1
|
Sharma G, Badruddeen, Akhtar J, Khan MI, Ahmad M, Sharma PK. "Methyl jasmonate: bridging plant defense mechanisms and human therapeutics". NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6429-6451. [PMID: 39847055 DOI: 10.1007/s00210-024-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
A volatile organic substance produced from jasmonic acid, methyl jasmonate (MJ/MeJA), is an important plant hormone involved in stress responses and plant defense. Apart from its role in plants, MJ has garnered significant attention because of its pharmacological effects and possible therapeutic use in human health. This thorough analysis looks into the many biological actions of MJ, such as its antioxidant, anti-inflammatory, and anti-cancer effects. The underlying mechanism of these actions is examined, emphasizing MJ's ability to modulate important signaling pathways, cause cancer cells to undergo apoptosis, and boost immunological responses. Furthermore, MJ's capacity to manage long-term illnesses like cancer and neurological conditions like Parkinson's and Alzheimer's is examined. Preclinical and clinical research are beginning to provide evidence that MJ may be a useful medicinal drug. Nevertheless, more research is needed to fully understand its mode of action, enhance its administration methods, and evaluate its efficacy and safety in humans. This review highlights MJ's therapeutic promise and supports earlier research into its pharmacological capabilities and possible medical applications. This abstract highlights methyl jasmonate's pharmacological effects and therapeutic potential by providing a concise overview of the main topics covered in a thorough review.
Collapse
Affiliation(s)
- Garima Sharma
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India.
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Prakash Kumar Sharma
- Department of Anesthesiology, Hind Institute of Medical Sciences, Safedabad, Lucknow, U.P., 225001, India
| |
Collapse
|
2
|
Esmaealzadeh N, Iranpanah A, Sarris J, Rahimi R. A literature review of the studies concerning selected plant-derived adaptogens and their general function in body with a focus on animal studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154354. [PMID: 35932607 DOI: 10.1016/j.phymed.2022.154354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Adaptogens are generally referred to the substances, mostly found in plants, which non-specifically increase resilience and chances of survival by activation of signaling pathways in affected cells. PURPOSE This literature review was conducted to summarize the investigation, until March 2021, on selected adaptogenic plants and plant-derived substances. STUDY DESIGN Electronic databases were searched (up to March 2021) for in vitro and animal studies, as well as clinical trials. Moreover, all modes of action connected with the adaptogenic effects of plants and phytochemicals were collected. METHODS The search of relevant studies was performed within electronic databases including Scopus, Science Direct, PubMed, and Cochrane library. The most important keywords were adaptogen, plant, phytochemical, and plant-derived. RESULTS The most investigated medicinal herbs for their adaptogenic activity are Eleutherococcus senticosus, Panax ginseng, Withania somnifera, Schisandra chinensis, and Rhodiola spp., salidroside, ginsenosides, andrographolide, methyl jasmonate, cucurbitacin R, dichotosin, and dichotosininare are phytochemicals that have shown a considerable adaptogenic activity. Phytochemicals that have been demonstrated adaptogenic properties mainly belong to flavonoids, terpenoids, and phenylpropanoid glycosides. CONCLUSION It is concluded that the main modes of action of the selected adaptogenic plants are stress modulatory, antioxidant, anti-fatigue, and physical endurance enhancement. Other properties were nootropic, immunomodulatory, cardiovascular, and radioprotective activities.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Kermanshah USERN Office, Universal Scientific Education and Research Network (USERN), Kermanshah, Iran
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia; The Florey Institute of Neuroscience and Mental Health & The Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Afzal M, Kazmi I, I. Alzarea S, Sharma K, Kumar Dube C, Mittal P, Verma A, Jain A, Alquraini A. Acute Toxicity Studies and Psychopharmacological Effects of Eucalyptus globulus Leaf Oil in Rodents. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.673.681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Aluko OM, Iroegbu JD, Ijomone OM, Umukoro S. Methyl Jasmonate: Behavioral and Molecular Implications in Neurological Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:220-232. [PMID: 33888651 PMCID: PMC8077066 DOI: 10.9758/cpn.2021.19.2.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023]
Abstract
Methyl jasmonate (MJ) is a derivative of the jasmonate family which is found in most tropical regions of the world and present in many fruits and vegetables such as grapevines, tomato, rice, and sugarcane. MJ is a cyclopentanone phytohormone that plays a vital role in defense against stress and pathogens in plants. This has led to its isolation from plants for studies in animals. Many of these studies have been carried out to evaluate its therapeutic effects on behavioral and neurochemical functions. It has however been proposed to have beneficial potential over a wide range of neurological disorders. Hence, this review aims to provide an overview of the neuroprotective properties of MJ and its probable mechanisms of ameliorating neurological disorders. The information used for this review was sourced from research articles and scientific databases using 'methyl jasmonate', 'behavior', 'neuroprotection', 'neurodegenerative diseases', and 'mechanisms' as search words. The review highlights its influences on behavioral patterns of anxiety, aggression, depression, memory, psychotic, and stress. The molecular mechanisms such as modulation of the antioxidant defense, inflammatory biomarkers, neurotransmitter regulation, and neuronal regeneration, underlying its actions in managing neurodegenerative diseases like Alzheimer's and Parkinson's diseases are also discussed. This review, therefore, provides a detailed evaluation of methyl jasmonate as a potential neuroprotective compound with the ability to modify behavioral and molecular biomarkers underlying neurological disorders. Hence, MJ could be modeled as a guided treatment for the management of brain diseases.
