on symptomatic leaves of Adenolobus pechuelii. Netherlands, Chalara pteridii on stems of Pteridium aquilinum, Neomackenziella juncicola (incl. Neomackenziella gen. nov.) and Sporidesmiella junci from dead culms of Juncus effusus. Pakistan, Inocybe longistipitata on soil in a Quercus forest. Poland, Phytophthora viadrina from rhizosphere soil of Quercus robur, and Septoria krystynae on leaf spots of Viscum album. Portugal (Azores), Acrogenospora stellata on dead wood or bark. South Africa, Phyllactinia greyiae on leaves of Greyia sutherlandii and Punctelia anae on bark of Vachellia karroo. Spain, Anteaglonium lusitanicum on decaying wood of Prunus lusitanica subsp. lusitanica, Hawksworthiomyces riparius from fluvial sediments, Lophiostoma carabassense endophytic in roots of Limbarda crithmoides, and Tuber mohedanoi from calcareus soils. Spain (Canary Islands), Mycena laurisilvae on stumps and woody debris. Sweden, Elaphomyces geminus from soil under Quercus robur. Thailand, Lactifluus chiangraiensis on soil under Pinus merkusii, Lactifluus nakhonphanomensis and Xerocomus sisongkhramensis on soil under Dipterocarpus trees. Ukraine, Valsonectria robiniae on dead twigs of Robinia hispida. USA, Spiralomyces americanus (incl. Spiralomyces gen. nov.) from office air. Morphological and culture characteristics are supported by DNA barcodes. Citation: Tan YP, Bishop-Hurley SL, Shivas RG, et al. 2022. Fungal Planet description sheets: 1436-1477. Persoonia 49: 261-350. https://doi.org/10.3767/persoonia.2022.49.08.
Collapse
Affiliation(s)
- Y P Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - S L Bishop-Hurley
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | | | - S S N Maharachchikumbura
- School of Life Sciences and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611 731, P.R. China
| | - U Pinruan
- Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group (ACBG), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - K L Bransgrove
- Agri-Science Queensland, Department of Agriculture and Fisheries, Mareeba 4880, Queensland, Australia
| | | | - E Larsson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 461, SE40530 Göteborg, Sweden
| | - T Lebel
- State Herbarium of South Australia, Department for Environment and Water, Hackney Road, Adelaide 5000, South Australia
| | - S Mahadevakumar
- Forest Pathology Department, Division of Forest Protection, KSCSTE-Kerala Forest Research Institute, Peechi - 680 653, Thrissur, Kerala, India
| | - A Mateos
- Sociedad Micológica Extremeña, C/ Sagitario 14, 10001 Cáceres, Spain
| | - E R Osieck
- Jkvr. C.M. van Asch van Wijcklaan 19, 3972 ST Driebergen-Rijsenburg, The Netherlands
| | | | - S Sommai
- Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group (ACBG), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - K Ajithkumar
- Department of Plant Pathology, Main Agricultural Research Station, University of Agricultural Sciences, Raichur, Karnataka, India
| | - A Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
| | - F E Anderson
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - F Arenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - S Balashov
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - Á Bañares
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Apdo. 456, E-38200 La Laguna, Tenerife, Islas Canarias
| | - D K Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M V Bianchinotti
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
- Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| | - S Bien
- Sect. Mycology and Complex Diseases, Dept. Forest Protection, Northwest German Forest Research Institute (NW-FVA), Grätzelstr. 2, 37079 Göttingen, Germany
| | - P Bilański
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - A-G Boxshall
- School of Biosciences, University of Melbourne, Victoria, Australia
| | - M Bradshaw
- Harvard University, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | | | - F J S Calaça
- Laboratory of Basic, Applied Mycology and Scientific Dissemination (FungiLab), State University of Goiás, Anápolis, Goiás, Brazil
| | - C Campos-Quiroz
- Instituto de Investigaciones Agropecuarias (INIA), Av. Vicente Méndez 515, Chillán, Ñuble, Chile
| | - J Carrasco-Fernández
- Instituto de Investigaciones Agropecuarias (INIA), Av. Vicente Méndez 515, Chillán, Ñuble, Chile
| | - J F Castro
- Instituto de Investigaciones Agropecuarias (INIA), Av. Vicente Méndez 515, Chillán, Ñuble, Chile
| | - S Chaimongkol
- Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group (ACBG), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, Thailand
| | - S Chandranayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - Y Chen
