1
|
Webster R, Quintana M, Yu B, Fluke S, Kafri R, Derry WB. CDK-4 regulates nucleolar size and metabolism at the cost of late-life fitness in C. elegans. Heredity (Edinb) 2025:10.1038/s41437-025-00769-7. [PMID: 40383750 DOI: 10.1038/s41437-025-00769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
Studies on aging have centered on two molecular pathways: CDK4/6 and insulin/mTORC1. These pathways are thought to influence aging through distinct mechanisms: mTORC1 by reprogramming systemic metabolism, and CDK4 through p16-mediated senescence and inflammatory signaling (SASP). Here, we investigate the connection between aging and CDK4 in Caenorhabditis elegans, an organism lacking both p16 and SASP. Using a conditional degradation system, we demonstrate that CDK-4 inhibition in C. elegans phenocopies its aging-related functions observed in mammals. Worms with depleted CDK-4 exhibited accelerated aging phenotypes, including reduced lifespan, decreased motility, increased yolk accumulation, and earlier onset of senescence. At the physiological level, CDK4-inhibited worms show substantial metabolic shifts; including enhanced protein synthesis, elevated ATP production, and increased fat accumulation. These metabo-aging phenotypes occur independently of mTORC1, instead operating through the canonical CDK-4 effectors LIN-35 (Rb) and EFL-1 (E2F).
Collapse
Affiliation(s)
- Rachel Webster
- Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental, Stem Cell and Cancer Biology Program, PEter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maria Quintana
- Developmental, Stem Cell and Cancer Biology Program, PEter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bin Yu
- Developmental, Stem Cell and Cancer Biology Program, PEter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stacey Fluke
- Developmental, Stem Cell and Cancer Biology Program, PEter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ran Kafri
- Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Developmental, Stem Cell and Cancer Biology Program, PEter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - W Brent Derry
- Developmental, Stem Cell and Cancer Biology Program, PEter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Kim D, El Khoury S, Pérez-Carrascal OM, DeSousa C, Jung DK, Bohley S, Wijaya L, Trang K, Shapira M. Gut microbiome remodeling provides protection from an environmental toxin. iScience 2025; 28:112209. [PMID: 40230520 PMCID: PMC11995125 DOI: 10.1016/j.isci.2025.112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Gut microbiomes contribute to animal health and fitness. The immense biochemical diversity of bacteria holds particular potential for neutralizing environmental toxins and thus helping hosts deal with new toxic challenges. To explore this potential, we used Caenorhabditis elegans harboring a defined microbiome, and the antibiotic neomycin as a model toxin, differentially affecting microbiome strains, and also toxic to worms. Worms exposed to neomycin showed delayed development and reduced survival but were protected when colonized with neomycin-resistant Stenotrophomonas. 16S rRNA sequencing, bacterial load quantification, genetic manipulation, and behavioral assays showed that protection was linked to enrichment of Stenotrophomonas carrying a neomycin-modifying enzyme. Enrichment was facilitated by altered bacterial competition in the gut, as well as by KGB-1/JNK-dependent behavioral changes. While microbiome remodeling conferred toxin resistance, it was associated with reduced infection resistance and metabolic changes. These findings suggest that microbiome adaptation can help animals cope with stressors but may have long-term consequences that add to effects of direct intoxication.
Collapse
Affiliation(s)
- Dan Kim
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah El Khoury
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Catherin DeSousa
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Da Kyung Jung
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Seneca Bohley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lila Wijaya
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kenneth Trang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Zhou Y, Ahsan FM, Soukas AA. The nuclear pore complex connects energy sensing to transcriptional plasticity in longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638704. [PMID: 40027662 PMCID: PMC11870510 DOI: 10.1101/2025.02.17.638704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
As the only gateway governing nucleocytoplasmic transport, the nuclear pore complex (NPC) maintains fundamental cellular processes and deteriorates with age. However, the study of age-related roles of single NPC components remains challenging owing to the complexity of NPC composition. Here we demonstrate that the master energy sensor, AMPK, post-translationally regulates the abundance of the nucleoporin NPP-16/NUP50 in response to nutrient availability and energetic stress. In turn, NPP-16/NUP50 promotes transcriptomic activation of lipid catabolism to extend the lifespan of Caenorhabditis elegans independently of its role in nuclear transport. Rather, the intrinsically disordered region (IDR) of NPP-16/NUP50, through direct interaction with the transcriptional machinery, transactivates the promoters of catabolic genes. Remarkably, elevated NPP-16/NUP50 levels are sufficient to promote longevity and metabolic stress defenses. AMPK-NUP50 signaling is conserved to human, indicating that bridging energy sensing to metabolic adaptation is an ancient role of this signaling axis.
Collapse
Affiliation(s)
- Yifei Zhou
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Fasih M Ahsan
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, United States
| | - Alexander A Soukas
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
| |
Collapse
|
4
|
Kumar S, Chadha P. Toxic Effects of 4-Bromodiphenyl Ether (BDE-3) on Antioxidant Enzymes, Cell Viability, Histology and Biomolecules in Zebrafish Embryo-Larvae. J Appl Toxicol 2025; 45:350-360. [PMID: 39367597 DOI: 10.1002/jat.4708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that are being used widely in industrial and consumers products such as plastics, electronics, furniture, textiles and so forth. They can undergo debromination process to form less brominated diphenyl ethers, which are bioaccumulative, more volatile and more toxic in nature. The current study was conducted to reveal the biochemical, apoptotic, histopathological, ultrastructural and biomolecular (ATR-FTIR) toxicity of 4-bromodiphenyl ether (BDE-3) in zebrafish larvae. After the 96-h LC50 determination, the zebrafish embryos were exposed to sublethal concentrations of BDE-3, that is, 0.79 and 1.59 mg/L. The MDA content was found to be significantly increased in BDE-3 exposed larvae whereas the FRAP activity was found to be decreased. The catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) activity were observed to be significantly increased, and a decreased superoxide dismutase (SOD) activity was reported after the BDE-3 exposure in zebrafish larvae. The cell viability was reported to be decreased in zebrafish larvae after BDE-3 exposure. Histopathological and ultrastructural alterations were also observed in the BDE-3 exposed zebrafish larvae. The changes in the biomolecules such as DNA and protein were also revealed via ATR-FTIR analysis. The present investigation will help to understand the toxic nature of less brominated diphenyl ethers and could be utilised to assess environmental risk.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
5
|
Núñez S, Millán-Laleona A, Cano-Lou J, Corella A, Moliner C, Cásedas G, Maggi F, López V, Gómez-Rincón C. Black mulberry ( Morus nigra L .) prevents deleterious effects of excess glucose in obese C. elegans decreasing lipofuscin accumulation and ROS production. Heliyon 2025; 11:e41898. [PMID: 39897855 PMCID: PMC11787508 DOI: 10.1016/j.heliyon.2025.e41898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Black mulberries have been traditionally used as antidiabetic agents and are a source of nutrients and phenolic compounds, particularly anthocyanins. The objective of this work is to determine if Morus nigra berries could prevent metabolic and obesity-related disorders using in vitro systems and in vivo alternative models such as C. elegans. An aqueous solvent-free extract from Morus nigra fruits rich in phenolic compounds like chlorogenic acid, hyperoside, rutin and cyanidin 3-glucoside was evaluated in the C. elegans obese model subjected to high glucose concentrations evaluating different parameters such as lipid droplets, lipofuscin accumulation and ROS production. The capacity of the extract to inhibit advance glycation end products and free radicals as well as pancreatic lipase and α-amylase was also evaluated in vitro. The black mulberry extract showed a significant capacity to inhibit the accumulation of lipid droplets, reducing by 50.40 % the fat deposits. The extract was able to reverse the deleterious effects of excess glucose in C. elegans enhancing stress resistance, preventing the accumulation of lipofuscin, and decreasing the ROS production. The anti-glycation and antioxidant effects in vitro were higher than the reference substances aminoguanidine and quercetin respectively. Morus nigra was also able to inhibit the pancreatic enzymes α-amylase and lipase and could be considered an interesting traditional food ingredient in the prevention of certain metabolic diseases.
Collapse
Affiliation(s)
- Sonia Núñez
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013, Zaragoza, Spain
| | - Adrián Millán-Laleona
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013, Zaragoza, Spain
| | - Javier Cano-Lou
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Andrea Corella
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Cristina Moliner
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013, Zaragoza, Spain
| | - Filippo Maggi
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Camerino, 62032, Italy
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013, Zaragoza, Spain
| | - Carlota Gómez-Rincón
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013, Zaragoza, Spain
| |
Collapse
|
6
|
Aguilar GR, Vidal B, Ji H, Evenblij J, Liao CP, Ji H, Valperga G, Fang-Yen C, Hobert O. Functional analysis of conserved C. elegans bHLH family members uncovers lifespan control by a peptidergic hub neuron. PLoS Biol 2025; 23:e3002979. [PMID: 39761329 PMCID: PMC11703107 DOI: 10.1371/journal.pbio.3002979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of 5 Caenorhabditis elegans bHLH genes, falling into 3 phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that 2 orthologs of the vertebrate bHLHe22/e23 genes, called hlh-17 and hlh-32, function redundantly to specify the identity of a single head interneuron class (AUA), as well as an individual motor neuron (VB2); (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C. elegans, RIC; and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion from these neurons causes a substantially extended lifespan of the animal, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.
Collapse
Affiliation(s)
- G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Hongzhu Ji
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Joke Evenblij
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
- Technische Universität, Braunschweig, Germany
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Hongfei Ji
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Giulio Valperga
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Christopher Fang-Yen
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
7
|
Liu X, Sun C, Zhou Q, Zheng X, Jiang S, Wang A, Han Y, Xu G, Liu B. Ferulic Acid Relieves the Oxidative Stress Induced by Oxidized Fish Oil in Oriental River Prawn ( Macrobrachium nipponense) with an Emphasis on Lipid Metabolism and Gut Microbiota. Antioxidants (Basel) 2024; 13:1463. [PMID: 39765792 PMCID: PMC11672775 DOI: 10.3390/antiox13121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
To investigate the potential of ferulic acid (FA) in attenuating the deleterious effects of oxidized fish oil (OF) on Macrobrachium nipponense, four experimental diets were formulated: 3% fresh fish oil (CT group, peroxide value: 2.2 mmol/kg), 3% oxidized fish oil (OF group, peroxide value: 318 mmol/kg), and 3% OF with an additional 160 and 320 mg/kg of FA (OF+FA160 group and OF+FA320 group, respectively). M. nipponense (initial weight: 0.140 ± 0.015 g) were randomly divided into four groups with six replicates (60 individuals per replicate) and reared for a period of 10 weeks. The results showed that the OF treatments significantly reduced the growth performance, the expression of antioxidant genes in the hepatopancreas, the levels of low-density lipoprotein cholesterol, and the gene expression levels of ACC, FAS, FABP10, ACBP, G6PDH, and SCD in the hepatopancreas (p < 0.05). OF supplementation significantly increased the levels of high-density lipoprotein cholesterol in hemolymph and the gene expression levels of CPT1 (p < 0.05). Addition of FA to the OF group significantly increased total bile acids (p < 0.05). In addition, it was found by Oil Red staining that the proportion of lipid droplets was significantly increased in the OF group (p < 0.05). However, the lipid droplets were alleviated by FA supplementation in the diet. OF was found to significantly reduce the diversity of intestinal microbiota by 16S rDNA sequencing and significantly increase the Firmicutes/Bacteroidetes (F/B) ratio (p < 0.05). Functional analysis of gut microbiota also showed that OF reduced lipolysis and led to fat deposition, which is related to gut microbiota. However, this study found that the composition of the gut microbiome of M. nipponense was changed by the addition of FA in the diet, including an increase in the abundance of Ruminococcaceae UCG-005 and Lachnospiraceae, a reduction in the F/B ratio, and an improvement in lipid metabolism. In conclusion, the OF induced oxidative stress, disturbed the balance of intestinal microbiota, promoted lipid accumulation, and caused disorders of lipid metabolism in M. nipponense by increasing lipid synthesis and reducing β-oxidation. However, the results of this study highlighted the potential of FA supplementation to modulate intestinal microbial composition, promote bile acid production, and activate genes related to lipid metabolism in the hepatopancreas, ultimately leading to a reduction in lipid deposition in M. nipponense.
