1
|
Thomé PC, Wolinska J, Van Den Wyngaert S, Reñé A, Ilicic D, Agha R, Grossart HP, Garcés E, Monaghan MT, Strassert JFH. Phylogenomics including new sequence data of phytoplankton-infecting chytrids reveals multiple independent lifestyle transitions across the phylum. Mol Phylogenet Evol 2024; 197:108103. [PMID: 38754710 DOI: 10.1016/j.ympev.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/01/2023] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Parasitism is the most common lifestyle on Earth and has emerged many times independently across the eukaryotic tree of life. It is frequently found among chytrids (Chytridiomycota), which are early-branching unicellular fungi that feed osmotrophically via rhizoids as saprotrophs or parasites. Chytrids are abundant in most aquatic and terrestrial environments and fulfil important ecosystem functions. As parasites, they can have significant impacts on host populations. They cause global amphibian declines and influence the Earth's carbon cycle by terminating algal blooms. To date, the evolution of parasitism within the chytrid phylum remains unclear due to the low phylogenetic resolution of rRNA genes for the early diversification of fungi, and because few parasitic lineages have been cultured and genomic data for parasites is scarce. Here, we combine transcriptomics, culture-independent single-cell genomics and a phylogenomic approach to overcome these limitations. We newly sequenced 29 parasitic taxa and combined these with existing data to provide a robust backbone topology for the diversification of Chytridiomycota. Our analyses reveal multiple independent lifestyle transitions between parasitism and saprotrophy among chytrids and multiple host shifts by parasites. Based on these results and the parasitic lifestyle of other early-branching holomycotan lineages, we hypothesise that the chytrid last common ancestor was a parasite of phytoplankton.
Collapse
Affiliation(s)
- Pauline C Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Silke Van Den Wyngaert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Department of Biology, University of Turku, Turku, Finland
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Barcelona, Spain
| | - Doris Ilicic
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Ramsy Agha
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Barcelona, Spain
| | - Michael T Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F H Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| |
Collapse
|
2
|
Hurdeal VG, Longcore JE, Jones EBG, Hyde KD, Gentekaki E. Diversity of Rhizophydiales (Chytridiomycota) in Thailand: unveiling the hidden gems of the Kingdom. IMA Fungus 2024; 15:17. [PMID: 38937805 PMCID: PMC11210171 DOI: 10.1186/s43008-024-00144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/28/2024] [Indexed: 06/29/2024] Open
Abstract
Chytrids, often overshadowed by their other fungal counterparts, take center stage as we unravel the mysteries surrounding new species within Rhizophydiales and explore their unique characteristics. In the broader spectrum of chytrids, their significance lies not only in their roles as decomposers but also as key players in nutrient cycling within aquatic ecosystems as parasites and saprobes. Baited soil and aquatic samples collected from various provinces of Thailand, yielded new species of the Rhizophydiales (Chytridiomycota), some of which expanded previously single species genera. Our investigation incorporated a combination of morphological and phylogenetic approaches, enabling us to identify these isolates as distinct taxa. The novel isolates possess distinguishing features, such as variations in size and shape of the sporangium and zoospores, that somewhat differentiate them from described taxa. To confirm the novelty of the species, we employed robust phylogenetic analyses using maximum likelihood and bayesian methods. The results provided strong support for the presence of eight distinct lineages within the Rhizophydiales, representing our newly discovered species. Furthermore, we employed Poisson Tree Processes to infer putative species boundaries and supplement evidence for the establishment of our new Rhizophydiales species. By meticulously exploring their morphological characteristics and genetic makeup, we expand the known catalogue of fungal diversity by describing Alphamyces thailandicus, Angulomyces ubonensis, Gorgonomyces aquaticus, G. chiangraiensis, G. limnicus, Pateramyces pingflumenensis, Terramyces aquatica, and T. flumenensis and also provide valuable insights into the intricacies of this order. This newfound knowledge not only enriches our understanding of Rhizophydiales but also contributes significantly to the broader field of mycology, addressing a critical gap in the documentation of fungal species. The identification and characterization of these eight novel species mark a noteworthy stride towards a more comprehensive comprehension of fungal ecosystems and their vital role.