Collapse
Affiliation(s)
- Oritoke Modupe Aluko
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| | - Joy Dubem Iroegbu
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi Meashack Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Solomon Umukoro
- Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Aluko OM, Umukoro S. Methyl jasmonate reverses chronic stress-induced memory dysfunctions through modulation of monoaminergic neurotransmission, antioxidant defense system, and Nrf2 expressions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2339-2353. [PMID: 32666287 DOI: 10.1007/s00210-020-01939-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Unpredictable chronic mild stress (UCMS) has been shown to cause memory loss via increased oxidative stress and deregulation of monoaminergic and cholinergic neurotransmissions. Although the benefits of methyl jasmonate (MJ), a well-known anti-stress plant hormone against chronic stress-induced psychopathologies, have been earlier reported, its effects on antioxidant defense molecules, monoaminergic transmitters, and nuclear factor erythroid 2-related factor 2 (Nrf2) immunopositive cells have not been extensively studied. The present study was designed to examine its effect on memory functions, antioxidant biomarkers, monoaminergic transmitters, and Nrf2 immunopositive cell expression in rats exposed to UCMS. Rats received an intraperitoneal injection of MJ (10, 25, and 50 mg/kg) 30 min before exposure to UCMS daily for 28 days. Memory function was assessed on day 29 using a modified elevated plus maze and novel object recognition tests. The antioxidant biomarkers, level of monoamines (serotonin, noradrenaline, and dopamine), and Nrf2 immunopositive cell expression were determined in the rat brain tissues. The activity of cholinesterase and monoamine oxidase enzymes was also determined. MJ attenuated memory deficits and elevated the brain levels of monoamines in UCMS rats. UCMS-induced increase of brain cholinesterase and monoamine oxidase activities was inhibited by MJ. Also, MJ attenuated UCMS-induced decrease in antioxidant enzymes (CAT, GPx, GST, and SOD) and thiol contents in the brains of rats. UCMS-induced increase in NO level and Nrf2 immunopositive cell expression in the rat's brain was attenuated by MJ. Taken together, these findings suggest that increasing antioxidant defense molecules and monoaminergic/cholinergic neurotransmitters and decreasing the Nrf2 immunopositive cell expressions may contribute to the memory-promoting effects of MJ in rats exposed to UCMS.
Collapse
Affiliation(s)
- Oritoke M Aluko
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria.