Collapse
Affiliation(s)
- Xin Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xiaochuan Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Aimin Wang
- Yancheng Academy of Fishery Science, Yancheng 224051, China; zam--
| | - Yongquan Han
- Guangzhou Cohoo Biotechnology Co., Ltd., Guangzhou 510663, China;
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (X.L.); (C.S.); (Q.Z.); (X.Z.); (S.J.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
8
|
Lee JD, Lee J, Vang J, Pan X. Sodium Benzoate Induces Fat Accumulation and Reduces Lifespan via the SKN-1/Nrf2 Signaling Pathway: Evidence from the Caenorhabditis elegans Model. Nutrients 2024; 16:3753. [PMID: 39519584 PMCID: PMC11547805 DOI: 10.3390/nu16213753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sodium benzoate (SB) is widely used in food products, cosmetics, and medical solutions due to its antimicrobial properties. While it is generally considered safe and has potential neuroprotective benefits, SB has also been linked to adverse effects, including hepatic oxidative stress and inflammation. However, the potential effects of SB on obesity and lifespan remain poorly understood. OBJECTIVES In this study, we investigated the effects of SB on fat accumulation and lifespan using the nematode Caenorhabditis elegans (C. elegans) as a model system. METHODS Wild-type worms were exposed to various SB concentrations (0%, 0.0004%, 0.0008%, 0.004%, and 0.1%) and 0.016% glucose as a positive control for 72 h in liquid or on NGM agar plates. RESULT Fat accumulation was assessed through the Oil Red O staining, which revealed that SB induced more fat accumulation compared to vehicle control, even at low concentrations, including the dosage of 0.0004%. Lifespan analysis also demonstrated that SB significantly reduced lifespan in wild-type worms, even at low concentrations. Further investigations found that SKN-1 (an Nrf2 homolog) is necessary for SB-induced fat accumulation and lifespan reduction. Moreover, SB inhibited the nuclear localization of SKN-1 under oxidative stress conditions. CONCLUSION These findings suggest that SB may induce fat accumulation and reduce lifespan by inhibiting the oxidative stress-mediated SKN-1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA; (J.D.L.); (J.L.); (J.V.)
| |
Collapse
|
9
|
Subhadra M, Mir DA, Ankita K, Sindunathy M, Kishore HD, Ravichandiran V, Balamurugan K. Exploring diabesity pathophysiology through proteomic analysis using Caenorhabditis elegans. Front Endocrinol (Lausanne) 2024; 15:1383520. [PMID: 39539936 PMCID: PMC11557309 DOI: 10.3389/fendo.2024.1383520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Diabesity, characterized by obesity-driven Type 2 diabetes mellitus (T2DM), arises from intricate genetic and environmental interplays that induce various metabolic disorders. The systemic lipid and glucose homeostasis is controlled by an intricate cross-talk of internal glucose/insulin and fatty acid molecules to maintain a steady state of internal environment. Methods In this study, Caenorhabditis elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients to delve into the mechanistic foundations of diabesity. Various assays were conducted to measure intracellular triglyceride levels, lifespan, pharyngeal pumping rate, oxidative stress indicators, locomotor behavior, and dopamine signaling. Proteomic analysis was also performed to identify differentially regulated proteins and dysregulated KEGG pathways, and microscopy and immunofluorescence staining were employed to assess collagen production and anatomical integrity. Results Worms raised on diets high in glucose and cholesterol exhibited notably increased intracellular triglyceride levels, a decrease in both mean and maximum lifespan, and reduced pharyngeal pumping. The diabesity condition induced oxidative stress, evident from heightened ROS levels and distinct FT-IR spectroscopy patterns revealing lipid and protein alterations. Furthermore, impaired dopamine signaling and diminished locomotors behavior in diabesity-afflicted worms correlated with reduced motility. Through proteomic analysis, differentially regulated proteins encompassing dysregulated KEGG pathways included insulin signaling, Alzheimer's disease, and nicotinic acetylcholine receptor signaling pathways were observed. Moreover, diabesity led to decreased collagen production, resulting in anatomical disruptions validated through microscopy and immunofluorescence staining. Discussion This underscores the impact of diabesity on cellular components and structural integrity in C. elegans, providing insights into diabesity-associated mechanisms.
Collapse
Affiliation(s)
- Malaimegu Subhadra
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Dilawar Ahmad Mir
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Koley Ankita
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Hambram David Kishore
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | | |
Collapse
|
10
|
Zhang R, Huang X, Zhou C, Zhang Q, Jia D, Xie X, Zhang J. Network pharmacology-based mechanism analysis of dauricine on the alleviating Aβ-induced neurotoxicity in Caenorhabditis elegans. BMC Complement Med Ther 2024; 24:321. [PMID: 39215261 PMCID: PMC11363685 DOI: 10.1186/s12906-024-04589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Dauricine (DAU), a benzyl tetrahydroisoquinoline alkaloid isolated from the root of Menispermum dauricum DC, exhibits promising anti-Alzheimer's disease (AD) effects, but its underlying mechanisms remain inadequately investigated. This paper aims to identify potential targets and molecular mechanisms of DAU in AD treatment. METHODS Network pharmacology and molecular docking simulation method were used to screen and focus core targets. Various transgenic Caenorhabditis elegans models were chosen to validate the anti-AD efficacy and mechanism of DAU. RESULTS There are 66 potential DAU-AD target intersections identified from 100 DAU and 3036 AD-related targets. Subsequent protein-protein interaction (PPI) network analysis identified 16 core targets of DAU for anti-AD. PIK3CA, AKT1 and mTOR were predicted to be the central targets with the best connectivity through the analysis of "compound-target-biological process-pathway network". Molecular docking revealed strong binding affinities between DAU and PIK3CA, AKT1, and mTOR. In vivo experiments demonstrated that DAU effectively reduced paralysis in AD nematodes caused by Aβ aggregation toxicity, downregulated expression of PIK3CA, AKT1, and mTOR homologues (age-1, akt-1, let-363), and upregulated expression of autophagy genes and the marker protein LGG-1. Simultaneously, DAU increased lysosomal content and enhanced degradation of the autophagy-related substrate protein P62. Thioflavin T(Th-T)staining experiment revealed that DAU decreased Aβ accumulation in AD nematodes. Further experiments also confirmed DAU's protein scavenging activity in polyglutamine (polyQ) aggregation nematodes. CONCLUSION Collectively, the mechanism of DAU against AD may be related to the activation of the autophagy-lysosomal protein clearance pathway, which contributes to the decrease of Aβ aggregation and the restoration of protein homeostasis.
Collapse
Affiliation(s)
- Ranran Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Xiaoyan Huang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Chunling Zhou
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Qian Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Dongsheng Jia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoliang Xie
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ju Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China.
| |
Collapse
|
11
|
Wagner PM, Salgado MA, Turani O, Fornasier SJ, Salvador GA, Smania AM, Bouzat C, Guido ME. Rhythms in lipid droplet content driven by a metabolic oscillator are conserved throughout evolution. Cell Mol Life Sci 2024; 81:348. [PMID: 39136766 PMCID: PMC11335272 DOI: 10.1007/s00018-024-05355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
The biological clock in eukaryotes controls daily rhythms in physiology and behavior. It displays a complex organization that involves the molecular transcriptional clock and the redox oscillator which may coordinately work to control cellular rhythms. The redox oscillator has emerged very early in evolution in adaptation to the environmental changes in O2 levels and has been shown to regulate daily rhythms in glycerolipid (GL) metabolism in different eukaryotic cells. GLs are key components of lipid droplets (LDs), intracellular storage organelles, present in all living organisms, and essential for energy and lipid homeostasis regulation and survival; however, the cell bioenergetics status is not constant across time and depends on energy demands. Thus, the formation and degradation of LDs may reflect a time-dependent process following energy requirements. This work investigated the presence of metabolic rhythms in LD content along evolution by studying prokaryotic and eukaryotic cells and organisms. We found sustained temporal oscillations in LD content in Pseudomonas aeruginosa bacteria and Caenorhabditis elegans synchronized by temperature cycles, in serum-shock synchronized human embryonic kidney cells (HEK 293 cells) and brain tumor cells (T98G and GL26) after a dexamethasone pulse. Moreover, in synchronized T98G cells, LD oscillations were altered by glycogen synthase kinase-3 (GSK-3) inhibition that affects the cytosolic activity of the metabolic oscillator or by knocking down LIPIN-1, a key GL synthesizing enzyme. Overall, our findings reveal the existence of metabolic oscillations in terms of LD content highly conserved across evolutionary scales notwithstanding variations in complexity, regulation, and cell organization.