Collapse
Affiliation(s)
- Vedprakash G Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, ME, 04469-5722, USA
| | - E B Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kevin D Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Eleni Gentekaki
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, Nicosia, 2414, Cyprus.
| |
Collapse
|
3
|
Wagner R, Montoya L, Head JR, Campo S, Remais J, Taylor JW. Coccidioides undetected in soils from agricultural land and uncorrelated with time or the greater soil fungal community on undeveloped land. PLoS Pathog 2023; 19:e1011391. [PMID: 37228157 PMCID: PMC10246812 DOI: 10.1371/journal.ppat.1011391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 06/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Coccidioidomycosis is a typically respiratory fungal disease that, in the United States, occurs primarily in Arizona and California. In California, most coccidioidomycosis cases occur in the San Joaquin Valley, a primarily agricultural region where the disease poses a risk for outdoor workers. We collected 710 soil samples and 265 settled dust samples from nine sites in the San Joaquin Valley and examined how Coccidioides detection varied by month, site, and the presence and abundance of other fungal species. We detected Coccidioides in 89 of 238 (37.4%) rodent burrow soil samples at five undeveloped sites and were unable to detect Coccidioides in any of 472 surface and subsurface soil samples at four agricultural sites. In what is the largest sampling effort undertaken on agricultural land, our results provide no evidence that agricultural soils in the San Joaquin Valley harbor Coccidioides. We found no clear association between Coccidioides and the greater soil fungal community, but we identified 19 fungal indicator species that were significantly associated with Coccidioides detection in burrows. We also did not find a seasonal pattern in Coccidioides detection in the rodent burrow soils we sampled. These findings suggest both the presence of a spore bank and that coccidioidomycosis incidence may be more strongly associated with Coccidioides dispersal than Coccidioides growth. Finally, we were able to detect Coccidioides in only five of our 265 near-surface settled dust samples, one from agricultural land, where Coccidioides was undetected in soils, and four from undeveloped land, where Coccidioides was common in the rodent burrow soils we sampled. Our ability to detect Coccidioides in few settled dust samples indicates that improved methods are likely needed moving forward, though raises questions regarding aerial dispersal in Coccidioides, whose key transmission event likely occurs over short distances in rodent burrows from soil to naïve rodent lungs.
Collapse
Affiliation(s)
- Robert Wagner
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Liliam Montoya
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Jennifer R. Head
- Division of Epidemiology, University of California Berkeley, Berkeley, California, United States of America
| | - Simon Campo
- Division of Environmental Health Sciences, University of California Berkeley, Berkeley, California, United States of America
| | - Justin Remais
- Division of Environmental Health Sciences, University of California Berkeley, Berkeley, California, United States of America
| | - John W. Taylor
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
4
|
Calabon MS, Hyde KD, Jones EBG, Luo ZL, Dong W, Hurdeal VG, Gentekaki E, Rossi W, Leonardi M, Thiyagaraja V, Lestari AS, Shen HW, Bao DF, Boonyuen N, Zeng M. Freshwater fungal numbers. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Větrovský T, Soukup P, Stiblik P, Votýpková K, Chakraborty A, Larrañaga IO, Sillam-Dussès D, Lo N, Bourguignon T, Baldrian P, Šobotník J, Kolařík M. Termites host specific fungal communities that differ from those in their ambient environments. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Powell MJ, Longcore JE, Redhead SA. Donald John Stoddart Barr, 18 September 1937–20 November 2018. Mycologia 2020. [DOI: 10.1080/00275514.2020.1749510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Martha J. Powell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487
