1
|
Mir Drikvand R, Sohrabi SM, Sohrabi SS, Samiei K. Molecular Identification and Characterization of Hevein Antimicrobial Peptide Genes in Two-Row and Six-Row Cultivars of Barley (Hordeum vulgare L.). Biochem Genet 2024; 62:5092-5114. [PMID: 38386212 DOI: 10.1007/s10528-024-10695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Heveins are one of the most important groups of plant antimicrobial peptides. So far, various roles in plant growth and development and in response to biotic and abiotic stresses have reported for heveins. The present study aimed to identify and characterize the hevein genes in two-row and six-row cultivars of barley. In total, thirteen hevein genes were identified in the genome of two-row and six-row cultivars of barley. The identified heveins were identical in two-row and six-row cultivars of barley and showed a high similarity with heveins from other plant species. The hevein coding sequences produced open reading frames (ORFs) ranged from 342 to 1002 bp. Most of the identified hevein genes were intronless, and the others had only one intron. The hevein ORFs produced proteins ranged from 113 to 333 amino acids. Search for conserved functional domains showed CBD and LYZ domains in barley heveins. All barley heveins comprised extracellular signal peptides ranged from 19 to 35 amino acids. The phylogenetic analysis divided barley heveins into two groups. The promoter analysis showed regulatory elements with different frequencies between two-row and six-row cultivars. These cis-acting elements included elements related to growth and development, hormone response, and environmental stresses. The expression analysis showed high expression level of heveins in root and reproductive organs of both two-row and six-row cultivars. The expression analysis also showed that barley heveins is induced by both biotic and abiotic stresses. The results of antimicrobial activity prediction showed the highest antimicrobial activity in CBD domain of barley heveins. The findings of the current study can improve our knowledge about the role of hevein genes in plant and can be used for future studies.
Collapse
Affiliation(s)
- Reza Mir Drikvand
- Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran.
| | - Seyyed Mohsen Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University, Ahvaz, Iran
| | - Seyed Sajad Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Kamran Samiei
- Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran
| |
Collapse
|
2
|
Faysal Ahmed F, Dola FS, Zohra FT, Rahman SM, Konak JN, Sarkar MAR. Genome-wide identification, classification, and characterization of lectin gene superfamily in sweet orange (Citrus sinensis L.). PLoS One 2023; 18:e0294233. [PMID: 37956187 PMCID: PMC10642848 DOI: 10.1371/journal.pone.0294233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Lectins are sugar-binding proteins found abundantly in plants. Lectin superfamily members have diverse roles, including plant growth, development, cellular processes, stress responses, and defense against microbes. However, the genome-wide identification and functional analysis of lectin genes in sweet orange (Citrus sinensis L.) remain unexplored. Therefore, we used integrated bioinformatics approaches (IBA) for in-depth genome-wide identification, characterization, and regulatory factor analysis of sweet orange lectin genes. Through genome-wide comparative analysis, we identified a total of 141 lectin genes distributed across 10 distinct gene families such as 68 CsB-Lectin, 13 CsLysin Motif (LysM), 4 CsChitin-Bind1, 1 CsLec-C, 3 CsGal-B, 1 CsCalreticulin, 3 CsJacalin, 13 CsPhloem, 11 CsGal-Lec, and 24 CsLectinlegB.This classification relied on characteristic domain and phylogenetic analysis, showing significant homology with Arabidopsis thaliana's lectin gene families. A thorough analysis unveiled common similarities within specific groups and notable variations across different protein groups. Gene Ontology (GO) enrichment analysis highlighted the predicted genes' roles in diverse cellular components, metabolic processes, and stress-related regulation. Additionally, network analysis of lectin genes with transcription factors (TFs) identified pivotal regulators like ERF, MYB, NAC, WRKY, bHLH, bZIP, and TCP. The cis-acting regulatory elements (CAREs) found in sweet orange lectin genes showed their roles in crucial pathways, including light-responsive (LR), stress-responsive (SR), hormone-responsive (HR), and more. These findings will aid in the in-depth molecular examination of these potential genes and their regulatory elements, contributing to targeted enhancements of sweet orange species in breeding programs.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Farah Sumaiya Dola
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Jesmin Naher Konak
- Department of Biochemistry and Molecular Biology, Faculty of LifeScience, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
3
|
Aglyamova A, Petrova N, Gorshkov O, Kozlova L, Gorshkova T. Growing Maize Root: Lectins Involved in Consecutive Stages of Cell Development. PLANTS 2022; 11:plants11141799. [PMID: 35890433 PMCID: PMC9319948 DOI: 10.3390/plants11141799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Proteins that carry specific carbohydrate-binding lectin domains have a great variety and are ubiquitous across the plant kingdom. In turn, the plant cell wall has a complex carbohydrate composition, which is subjected to constant changes in the course of plant development. In this regard, proteins with lectin domains are of great interest in the context of studying their contribution to the tuning and monitoring of the cell wall during its modifications in the course of plant organ development. We performed a genome-wide screening of lectin motifs in the Zea mays genome and analyzed the transcriptomic data from five zones of primary maize root with cells at different development stages. This allowed us to obtain 306 gene sequences encoding putative lectins and to relate their expressions to the stages of root cell development and peculiarities of cell wall metabolism. Among the lectins whose expression was high and differentially regulated in growing maize root were the members of the EUL, dirigent–jacalin, malectin, malectin-like, GNA and Nictaba families, many of which are predicted as cell wall proteins or lectin receptor-like kinases that have direct access to the cell wall. Thus, a set of molecular players was identified with high potential to play important roles in the early stages of root morphogenesis.