- School of Life Sciences and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611 731, P.R. China
| | - D Comben
- Biosecurity Queensland, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - J D W Dearnaley
- School of Agriculture and Environmental Science, Faculty of Health, Engineering and Science, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - A S Ferreira-Sá
- Laboratory of Basic, Applied Mycology and Scientific Dissemination (FungiLab), State University of Goiás, Anápolis, Goiás, Brazil
| | - K Dhileepan
- Biosecurity Queensland, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - M L Díaz
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
- Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| | - P K Divakar
- Department of Pharmacology, Pharmacognosy and Botany (DU Botany), Faculty of Pharmacy, Plaza de Ramón y Cajal s/n, Universidad Complutense, 28040 Madrid, Spain
| | - S Xavier-Santos
- Laboratory of Basic, Applied Mycology and Scientific Dissemination (FungiLab), State University of Goiás, Anápolis, Goiás, Brazil
| | - A Fernández-Bravo
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - J Gené
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | | | - M Guerra
- Instituto de Investigaciones Agropecuarias (INIA), Av. Vicente Méndez 515, Chillán, Ñuble, Chile
| | - S Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - J Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - K Janik-Superson
- Department of Invertebrate Zoology & Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - R Jankowiak
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - M Jeppson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 461, SE40530 Göteborg, Sweden
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - M Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - L A Kelly
- Agri-Science Queensland, Department of Agriculture and Fisheries, Mareeba 4880, Queensland, Australia
| | - K Kezo
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - A N Khalid
- Institute of Botany, University of the Punjab, Quaid-e-Azam Campus-54590, Lahore, Pakistan
| | - P Khamsuntorn
- Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group (ACBG), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - D Kidanemariam
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M Kiran
- Department of Botany, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - E Lacey
- Microbial Screening Technologies, 28 Percival Rd, Smithfield, New South Wales 2164, Australia
| | - G J Langer
- Sect. Mycology and Complex Diseases, Dept. Forest Protection, Northwest German Forest Research Institute (NW-FVA), Grätzelstr. 2, 37079 Göttingen, Germany
| | - L V López-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, 03690 Alicante, Spain
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramón Margalef, University of Alicante, 03690 Alicante, Spain
| | - J J Luangsa-Ard
- Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group (ACBG), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - P Lueangjaroenkit
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center, Kasetsart University (BDCKU), Bangkok, Thailand
| | - H T Lumbsch
- The Field Museum of Natural History, Science & Education, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - J G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Department of Microbial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - L S Mamatha Bhanu
- Department of Biotechnology, Yuvaraja's College, University of Mysore, Mysuru - 570005, Karnataka, India
| | - T S Marney
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - J E Marqués-Gálvez
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - A Morte
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - A Naseer
- Institute of Botany, University of the Punjab, Quaid-e-Azam Campus-54590, Lahore, Pakistan
| | - A Navarro-Ródenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - O Oyedele
- Babcock University, Ilishan remo, Ogun State, Nigeria
| | - S Peters
- Sect. Mycology and Complex Diseases, Dept. Forest Protection, Northwest German Forest Research Institute (NW-FVA), Grätzelstr. 2, 37079 Göttingen, Germany
| | - S Piskorski
- Department of Algology and Mycology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - L Quijada
- Harvard University Herbaria, 20 Divinity Avenue, Cambridge, MA 02138, USA
| | - G H Ramírez
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
- Departamento de Agronomía, UNS, San Andrés 612, 8000 Bahía Blanca, Argentina
| | - K Raja
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - A Razzaq
- Institute of Botany, University of the Punjab, Quaid-e-Azam Campus-54590, Lahore, Pakistan