| | - Joyce E. Longcore
- School of Biology and Ecology, University of Maine, Orono, Maine 04469
| | - Scott A. Redhead
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada K1A 0C6
| |
Collapse
|
7
|
The disappearing periglacial ecosystem atop Mt. Kilimanjaro supports both cosmopolitan and endemic microbial communities. Sci Rep 2019; 9:10676. [PMID: 31337772 PMCID: PMC6650471 DOI: 10.1038/s41598-019-46521-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/18/2019] [Indexed: 11/08/2022] Open
Abstract
Microbial communities have not been studied using molecular approaches at high elevations on the African continent. Here we describe the diversity of microbial communities from ice and periglacial soils from near the summit of Mt. Kilimanjaro by using both Illumina and Sanger sequencing of 16S and 18S rRNA genes. Ice and periglacial soils contain unexpectedly diverse and rich assemblages of Bacteria and Eukarya indicating that there may be high rates of dispersal to the top of this tropical mountain and/or that the habitat is more conducive to microbial life than was previously thought. Most bacterial OTUs are cosmopolitan and an analysis of isolation by geographic distance patterns of the genus Polaromonas emphasized the importance of global Aeolian transport in the assembly of bacterial communities on Kilimanjaro. The eukaryotic communities were less diverse than the bacterial communities and showed more evidence of dispersal limitations and apparent endemism. Cercozoa dominated the 18S communities, including a high abundance of testate amoebae and a high diversity of endemic OTUs within the Vampyrellida. These results argue for more intense study of this unique high-elevation "island of the cryosphere" before the glaciers of Kilimanjaro disappear forever.
Collapse
|
8
|
Medina D, Hughey MC, Walke JB, Becker MH, Pontarelli K, Sun S, Badgley B, Belden LK. Amphibian skin fungal communities vary across host species and do not correlate with infection by a pathogenic fungus. Environ Microbiol 2019; 21:2905-2920. [PMID: 31087743 DOI: 10.1111/1462-2920.14682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Amphibian population declines caused by the fungus Batrachochytrium dendrobatidis (Bd) have prompted studies on the bacterial community that resides on amphibian skin. However, studies addressing the fungal portion of these symbiont communities have lagged behind. Using ITS1 amplicon sequencing, we examined the fungal portion of the skin microbiome of temperate and tropical amphibian species currently coexisting with Bd in nature. We assessed cooccurrence patterns between bacterial and fungal OTUs using a subset of samples for which bacterial 16S rRNA gene amplicon data were also available. We determined that fungal communities were dominated by members of the phyla Ascomycota and Basidiomycota, and also by Chytridiomycota in the most aquatic amphibian species. Alpha diversity of the fungal communities differed across host species, and fungal community structure differed across species and regions. However, we did not find a correlation between fungal diversity/community structure and Bd infection, though we did identify significant correlations between Bd and specific OTUs. Moreover, positive bacterial-fungal cooccurrences suggest that positive interactions between these organisms occur in the skin microbiome. Understanding the ecology of amphibian skin fungi, and their interactions with bacteria will complement our knowledge of the factors influencing community assembly and the overall function of these symbiont communities.