Collapse
Affiliation(s)
- Aliya Aglyamova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia; (A.A.); (N.P.); (O.G.); (L.K.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Natalia Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia; (A.A.); (N.P.); (O.G.); (L.K.)
| | - Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia; (A.A.); (N.P.); (O.G.); (L.K.)
| | - Liudmila Kozlova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia; (A.A.); (N.P.); (O.G.); (L.K.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia; (A.A.); (N.P.); (O.G.); (L.K.)
- Institute of Physiology, Federal Research Center Komi Science Center of Ural Branch of Russian Academy of Sciences, Kommunisticheskaya Str. 28, Syktyvkar 167982, Russia
- Correspondence:
| |
Collapse
|
4
|
Van Damme EJM. 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconj J 2022; 39:83-97. [PMID: 34427812 PMCID: PMC8383723 DOI: 10.1007/s10719-021-10015-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Plants contain an extended group of lectins differing from each other in their molecular structures, biochemical properties and carbohydrate-binding specificities. The heterogeneous group of plant lectins can be classified in several families based on the primary structure of the lectin domain. All proteins composed of one or more lectin domains, or having a domain architecture including one or more lectin domains in combination with other protein domains can be defined as lectins. Plant lectins reside in different cell compartments, and depending on their location will encounter a large variety carbohydrate structures, allowing them to be involved in multiple biological functions. Over the years lectins have been studied intensively for their carbohydrate-binding properties and biological activities, which also resulted in diverse applications. The present overview on plant lectins especially focuses on the structural and functional characteristics of plant lectins and their applications for crop improvement, glycobiology and biomedical research.
Collapse
Affiliation(s)
- Els J. M. Van Damme
- Laboratory of Glycobiology and Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
5
|
De Coninck T, Van Damme EJM. Review: The multiple roles of plant lectins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111096. [PMID: 34763880 DOI: 10.1016/j.plantsci.2021.111096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
For decades, the biological roles of plant lectins remained obscure and subject to speculation. With the advent of technological and scientific progress, researchers have compiled a vast amount of information regarding the structure, biological activities and functionality of hundreds of plant lectins. Data mining of genomes and transcriptome sequencing and high-throughput analyses have resulted in new insights. This review aims to provide an overview of what is presently known about plant lectins, highlighting their versatility and the importance of plant lectins for a multitude of biological processes, such as plant development, immunity, stress signaling and regulation of gene expression. Though lectins primarily act as readers of the glycocode, the multiple roles of plant lectins suggest that their functionality goes beyond carbohydrate-recognition.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Baranwal VK, Negi N, Khurana P. Comparative transcriptomics of leaves of five mulberry accessions and cataloguing structural and expression variants for future prospects. PLoS One 2021; 16:e0252246. [PMID: 34260613 PMCID: PMC8279327 DOI: 10.1371/journal.pone.0252246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Bombyx mori, a monophagous insect, prefers leaves of the certain species of Morus more than others. The preference has been attributed to morphological and anatomical features and biochemical compounds. In the present manuscript a comparison has been made among the transcriptome of leaves of the two preferred cultivated varieties and three wild types species. While assembling, high quality transcriptomes of five genotypes were constructed with a total of 100930, 151245, 89724, 181761 and 102908 transcripts from ML, MN, MS, K2 and V1 samples respectively. Further, to compare them, orthologs were identified from these assembled transcriptome. A total of 22462, 23413, 23685, 24371, 18362, 22326, 20058, 18049, 17567 and 20518 clusters of orthologs were found in one to one comparison in KvsN, KvsL, KvsS, KvsV, LvsN, LvsS, LvsV, NvsS, NvsV, and SvsV respectively. 4236 orthologs with algebraic connectivity of 1.0 were then used to compare and to find out differentially expressed transcripts from all the genotypes. A total of 1037 transcripts expressed that include some of the important morphology, anatomy and biochemical pathways regulating transcription factors (AP2/ERFs and C2H2 Zinc fingers) and signalling components were identified to express differentially. Further, these transcriptomes were used find out markers (SSR) and variants and a total of 1101013, 537245, 970877, 310437, 675772, 338400, 581189, 751477, 514999 and 257107 variants including SNP, MNP, Insertions and deletions were found in one to one comparisons. Taken together, our data could be highly useful for mulberry community worldwide as it could be utilized in mulberry breeding programs.