Collapse
Affiliation(s)
- Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Mauricio A Salgado
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Ornella Turani
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Santiago J Fornasier
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Gabriela A Salvador
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Andrea M Smania
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Cecilia Bouzat
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
12
|
Sala AJ, Grant RA, Imran G, Morton C, Brielmann RM, Gorgoń S, Watts J, Bott LC, Morimoto RI. Nuclear receptor signaling via NHR-49/MDT-15 regulates stress resilience and proteostasis in response to reproductive and metabolic cues. Genes Dev 2024; 38:380-392. [PMID: 38816072 PMCID: PMC11216168 DOI: 10.1101/gad.351829.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
The ability to sense and respond to proteotoxic insults declines with age, leaving cells vulnerable to chronic and acute stressors. Reproductive cues modulate this decline in cellular proteostasis to influence organismal stress resilience in Caenorhabditis elegans We previously uncovered a pathway that links the integrity of developing embryos to somatic health in reproductive adults. Here, we show that the nuclear receptor NHR-49, an ortholog of mammalian peroxisome proliferator-activated receptor α (PPARα), regulates stress resilience and proteostasis downstream from embryo integrity and other pathways that influence lipid homeostasis and upstream of HSF-1. Disruption of the vitelline layer of the embryo envelope, which activates a proteostasis-enhancing intertissue pathway in somatic cells, triggers changes in lipid catabolism gene expression that are accompanied by an increase in fat stores. NHR-49, together with its coactivator, MDT-15, contributes to this remodeling of lipid metabolism and is also important for the elevated stress resilience mediated by inhibition of the embryonic vitelline layer. Our findings indicate that NHR-49 also contributes to stress resilience in other pathways known to change lipid homeostasis, including reduced insulin-like signaling and fasting, and that increased NHR-49 activity is sufficient to improve proteostasis and stress resilience in an HSF-1-dependent manner. Together, our results establish NHR-49 as a key regulator that links lipid homeostasis and cellular resilience to proteotoxic stress.
Collapse
Affiliation(s)
- Ambre J Sala
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA;
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Rogan A Grant
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ghania Imran
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Claire Morton
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Renee M Brielmann
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Szymon Gorgoń
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Jennifer Watts
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Laura C Bott
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA;
| |
Collapse
|
13
|
Oleson BJ, Bhattrai J, Zalubas SL, Kravchenko TR, Ji Y, Jiang EL, Lu CC, Madden CR, Coffman JG, Bazopoulou D, Jones JW, Jakob U. Early life changes in histone landscape protect against age-associated amyloid toxicities through HSF-1-dependent regulation of lipid metabolism. NATURE AGING 2024; 4:48-61. [PMID: 38057386 PMCID: PMC11481004 DOI: 10.1038/s43587-023-00537-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Transient events during development can exert long-lasting effects on organismal lifespan. Here we demonstrate that exposure of Caenorhabditis elegans to reactive oxygen species during development protects against amyloid-induced proteotoxicity later in life. We show that this protection is initiated by the inactivation of the redox-sensitive H3K4me3-depositing COMPASS complex and conferred by a substantial increase in the heat-shock-independent activity of heat shock factor 1 (HSF-1), a longevity factor known to act predominantly during C. elegans development. We show that depletion of HSF-1 leads to marked rearrangements of the organismal lipid landscape and a significant decrease in mitochondrial β-oxidation and that both lipid and metabolic changes contribute to the protective effects of HSF-1 against amyloid toxicity. Together, these findings link developmental changes in the histone landscape, HSF-1 activity and lipid metabolism to protection against age-associated amyloid toxicities later in life.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Janakraj Bhattrai
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah L Zalubas
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tessa R Kravchenko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Ji
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Emily L Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Christine C Lu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ciara R Madden
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Julia G Coffman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daphne Bazopoulou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biology, University of Crete, Heraklion, Greece
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Yavorov-Dayliev D, Milagro FI, Ayo J, Oneca M, Goyache I, López-Yoldi M, Aranaz P. Glucose-lowering effects of a synbiotic combination containing Pediococcus acidilactici in C. elegans and mice. Diabetologia 2023; 66:2117-2138. [PMID: 37584728 PMCID: PMC10542285 DOI: 10.1007/s00125-023-05981-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 08/17/2023]
Abstract
AIMS/HYPOTHESIS Modulation of gut microbiota has emerged as a promising strategy to treat or prevent the development of different metabolic diseases, including type 2 diabetes and obesity. Previous data from our group suggest that the strain Pediococcus acidilactici CECT9879 (pA1c) could be an effective probiotic for regulating glucose metabolism. Hence, the objectives of this study were to verify the effectiveness of pA1c on glycaemic regulation in diet-induced obese mice and to evaluate whether the combination of pA1c with other normoglycaemic ingredients, such as chromium picolinate (PC) and oat β-glucans (BGC), could increase the efficacy of this probiotic on the regulation of glucose and lipid metabolism. METHODS Caenorhabditis elegans was used as a screening model to describe the potential synbiotic activities, together with the underlying mechanisms of action. In addition, 4-week-old male C57BL/6J mice were fed with a high-fat/high-sucrose diet (HFS) for 6 weeks to induce hyperglycaemia and obesity. Mice were then divided into eight groups (n=12 mice/group) according to dietary supplementation: control-diet group; HFS group; pA1c group (1010 colony-forming units/day); PC; BGC; pA1c+PC+BGC; pA1c+PC; and pA1c+BGC. Supplementations were maintained for 10 weeks. Fasting blood glucose was determined and an IPGTT was performed prior to euthanasia. Fat depots, liver and other organs were weighed, and serum biochemical variables were analysed. Gene expression analyses were conducted by real-time quantitative PCR. Sequencing of the V3-V4 region of the 16S rRNA gene from faecal samples of each group was performed, and differential abundance for family, genera and species was analysed by ALDEx2R package. RESULTS Supplementation with the synbiotic (pA1c+PC+BGC) counteracted the effect of the high glucose by modulating the insulin-IGF-1 signalling pathway in C. elegans, through the reversal of the glucose nuclear localisation of daf-16. In diet-induced obese mice, all groups supplemented with the probiotic significantly ameliorated glucose tolerance after an IPGTT, demonstrating the glycaemia-regulating effect of pA1c. Further, mice supplemented with pA1c+PC+BGC exhibited lower fasting blood glucose, a reduced proportion of visceral adiposity and a higher proportion of muscle tissue, together with an improvement in the brown adipose tissue in comparison with the HFS group. Besides, the effect of the HFS diet on steatosis and liver damage was normalised by the synbiotic. Gene expression analyses demonstrated that the synbiotic activity was mediated not only by modulation of the insulin-IGF-1 signalling pathway, through the overexpression of GLUT-1 and GLUT-4 mediators, but also by a decreased expression of proinflammatory cytokines such as monocyte chemotactic protein-1. 16S metagenomics demonstrated that the synbiotic combinations allowed an increase in the concentration of P. acidilactici, together with improvements in the intestinal microbiota such as a reduction in Prevotella and an increase in Akkermansia muciniphila. CONCLUSIONS/INTERPRETATION Our data suggest that the combination of pA1c with PC and BGC could be a potential synbiotic for blood glucose regulation and may help to fight insulin resistance, diabetes and obesity.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL, Navarra, Spain
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Josune Ayo
- Genbioma Aplicaciones SL, Navarra, Spain
| | | | - Ignacio Goyache
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Miguel López-Yoldi
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
15
|
Shen K, Durieux J, Mena CG, Webster BM, Kimberly Tsui C, Zhang H, Joe L, Berendzen K, Dillin A. The germline coordinates mitokine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554217. [PMID: 37873079 PMCID: PMC10592821 DOI: 10.1101/2023.08.21.554217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans , neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the WNT ligand EGL-20, which activate the mitochondrial unfolded protein response (UPR MT ) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-peripheral UPR MT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, like WNT and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPR MT activation. We also find that the germline tissue itself is essential in UPR MT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.
Collapse
|
16
|
Turner CD, Stuhr NL, Ramos CM, Van Camp BT, Curran SP. A dicer-related helicase opposes the age-related pathology from SKN-1 activation in ASI neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.01.560409. [PMID: 37873147 PMCID: PMC10592859 DOI: 10.1101/2023.10.01.560409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Coordination of cellular responses to stress are essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here we identify how SKN-1 activation in two ciliated ASI neurons in C. elegans results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of non-coding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a novel regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, drh-1 , in the intestine, can oppose the e2ffects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell non-autonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system. SIGNIFICANCE STATEMENT Unlike activation, an understudied fundamental question across biological systems is how to deactivate a pathway, process, or enzyme after it has been turned on. The irony that the activation of a transcription factor that is meant to be protective can diminish health was first documented by us at the organismal level over a decade ago, but it has long been appreciated that chronic activation of the human ortholog of SKN-1, NRF2, could lead to chemo- and radiation resistance in cancer cells. A colloquial analogy to this biological idea is a sink faucet that has an on valve without a mechanism to shut the water off, which will cause the sink to overflow. Here, we define this off valve.
Collapse
|
17
|
Xie J, Hou X, He W, Xiao J, Cao Y, Liu X. Astaxanthin reduces fat storage in a fat-6/ fat-7 dependent manner determined using high fat Caenorhabditis elegans. Food Funct 2023; 14:7347-7360. [PMID: 37490309 DOI: 10.1039/d3fo01403g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Although astaxanthin has been shown to have high potential for weight loss, the specific action site and signal pathway generally cannot be confirmed in other animal models. This prevents us from finding therapeutic targets. Hence, we further illuminated its efficacy and specific action sites by using Caenorhabditis elegans (C. elegans). In this study, 60 μM astaxanthin supplementation reduced overall fat deposition and triglyceride levels by 21.47% and 22.00% (p < 0.01). The content of large lipid droplets was reversed after astaxanthin treatment, and the ratio of oleic acid/stearic acid (C18:1Δ9/C18:0) decreased significantly, which were essential substrates for triglyceride biosynthesis. In addition, astaxanthin prevented obesity caused by excessive energy accumulation and insufficient energy consumption. Furthermore, the above effects were induced by sbp-1/mdt-15 and insulin/insulin-like growth factor pathways, and finally co-regulated the specific site-fat-6 and fat-7 down-regulation. These results provided insight into therapeutic targets for future astaxanthin as a nutritional health product to relieve obesity.
