1
|
Liang G, Yin H, Allard J, Ding F. Cost-efficient boundary-free surface patterning achieves high effective-throughput of time-lapse microscopy experiments. PLoS One 2022; 17:e0275804. [PMID: 36301804 PMCID: PMC9612557 DOI: 10.1371/journal.pone.0275804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Time-lapse microscopy plays critical roles in the studies of cellular dynamics. However, setting up a time-lapse movie experiments is not only laborious but also with low output, mainly due to the cell-losing problem (i.e., cells moving out of limited field of view), especially in a long-time recording. To overcome this issue, we have designed a cost-efficient way that enables cell patterning on the imaging surfaces without any physical boundaries. Using mouse embryonic stem cells as an example system, we have demonstrated that our boundary-free patterned surface solves the cell-losing problem without disturbing their cellular phenotype. Statistically, the presented system increases the effective-throughput of time-lapse microscopy experiments by an order of magnitude.
Collapse
Affiliation(s)
- Guohao Liang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Hong Yin
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Jun Allard
- Department of Mathematics, and Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Fangyuan Ding
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- Department of Mathematics, and Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Synthetic Biology, Department of Developmental and Cell Biology, and Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
2
|
Recent advances of three-dimensional micro-environmental constructions on cell-based biosensors and perspectives in food safety. Biosens Bioelectron 2022; 216:114601. [DOI: 10.1016/j.bios.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
|
3
|
Li S, Graham ES, Unsworth CP. Geometric micro-shapes facilitate trackless connections between human astrocytes. J Neural Eng 2021; 18. [PMID: 33601342 DOI: 10.1088/1741-2552/abe7ce] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/18/2021] [Indexed: 11/11/2022]
Abstract
Objective.Cell patterning approaches commonly employed to direct the cytoplasmic outgrowth from cell bodies have been via chemical cues or biomaterial tracks. However, complex network designs using these approaches create problems where multiple tracks lead to manifold obstructions in design. A less common but alternative cell patterning modality is to geometrically design the nodes to project the cytoplasmic processes into a specific direction, thus, removing the need for tracks. Janget alperformed an in-depth study of how rodent neuron primaries could be directed accurately using geometric micro-shapes. In parallel and in contrast, to the work of Janget alwe investigate, for the first time, the effect that micro-shape geometry has on the cytoplasmic process outgrowth of human cells of astrocyte origin using the biomaterial parylene-C.Approach.We investigated eight different types of parylene-C micro-shape on SiO2substrates consisting of the: circle, square, pentagon, hexagon, equilateral triangle and three isosceles triangles with top vertex angles of 14.2°, 28.8°, and 97.6°, respectively. We quantified how each micro-shape influenced the: cell patterning, the directionality of the cytoplasmic process outgrowth and the functionality for human astrocyte.Main results.Human astrocytes became equally well patterned on all different micro-shapes. Human astrocytes could discriminate the underlying micro-shape geometry and preferentially extended processes from the vertices of equilateral triangles and isosceles triangles where the vertex angle equal to 28.8° in a repeatable manner whilst remaining functional.Significance.We demonstrate how human astrocytes are extremely effective at directing their cytoplasmic process outgrowth from the vertices of geometric micro-shapes, in particular the top vertex of triangular shapes. The significance of this work is that it demonstrates that geometric micro-shapes offer an alternative patterning modality to direct cytoplasmic process outgrowth for human astrocytes, which can serve to simplify complex network design, thus, removing the need for tracks.
Collapse
Affiliation(s)
- Si Li
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Auckland, New Zealand
| | - E Scott Graham
- Department of Molecular Medicine and Pathology & Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Auckland, New Zealand
| |
Collapse
|
4
|
Hippocampal Neurons’ Alignment on Quartz Grooves and Parylene Cues on Quartz Substrate. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alignment and patterning of neurons have great importance in some research fields, especially for regenerative medicine and for the formation of artificial neural networks. Alignment of neurons on quartz grooves and parylene cues on quartz substrate was evaluated in this work. The neurons’ alignment on quartz grooves is considered to be topographical alignment, while the neurons’ alignment on parylene cues on quartz substrate is considered to be chemical alignment. Both quartz grooves’ and parylene cues’ widths were fabricated in a range from 2 µm to 8 µm; quartz grooves’ heights were in a range from 0.25 µm to 4 µm, while parylene cues’ heights were only 0.25 µm. Neurons were dissociated hippocampal neurons from rat E18. Neurons were cultivated on test substrates for 7 days before alignment evaluation. As expected, neurons aligned according to the direction of grooves and cues; however, transversal growth direction was also observed with much smaller tendency. Chemical alignment was found to be more effective than topographical alignment. If parylene cues are thin and distanced enough, then neurons have a tendency to follow the direction of individual parylene cues; however, neurons on quartz grooves have a tendency just to follow a preferable direction than individual quartz grooves.
Collapse
|
5
|
Li S, Graham ES, Unsworth CP. The Effect of Basic Microshapes on hNT Astrocytes Cytoplasmic Process Outgrowth. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2253-2256. [PMID: 33018456 DOI: 10.1109/embc44109.2020.9175331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Astrocytes are a non-homogeneous cell type, highly mobile which constantly extend and retract their cytoplasmic processes in what would seem random in direction. In this paper, we investigate how simple geometric microshapes can be used to control the outgrowth of human astrocytes cytoplasmic processes. We investigate the effect of how five regular microshapes: the circle, triangle, square, pentagon and hexagon control astrocyte cytoplasmic process outgrowth. For all the different microshape types, we observe that it is the corners of the shapes that that cause the astrocyte to produce spontaneous outgrowth except for the circle where the outgrowth occurs at a random radial position. This work suggests that the geometry of cell adhesive regions effects the outgrowth of hNT astrocytes.