Collapse
Affiliation(s)
- Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Swami Devanand Post Graduate College, Math-Lar, Lar, Deoria, Uttar Pradesh, India
| | - Nisha Negi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
7
|
Genome-Wide Characterization of Lectin Receptor Kinases in Saccharum spontaneum L. and Their Responses to Stagonospora tainanensis Infection. PLANTS 2021; 10:plants10020322. [PMID: 33567504 PMCID: PMC7915762 DOI: 10.3390/plants10020322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
Abstract
Sugarcane is an important sugar and bioenergy ethanol crop, and the hyperploidy has led to stagnant progress in sugarcane genome decipherment, which also hindered the genome-wide analyses of versatile lectin receptor kinases (LecRKs). The published genome of Saccharum spontaneum, one of the two sugarcane ancestor species, enables us to study the characterization of LecRKs and their responses to sugarcane leaf blight (SLB) triggered by Stagonospora tainanensis. A total of 429 allelic and non-allelic LecRKs, which were classified into evolved independently three types according to signal domains and phylogeny, were identified based on the genome. Regarding those closely related LecRKs in the phylogenetic tree, their motifs and exon architectures of representative L- and G-types were similar or identical. LecRKs showed an unequal distribution on chromosomes and more G-type tandem repeats may come from the gene expansion. Comparing the differentially expressed LecRKs (DELs) in response to SLB in sugarcane hybrid and ancestor species S. spontaneum, we found that the DEL number in the shared gene sets was highly variable among each sugarcane accession, which indicated that the expression dynamics of LecRKs in response to SLB were quite different between hybrids and particularly between sugarcane hybrid and S. spontaneum. In addition, C-type LecRKs may participate in metabolic processes of plant–pathogen interaction, mainly including pathogenicity and plant resistance, indicating their putative roles in sugarcane responses to SLB infection. The present study provides a basic reference and global insight into the further study and utilization of LecRKs in plants.
Collapse
|
8
|
Singh P, Mishra AK, Singh CM. Genome-wide identification and characterization of Lectin receptor-like kinase (LecRLK) genes in mungbean (Vigna radiata L. Wilczek). J Appl Genet 2021; 62:223-234. [PMID: 33469874 DOI: 10.1007/s13353-021-00613-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Lectins are a diverse group of proteins found throughout plant species. Numerous lectins are involved in many important processes such as organogenesis, defense mechanism, signaling, and stress response. Although the mungbean whole genome sequence has been published, distribution, diversification, and gene structure of lectin genes in mungbean are still unknown. A total of 73 putative lectin genes with kinase domain have been identified through BLAST and HMM profiling. Furthermore, these sequences could be classified into three families, such as G-type, L-type, and C-type VrLecRLKs. 59 out of 73 VrLecRLKs were distributed on to 11 chromosomes, whereas rest could not be anchored onto any specific chromosome. Gene structure analysis revealed a varying number of exons in 73 VrLecRLK genes. Gene ontology annotations were grouped into three categories like biological processes, cellular components and molecular functions, which were associated with signaling pathways, defense responses, transferase activity, binding activity, and kinase activity. The comprehensive and systematic studies of LecRLK genes family provides a reference and foundation for further functional analysis of VrLecRLK genes in mungbean.