| | - V J Rico
- Department of Pharmacology, Pharmacognosy and Botany (DU Botany), Faculty of Pharmacy, Plaza de Ramón y Cajal s/n, Universidad Complutense, 28040 Madrid, Spain
| | - A Rodríguez
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | | | - R M Sánchez
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
- Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| | - C Santelices
- Instituto de Investigaciones Agropecuarias (INIA), Av. Vicente Méndez 515, Chillán, Ñuble, Chile
| | - A S Savitha
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, Raichur, Karnataka, India
| | - M Serrano
- University of Santiago de Compostela, 27002 Lugo, Spain
| | - L Leonardo-Silva
- Laboratory of Basic, Applied Mycology and Scientific Dissemination (FungiLab), State University of Goiás, Anápolis, Goiás, Brazil
| | - H Solheim
- Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 As, Norway
| | - S Somrithipol
- Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group (ACBG), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - M Y Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru-570 006, Karnataka, India
| | - H Stępniewska
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - D Strapagiel
- Biobank Lab, Department of Molecular Biophysics, University of Lodz, Pomorska 139, 90-235 Lodz, Poland
| | - T Taylor
- Biosecurity Queensland, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - D Torres-Garcia
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - J Vauras
- Biological Collections of Åbo Akademi University, Biodiversity Unit, Herbarium, FI-20014 University of Turku, Finland
| | - M Villarreal
- Departamento Ciencias de la Vida (Botánica), Facultad de Ciencias, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - C M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M Wołkowycki
- Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland
| | - W Yingkunchao
- Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group (ACBG), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, Thailand
| | - E Zapora
- Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - P W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
44
|
Crous PW, Begoude BAD, Boers J, Braun U, Declercq B, Dijksterhuis J, Elliott TF, Garay-Rodriguez GA, Jurjević Ž, Kruse J, Linde CC, Loyd A, Mound L, Osieck ER, Rivera-Vargas LI, Quimbita AM, Rodas CA, Roux J, Schumacher RK, Starink-Willemse M, Thangavel R, Trappe JM, van Iperen AL, Van Steenwinkel C, Wells A, Wingfield MJ, Yilmaz N, Groenewald JZ. New and Interesting Fungi. 5. Fungal Syst Evol 2022; 10:19-90. [PMID: 36789279 PMCID: PMC9903348 DOI: 10.3114/fuse.2022.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022] Open
Abstract
Nine new genera, 17 new species, nine new combinations, seven epitypes, three lectotypes, one neotype, and 14 interesting new host and / or geographical records are introduced in this study. New genera: Neobarrmaelia (based on Neobarrmaelia hyphaenes), Neobryochiton (based on Neobryochiton narthecii), Neocamarographium (based on Neocamarographium carpini), Nothocladosporium (based on Nothocladosporium syzygii), Nothopseudocercospora (based on Nothopseudocercospora dictamni), Paracamarographium (based on Paracamarographium koreanum), Pseudohormonema (based on Pseudohormonema sordidus), Quasiphoma (based on Quasiphoma hyphaenes), Rapidomyces (based on Rapidomyces narthecii). New species: Ascocorticium sorbicola (on leaves of Sorbus aucuparia, Belgium), Dactylaria retrophylli (on leaves of Retrophyllum rospigliosii, Colombia), Dactylellina miltoniae (on twigs of Miltonia clowesii, Colombia), Exophiala eucalyptigena (on dead leaves of Eucalyptus viminalis subsp. viminalis supporting Idolothrips spectrum, Australia), Idriellomyces syzygii (on leaves of Syzygium chordatum, South Africa), Microcera lichenicola (on Parmelia sulcata, Netherlands), Neobarrmaelia hyphaenes (on leaves of Hyphaene sp., South Africa), Neobryochiton narthecii (on dead leaves of Narthecium ossifragum, Netherlands), Niesslia pseudoexilis (on dead leaf of Quercus petraea, Serbia), Nothocladosporium syzygii (on leaves of Syzygium chordatum, South Africa), Nothotrimmatostroma corymbiae (on leaves of Corymbia henryi, South Africa), Phaeosphaeria hyphaenes (on leaves of Hyphaene sp., South Africa), Pseudohormonema sordidus (on a from human pacemaker, USA), Quasiphoma hyphaenes (on leaves of Hyphaene sp., South Africa), Rapidomyces narthecii (on dead leaves of Narthecium ossifragum, Netherlands), Reticulascus parahennebertii (on dead culm of Juncus inflexus, Netherlands), Scytalidium philadelphianum (from compressed air in a factory, USA). New combinations: Neobarrmaelia serenoae, Nothopseudocercospora dictamni, Dothiora viticola, Floricola sulcata, Neocamarographium carpini, Paracamarographium koreanum, Rhexocercosporidium bellocense, Russula lilacina. Epitypes: Elsinoe corni (on leaves of Cornus florida, USA), Leptopeltis litigiosa (on dead leaf fronds of Pteridium aquilinum, Netherlands), Nothopseudocercospora dictamni (on living leaves of Dictamnus albus, Russia), Ramularia arvensis (on leaves of Potentilla reptans, Netherlands), Rhexocercosporidium bellocense (on leaves of Verbascum sp., Germany), Rhopographus filicinus (on dead leaf fronds of Pteridium aquilinum, Netherlands), Septoria robiniae (on leaves of Robinia pseudoacacia, Belgium). Lectotypes: Leptopeltis litigiosa (on Pteridium aquilinum, France), Rhopographus filicinus (on dead leaf fronds of Pteridium aquilinum, Netherlands), Septoria robiniae (on leaves of Robinia pseudoacacia, Belgium). Neotype: Camarographium stephensii (on dead leaf fronds of Pteridium aquilinum, Netherlands). Citation: Crous PW, Begoude BAD, Boers J, Braun U, Declercq B, Dijksterhuis J, Elliott TF, Garay-Rodriguez GA, Jurjević Ž, Kruse J, Linde CC, Loyd A, Mound L, Osieck ER, Rivera-Vargas LI, Quimbita AM, Rodas CA, Roux J, Schumacher RK, Starink-Willemse M, Thangavel R, Trappe JM, van Iperen AL, Van Steenwinkel C, Wells A, Wingfield MJ, Yilmaz N, Groenewald JZ (2022) New and Interesting Fungi. 5. Fungal Systematics and Evolution 10: 19-90. doi: 10.3114/fuse.2022.10.02.
Collapse
Affiliation(s)
- P W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - B A D Begoude
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Institute for Agricultural Research for Development (IRAD), Yaounde, Cameroon
| | - J Boers
- Poststraat 50-104, 6701 AZ, Wageningen, Netherlands
| | - U Braun
- Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany
| | - B Declercq
- Molenbergstraat 1, B-9190 Stekene, Belgium
| | - J Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - T F Elliott
- Ecosystem Management, University of New England, Armidale, NSW 2351, Australia
| | - G A Garay-Rodriguez
- Department Agro-Environmental Sciences, College of Agricultural Sciences, University of Puerto Rico-Mayaguez Campus, Mayaguez, P.R. 00680, Puerto Rico
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - J Kruse
- Pfalzmuseum für Naturkunde - POLLICHIA-Museum, Hermann-Schäfer-Str. 17, 67098 Bad Dürkheim, Germany
| | - C C Linde
- Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2600, Australia
| | - A Loyd
- Bartlett Tree Experts, 13768 Hamilton Rd, Charlotte, NC 28278, USA
| | - L Mound
- Australian National Insect Collection, CSIRO, P.O. Box 1700, Canberra, ACT 2601, Australia
| | - E R Osieck
- Jkvr. C.M. van Asch van Wijcklaan 19, 3972 ST Driebergen-Rijsenburg, Netherlands Forestry Health Protection Programme Smurfit Kappa - Colombia Calle 15#18-109 Yumbo, Colombia
| | - L I Rivera-Vargas
- Department Agro-Environmental Sciences, College of Agricultural Sciences, University of Puerto Rico-Mayaguez Campus, Mayaguez, P.R. 00680, Puerto Rico
| | - A M Quimbita
- Department Agro-Environmental Sciences, College of Agricultural Sciences, University of Puerto Rico-Mayaguez Campus, Mayaguez, P.R. 00680, Puerto Rico
| | - C A Rodas
- Forestry Health Protection Programme Smurfit Kappa - Colombia Calle 15#18-109 Yumbo, Colombia
| | - J Roux
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | | | - M Starink-Willemse
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - R Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - J M Trappe
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5752, USA
- U.S. Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 Jefferson Way, Corvallis, Oregon 97331-8550, USA
| | - A L van Iperen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | - A Wells
- Australian National Insect Collection, CSIRO, P.O. Box 1700, Canberra, ACT 2601, Australia
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - N Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
45
|
Szczepkowski A, Gierczyk B, Kujawa A, Ślusarczyk T. Contribution to the Knowledge of Fungi of the Kampinos National Park (Central Poland): Part 6 – With Particular Emphasis on the Species Occurring on Windthrown Areas. ACTA MYCOLOGICA 2022. [DOI: 10.5586/am.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract
We identified 17 species of fungi that are new to Kampinos National Park. Sixteen were found during surveys of areas damaged by a strong wind in 2017. The remaining species was found outside the windthrow area. Descriptions of four species new to Poland (
Cortinarius subcompar
,
Hyaloscypha quercicola
,
Hypocrea tremelloides
, and
Trechispora
aff.