Collapse
Affiliation(s)
- Daniel Medina
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Myra C Hughey
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Department of Biology, Vassar College, Poughkeepsie, NY, USA
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Department of Biology, Eastern Washington University, Cheney, WA, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Shan Sun
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.,College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Brian Badgley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
9
|
Letcher PM, Powell MJ. Morphology, zoospore ultrastructure, and phylogenetic position of Polyphlyctis willoughbyi, a new species in Chytridiales (Chytridiomycota). Fungal Biol 2018; 122:1171-1183. [DOI: 10.1016/j.funbio.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/07/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
|
10
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, Gsell AS, Ibelings BW, Kagami M, Küpper FC, Letcher PM, Loyau A, Miki T, Nejstgaard JC, Rasconi S, Reñé A, Rohrlack T, Rojas-Jimenez K, Schmeller DS, Scholz B, Seto K, Sime-Ngando T, Sukenik A, Van de Waal DB, Van den Wyngaert S, Van Donk E, Wolinska J, Wurzbacher C, Agha R. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ Microbiol 2017; 19:3802-3822. [DOI: 10.1111/1462-2920.13827] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Thijs Frenken
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
| | - Elisabet Alacid
- Departament de Biologia Marina i Oceanografia; Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49; Barcelona 08003 Spain
| | - Stella A. Berger
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
| | - Elizabeth C. Bourne
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straβe 6-8; Berlin D-14195 Germany
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
| | - Mélanie Gerphagnon
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
| | - Hans-Peter Grossart
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
- Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2; Potsdam D-14476 Germany
| | - Alena S. Gsell
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
| | - Bas W. Ibelings
- Department F.-A. Forel for Environmental and Aquatic Sciences & Institute for Environmental Sciences; University of Geneva, 66 Boulevard Carl Vogt; Geneva 4 CH 1211 Switzerland
| | - Maiko Kagami
- Department of Environmental Sciences, Faculty of Science; Toho University, 2-2-1, Miyama; Funabashi Chiba 274-8510 Japan
| | - Frithjof C. Küpper
- Oceanlab, University of Aberdeen, Main Street; Newburgh Scotland AB41 6AA UK
| | - Peter M. Letcher
- Department of Biological Sciences; The University of Alabama, 300 Hackberry Lane; Tuscaloosa AL 35487 USA
| | - Adeline Loyau
- Department of System Ecotoxicology; Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15; 04318 Leipzig Germany
- Department of Conservation Biology; Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15; Leipzig 04318 Germany
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | - Takeshi Miki
- Institute of Oceanography; National Taiwan University, No.1 Section 4, Roosevelt Road; Taipei 10617 Taiwan
- Research Center for Environmental Changes; Academia Sinica, No.128 Section 2, Academia Road, Nankang; Taipei 11529 Taiwan
| | - Jens C. Nejstgaard
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
| | - Serena Rasconi
- WasserCluster Lunz - Biological Station; Inter-University Centre for Aquatic Ecosystem Research, A-3293 Lunz am See; Austria
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia; Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49; Barcelona 08003 Spain
| | - Thomas Rohrlack
- Faculty of Environmental Sciences and Natural Resource Management; Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås; Norway
| | - Keilor Rojas-Jimenez
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
- Universidad Latina de Costa Rica, Campus San Pedro, Apdo; San Jose 10138-1000 Costa Rica
| | - Dirk S. Schmeller
- Department of Conservation Biology; Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15; Leipzig 04318 Germany
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | - Bettina Scholz
- BioPol ehf, Einbúastig 2, Skagaströnd 545; Iceland
- Faculty of Natural Resource Sciences; University of Akureyri, Borgir v. Nordurslod; Akureyri IS 600 Iceland
| | - Kensuke Seto
- Department of Environmental Sciences, Faculty of Science; Toho University, 2-2-1, Miyama; Funabashi Chiba 274-8510 Japan
- Sugadaira Montane Research Center; University of Tsukuba, 1278-294, Sugadaira-Kogen; Ueda, Nagano, 386-2204 Japan