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Gunjegaonkar SM, Wankhede SB, Shanmugarajan TS, Shinde SD. Bioactive role of plant stress hormone methyl jasmonate against lipopolysaccharide induced arthritis. Heliyon 2020; 6:e05432. [PMID: 33225090 PMCID: PMC7666351 DOI: 10.1016/j.heliyon.2020.e05432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/28/2020] [Accepted: 11/02/2020] [Indexed: 10/26/2022] Open
Abstract
The current investigation was carried out to screen antiarthritic potential of Methyl Jasmonate (MJ) against lipopolysaccharide (LPS) induced arthritis. Cartilage damage was induced in experimental animals by intraplantar administration of LPS (1 mg/kg) and antiarthritic effect of MJ was screened in two doses of MJ-1 (20 mg/kg), MJ-2 (40 mg/kg) by intraperitoneally administration. Indomethacin (30 mg/kg p.o.) was used as standard drug. The severity of arthritis was evaluated by assessing arthritis score, secondary lesions, motility test, stair climbing ability, and dorsal flexion pain score method. The estimation of blood cytokine tumor necrosis factor- aplha (TNF-α),interleukine (IL-2 and IL-6) and thymus/spleen index was carried out to access the severity of inflammation. Estimation of hepaticenzymatic antioxidant activity superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx)and radiological examination was carried out on 28th day. Results indicated that MJ showed significant reduction in severity of arthritis by decreasing arthritis score, secondary lesions where as significant increase in motility, climbing ability and flexion pain score was observed. Significant decreased in blood cytokine viz. TNF-α, IL-2, IL-6 andthymus/spleen index was observed in MJ treated animals in dose dependent manner. MJ treated animals showed significant increased and restoration of hepatic antioxidant enzymatic activityof SOD, CAT, GSH, GPx where asradiological examination indicates protective effect on joint structure as compared to LPS treated rats. These current studies conclude that MJ has protective role in arthritis.
Collapse
Affiliation(s)
- S M Gunjegaonkar
- JSPM's Charak College of Pharmacy and Research, Department of Pharmacology, Gate No. 720/1&2, Pune-Nagar Road, Wagholi, 412207, Pune, Maharashtra, India
| | - S B Wankhede
- JSPM's Charak College of Pharmacy and Research, Department of Pharmaceutical Chemistry, Gate No. 720/1&2, Pune-Nagar Road, Wagholi, 412207, Pune, Maharashtra, India
| | - T S Shanmugarajan
- Vels Institute of Science, Technology and Advanced Studies, School of Pharmaceutical Sciences, Department of Pharmaceutics, Velan Nagar, P. V. Vaithiyalingam Road, Pallavaram, Chennai, 600 117, Tamil Nadu, India
| | - S D Shinde
- Shri. R. D. Bhakt College of Pharmacy, Department of Pharmacology, Jalna 431203, Maharashtra, India
| |
Collapse
|
7
|
Adelaja AO, Oluwole OG, Aluko OM, Umukoro S. Methyl jasmonate delays the latency to anoxic convulsions by normalizing the brain levels of oxidative stress biomarkers and serum corticosterone contents in mice with repeated anoxic stress. Drug Metab Pers Ther 2020; 35:/j/dmdi.ahead-of-print/dmdi-2020-0129/dmdi-2020-0129.xml. [PMID: 32887181 DOI: 10.1515/dmpt-2020-0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
Objectives Repeated exposure to anoxic stress damages the brain through cortisol-mediated increases in oxidative stress and cellular-antioxidants depletion. Thus, compounds with antioxidant property might confer protection against anoxic stress-induced brain injuries. In this study, we further examined the protective effect of methyl jasmonate (MJ), a potent anti-stress agent against anoxic stress-induced convulsions in mice. Methods Thirty-six male Swiss mice randomized into six groups (n=6) were given MJ (25, 50 and 100 mg/kg, i.p.) or vehicle (10 mL/kg, i.p.) 30 min before 15 min daily exposure to anoxic stress for 7 days. The latency(s) to anoxic convulsion was recorded on day 7. The blood glucose and serum corticosterone levels were measured afterwards. The brains were also processed for the determination of malondialdehyde, nitrite, and glutathione levels. Results Methyl jasmonate (MJ) delayed the latency to anoxic convulsion and reduced the blood glucose and serum corticosterone levels. The increased malondialdehyde and nitrite contents accompanied by decreased glutathione concentrations in mice with anoxic stress were significantly attenuated by MJ. Conclusions These findings further showed that MJ possesses anti-stress property via mechanisms relating to the reduction of serum contents of corticosterone and normalization of brain biomarker levels of oxidative stress in mice with anoxic stress.