Collapse
Affiliation(s)
- Junting Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoning Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wanshi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
18
|
Ma C, Feng Y, Li X, Sun L, He Z, Gan J, He M, Zhang X, Chen X. Potential Therapeutic Effects of Policosanol from Insect Wax on Caenorhabditis elegans Models of Parkinson's Disease. J Neuroimmune Pharmacol 2023; 18:127-144. [PMID: 36637699 DOI: 10.1007/s11481-022-10057-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/17/2022] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. The standard treatments for PD focus on symptom relief rather than attempting to address the underlying degenerative processes completely. This study aimed to evaluate the potential therapeutic effects of policosanol derived from insect wax (PIW) by investigating improvements in disease symptoms represented in Caenorhabditis elegans models of PD. For our assessments, we used the following three models: NL5901, which is a transgenic model for α-synuclein aggregation; wild-type N2 induced with 6-hydroxydopamine (6-OHDA); and 6-OHDA-induced BZ555 as a model for loss of dopaminergic neurons (DNs). Specifically, we examined the effects of PIW treatment on α-synuclein aggregation, the loss of DNs, lipid abundance, and the lifespan of treated organisms. Further, we examined treatment-related changes in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), glutathione S-transferase (GST), and superoxide dismutase (SOD), as well as the mRNA production profiles of relevant genes. A 10 µg/mL dose of PIW reduced the aggregation of α-synuclein in NL5901 and suppressed the loss of DNs in 6-OHDA-induced BZ555. Overall, PIW treatment decreased ROS and MDA levels, restored lipid abundance, and prolonged the lifespans of worms in all the three models, which may be associated with changes in the expression profiles of genes related to cell survival and oxidative stress response pathways. Our findings show that PIW alleviated the symptoms of PD in these models, possibly by regulating the stress responses initiated by injuries such as α-synuclein aggregation or 6-OHDA treatment.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Long Sun
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Zhao He
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Jin Gan
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| | - Minjie He
- Health Management Center, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan Province, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China.
| | - Xiaoming Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming, 650224, Yunnan Province, China
| |
Collapse
|
19
|
Núñez S, Moliner C, Valero MS, Mustafa AM, Maggi F, Gómez-Rincón C, López V. Antidiabetic and anti-obesity properties of a polyphenol-rich flower extract from Tagetes erecta L. and its effects on Caenorhabditis elegans fat storages. J Physiol Biochem 2023:10.1007/s13105-023-00953-5. [PMID: 36961724 DOI: 10.1007/s13105-023-00953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by a high blood sugar level that can cause severe complications to the organism or even death when not treated. However, certain dietary habits and foods may have beneficial effects on this condition. A polyphenolic-rich extract (containing hyperoside, isoquercitrin, quercetin, ellagic acid, and vanillic acid) of Tageres erecta L. (T. erecta) was obtained from yellow and orange flowers using an ethanolic Soxhlet extraction. These extracts were screened for antidiabetic and anti-obesity properties using in vitro and in vivo procedures. The capacity to inhibit the enzymes lipase and α-glucosidase, as well as the inhibition of advance glycation end-products (AGEs) was tested in vitro. Caenorhabditis elegans (C. elegans) was used as an obesity in vivo model to assess extracts effects on fat accumulation using the wild-type strain N2 and a mutant with no N3 fatty acid desaturase activity BX24. Extracts from both cultivars (yellow and orange) T. erecta presented in vitro inhibitory activity against the enzymes lipase and α-glucosidase, showing lower IC50 values than acarbose (control). They also showed important activity in preventing AGEs formation. The polyphenol-rich matrices reduced the fat content of obese worms in the wild-type strain (N2) down to levels of untreated C. elegans, with no significant differences found between negative control (100% reduction) and both tested samples (p < 0.05). Meanwhile, the fat reduction was considerably lower in the BX24 mutants (fat-1(wa-9)), suggesting that N3 fatty acid desaturase activity could be partially involved in the T. erecta flower effect. Our findings suggested that polyphenols from T. erecta can be considered candidate bioactive compounds in the prevention and improvement of metabolic chronic diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Sonia Núñez
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
| | - Cristina Moliner
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
| | - Marta Sofía Valero
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Ahmed M Mustafa
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlota Gómez-Rincón
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain.
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain.
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| |
Collapse
|
20
|
Hernández-Cruz E, Eugenio-Pérez D, Ramírez-Magaña KJ, Pedraza-Chaverri J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS OMEGA 2023; 8:8936-8959. [PMID: 36936291 PMCID: PMC10018526 DOI: 10.1021/acsomega.2c07025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is a natural physiological process where the levels of oxidants, such as reactive oxygen species (ROS) and nitrogen (RNS), exceed the strategy of antioxidant defenses, culminating in the interruption of redox signaling and control. Oxidative stress is associated with multiple pathologies, including premature aging, neurodegenerative diseases, obesity, diabetes, atherosclerosis, and arthritis. It is not yet clear whether oxidative stress is the cause or consequence of these diseases; however, it has been shown that using compounds with antioxidant properties, particularly compounds of natural origin, could prevent or slow down the progress of different pathologies. Within this context, the Caenorhabditis elegans (C. elegans) model has served to study the effect of different metabolites and natural compounds, which has helped to decipher molecular targets and the effect of these compounds on premature aging and some diseases such as neurodegenerative diseases and dyslipidemia. This article lists the studies carried out on C. elegans in which metabolites and natural extracts have been tested against oxidative stress and the pathologies associated with providing an overview of the discoveries in the redox area made with this nematode.
Collapse
Affiliation(s)
- Estefani
Yaquelin Hernández-Cruz
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biological Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Dianelena Eugenio-Pérez
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
21
|
Staab TA, McIntyre G, Wang L, Radeny J, Bettcher L, Guillen M, Peck MP, Kalil AP, Bromley SP, Raftery D, Chan JP. The lipidomes of C. elegans with mutations in asm-3/acid sphingomyelinase and hyl-2/ceramide synthase show distinct lipid profiles during aging. Aging (Albany NY) 2023; 15:650-674. [PMID: 36787434 PMCID: PMC9970312 DOI: 10.18632/aging.204515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Lipid metabolism affects cell and physiological functions that mediate animal healthspan and lifespan. Lipidomics approaches in model organisms have allowed us to better understand changes in lipid composition related to age and lifespan. Here, using the model C. elegans, we examine the lipidomes of mutants lacking enzymes critical for sphingolipid metabolism; specifically, we examine acid sphingomyelinase (asm-3), which breaks down sphingomyelin to ceramide, and ceramide synthase (hyl-2), which synthesizes ceramide from sphingosine. Worm asm-3 and hyl-2 mutants have been previously found to be long- and short-lived, respectively. We analyzed longitudinal lipid changes in wild type animals compared to mutants at 1-, 5-, and 10-days of age. We detected over 700 different lipids in several lipid classes. Results indicate that wildtype animals exhibit increased triacylglycerols (TAG) at 10-days compared to 1-day, and decreased lysophoshatidylcholines (LPC). We find that 10-day hyl-2 mutants have elevated total polyunsaturated fatty acids (PUFA) and increased LPCs compared to 10-day wildtype animals. These changes mirror another short-lived model, the daf-16/FOXO transcription factor that is downstream of the insulin-like signaling pathway. In addition, we find that hyl-2 mutants have poor oxidative stress response, supporting a model where mutants with elevated PUFAs may accumulate more oxidative damage. On the other hand, 10-day asm-3 mutants have fewer TAGs. Intriguingly, asm-3 mutants have a similar lipid composition as the long-lived, caloric restriction model eat-2/mAChR mutant. Together, these analyses highlight the utility of lipidomic analyses to characterize metabolic changes during aging in C. elegans.
Collapse
Affiliation(s)
- Trisha A. Staab
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Grace McIntyre
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joycelyn Radeny
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Lisa Bettcher
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Melissa Guillen
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Margaret P. Peck
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Azia P. Kalil
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | | | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jason P. Chan
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| |
Collapse
|
22
|
Myszka R, Enfrin M, Giustozzi F. Microplastics in road dust: A practical guide for identification and characterisation. CHEMOSPHERE 2023; 315:137757. [PMID: 36610511 DOI: 10.1016/j.chemosphere.2023.137757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The contamination of the environment by microplastics (MPs) in road dust poses a serious ecological and health concern. MPs have been detected in road dust worldwide and their presence has been mainly attributed to plastic litter fragmentation and vehicle tyre abrasion. Although current technologies such as Raman and Fourier Transform InfraRed spectroscopy as well as Scanning Electron Microscopy are capable of detecting MPs in road dust, the analysis of MPs shape and MPs smaller than 20 μm is limited and often labour demanding. More accurate, cost-effective and rapid techniques have now become necessary to analyse MPs in road dust, particularly since the development of large infrastructure projects that incorporate recycled plastic into road assets and roadside furniture. Nile red (NR) staining is a promising technique to identify MPs in environmental samples; however, it has not yet been applied to road dust. This study investigates the use of NR fluorescence microscopy to detect MPs in road dust and provides information about MP amount, shape and size distribution. The staining duration and temperature, solvent selection and NR concentration were optimised considering 33 different road dust materials, including 13 types of plastic. The NR staining procedure developed in this work is capable of successfully differentiating between MPs down to 1 μm and other non-plastic road dust materials. Future applications include assessing the contribution of plastic-modified roads to MP pollution, comparing the level of MP pollution in urban and rural areas and providing a rapid, simple, inexpensive and reliable monitoring approach for further studies to compare MP using a singular optimised methodology.
Collapse
Affiliation(s)
- Rebecca Myszka
- Royal Melbourne Institute of Technology, Civil and Infrastructure Engineering, Melbourne 3001, Victoria, Australia
| | - Marie Enfrin
- Royal Melbourne Institute of Technology, Civil and Infrastructure Engineering, Melbourne 3001, Victoria, Australia
| | - Filippo Giustozzi
- Royal Melbourne Institute of Technology, Civil and Infrastructure Engineering, Melbourne 3001, Victoria, Australia.
| |
Collapse
|
23
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
24
|
Insight of Silkworm Pupa Oil Regulating Oxidative Stress and Lipid Metabolism in Caenorhabditis elegans. Foods 2022; 11:foods11244084. [PMID: 36553826 PMCID: PMC9777899 DOI: 10.3390/foods11244084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Silkworm pupa oil (SPO) contains unsaturated fatty acids, tocopherols, and phytosterols, which can regulate serum total cholesterol or be used as an antioxidant. In this study, we investigated the impacts of SPO on the antioxidant stress and lipid metabolism of Caenorhabditis elegans. The lifespan of the C. elegans fed with different SPO concentrations was determined. The levels of endogenous reactive oxygen species (ROS) were analyzed with the fluorescent probe method. The activity of antioxidant enzymes and the content of malondialdehyde (MDA) were analyzed. The transcription level of specific mRNA was characterized with q-PCR. The survival time of the mutant strain under oxidative stress was determined by daf-2 (CB1370) mutant, sod-3 (GA186) mutant, and skn-1 (EU31) mutant. As for the lipid metabolism, the lipid accumulation was determined with an Oil-Red-O (ORO) staining. The transcription level of specific mRNA was determined by q-PCR. The results showed that the SPO feeding enhanced the activities of antioxidant enzyme by upregulating the expression of the genes skn-1, and sod-3 to decrease the production of ROS and MDA, which prolonged the life of nematodes treated with juglone. ORO staining analysis indicated the feeding of SPO decreased intestinal fat accumulation, downregulated expression of fat-5, fat-6, fat-7, and nhr-80, and upregulated age-1 and tph-1 expression. Conclusively, SPO enhanced the antioxidant capacity by regulating the skn-1 and sod-3 expression of antioxidant gene and reducing the fat accumulation by the insulin/IGF signaling pathway and nuclear hormone receptor nhr-80 signaling pathway of nematodes. This study provides new evidence for the antioxidant and lipid-lowering mechanisms of SPO in C. elegans.