| | - Télesphore Sime-Ngando
- Université Clermont Auvergne, UMR CNRS 6023 LMGE, Laboratoire Microorganismes: Génome et Environnement (LMGE); Campus Universitaire des Cézeaux, Impasse Amélie Murat 1, CS 60026, Aubière, 63178 France
| | - Assaf Sukenik
- Kinneret Limnological Laboratory; Israel Oceanographic & Limnological Research, P.O.Box 447; Migdal, 14950 Israel
| | - Dedmer B. Van de Waal
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
| | - Silke Van den Wyngaert
- Department of Experimental Limnology; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2; Stechlin D-16775 Germany
| | - Ellen Van Donk
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10; Wageningen PB 6708 The Netherlands
- Department of Biology; University of Utrecht, Padualaan 8; Utrecht TB 3508 The Netherlands
| | - Justyna Wolinska
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straβe 1-3; Berlin, 14195 Germany
| | - Christian Wurzbacher
- Department of Biological and Environmental Sciences; University of Gothenburg, Box 461; Göteborg, 405 30 Sweden
- Gothenburg Global Biodiversity Centre, Box 461; Göteborg, SE-405 30 Sweden
| | - Ramsy Agha
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301; Berlin 12587 Germany
| |
Collapse
|
12
|
Davis WJ, Letcher PM, Longcore JE, Powell MJ. Fayochytriomyces, a new genus within Chytridiales. Mycologia 2017; 107:432-9. [DOI: 10.3852/14-265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Peter M. Letcher
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Joyce E. Longcore
- School of Biology and Ecology, University of Maine, Orono, Maine 04469
| | - Martha J. Powell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| |
Collapse
|
13
|
Simmons DR, Letcher PM, Powell MJ, Longcore JE. Alogomyces tanneri gen. et sp. nov., a chytrid in Lobulomycetales from horse manure. Mycologia 2017; 104:157-63. [DOI: 10.3852/11-043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- D. Rabern Simmons
- School of Biology & Ecology, University of Maine, 5722 Deering Hall, Orono, Maine 04469
| | | | - Martha J. Powell
- Department of Biological Sciences, University of Alabama, Box 870344, Tuscaloosa, Alabama 35487
| | - Joyce E. Longcore
- School of Biology & Ecology, University of Maine, 5722 Deering Hall, Orono, Maine 04469
| |
Collapse
|
14
|
Letcher PM, Powell MJ, Picard KT. Zoospore ultrastructure and phylogenetic position of Phlyctochytrium aureliae Ajello is revealed (Chytridiaceae, Chytridiales, Chytridiomycota). Mycologia 2017; 104:410-8. [DOI: 10.3852/11-153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Kathryn T. Picard
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| |
Collapse
|
15
|
Vélez CG, Letcher PM, Schultz S, Mataloni G, Lefèvre E, Powell MJ. Three new genera in Chytridiales from aquatic habitats in Argentina. Mycologia 2017; 105:1251-65. [DOI: 10.3852/12-353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carlos G. Vélez
- Departamento de Biodiversidad y Biología, Experimental, Universidad de Buenos Aires, PRHIDEB-CONICET, C1428EHA Buenos Aires, Argentina
| | - Peter M. Letcher
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Sabina Schultz
- Universidad Nacional del Comahue, INIBIOMACONICET, Quintral 1250, San Carlos de Bariloche, 8400 Rio Negro Province, Argentina
| | - Gabriela Mataloni
- Grupo de Biodiversidad, Limnología y Biología de la Conservación 3iA, Instituto de Investigación e, Ingeniería Ambiental, Universidad Nacional de San Martín Peatonal Belgrano 3563, San Martín1650, Buenos Aires Province, Argentina
| | | | - Martha J. Powell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| |
Collapse
|
16
|
Kapps D, Cela M, Théobald-Dietrich A, Hendrickson T, Frugier M. OB or Not OB: Idiosyncratic utilization of the tRNA-binding OB-fold domain in unicellular, pathogenic eukaryotes. FEBS Lett 2016; 590:4180-4191. [PMID: 27714804 DOI: 10.1002/1873-3468.12441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 11/11/2022]
Abstract
In this review, we examine the so-called OB-fold, a tRNA-binding domain homologous to the bacterial tRNA-binding protein Trbp111. We highlight the ability of OB-fold homologs to bind tRNA species and summarize their distribution in evolution. Nature has capitalized on the advantageous effects acquired when an OB-fold domain binds to tRNA by evolutionarily selecting this domain for fusion to different enzymes. Here, we review our current understanding of how the complexity of OB-fold-containing proteins and enzymes developed to expand their functions, especially in unicellular, pathogenic eukaryotes.