Collapse
Affiliation(s)
- Abayomi Ololade Adelaja
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| | - Oluwafemi Gabriel Oluwole
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| | - Oritoke Modupe Aluko
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Aluko OM, Umukoro S. Role of purinergic signaling pathways in the adaptogenic-like activity of methyl jasmonate in rats exposed to unpredictable chronic mild stress. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0117/dmdi-2020-0117.xml. [PMID: 32697752 DOI: 10.1515/dmdi-2020-0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Objectives Purinergic signaling pathway has been implicated in maladaptation of animals subjected to chronic stress. Previous studies have shown that methyl jasmonate (MJ) exhibited adaptogenic properties in mice exposed to unpredictable chronic mild stress (UCMS) via antioxidant and neuroprotective-related mechanisms. Methods This study evaluated the role of purinergic system in adaptogenic-like activity of MJ. Male Wistar rats were treated intraperitoneally with vehicle (10 mL/kg) or MJ (25, 50, or 100 mg/kg) 30 min prior exposure to UCMS. Thereafter, rats were assessed for swimming endurance in forced swim test (FST) and post-swimming motor coordination on beam walk test (BWT) apparatus. The rats' brains were processed for adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine deaminase, and arginase quantification. Hematological parameters, cholesterol, triglyceride, creatinine, and urea nitrogen were also determined. Results MJ prolonged swimming endurance time and reversed stress-induced post-swimming motor dysfunction. The altered hematological parameters induced by UCMS in rats were significantly (p<0.05) attenuated by MJ. MJ also reversed UCMS-induced alterations of total cholesterol, triglyceride, creatinine, and urea nitrogen levels. MJ averted UCMS-induced alterations in purinergic system by decreasing ATP and ADP hydrolysis, adenosine deaminase, and arginase activities in rats' brains. Conclusions Overall, these findings further suggest that MJ has adaptogenic-like activity in rats exposed to UCMS, which may be related to modulation of the purinergic signaling pathway.
Collapse
Affiliation(s)
- Oritoke M Aluko
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Aluko OM, Umukoro S. Role of purinergic signaling pathways in the adaptogenic-like activity of methyl jasmonate in rats exposed to unpredictable chronic mild stress. Drug Metab Pers Ther 2020; 35:dmpt-2020-0117. [PMID: 32975203 DOI: 10.1515/dmpt-2020-0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Objectives Purinergic signaling pathway has been implicated in maladaptation of animals subjected to chronic stress. Previous studies have shown that methyl jasmonate (MJ) exhibited adaptogenic properties in mice exposed to unpredictable chronic mild stress (UCMS) via antioxidant and neuroprotective-related mechanisms. Methods This study evaluated the role of purinergic system in adaptogenic-like activity of MJ. Male Wistar rats were treated intraperitoneally with vehicle (10 mL/kg) or MJ (25, 50, or 100 mg/kg) 30 min prior exposure to UCMS. Thereafter, rats were assessed for swimming endurance in forced swim test (FST) and post-swimming motor coordination on beam walk test (BWT) apparatus. The rats' brains were processed for adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine deaminase, and arginase quantification. Hematological parameters, cholesterol, triglyceride, creatinine, and urea nitrogen were also determined. Results MJ prolonged swimming endurance time and reversed stress-induced post-swimming motor dysfunction. The altered hematological parameters induced by UCMS in rats were significantly (p<0.05) attenuated by MJ. MJ also reversed UCMS-induced alterations of total cholesterol, triglyceride, creatinine, and urea nitrogen levels. MJ averted UCMS-induced alterations in purinergic system by decreasing ATP and ADP hydrolysis, adenosine deaminase, and arginase activities in rats' brains. Conclusions Overall, these findings further suggest that MJ has adaptogenic-like activity in rats exposed to UCMS, which may be related to modulation of the purinergic signaling pathway.
Collapse
Affiliation(s)
- Oritoke M Aluko
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
10
|
Methyl jasmonate a stress phytohormone attenuates LPS induced in vivo and in vitro arthritis. Mol Biol Rep 2018; 46:647-656. [PMID: 30498880 DOI: 10.1007/s11033-018-4520-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023]
Abstract
The objective of present study was to screen the effect of methyl jasmonate (MJ) in lipopolysaccharide (LPS) induced in vivo and in vitro arthritis. Arthritis was induced in wistar rats by intraplantar administration of LPS (1 mg/Kg) and effect of MJ was screened in two doses (20, 40 mg/Kg, IP), indomethacin (30 mg/Kg p.o) was used as standard. The anti-nociceptive effect was evaluated through behavioral assessment viz. cold allodynia, Paw thermal hyperalgesia and Tail cold hyperalgesia on 1st, 7th, 14th, 21st and 28th day. The Myeloperoxidase (MPO), Cathepsin D (CAT-D), articular elastase (ELA), and nitrite levels were estimated in articular cartilage tissues on the 28th day. Rat paw was subjected to histopathology after radiological examination on 28th day. In vitro effect of MJ was evaluated for three concentrations (5, 10, 20 µg/ml) in LPS (1 µg/ml) stimulated CHNO001 cells. Estimation of pro-inflammatory mediators was carried using ELISA. Significant reduction in pro-inflammatory mediators was observed in MJ treated chondrocyte cells. % proteinase inhibition was assessed for 10, 50, 100, 250, 500 µg/mL and IC50 was found 266.15. MJ significantly reducesnociceptive response against hot and cold allodynia. Significant reduction in MPO, ELA, and nitrite levels was observed. The CAT-D levels significantly restored. Minimum focal mild infiltration of lymphocytes was observed at synovial area in standard and MJ treated rats. These current studies conclude that MJ has protective role in arthritis.