Collapse
Affiliation(s)
- Poornima Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | | | - Chandra Mohan Singh
- Department of Genetics and Plant Breeding, College of Agriculture, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, 210 001, India.
| |
Collapse
|
9
|
Expression of Pinellia ternata leaf agglutinin under rolC promoter confers resistance against a phytophagous sap sucking aphid, Myzus persicae. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Tsaneva M, Van Damme EJM. 130 years of Plant Lectin Research. Glycoconj J 2020; 37:533-551. [PMID: 32860551 PMCID: PMC7455784 DOI: 10.1007/s10719-020-09942-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Lectins are proteins with diverse molecular structures that share the ability to recognize and bind specifically and reversibly to carbohydrate structures without changing the carbohydrate moiety. The history of lectins started with the discovery of ricin about 130 years ago but since then our understanding of lectins has dramatically changed. Over the years the research focus was shifted from 'the characterization of carbohydrate-binding proteins' to 'understanding the biological function of lectins'. Nowadays plant lectins attract a lot of attention especially because of their potential for crop improvement and biomedical research, as well as their application as tools in glycobiology. The present review aims to give an overview of plant lectins and their applications, and how the field evolved in the last decades.
Collapse
Affiliation(s)
- Mariya Tsaneva
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
11
|
Lectin Sequence Distribution in QTLs from Rice (Oryza sativa) Suggest A Role in Morphological Traits and Stress Responses. Int J Mol Sci 2019; 20:ijms20020437. [PMID: 30669545 PMCID: PMC6359108 DOI: 10.3390/ijms20020437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Rice (Oryza sativa) is one of the main staple crops worldwide but suffers from important yield losses due to different abiotic and biotic stresses. Analysis of quantitative trait loci (QTL) is a classical genetic method which enables the creation of more resistant cultivars but does not yield information on the genes directly involved or responsible for the desired traits. Lectins are known as proteins with diverse functions in plants. Some of them are abundant proteins in seeds and are considered as storage/defense proteins while other lectins are known as stress-inducible proteins, implicated in stress perception and signal transduction as part of plant innate immunity. We investigated the distribution of lectin sequences in different QTL related to stress tolerance/resistance, morphology, and physiology through mapping of the lectin sequences and QTL regions on the chromosomes and subsequent statistical analysis. Furthermore, the domain structure and evolutionary relationships of the lectins in O. sativa spp. indica and japonica were investigated. Our results revealed that lectin sequences are statistically overrepresented in QTLs for (a)biotic resistance/tolerance as well as in QTLs related to economically important traits such as eating quality and sterility. These findings contribute to the characterization of the QTL sequences and can provide valuable information to the breeders.
Collapse
|
12
|
Identification and validation of reference genes for qRT-PCR analysis in mulberry (Morus alba L.). PLoS One 2018; 13:e0194129. [PMID: 29543877 PMCID: PMC5854264 DOI: 10.1371/journal.pone.0194129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/26/2018] [Indexed: 11/19/2022] Open
Abstract
Mulberry (Morus alba L.) is an important economic tree species in many countries. Quantitative real time PCR (qRT-PCR) has become a widely used method for gene expression studies in plants. A suitable reference gene is essential to ensure accurate and reliable results for qRT-PCR analyses. However, no reports describing the selection of reference genes have been published for mulberry. In this work, we evaluated the stability of twenty candidate reference genes in different plant tissues and under different stress conditions by qRT-PCR in mulberry using algorithms in two programs—geNorm and NormFinder. The results revealed that TUB2, UBI4, ACTIN3 and RPL4 were ranked as the most stable reference genes in the samples subsets, whereas EF1α4 and TUB3showed the least stability with both algorithms. To further validate the stability of the reference genes, the expression patterns of six genes of mulberry were analyzed by normalization with the selected reference genes. Our study will benefit future analyses of gene expression in mulberry.
Collapse
|
13
|
Signaling through plant lectins: modulation of plant immunity and beyond. Biochem Soc Trans 2018; 46:217-233. [PMID: 29472368 DOI: 10.1042/bst20170371] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Lectins constitute an abundant group of proteins that are present throughout the plant kingdom. Only recently, genome-wide screenings have unraveled the multitude of different lectin sequences within one plant species. It appears that plants employ a plurality of lectins, though relatively few lectins have already been studied and functionally characterized. Therefore, it is very likely that the full potential of lectin genes in plants is underrated. This review summarizes the knowledge of plasma membrane-bound lectins in different biological processes (such as recognition of pathogen-derived molecules and symbiosis) and illustrates the significance of soluble intracellular lectins and how they can contribute to plant signaling. Altogether, the family of plant lectins is highly complex with an enormous diversity in biochemical properties and activities.