Collapse
|
25
|
Lo WS, Roca M, Dardiry M, Mackie M, Eberhardt G, Witte H, Hong R, Sommer RJ, Lightfoot JW. Evolution and Diversity of TGF-β Pathways are Linked with Novel Developmental and Behavioral Traits. Mol Biol Evol 2022; 39:msac252. [PMID: 36469861 PMCID: PMC9733428 DOI: 10.1093/molbev/msac252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is essential for numerous biologic functions. It is a highly conserved pathway found in all metazoans including the nematode Caenorhabditis elegans, which has also been pivotal in identifying many components. Utilizing a comparative evolutionary approach, we explored TGF-β signaling in nine nematode species and revealed striking variability in TGF-β gene frequency across the lineage. Of the species analyzed, gene duplications in the DAF-7 pathway appear common with the greatest disparity observed in Pristionchus pacificus. Specifically, multiple paralogues of daf-3, daf-4 and daf-7 were detected. To investigate this additional diversity, we induced mutations in 22 TGF-β components and generated corresponding double, triple, and quadruple mutants revealing both conservation and diversification in function. Although the DBL-1 pathway regulating body morphology appears highly conserved, the DAF-7 pathway exhibits functional divergence, notably in some aspects of dauer formation. Furthermore, the formation of the phenotypically plastic mouth in P. pacificus is partially influenced through TGF-β with the strongest effect in Ppa-tag-68. This appears important for numerous processes in P. pacificus but has no known function in C. elegans. Finally, we observe behavioral differences in TGF-β mutants including in chemosensation and the establishment of the P. pacificus kin-recognition signal. Thus, TGF-β signaling in nematodes represents a stochastic genetic network capable of generating novel functions through the duplication and deletion of associated genes.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Marianne Roca
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior—Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Marisa Mackie
- Department of Biology, California State University, Northridge, CA
| | - Gabi Eberhardt
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Ray Hong
- Department of Biology, California State University, Northridge, CA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - James W Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior—Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| |
Collapse
|
26
|
Han F, Kan C, Wu D, Kuang Z, Song H, Luo Y, Zhang L, Hou N, Sun X. Irisin protects against obesity-related chronic kidney disease by regulating perirenal adipose tissue function in obese mice. Lipids Health Dis 2022; 21:115. [PMID: 36335399 PMCID: PMC9636726 DOI: 10.1186/s12944-022-01727-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Compared with typical visceral fat deposits in obesity and metabolic syndrome, perirenal adipose tissue (PRAT) dysfunction is more closely linked to obesity-related chronic kidney disease (OB-CKD). The myokine irisin reportedly promotes positive outcomes in metabolic disease. This study investigated whether irisin could reduce urinary albumin excretion and demonstrate renoprotective effects through the regulation of PRAT function in obese mice. METHODS C57BL/6 J mice received a high-fat diet (HFD) with or without concurrent administration of irisin. Glucose tolerance, plasma levels of free fatty acids, and urinary albumin excretion were assessed, along with renal morphology. The vascular endothelial growth factor and nitric oxide in glomeruli were also analyzed, in addition to PRAT function-associated proteins. RESULTS Irisin administration significantly reduced the final body weight, fat mass, and free fatty acids, without reducing PRAT mass, in HFD mice. Furthermore, irisin decreased urinary albumin excretion and attenuated both renal fibrosis and lipid accumulation. Irisin administration led to increases in PRAT function-associated proteins, including sirtuin1, uncoupling protein-1, and heme-oxygenase-1. Ex vivo treatment of PRAT and glomeruli with irisin also restored PRAT function. Finally, irisin treatment restored the vascular endothelial growth factor-nitric oxide axis. CONCLUSIONS Irisin attenuated metabolic disorders and protected against OB-CKD by normalizing the PRAT-kidney axis. These results suggest that agents targeting PRAT activation might be useful for treatment of OB-CKD.
Collapse
Affiliation(s)
- Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Di Wu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zengguang Kuang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongwei Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Le Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
27
|
Raquel Ferreira Paulo I, Basílio de Oliveira Caland R, Orlando Muñoz Cadavid C, Martins Melo G, Soares De Castro Bezerra L, Pons E, Peña L, de Paula Oliveira R. β-carotene genetically-enriched lyophilized orange juice increases antioxidant capacity and reduces β-amyloid proteotoxicity and fat accumulation in Caenorhabditis elegans. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100141. [PMID: 36304081 PMCID: PMC9593878 DOI: 10.1016/j.fochms.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/01/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
β-carotene content of genetically modified orange was 33-fold higher. β-carotene-enriched LOJ provided greater antioxidant capacity and stress resistance. β-carotene-enriched LOJ reduced β-amyloid proteotoxicity. β-carotene-enriched LOJ showed higher hypolipidemic activity in glucose rich diet.
Citrus sinensis orange juice is an excellent dietary source of β-carotene, a well-known antioxidant. However, β-carotene concentrations are relatively low in most cultivars. We developed a new orange through metabolic engineering strategy (GS) with 33.72-fold increase in β-carotene content compared to its conventional counterpart (CV). Using Caenorhabditis elegans, we found that animals treated with GS showed a greater reduction in intracellular reactive oxygen species (ROS) which is associated with a greater resistance to oxidative stress and induction of the expression of antioxidant genes. Moreover, animals treated with GS orange showed a more effective protection against β-amyloid proteotoxicity and greater hypolipidemic effect under high glucose diet compared to animals treated with CV. These data demonstrate that the increased amount of β-carotene in orange actually provides a greater beneficial effect in C. elegans and a valuable proof of principle to support further studies in mammals and humans.
Collapse
Affiliation(s)
| | - Ricardo Basílio de Oliveira Caland
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí-IFPI, Brazil,Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Giovanna Martins Melo
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Elsa Pons
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Spain
| | - Leandro Peña
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil,Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Spain
| | - Riva de Paula Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil,Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil,Corresponding author at: Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
28
|
Souza FRM, Silva GMM, Cadavid COM, Lisboa LDS, Silva MMCL, Paiva WS, Ferreira MJP, de Paula Oliveira R, Rocha HAO. Antioxidant Baccharis trimera Leaf Extract Suppresses Lipid Accumulation in C. elegans Dependent on Transcription Factor NHR-49. Antioxidants (Basel) 2022; 11:antiox11101913. [PMID: 36290635 PMCID: PMC9598929 DOI: 10.3390/antiox11101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a global public health problem that is associated with oxidative stress. One of the strategies for the treatment of obesity is the use of drugs; however, these are expensive and have numerous side effects. Therefore, the search for new alternatives is necessary. Baccharis trimera is used in Brazilian folk medicine for the treatment of obesity. Here, B. trimera leaf extract (BT) showed antioxidant activity in seven in vitro tests, and it was not toxic to 3T3 murine fibroblasts or Caenorhabditis elegans. Furthermore, BT reduces the intracellular amount of reactive oxygen species and increases C. elegans survival. Moreover, these effects were not dependent on transcription factors. The inhibition of fat accumulation by BT in the C. elegans model was also investigated. BT reduced lipid accumulation in animals fed diets without or with high amount of glucose. Furthermore, it was observed using RNA interference (iRNA) that BT depends on the transcription factor NHR-49 to exert its effect. Phytochemical analysis of BT revealed rutin, hyperoside, and 5-caffeoylquinic acid as the main BT components. Thus, these data demonstrate that BT has antioxidant and anti-obesity effects. However, further studies should be conducted to understand the mechanisms involved in its action.
Collapse
Affiliation(s)
- Flávia Roberta Monteiro Souza
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Giovanna Melo Martins Silva
- Laboratório de Genética Bioquímica (LGB), Programa de Pós-graduação em Biotecnologia, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Cesar Orlando Muñoz Cadavid
- Laboratório de Genética Bioquímica (LGB), Programa de Pós-graduação em Biotecnologia, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Lucas dos Santos Lisboa
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Maylla Maria Correia Leite Silva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Weslley Souza Paiva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Marcelo José Pena Ferreira
- Laboratório de Fitoquímica, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo—USP, Rua do Matão, 277, São Paulo 05508-090, Brazil
| | - Riva de Paula Oliveira
- Laboratório de Genética Bioquímica (LGB), Programa de Pós-graduação em Biotecnologia, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
- Correspondence: ; Tel.: +55-84-99999-9561
| |
Collapse
|
29
|
Pasteurized Akkermansia muciniphila Reduces Fat Accumulation via nhr-49-Mediated Nuclear Hormone Signaling Pathway in Caenorhabditis elegans. Molecules 2022; 27:molecules27196159. [PMID: 36234692 PMCID: PMC9572206 DOI: 10.3390/molecules27196159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pasteurized Akkermansia muciniphila (p-AKK) is related to lipid metabolism and helps control obesity. The main goal of this study was to investigate the role and mechanism of p-AKK in lipid metabolism using Caenorhabditis elegans. The results showed that p-AKK increased the healthy lifespan of nematodes and helped maintain exercise ability in aging, suggesting a potential increase in energy expenditure. The overall fat deposition and triglyceride level were significantly decreased and the p-AKK anti-oxidative stress helped to regulate fatty acid composition. Additionally, the transcriptome results showed that p-AKK increased the expression of lipo-hydrolase and fatty acid β-oxidation-related genes, including lipl-4, nhr-49, acs-2 and acdh-8, while it decreased the expression of fat synthesis-related genes, including fat-7, elo-2 and men-1. These results partially explain the mechanisms underlying the fact that p-AKK decreases fat accumulation of C. elegans via nhr-49/acs-2-mediated signaling involved in fatty acid β-oxidation and synthesis.
Collapse
|
30
|
Meraş İ, Chotard L, Liontis T, Ratemi Z, Wiles B, Seo JH, Van Raamsdonk JM, Rocheleau CE. The Rab GTPase activating protein TBC-2 regulates endosomal localization of DAF-16 FOXO and lifespan. PLoS Genet 2022; 18:e1010328. [PMID: 35913999 PMCID: PMC9371356 DOI: 10.1371/journal.pgen.1010328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
FOXO transcription factors have been shown to regulate longevity in model organisms and are associated with longevity in humans. To gain insight into how FOXO functions to increase lifespan, we examined the subcellular localization of DAF-16 in C. elegans. We show that DAF-16 is localized to endosomes and that this endosomal localization is increased by the insulin-IGF signaling (IIS) pathway. Endosomal localization of DAF-16 is modulated by endosomal trafficking proteins. Disruption of the Rab GTPase activating protein TBC-2 increases endosomal localization of DAF-16, while inhibition of TBC-2 targets, RAB-5 or RAB-7 GTPases, decreases endosomal localization of DAF-16. Importantly, the amount of DAF-16 that is localized to endosomes has functional consequences as increasing endosomal localization through mutations in tbc-2 reduced the lifespan of long-lived daf-2 IGFR mutants, depleted their fat stores, and DAF-16 target gene expression. Overall, this work identifies endosomal localization as a mechanism regulating DAF-16 FOXO, which is important for its functions in metabolism and aging. FOXO transcription factors have been shown to modulate lifespan in multiple model organisms and to be associated with longevity in humans. Here we describe a new localization of the C. elegans FOXO transcription factor, called DAF-16. We report that DAF-16 localizes to endosomes, membrane compartments internalized from the plasma membrane at the cell surface. We demonstrate that expansion of these endosome compartments by disruption of an endosomal regulator called TBC-2 results in increased localization of DAF-16 on endosomes at the expense of nuclear localization in the intestinal cells. This results in altered expression of DAF-16 target genes, reduced fat storage and decreased lifespan. These results demonstrate the importance of endosomal trafficking for proper localization of DAF-16 and suggest that the endosome is an important site of FOXO regulation. An intriguing possibility based on our results is that storage of FOXO on endosomes facilitates the mobilization of FOXO as a rapid response to environmental stress.