invisitata
) are also provided. The current number of macromycetes taxa identified in Kampinos National Park is 1,654.
Collapse
|
46
|
Yang EF, Karunarathna SC, Dai DQ, Stephenson SL, Elgorban AM, Al-Rejaie S, Xiong YR, Promputtha I, Samarakoon MC, Tibpromma S. Taxonomy and Phylogeny of Fungi Associated with Mangifera indica from Yunnan, China. J Fungi (Basel) 2022; 8:1249. [PMID: 36547582 PMCID: PMC9780836 DOI: 10.3390/jof8121249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
During investigations of saprobic fungi associated with mango (Mangifera indica) in Baoshan and Honghe of Yunnan Province (China), fungal taxa belonging to the orders Botryosphaeriales, Calosphaeriales, Chaetothyriales, Diaporthales, and Xylariales were recorded. Morphological examinations coupled with phylogenetic analyses of multigene sequences (ITS, LSU, SSU, tef1-α, rpb1, rpb2, β-tubulin and CAL) were used to identify the fungal taxa. A new genus viz. Mangifericola, four new species viz. Cyphellophora hongheensis, Diaporthe hongheensis, Hypoxylon hongheensis, and Mangifericola hongheensis, four new host and geographical records viz. Aplosporella artocarpi, Hypomontagnella monticulosa, Paraeutypella citricola and Pleurostoma ootheca, and two new collections of Lasiodiplodia are reported.
Collapse
Affiliation(s)
- Er-Fu Yang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 12211, Saudi Arabia
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 12211, Saudi Arabia
| | - Yin-Ru Xiong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
47
|
New Strain of Cyphellophora olivacea Exhibits Striking Tolerance to Sodium Bicarbonate. DIVERSITY 2022. [DOI: 10.3390/d14121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cyanobacterium strain Synechococcus cedrorum SAG 88.79 stock culture has fungal contamination stated by the Sammlung von Algenkulturen der Universität Göttingen itself. In this recent work, this particular fungal strain was isolated, identified, and morphologically characterised. The fungal strain AGSC12 belongs to the species Cyphellophora olivacea, with respect to the sequence similarity, phylogeny, and morphology of the strain. Colony morphology and growth capability were examined on SMA, EMMA, PDA, MEA, YEA, and YPA plates. Growth of the colonies was the most successful on YPA plates, followed by PDA and MEA containing plates. Surprisingly, the AGSC12 strain showed extreme tolerance to NaHCO3, albeit it, is is considered a general fungistatic compound. Moreover, positive association between the AGSC12 and SAG 88.79 strains was revealed, as the SAG 88.79 strain always attained higher cell density in co-cultures with the fungus than in mono-cultures. Besides, a taxonomic note on the SAG 88.79 strain itself was also stated.
Collapse
|
48
|
Dong QY, Wang Y, Wang ZQ, Liu YF, Yu H. Phylogeny and Systematics of the Genus Tolypocladium (Ophiocordycipitaceae, Hypocreales). J Fungi (Basel) 2022; 8:1158. [PMID: 36354925 PMCID: PMC9697939 DOI: 10.3390/jof8111158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/14/2023] Open
Abstract
The taxonomy and phylogeny of the genus Tolypocladium are herein revised based on the most comprehensive dataset to date. Two species-level phylogenies of Tolypocladium were constructed: a single-gene phylogeny (ITS) of 35 accepted species and a multigene phylogeny (nrSSU, nrLSU, tef-1α, rpb1, and rpb2) of 27 accepted species. Three new species, Tolypocladium pseudoalbum sp. nov., Tolypocladium subparadoxum sp. nov., and Tolypocladium yunnanense sp. nov., are described in the present study. The genetic divergences of four markers (ITS, tef-1α, rpb1 and rpb2) among Tolypocladium species are also reported. The results indicated that species of Tolypocladium were best delimited by rpb1 sequence data, followed by the sequence data for the rpb2, tef-1α, and ITS provided regions. Finally, a key to the 48 accepted species of Tolypocladium worldwide is provided.