Collapse
Affiliation(s)
- Delphine Kapps
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | - Marta Cela
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | | | | | - Magali Frugier
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| |
Collapse
|
17
|
Letcher PM, Powell MJ, Davis WJ. A new family and four new genera in Rhizophydiales (Chytridiomycota). Mycologia 2015; 107:808-30. [PMID: 25911694 DOI: 10.3852/14-280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/09/2015] [Indexed: 11/10/2022]
Abstract
Many chytrid phylogenies contain lineages representing a lone taxon or a few organisms. One such lineage in recent molecular phylogenies of Rhizophydiales contained two marine chytrids, Rhizophydium littoreum and Rhizophydium aestuarii. To better understand the relationship between these organisms, we increased sampling such that the R. littoreum/R. aestuarii lineage included 10 strains of interest. To place this lineage in Rhizophydiales, we constructed a molecular phylogeny from partial nuc 28S rDNA D1-D3 domains (28S) of these and 80 additional strains in Rhizophydiales and examined thallus morphology and zoospore ultrastructure of our strains of interest. We also analyzed sequences of the nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS) of our 10 strains of interest to assess sequence similarity and phylogenetic placement of strains within the lineage. The 10 strains grouped together in three well supported clades: (i) Rhizophydium littoreum+Phlyctochytrium mangrovei, (ii) three strains of Rhizophydium aestuarii and (iii) five previously unidentified strains. Light microscopic observations revealed four distinct thallus morphologies, and zoospore ultrastructural analyses revealed four distinct constellations of ultrastructural features. On the bases of morphological, ultrastructural and molecular evidence we place these strains in the new family Halomycetaceae and four new genera (Halomyces, Paludomyces, Ulkenomyces, Paranamyces) in Rhizophydiales.
Collapse
Affiliation(s)
- Peter M Letcher
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Martha J Powell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - William J Davis
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| |
Collapse
|
18
|
Krings M, Taylor TN. Deciphering interfungal relationships in the 410-million-yr-old Rhynie chert: an intricate interaction between two mycelial fungi. Symbiosis 2014. [DOI: 10.1007/s13199-014-0302-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Akinwole PO, Lefevre E, Powell MJ, Findlay RH. Unique odd-chain polyenoic phospholipid fatty acids present in chytrid fungi. Lipids 2014; 49:933-42. [PMID: 25119485 DOI: 10.1007/s11745-014-3934-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
Abstract
Chytrid fungi are ubiquitous components of aquatic and terrestrial ecosystems yet they remain understudied. To investigate the use of phospholipid fatty acids as phenotypic characteristics in taxonomic studies and biomarkers for ecological studies, 18 chytrid fungi isolated from soil to freshwater samples were grown in defined media and their phospholipid fatty acid profile determined. Gas chromatographic/mass spectral analysis indicated the presence of fatty acids typically associated with fungi, such as 16:1(n-7), 16:0, 18:2(n-6), 18:3(n-3) 18:1(n-9), and 18:0, as well as, a number of odd-chain length fatty acids, including two polyunsaturated C-17 fatty acids. Conversion to their 3-pyridylcarbinol ester facilitated GC-MS determination of double-bond positions and these fatty acid were identified as 6,9-17:2 [17:2(n-8)] and 6,9,12-17:3 [17:3(n-5)]. To the best of our knowledge, this is the first report of polyunsaturated C-17 fatty acids isolated from the phospholipids of chytrid fungi. Cluster analysis of PLFA profiles showed sufficient correlation with chytrid phylogeny to warrant inclusion of lipid analysis in species descriptions and the presence of several phospholipid fatty acids of restricted phylogenetic distributions suggests their usefulness as biomarkers for ecological studies.