Collapse
Affiliation(s)
- İçten Meraş
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Laëtitia Chotard
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
| | - Thomas Liontis
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Brain Repair and Integrative Neuroscience Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Zakaria Ratemi
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Benjamin Wiles
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jung Hwa Seo
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jeremy M. Van Raamsdonk
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Brain Repair and Integrative Neuroscience Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Christian E. Rocheleau
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
31
|
Côa F, Delite FDS, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NANOIMPACT 2022; 27:100413. [PMID: 35940564 DOI: 10.1016/j.impact.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.
Collapse
Affiliation(s)
- Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
32
|
Somuah-Asante S, Sakamoto K. Stress Buffering and Longevity Effects of Amber Extract on Caenorhabditis elegans ( C. elegans). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123858. [PMID: 35744983 PMCID: PMC9228897 DOI: 10.3390/molecules27123858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Amber is a fossilized tree resin historically used in wound healing and stress relief. Unfortunately, there is no concrete scientific evidence supporting such efficacy. Here, the stress buffering and longevity effect of Amber extract (AE) in Caenorhabditis elegans (C. elegans) was investigated. Survival assays, health span assays, Enzyme-Linked Immunosorbent Assay (ELISA), Stress biomarker detection assays, Green Fluorescence Proteins (GFP), Real Time quantitative PCR (RT-qPCR) and C. elegans mutants were employed to investigate the stress buffering and longevity effect of AE. In the study, it was observed that AE supplementation improved health span and survival in both normal and stressed worms. Additionally, AE positively regulated stress hormones (cortisol, oxytocin, and dopamine) and decreased fat and reactive oxygen species (ROS) accumulation. Through the Insulin/IGF-1 signaling (IIS) pathway, AE enhanced the nuclear localization of DAF-16 and the expression of heat shock proteins and antioxidant genes in GFP-tagged worms and at messenger RNA levels. Finally, AE failed to increase the survival of daf-16, daf-2, skn-1 and hsf-1 loss-of-function mutants, confirming the involvement of the IIS pathway. Evidently, AE supplementation relieves stress and enhances longevity. Thus, amber may be a potent nutraceutical for stress relief.
Collapse
Affiliation(s)
- Sandra Somuah-Asante
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan;
| | - Kazuichi Sakamoto
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan;
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Correspondence: ; Tel.: +81-29-853-4676
| |
Collapse
|
33
|
Kaulich E, Carroll T, Ackley BD, Tang YQ, Hardege I, Nehrke K, Schafer WR, Walker DS. Distinct roles for two Caenorhabditis elegans acid-sensing ion channels in an ultradian clock. eLife 2022; 11:e75837. [PMID: 35666106 PMCID: PMC9374441 DOI: 10.7554/elife.75837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Biological clocks are fundamental to an organism's health, controlling periodicity of behaviour and metabolism. Here, we identify two acid-sensing ion channels, with very different proton sensing properties, and describe their role in an ultradian clock, the defecation motor program (DMP) of the nematode Caenorhabditis elegans. An ACD-5-containing channel, on the apical membrane of the intestinal epithelium, is essential for maintenance of luminal acidity, and thus the rhythmic oscillations in lumen pH. In contrast, the second channel, composed of FLR-1, ACD-3 and/or DEL-5, located on the basolateral membrane, controls the intracellular Ca2+ wave and forms a core component of the master oscillator that controls the timing and rhythmicity of the DMP. flr-1 and acd-3/del-5 mutants show severe developmental and metabolic defects. We thus directly link the proton-sensing properties of these channels to their physiological roles in pH regulation and Ca2+ signalling, the generation of an ultradian oscillator, and its metabolic consequences.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Trae Carroll
- Department of Pathology and Lab Medicine, University of Rochester Medical CenterRochesterUnited States
| | - Brian D Ackley
- Department of Molecular Biosciences, University of KansasLawrenceUnited States
| | - Yi-Quan Tang
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Iris Hardege
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical CenterRochesterUnited States
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Biology, KU LeuvenLeuvenBelgium
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
34
|
Wang Y, Xiang YF, Liu AL. Comparative and Combined Effects of Epigallocatechin-3-gallate and Caffeine in Reducing Lipid Accumulation in Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:279-285. [PMID: 35633414 DOI: 10.1007/s11130-022-00978-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) and caffeine, two phytochemicals found in a wide range of natural dietary sources, have been reported to have protective effects against hyperlipidemia, a major risk factor for cardiovascular disease. However, their relative efficacy and synergy in lowering lipid level are unclear. This study intended to compare lipid-lowering activity of EGCG and caffeine and to elucidate their joint action using Caenorhabditis elegans (C. elegans) as a model organism. The worms were exposed to EGCG, caffeine or both agents, and lipid accumulation determined by levels of total lipids, triglycerides and cholesterol was monitored. A 3 × 3 factorial design combined with response surface methodology was used to characterize the nature of interactive effects. Total lipids, triglycerides and cholesterol in C. elegans were reduced by either EGCG or caffeine in a dose-dependent manner, with EGCG displaying a stronger lipid-lowering efficacy than caffeine. Overall, the EGCG/caffeine combination for lowering lipids was more effective than either substance alone. Factorial regression models revealed that the combination was antagonistic for total lipid reduction, perhaps due to a "ceiling" effect, and was synergistic for triglyceride-lowering and additive for cholesterol-lowering. Taken together, our work proposes the use of a combination of EGCG and caffeine as an alternative dietary intervention for the prevention of hyperlipidemia, and additionally highlights the suitability of C. elegans model for evaluating lipid-lowering capacity of natural products.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Fan Xiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Yancheng Center for Disease Control and Prevention, Yancheng, 224000, China
| | - Ai-Lin Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
35
|
Piperine Improves Lipid Dysregulation by Modulating Circadian Genes Bmal1 and Clock in HepG2 Cells. Int J Mol Sci 2022; 23:ijms23105611. [PMID: 35628429 PMCID: PMC9144199 DOI: 10.3390/ijms23105611] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Metabolic disorders are closely associated with the dysregulation of circadian rhythms. Many bioactive components with lipid metabolism-regulating effects have been reported to function through circadian clock-related mechanisms. As the main pungent principle of black pepper, piperine (PIP) has been demonstrated to possess anti-obesity bioactivity by affecting hepatic lipid metabolism-related factors. However, whether the circadian clock genes Bmal1 and Clock are involved in the protective effect of PIP against lipid metabolism disorders remains unknown. In this work, oleic acid (OA) induced lipid accumulation in HepG2 cells. The effect of PIP on redox status, mitochondrial functions, and circadian rhythms of core clock genes were evaluated. Results revealed that PIP alleviated circadian desynchrony, ROS overproduction, and mitochondrial dysfunction. A mechanism study showed that PIP could activate the SREBP-1c/PPARγ and AMPK/AKT-mTOR signaling pathways in a Bmal1/Clock-dependent manner in HepG2 cells. These results indicated that Bmal1 and Clock played important roles in the regulating effect of PIP on hepatic lipid homeostasis.
Collapse
|
36
|
Matty MA, Lau HE, Haley JA, Singh A, Chakraborty A, Kono K, Reddy KC, Hansen M, Chalasani SH. Intestine-to-neuronal signaling alters risk-taking behaviors in food-deprived Caenorhabditis elegans. PLoS Genet 2022; 18:e1010178. [PMID: 35511794 PMCID: PMC9070953 DOI: 10.1371/journal.pgen.1010178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Animals integrate changes in external and internal environments to generate behavior. While neural circuits detecting external cues have been mapped, less is known about how internal states like hunger are integrated into behavioral outputs. Here, we use the nematode C. elegans to examine how changes in internal nutritional status affect chemosensory behaviors. We show that acute food deprivation leads to a reversible decline in repellent, but not attractant, sensitivity. This behavioral change requires two conserved transcription factors MML-1 (MondoA) and HLH-30 (TFEB), both of which translocate from the intestinal nuclei to the cytoplasm during food deprivation. Next, we identify the insulin-like peptide INS-31 as a candidate ligand relaying food-status signals from the intestine to other tissues. Further, we show that neurons likely use the DAF-2 insulin receptor and AGE-1/PI-3 Kinase, but not DAF-16/FOXO to integrate these intestine-released peptides. Altogether, our study shows how internal food status signals are integrated by transcription factors and intestine-neuron signaling to generate flexible behaviors via the gut-brain axis.
Collapse
Affiliation(s)
- Molly A. Matty
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Hiu E. Lau
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Jessica A. Haley
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Anupama Singh
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Ahana Chakraborty
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Karina Kono
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Kirthi C. Reddy
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Malene Hansen
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| |
Collapse
|
37
|
Goncalves J, Wan Y, Garcia LR. Stearoyl-CoA desaturases sustain cholinergic excitation and copulatory robustness in metabolically aging C. elegansmales. iScience 2022; 25:104082. [PMID: 35372802 PMCID: PMC8968053 DOI: 10.1016/j.isci.2022.104082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Regulated metabolism is required for behaviors as adults age. To understand how lipid usage affects motor coordination, we studied male Caenorhabditis elegans copulation as a model of energy-intensive behavior. Copulation performance drops after 48 h of adulthood. We found that 12–24 h before behavioral decline, males prioritize exploring and copulation behavior over feeding, suggesting that catabolizing stored metabolites, such as lipids, occurs during this period. Because fat-6/7-encoded stearoyl-CoA desaturases are essential for converting the ingested fatty acids to lipid storage, we examined the copulation behavior and neural calcium transients of fat-6(lf); fat-7(lf) mutants. In wild-type males, intestinal and epithelial fat-6/7 expression increases during the first 48 h of adulthood. The fat-6(lf); fat-7(lf) behavioral and metabolic defects indicate that in aging wild-type males, the increased expression of stearoyl-CoA desaturases in the epidermis may indirectly modulate the levels of EAG-family K+ channels in the reproductive cholinergic neurons and muscles. Tissue distribution of fat-6-encoded stearoyl-CoA desaturase changes in adulthood Markov modeling shows reduced feeding linked with more exploring in day 2 males fat-6(lf); fat-7(lf) disrupted behavior can be rescued by epidermal FAT-6 fat-6(lf); fat-7(lf) alters neural and muscular ERG and EAG K+ channel expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
38
|
Qu Z, Zhang L, Huang W, Zheng S. Vitamin K2 Enhances Fat Degradation to Improve the Survival of C. elegans. Front Nutr 2022; 9:858481. [PMID: 35495953 PMCID: PMC9051363 DOI: 10.3389/fnut.2022.858481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The beneficial effects of vitamin K (VK) on various chronic age-related syndromes have generally been considered dependent on its antioxidant effects. However, due to the distinct bioavailability and biological activities of VKs, exactly which of these activities and by what mechanisms they might act still need to be elucidated. In this study, we found that VK2 can extend the lifespan of C. elegans and improve the resistance to pathogen infection, heat stress and H2O2-induced inner oxidative stress. Importantly, the roles of VK2 on aging and stress resistance were shown to be dependent on enhanced fat metabolism and not due to its antioxidant effects. Moreover, the genes related to fat metabolism that were up-regulated following VK2 treatment play key roles in improving survival. Obesity is a leading risk factor for developing T2DM, and taking VKs has been previously considered to improve the insulin sensitivity associated with obesity and T2DM risk. However, our results showed that VK2 can significantly influence the expression of genes related to fat metabolism, including those that regulate fatty acid elongation, desaturation, and synthesis of fatty acid-CoA. VK2 enhanced the fatty acid β-oxidation activity in peroxisome to degrade and digest fatty acid-CoA. Our study implies that VK2 can enhance fat degradation and digestion to improve survival, supporting the effectiveness of VK2-based medical treatments. VK2 is mainly produced by gut bacteria, suggesting that VK2 might facilitate communication between the gut microbiota and the host intestinal cells to influence fat metabolism.