Collapse
|
14
|
Sarkar T, Mogili T, Sivaprasad V. Improvement of abiotic stress adaptive traits in mulberry (Morus spp.): an update on biotechnological interventions. 3 Biotech 2017; 7:214. [PMID: 28669073 PMCID: PMC5494030 DOI: 10.1007/s13205-017-0829-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022] Open
Abstract
Mulberry (Morus spp.), being an economically important tree, is cultivated in China, India, Thailand, Brazil, Uzbekistan and other Countries across the globe, for its leaves to feed monophagous mulberry silkworm (Bombyx mori). The sustainability of silk industry is directly correlated with the production and continuous supply of high-quality mulberry leaves. In India, it is cultivated on large scale in tropical, sub-tropical and temperate regions under irrigated conditions for silkworm rearing. Drought, low temperature, high salinity and alkalinity, being experienced in widespread areas, are the major abiotic stresses, causing reduction in its potential foliage yield and quality. Further, climate change effects may worsen the productivity of mulberry in near future, not only in India but also across the globe. Although traditional breeding methods contributed immensely towards the development of abiotic stress-tolerant mulberry varieties, still there is lot of scope for implementation of modern genomic and molecular biology tools for accelerating mulberry genetic improvement programmes. This review discusses omics approaches, molecular breeding, plant tissue culture and genetic engineering techniques exploited for mulberry genetic improvement for abiotic stress tolerance. However, high-throughput biotechnological tools such as RNA interference, virus-induced gene silencing, epigenomics and genome editing tools need to be utilized in mulberry to accelerate the progress of functional genomics. The application of genomic tools such as genetic engineering, marker-assisted selection and genomic selection in breeding programmes can hasten the development of climate resilient and productive mulberry varieties leading to the vertical and horizontal expansion for quality silk production.
Collapse
Affiliation(s)
- Tanmoy Sarkar
- Central Sericultural Research & Training Institute (CSRTI), Mysuru, Karnataka, 570 008, India.
| | - Thallapally Mogili
- Central Sericultural Research & Training Institute (CSRTI), Mysuru, Karnataka, 570 008, India
| | - Vankadara Sivaprasad
- Central Sericultural Research & Training Institute (CSRTI), Mysuru, Karnataka, 570 008, India
| |
Collapse
|
15
|
Van Holle S, De Schutter K, Eggermont L, Tsaneva M, Dang L, Van Damme EJM. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics. Int J Mol Sci 2017; 18:ijms18061136. [PMID: 28587095 PMCID: PMC5485960 DOI: 10.3390/ijms18061136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsisthaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins.
Collapse
Affiliation(s)
- Sofie Van Holle
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Lore Eggermont
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Mariya Tsaneva
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Liuyi Dang
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
16
|
Baranwal VK, Khurana P. Major intrinsic proteins repertoire of Morus notabilis and their expression profiles in different species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:304-317. [PMID: 27988481 DOI: 10.1016/j.plaphy.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/27/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Leaf moisture content in Morus is a significant trait regulating the yield of silk production. Studies have shown that fresh leaves or leaves with high water content are preferably eaten by silk worm. Water and certain other molecules transport in plants is known to be regulated by aquaporins or Major Intrinsic Proteins (MIPs). Members of the MIP gene family have also been implicated in plant development and stress responsiveness. To understand how members of MIP gene family are regulated and evolved, we carried out an extensive analysis of the gene family. We identified a total of 36 non redundant MIPs in Morus notabilis genome, belonging to five subfamilies PIPs, TIPs, NIPs, XIPs and SIPs) have been identified. We performed a Gene ontology (GO) term enrichment analysis and looked at distribution of cis elements in their 2K upstream regulatory region to reveal their putative roles in various stresses and developmental aspects. Expression analysis in developmental stages revealed their tissue preferential expression pattern in diverse vegetative and reproductive tissues. Comparison of expression profiles in the leaves of three species including Morus notabilis, Morus serrata and Morus laevigata led to identification of differential expression in these species. In all, this study elaborates a basic insight into the structure, function and evolutionary analysis of MIP gene family in Morus which is hitherto unavailable. Our analysis will provide a ready reference to the mulberry research community involved in the Morus improvement program.
Collapse
Affiliation(s)
- Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|