Collapse
Affiliation(s)
- Philips O Akinwole
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
Hajek AE, Longcore JE, Rabern Simmons D, Peters K, Humber RA. Chytrid mycoparasitism of entomophthoralean azygospores. J Invertebr Pathol 2013; 114:333-6. [PMID: 24140499 DOI: 10.1016/j.jip.2013.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022]
Abstract
Mycoparasitism - when one fungus parasitizes another - has been reported to affect Beauveria bassiana and mycorrhizal fungi in the field. However, mycoparasitism of any fungi in the Order Entomophthorales has never been reported before now. The majority of entomophthoralean species persist as resting spores (either zygospores or azygospores) in the environment and dormant entomophthoralean resting spores (whether formed as zygospores or azygospores) are thought to be especially well adapted for survival over long periods due to their thick double walls. Entomophthoralean resting spores can accumulate in the soil as large reservoirs of inoculum which can facilitate the onset and development of epizootics. We report parasitism of azygospores of the gypsy moth pathogen Entomophaga maimaiga caged in soil from southern Ohio by the chytrid fungus Gaertneriomyces semiglobifer. G. semiglobifer had previously been isolated from soil samples from North America, Europe and Australia or horse manure from Virginia. After isolation and identification of G. semiglobifer, azygospores of E. maimaiga exposed to zoospores of G. semiglobifer exhibited high levels of mycoparasitism and G. semiglobifer was subsequently reisolated from mycoparasitized resting spores. We discuss the importance of this finding to the epizootiology of insect diseases caused by entomophthoralean fungi.
Collapse
Affiliation(s)
- Ann E Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601, USA.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Zoosporic true fungi and heterotrophic straminipiles assemblages from soil of Brazilian Cerrado areas. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2011.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Simmons DR. Phylogeny of Powellomycetaceae fam. nov. and description of Geranomyces variabilis gen. et comb. nov. Mycologia 2011; 103:1411-20. [PMID: 21558503 DOI: 10.3852/11-039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The genus Powellomyces was described to accommodate two monocentric chytrid species from soil that develop exogenously and possess zoosporic ultrastructure similar to other members of the order Spizellomycetales. Despite Powellomyces-like chytrids being commonly observed in gross culture, the genus contained only two species. To determine diversity in this group I amassed 49 isolates of Powellomyces-like chytrids, including the cultures upon which species types were based and new isolates from pollen-baited water cultures of soils, plant detritus and manure. I sequenced portions of nucSSU and nucLSU rDNA regions and the EF-1α-like gene from each isolate to produce a molecular phylogeny. This phylogeny supports monophyly of spizellomycetalean chytrids with exogenous development and suggests that multiple distinct lineages exist within this group. This phylogeny, along with a reevaluation of the ultra-structural features of the two described species, supports the recognition of a new family, Powellomycetaceae, and genus, Geranomyces, which contains 31 isolates of G. variabilis comb. nov.
Collapse
Affiliation(s)
- D Rabern Simmons
- School of Biology & Ecology, University of Maine, 5722 Deering Hall, Orono, Maine 04469, USA.
| |
Collapse
|
25
|
Can zoosporic true fungi grow or survive in extreme or stressful environments? Extremophiles 2010; 14:417-25. [PMID: 20640865 DOI: 10.1007/s00792-010-0323-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
Zoosporic true fungi are thought to be ubiquitous in many ecosystems, especially in cool, moist soils and freshwater habitats which are rich in organic matter. However, some of the habitats where these fungi are found may periodically experience extreme conditions, such as soils in extremely dry, hot and cold climates, acidic and alkaline soils, polluted rivers, anaerobic soil and water, saline soil and water, periglacial soils, oligotrophic soils, tree canopies and hydrothermal vents. It is clear that many ecotypes of zoosporic true fungi have indeed adapted to extreme or stressful environmental conditions. This conclusion is supported by studies in both the field and in the laboratory. Therefore, in our opinion, at least some true zoosporic fungi can be considered to be extremophiles.
Collapse
|