Collapse
Affiliation(s)
- Zhi Qu
- Medical School, Henan University, Kaifeng, China
- School of Nursing and Health, Henan University, Kaifeng, China
| | - Lu Zhang
- Medical School, Henan University, Kaifeng, China
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wei Huang
- Medical School, Henan University, Kaifeng, China
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shanqing Zheng
- Medical School, Henan University, Kaifeng, China
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, China
| |
Collapse
|
39
|
Wang MM, Wang F, Li G, Tang MT, Wang C, Zhou QQ, Zhou T, Gu Q. Antioxidant and hypolipidemic activities of pectin isolated from citrus canning processing water. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Hu R, Zhang Y, Qian W, Leng Y, Long Y, Liu X, Li J, Wan X, Wei X. Pediococcus acidilactici Promotes the Longevity of C. elegans by Regulating the Insulin/IGF-1 and JNK/MAPK Signaling, Fat Accumulation and Chloride Ion. Front Nutr 2022; 9:821685. [PMID: 35433778 PMCID: PMC9010657 DOI: 10.3389/fnut.2022.821685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics are known to contribute to the anti-oxidation, immunoregulation, and aging delay. Here, we investigated the extension of lifespan by fermented pickles-origin Pediococcus acidilactici (PA) in Caenorhabditis elegans (C. elegans), and found that PA promoted a significantly extended longevity of wild-type C. elegans. The further results revealed that PA regulated the longevity via promoting the insulin/IGF-1 signaling, JNK/MAPK signaling but not TOR signaling in C. elegans, and that PA reduced the reactive oxygen species (ROS) levels and modulated expression of genes involved in fatty acids uptake and lipolysis, thus reducing the fat accumulation in C. elegans. Moreover, this study identified the nrfl-1 as the key regulator of the PA-mediated longevity, and the nrfl-1/daf-18 signaling might be activated. Further, we highlighted the roles of one chloride ion exchanger gene sulp-6 in the survival of C. elegans and other two chloride ion channel genes clh-1 and clh-4 in the prolonged lifespan by PA-feeding through the modulating expression of genes involved in inflammation. Therefore, these findings reveal the detailed and novel molecular mechanisms on the longevity of C. elegans promoted by PA.
Collapse
|
41
|
Yavorov-Dayliev D, Milagro FI, Ayo J, Oneca M, Aranaz P. Pediococcus acidilactici CECT9879 (pA1c) Counteracts the Effect of a High-Glucose Exposure in C. elegans by Affecting the Insulin Signaling Pathway (IIS). Int J Mol Sci 2022; 23:ijms23052689. [PMID: 35269839 PMCID: PMC8910957 DOI: 10.3390/ijms23052689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The increasing prevalence of metabolic syndrome-related diseases, including type-2 diabetes and obesity, makes it urgent to develop new alternative therapies, such as probiotics. In this study, we have used Caenorhabditis elegans under a high-glucose condition as a model to examine the potential probiotic activities of Pediococcusacidilactici CECT9879 (pA1c). The supplementation with pA1c reduced C. elegans fat accumulation in a nematode growth medium (NGM) and in a high-glucose (10 mM) NGM medium. Moreover, treatment with pA1c counteracted the effect of the high glucose by reducing reactive oxygen species by 20%, retarding the aging process and extending the nematode median survival (>2 days in comparison with untreated control worms). Gene expression analyses demonstrated that the probiotic metabolic syndrome-alleviating activities were mediated by modulation of the insulin/IGF-1 signaling pathway (IIS) through the reversion of the glucose-nuclear-localization of daf-16 and the overexpression of ins-6 and daf-16 mediators, increased expression of fatty acid (FA) peroxisomal β-oxidation genes, and downregulation of FA biosynthesis key genes. Taken together, our data suggest that pA1c could be considered a potential probiotic strain for the prevention of the metabolic syndrome-related disturbances and highlight the use of C. elegans as an appropriate in vivo model for the study of the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain; (D.Y.-D.); (J.A.); (M.O.)
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
| | - Fermín I. Milagro
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948-425600 (ext. 806553)
| | - Josune Ayo
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain; (D.Y.-D.); (J.A.); (M.O.)
| | - María Oneca
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain; (D.Y.-D.); (J.A.); (M.O.)
| | - Paula Aranaz
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
42
|
Raffaele M, Kovacovicova K, Biagini T, Lo Re O, Frohlich J, Giallongo S, Nhan JD, Giannone AG, Cabibi D, Ivanov M, Tonchev AB, Mistrik M, Lacey M, Dzubak P, Gurska S, Hajduch M, Bartek J, Mazza T, Micale V, Curran SP, Vinciguerra M. Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects. GeroScience 2022; 44:463-483. [PMID: 34820764 PMCID: PMC8612119 DOI: 10.1007/s11357-021-00487-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Accumulation of senescent cells may drive age-associated alterations and pathologies. Senolytics are promising therapeutics that can preferentially eliminate senescent cells. Here, we performed a high-throughput automatized screening (HTS) of the commercial LOPAC®Pfizer library on aphidicolin-induced senescent human fibroblasts, to identify novel senolytics. We discovered the nociceptin receptor FQ opioid receptor (NOP) selective ligand 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole (MCOPPB, a compound previously studied as potential anxiolytic) as the best scoring hit. The ability of MCOPPB to eliminate senescent cells in in vitro models was further tested in mice and in C. elegans. MCOPPB reduced the senescence cell burden in peripheral tissues but not in the central nervous system. Mice and worms exposed to MCOPPB also exhibited locomotion and lipid storage changes. Mechanistically, MCOPPB treatment activated transcriptional networks involved in the immune responses to external stressors, implicating Toll-like receptors (TLRs). Our study uncovers MCOPPB as a NOP ligand that, apart from anxiolytic effects, also shows tissue-specific senolytic effects.
Collapse
Affiliation(s)
- Marco Raffaele
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Kristina Kovacovicova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Psychogenics Inc, Tarrytown, NY, USA
| | - Tommaso Biagini
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Sebastiano Giallongo
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - James D Nhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, Arts, and Sciences, Dornsife College of Letters, University of Southern California, Los Angeles, CA, USA
| | - Antonino Giulio Giannone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pathologic Anatomy Unit-University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pathologic Anatomy Unit-University of Palermo, Palermo, Italy
| | - Martin Ivanov
- Department of Anatomy and Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, Arts, and Sciences, Dornsife College of Letters, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria.
| |
Collapse
|
43
|
Gulyas L, Powell JR. Cold shock induces a terminal investment reproductive response in C. elegans. Sci Rep 2022; 12:1338. [PMID: 35079060 PMCID: PMC8789813 DOI: 10.1038/s41598-022-05340-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/08/2021] [Indexed: 12/04/2022] Open
Abstract
Challenges from environmental stressors have a profound impact on many life-history traits of an organism, including reproductive strategy. Examples across multiple taxa have demonstrated that maternal reproductive investment resulting from stress can improve offspring survival; a form of matricidal provisioning when death appears imminent is known as terminal investment. Here we report a reproductive response in the nematode Caenorhabditis elegans upon exposure to acute cold shock at 2 °C, whereby vitellogenic lipid movement from the soma to the germline appears to be massively upregulated at the expense of parental survival. This response is dependent on functional TAX-2; TAX-4 cGMP-gated channels that are part of canonical thermosensory mechanisms in worms and can be prevented in the presence of activated SKN-1/Nrf2, the master stress regulator. Increased maternal provisioning promotes improved embryonic cold shock survival, which is notably suppressed in animals with impaired vitellogenesis. These findings suggest that cold shock in C. elegans triggers terminal investment to promote progeny fitness at the expense of parental survival and may serve as a tractable model for future studies of stress-induced progeny plasticity.
Collapse
Affiliation(s)
- Leah Gulyas
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA.,Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94702, USA
| | - Jennifer R Powell
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA.
| |
Collapse
|
44
|
Zečić A, Dhondt I, Braeckman BP. Accumulation of Glycogen and Upregulation of LEA-1 in C. elegans daf-2(e1370) Support Stress Resistance, Not Longevity. Cells 2022; 11:245. [PMID: 35053361 PMCID: PMC8773926 DOI: 10.3390/cells11020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
DAF-16-dependent activation of a dauer-associated genetic program in the C. elegans insulin/IGF-1 daf-2(e1370) mutant leads to accumulation of large amounts of glycogen with concomitant upregulation of glycogen synthase, GSY-1. Glycogen is a major storage sugar in C. elegans that can be used as a short-term energy source for survival, and possibly as a reservoir for synthesis of a chemical chaperone trehalose. Its role in mitigating anoxia, osmotic and oxidative stress has been demonstrated previously. Furthermore, daf-2 mutants show increased abundance of the group 3 late embryogenesis abundant protein LEA-1, which has been found to act in synergy with trehalose to exert its protective role against desiccation and heat stress in vitro, and to be essential for desiccation tolerance in C. elegans dauer larvae. Here we demonstrate that accumulated glycogen is not required for daf-2 longevity, but specifically protects against hyperosmotic stress, and serves as an important energy source during starvation. Similarly, lea-1 does not act to support daf-2 longevity. Instead, it contributes to increased resistance of daf-2 mutants to heat, osmotic, and UV stress. In summary, our experimental results suggest that longevity and stress resistance can be uncoupled in IIS longevity mutants.