Collapse
|
6
|
Raos BJ, Simpson MC, Doyle CS, Graham ES, Unsworth CP. Evaluation of parylene derivatives for use as biomaterials for human astrocyte cell patterning. PLoS One 2019; 14:e0218850. [PMID: 31237927 PMCID: PMC6592558 DOI: 10.1371/journal.pone.0218850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/31/2019] [Indexed: 01/09/2023] Open
Abstract
Cell patterning is becoming increasingly popular in neuroscience because it allows for the control in the location and connectivity of cells. A recently developed cell patterning technology uses patterns of an organic polymer, parylene-C, on a background of SiO2. When cells are cultured on the parylene-C/SiO2 substrate they conform to the underlying parylene-C geometry. Parylene-C is, however, just one member of a family of parylene polymers that have varying chemical and physical properties. In this work, we investigate whether two commercially available mainstream parylene derivatives, parylene-D, parylene-N and a more recent parylene derivative, parylene-HT to determine if they enable higher fidelity hNT astrocyte cell patterning compared to parylene-C. We demonstrate that all parylene derivatives are compatible with the existing laser fabrication method. We then demonstrate that parylene-HT, parylene-D and parylene-N are suitable for use as an hNT astrocyte cell attractive substrate and result in an equal quality of patterning compared to parylene-C. This work supports the use of alternative parylene derivatives for applications where their different physical and chemical properties are more suitable.
Collapse
Affiliation(s)
- Brad J. Raos
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
- * E-mail:
| | - M. Cather Simpson
- Departments of Chemistry & Physics, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
| | - Colin S. Doyle
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
| | - E. Scott Graham
- Department of Molecular Medicine and Pathology, and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Charles P. Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
7
|
Liu C, Zhou Y, Sun M, Li Q, Dong L, Ma L, Cheng K, Weng W, Yu M, Wang H. Light-Induced Cell Alignment and Harvest for Anisotropic Cell Sheet Technology. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36513-36524. [PMID: 28984126 DOI: 10.1021/acsami.7b07202] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Well-organized orientation of cells and anisotropic extracellular matrix (ECM) are crucial in engineering biomimetic tissues, such as muscles, arteries, and nervous system, and so on. This strategy, however, is only beginning to be explored. Here, we demonstrated a light-induced cell alignment and harvest for anisotropic cell sheets (ACS) technology using light-responsive TiO2 nanodots film (TNF) and photo-cross-linkable gelatin methacrylate (GelMA). Cell initial behaviors on TNF might be controlled by micropatterns of light-induced distinct surface hydroxyl features, owing to a sensing mechanism of myosin II-driven retraction of lamellipodia. Further light treatment allowed ACS detachment from TNF surface while simultaneously solidified the GelMA, realizing the automatic transference of ACS. Moreover, two detached ACS were successfully stacked into a 3D bilayer construct with controllable orientation of individual layer and maintained cell alignment for more than 7 days. Interestingly, the anisotropic HFF-1 cell sheets could further induce the HUVECs to form anisotropic capillary-like networks via upregulating VEGFA and ANGPT1 and producing anisotropic ECM. This developed integrated-functional ACS technology therefore provides a novel route to produce complex tissue constructs with well-defined orientations and may have a profound impact on regenerative medicine.
Collapse
Affiliation(s)
- Chao Liu
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Ying Zhou
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Miao Sun
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Qi Li
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Liang Ma
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Kui Cheng
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Wenjian Weng
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| | - Huiming Wang
- The Affiliated Stomatologic Hospital and ‡The First Affiliated Hospital of Medical College, Zhejiang University , Hangzhou 310003, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications and ∥The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
8
|
Yamamoto H, Demura T, Sekine K, Kono S, Niwano M, Hirano-Iwata A, Tanii T. Photopatterning Proteins and Cells in Aqueous Environment Using TiO2 Photocatalysis. J Vis Exp 2015:e53045. [PMID: 26554338 PMCID: PMC4692672 DOI: 10.3791/53045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Organic contaminants adsorbed on the surface of titanium dioxide (TiO2) can be decomposed by photocatalysis under ultraviolet (UV) light. Here we describe a novel protocol employing the TiO2 photocatalysis to locally alter cell affinity of the substrate surface. For this experiment, a thin TiO2 film was sputter-coated on a glass coverslip, and the TiO2 surface was subsequently modified with an organosilane monolayer derived from octadecyltrichlorosilane (OTS), which inhibits cell adhesion. The sample was immersed in a cell culture medium, and focused UV light was irradiated to an octagonal region. When a neuronal cell line PC12 cells were plated on the sample, cells adhered only on the UV-irradiated area. We further show that this surface modification can also be performed in situ, i.e., even when cells are growing on the substrate. Proper modification of the surface required an extracellular matrix protein collagen to be present in the medium at the time of UV irradiation. The technique presented here can potentially be employed in patterning multiple cell types for constructing coculture systems or to arbitrarily manipulate cells under culture.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University; CREST, Japan Science and Technology Agency;
| | - Takanori Demura
- School of Fundamental Science and Engineering, Waseda University
| | - Kohei Sekine
- School of Fundamental Science and Engineering, Waseda University
| | - Sho Kono
- School of Fundamental Science and Engineering, Waseda University
| | - Michio Niwano
- CREST, Japan Science and Technology Agency; Research Institute of Electrical Communication, Tohoku University
| | - Ayumi Hirano-Iwata
- CREST, Japan Science and Technology Agency; Graduate School of Biomedical Engineering, Tohoku University
| | - Takashi Tanii
- Faculty of Science and Engineering, Waseda University
| |
Collapse
|