Collapse
Affiliation(s)
- Quan-Ying Dong
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650504, China
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
| | - Zhi-Qin Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650504, China
| | - Yan-Fang Liu
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650504, China
| | - Hong Yu
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650504, China
| |
Collapse
|
49
|
Ghobad-Nejhad M, Antonín V, Moghaddam M, Langer E. Resources of Iranian agarics (Basidiomycota) with an outlook on their antioxidant potential. Front Microbiol 2022; 13:1015440. [DOI: 10.3389/fmicb.2022.1015440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Agaric fungi are an important group of macromycetes with diverse ecological and functional properties, yet are poorly studied in many parts of the world. Here, we comprehensively analyzed 558 agaric species in Iran to reveal their resources of edible and poisonous species as well as their ecological guilds and luminescence potential. We also made a thorough survey of the antioxidant activity of the species. Phylogenetic relationships were reconstructed based on nuclear ribosomal LSU and ITS sequences. Our results reveal that agarics of Iran comprise about 189 edible, 128 poisonous, 254 soil saprotrophic, 172 ectomycorrhizal, 146 wood-inhabiting, 18 leaf/litter-inhabiting, 9 parasitic, and 19 luminescent species. Twenty percent of the Iranian agaric species possess antioxidant activity, phylogenetically distributed in four orders and 21 agaric families. About 5% of the antioxidant species can be considered strong antioxidants, many of which are also edible and could be utilized to develop functional foods. This is the first study combining phylogeny and antioxidant potential of agaric mushrooms in a large scale, and the obtained results would guide the selection of agaric taxa to be examined in the future for taxonomic revisions, biotechnological applications, and applied phylogeny studies.
Collapse
|
50
|
Wu W, Diao Y. Anamorphic chaetosphaeriaceous fungi from China. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractChaetosphaeriaceae is one of the largest families in Sordariomycetes with its members commonly found on decaying leaf, fruit, branch, bark and wood in both terrestrial and submerged environment in nature. This paper reports our research result of diversity, taxonomy and phylogeny of anamorphic Chaetosphaeriaceae in China, which is based on a systematic study with an integrated approach of morphological observation and phylogenetic analysis for a large collection (> 1300 herbarium specimens and 1100 living strains). The family Chaetosphaeriaceae is expanded to accommodate 89 accepted genera, including 22 new genera and 10 newly assigned genera. Most of these genera (except for Chaetosphaeria and several other relatively large genera) are delimitated as monophyletic genera with well-defined diagnostic characters in morphology. The phylogenetic connection of non-phialidic Sporidesmium-like fungi is further confirmed and expanded to 10 different genera. The polyphyletic Codinaea/Dictyochaeta/Tainosphaeria complex is further resolved with a taxonomic framework of 28 monophyletic genera by redelimitation of Codinaea and Dictyochaeta with narrower concept, acceptance of the 16 established genera, and finally introduction of 10 new genera. Chloridium is phylogenetically redefined as monophyletic genus with narrower concept as typified by the type species, but a systematic review in both generic and species level is still needed. For biodiversity of chaetosphaeriaceous fungi, a total of 369 species in 76 genera, including 119 new species, 47 new combinations, and one new name, are documented. The identification keys are provided for most genera, especially the large genera such as Codinaea s. str., Codinaeella, Stilbochaeta, Cryptophiale, Thozetella, Dinemasporium and Pseudolachnella. In addition, ten known species were excluded from the family and reclassified. Systematic revision of several relatively large polyphyletic genera should be conducted in future studies, including Bahusutrabeeja, Ellisembia, Stanjehughesia, Cacumisporium, Chaetosphaeria, Chloridium, Craspedodidymum, Cryptophiale, Cryptophialoidea, Dictyochaetopsis, Minimidochium, and many published species of Codinaea and Dictyochaeta.
Collapse
|