Collapse
Affiliation(s)
| | | | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (A.Z.); (I.D.)
| |
Collapse
|
45
|
Balkrishna A, Gohel V, Pathak N, Tomer M, Rawat M, Dev R, Varshney A. Anti-hyperglycemic contours of Madhugrit are robustly translated in the Caenorhabditis elegans model of lipid accumulation by regulating oxidative stress and inflammatory response. Front Endocrinol (Lausanne) 2022; 13:1064532. [PMID: 36545334 PMCID: PMC9762483 DOI: 10.3389/fendo.2022.1064532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The prevalence of diabetes has considerably increased in recent years. In the long run, use of dual therapy of anti-diabetic agents becomes mandatory to attain euglycemia. Also, the incidences of diabetes-related co-morbidities have warranted the search for new therapeutic approaches for the management of the disease. Traditional herbo-mineral, anti-diabetic agents like Madhugrit are often prescribed to mitigate diabetes and related complications. The present study aimed to thoroughly characterize the pharmacological applications of Madhugrit. METHODS Phytometabolite characterization of Madhugrit was performed by ultra-high performance liquid chromatography. Evaluation of cell viability, α-amylase inhibition, glucose uptake, inflammation, and wound healing was performed by in vitro model systems using AR42J, L6, THP1, HaCaT cells, and reporter cell lines namely NF-κB, TNF-α, and IL-1β. The formation of advanced glycation end products was determined by cell-free assay. In addition, the therapeutic potential of Madhugrit was also analyzed in the in vivo Caenorhabditis elegans model system. Parameters like brood size, % curling, glucose and triglyceride accumulation, lipid deposition, ROS generation, and lipid peroxidation were determined under hyperglycemic conditions induced by the addition of supraphysiological glucose levels. RESULTS Madhugrit treatment significantly reduced the α-amylase release, enhanced glucose uptake, decreased AGEs formation, reduced differentiation of monocyte to macrophage, lowered the pro-inflammatory cytokine release, and enhanced wound healing in the in vitro hyperglycemic (glucose; 25 mM) conditions. In C. elegans stimulated with 100 mM glucose, Madhugrit (30 µg/ml) treatment normalized brood size, reduced curling behavior, decreased accumulation of glucose, triglycerides, and lowered oxidative stress. CONCLUSIONS Madhugrit showed multimodal approaches in combating hyperglycemia and related complications due to the presence of anti-diabetic, anti-inflammatory, anti-oxidant, wound healing, and lipid-lowering phytoconstituents in its arsenal. The study warrants the translational use of Madhugrit as an effective medicine for diabetes and associated co-morbidities.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, United Kingdom
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Nishit Pathak
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Malini Rawat
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Anurag Varshney,
| |
Collapse
|
46
|
Lv S, Zhang Z, Su X, Li W, Wang X, Pan B, Li H, Zhang H, Wang Y. Qingrequzhuo capsule alleviated methionine and choline deficient diet-induced nonalcoholic steatohepatitis in mice through regulating gut microbiota, enhancing gut tight junction and inhibiting the activation of TLR4/NF-κB signaling pathway. Front Endocrinol (Lausanne) 2022; 13:1106875. [PMID: 36743916 PMCID: PMC9892721 DOI: 10.3389/fendo.2022.1106875] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Qingrequzhuo capsule (QRQZ), composed of Morus alba L., Coptis chinensis Franch., Anemarrhena asphodeloides Bunge, Alisma plantago-aquatica subsp. orientale (Sam.) Sam., Citrus × aurantium L., Carthamus tinctorius L., Rheum palmatum L., Smilax glabra Roxb., Dioscorea oppositifolia L., Cyathula officinalis K.C.Kuan, has been used to treat nonalcoholic steatohepatitis (NASH) in clinic. However, the mechanism of QRQZ on NASH remains unclear. Recent studies have found that the dysfunction of gut microbiota could impair the gut barrier and induce the activation of TLR4/NF-kB signaling pathway, and further contribute to the inflammatory response in NASH. Modulating the gut microbiota to reduce inflammation could prevent the progression of NASH. In this study, a mouse model of NASH was generated by methionine and choline deficient diet (MCD) and treated with QRQZ. First, we evaluated the therapeutic effects of QRQZ on liver injury and inflammation in the NASH mice. Second, the changes in the gut microbiota diversity and abundance in each group of mice were measured through 16S rRNA sequencing. Finally, the effects of QRQZ on gut mucosal permeability, endotoxemia, and liver TLR4/NF-kB signaling pathway levels were examined. Our results showed that QRQZ significantly reduced the lipid accumulation in liver and the liver injury in NASH mice. In addition, QRQZ treatment decreased the levels of inflammatory cytokines in liver. 16S rRNA sequencing showed that QRQZ affected the diversity of gut microbiota and a f f e c t e d t h e r e l a t i v e a b u n d a n c e s o f D u b o s i e l l a , Lachnospiraceae_NK4A136_group, and Blautiain NASH mice. Besides, QRQZ could increase the expression of tight junction proteins (zonula occludens-1 and occludin) in gut and decrease the lipopolysaccharide (LPS) level in serum. Western blot results also showed that QRQZ treatment decreased the protein expression ofTLR4, MyD88 and the phosphorylation of IkB and NF-kBp65 and qPCR results showed that QRQZ treatment down-regulated the gene expression of interleukin (IL)-1b, IL-6, and tumor necrosis factor (TNF)-a in liver. In conclusion, our study demonstrated that QRQZ could reduce the lipid accumulation and inflammatory response in NASH model mice. The mechanisms of QRQZ on NASH were associated with modulating gut microbiota, thereby inducing the tight junction of gut barrier, reducing the endotoxemia and inhibiting the activation of TLR4/NFkB signaling pathway in liver.
Collapse
Affiliation(s)
- Shuquan Lv
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zhongyong Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiuhai Su
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Wendong Li
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiaoyun Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Baochao Pan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hanzhou Li
- Graduate School, Chengde Medical University, Chengde, China
| | - Hui Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuansong Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
- *Correspondence: Yuansong Wang,
| |
Collapse
|
47
|
Zhang J, Shi J, Yuan C, Liu X, Du G, Fan R, Zhang B. MicroRNA Expression Profile Analysis of Chlamydomonas reinhardtii during Lipid Accumulation Process under Nitrogen Deprivation Stresses. Bioengineering (Basel) 2021; 9:bioengineering9010006. [PMID: 35049715 PMCID: PMC8773410 DOI: 10.3390/bioengineering9010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Lipid accumulation in various microalgae has been found induced by nitrogen deprivation, and it controls many different genes expression. Yet, the underlying molecular mechanisms still remain largely unknown. MicroRNA (miRNAs) play a critical role in post-transcriptional gene regulation. In this study, miRNAs were hypothesized involved in lipid accumulation by nitrogen deprivation. A deep-sequencing platform was used to explore miRNAs-mediated responses induced by nitrogen deprivation in Chlamydomonas reinhardtii. The eukaryotic orthologous groups of proteins (KOG) function in the predicted target genes of miRNA with response to nitrogen deprivation were mainly involved in signal transduction mechanisms, including transcription, lipid transport, and metabolism. A total of 109 miRNA were predicted, including 79 known miRNA and 30 novel miRNA. A total of 29 miRNAs showed significantly differential expressions after nitrogen deprivation, and most of them were upregulated. A total of 10 miRNAs and their targeting genes might involve in lipid transport and metabolism biological process. This study first investigates nitrogen deprivation-regulated miRNAs in microalgae and broadens perspectives on miRNAs importance in microalgae lipid accumulation via nitrogen deprivation. This study provides theoretical guidance for the application of microalgae in bio-oil engineering production.
Collapse
Affiliation(s)
- Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruimei Fan
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China
- Correspondence: (R.F.); (B.Z.)
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (R.F.); (B.Z.)
| |
Collapse
|
48
|
Workflow for Segmentation of Caenorhabditis elegans from Fluorescence Images for the Quantitation of Lipids. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The small and transparent nematode Caenorhabditis elegans is increasingly employed for phenotypic in vivo chemical screens. The influence of compounds on worm body fat stores can be assayed with Nile red staining and imaging. Segmentation of C. elegans from fluorescence images is hereby a primary task. In this paper, we present an image-processing workflow that includes machine-learning-based segmentation of C. elegans directly from fluorescence images and quantifies their Nile red lipid-derived fluorescence. The segmentation is based on a J48 classifier using pixel entropies and is refined by size-thresholding. The accuracy of segmentation was >90% in our external validation. Binarization with a global threshold set to the brightness of the vehicle control group worms of each experiment allows a robust and reproducible quantification of worm fluorescence. The workflow is available as a script written in the macro language of imageJ, allowing the user additional manual control of classification results and custom specification settings for binarization. Our approach can be easily adapted to the requirements of other fluorescence image-based experiments with C. elegans.
Collapse
|
49
|
Curran SP, Lithgow GJ, Verdin E, P C. University of Southern California and buck institute nathan shock center: multidimensional models of aging. GeroScience 2021; 43:2119-2127. [PMID: 34269983 PMCID: PMC8599784 DOI: 10.1007/s11357-021-00416-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
The USC-Buck Nathan Shock Center of Excellence in the Biology of Aging is a new and fully integrated multi-institutional center focused on training the next generation of geroscientists and providing access to cutting-edge geroscience technologies to investigators across the nation. The USC-Buck NSC is devoted to forging a deeper understanding of how and why aging processes cause disease in order to advance the translation of basic research on aging into effective preventions and therapies. Including more than 61 NIA-supported investigators, six NIA-funded research centers, four NIA T32s, and several additional aging research centers of excellence, the USC-Buck NSC constitutes one of the largest collections of leaders in geroscience research within the USA; the unique nature of the USC-Buck NSC research infrastructure ensures an integrated organization that is representative of the wide breadth of topics encompassed by the biology of aging field. By leveraging the 25-year-long relationship, current collaborations and joint administrational activities of the University of Southern California and the Buck Institute for Aging Research, the USC-Buck NSC aims to enhance and expand promising research in the biology of aging at both at the and to make a positive impact across California, the nation and throughout the world. Specialized cores provide services to all Shock Center members, as well as provide support for services to the community at large.
Collapse
Affiliation(s)
- Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA.
| | | | - Eric Verdin
- Buck Institute for Research On Aging, Novato, CA, USA
- UCSF Department of Medicine, San Francisco, CA, USA
| | - Cohen P
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| |
Collapse
|
50
|
Metabolic and behavioral effects of olanzapine and fluoxetine on the model organism Caenorhabditis elegans. Saudi Pharm J 2021; 29:917-929. [PMID: 34408550 PMCID: PMC8363109 DOI: 10.1016/j.jsps.2021.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
The use of many psychotropic drugs (PDs) is associated with increased caloric intake, significant weight gain, and metabolic disorders. The nematode Caenorhabditis elegans (C. elegans) has been used to study the effects of PDs on food intake. However, little is known about PDs effects on the body fat of C. elegans. In C. elegans, feeding behavior and fat metabolism are regulated through independent mechanisms. This study aims to evaluate the body fat and food intake of C. elegans in response to treatment olanzapine and fluoxetine. Here we report that, with careful consideration to the dosage used, administration of fluoxetine and olanzapine increases body fat and food intake in C. elegans.
Collapse
|