Collapse
|
11
|
Fraga GA, Balogun SO, Pascqua ED, de Oliveira RG, Botelho G, Pavan E, da Rosa Lima T, Avila ETP, de Medeiros Amorim Krueger C, Filho VC, Damazo AS, de Oliveira Martins DT, Voltarelli FA. Heteropterys tomentosa A. Juss: Toxicological and adaptogenic effects in experimental models. Nutr Health 2017; 23:289-298. [PMID: 29214921 DOI: 10.1177/0260106017729908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The constant pursuit of improved athletic performance characterizes high-performance sport and the use of medicinal plants as dietary supplements is becoming widespread among athletes to enhance long-term endurance performance. AIM The present study evaluated the toxicity of Heteropterys tomentosa (HEHt) and its acute adaptogenic effects. METHODS The in vitro safety profile was evaluated on CHO-k1 cells using the alamar Blue assay, at concentrations ranging from 3.125 to 200 µg/mL. In vivo acute oral toxicity was conducted in male and female mice with oral administration of graded doses of HEHt from 400 to 2000 mg/kg. A subchronic oral toxicity study was completed by oral administration of HEHt (50, 200 or 1000 mg/kg) and vehicle for 30 days in male Wistar rats. Clinical observations and toxicological related parameters were determined. Blood was collected for biochemical and hematological analyses, while histological examinations were performed on selected organs. Thereafter, an adaptogenic test consisting of progressive loads until exhaustion was conducted in rats ( n = 5/group) orally pre-treated with the vehicle and HEHt (25, 100 or 400 mg/kg). RESULTS HEHt exhibited no cytotoxic effects on the CHO-k1 cells and, apparently, no acute toxicity in mice and no subchronic toxicity in rats. An ergogenic effect was observed only at the dose of 25 mg/kg compared with the vehicle in relation to time to exhaustion and exercise load ( p = .011 and .019, respectively). HEHt is safe at up to 400 mg/kg, contains astilbin and taxifolin as the major phytochemical compounds, and exhibited a potential adaptogenic effect. CONCLUSIONS These results justify its anecdotal usage as a tonic, show that the hydroethanolic maceration of the root does not cause toxicity, and provide scientific evidence of its potential as a source of new adaptogenic substance(s).
Collapse
Affiliation(s)
- Géssica Alves Fraga
- 1 Graduate Program of Physical Education, Faculty of Physical Education, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Sikiru Olaitan Balogun
- 2 Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
- 3 Pharmacy Course, Northwest of Mato Grosso Faculty, Association of Higher Education of Juína (AJES), Juína, Mato Grosso, Brazil
| | - Emilly Della Pascqua
- 1 Graduate Program of Physical Education, Faculty of Physical Education, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Ruberlei Godinho de Oliveira
- 2 Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Guilherme Botelho
- 2 Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Eduarda Pavan
- 2 Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Thiago da Rosa Lima
- 4 Histology and Cell Biology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Eudes Thiago Pereira Avila
- 1 Graduate Program of Physical Education, Faculty of Physical Education, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Clarissa de Medeiros Amorim Krueger
- 5 Graduate Program in Pharmaceutical Sciences and e Nucleus of Chemical-Pharmaceutical Research, University of the Valley of Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Valdir Cechinel Filho
- 5 Graduate Program in Pharmaceutical Sciences and e Nucleus of Chemical-Pharmaceutical Research, University of the Valley of Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Amílcar Sabino Damazo
- 4 Histology and Cell Biology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Domingos Tabajara de Oliveira Martins
- 2 Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Fabrício Azevedo Voltarelli
- 1 Graduate Program of Physical Education, Faculty of Physical Education, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|