1
|
Barbosa LO, Conceição TDSD, Neves ADO, Rocha WZB, Damasceno BS, Fonseca PLC, Ribeiro PR, Tome LMR, Bortolini DE, Martins FM, Raya FT, Goes-Neto A, Soares ACF. Native and Non-Native Soil and Endophytic Trichoderma spp. from Semi-Arid Sisal Fields of Brazil Are Potential Biocontrol Agents for Sisal Bole Rot Disease. J Fungi (Basel) 2024; 10:860. [PMID: 39728356 DOI: 10.3390/jof10120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Sisal (Agave sisalana) bole rot caused by Aspergillus welwitschiae is the main phytosanitary problem affecting sisal in the Brazilian semi-arid region. The aim of this study was to evaluate Trichoderma spp. as biocontrol agents for sisal bole rot. Native and non-native species, both soil inhabitants and endophytes, and isolated from different plant hosts were tested. Anatomical studies of the interaction among A. sisalana, Trichoderma spp., and A. welwitschiae were performed. T. cf. asperellum (isolate F12), an endophyte of sisal leaves; T. cf. asperellum (TCS83) from banana plant soil; T. lentiforme (TCS15) and T. harzianum (species complex) (TCS35 and TCS76) from sisal root soil; T. spirale (R62) and T. saturnisporum (R75), endophytes of sisal roots, were the most efficient isolates, with inhibition of A. welwitschiae mycelial growth by up to 70%, and inhibition of sporulation and spore germination by 99%. A reduction in disease incidence of 70 to 93% and in disease severity of 97% was achieved. T. lentiforme (TCS1), T. harzianum (species complex) (TCS35 and R72), and T. koningiopsis (R78) showed mycoparasitism. An increase in cell wall thickness of bole tissue colonized by these Trichoderma species indicated that induced plant defense responses occurred, preventing pathogen colonization, which should be further investigated. Native and non-native Trichoderma species can control sisal bole rot disease.
Collapse
Affiliation(s)
- Leonardo O Barbosa
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas 44380-000, BA, Brazil
- JCO Bioprodutos Company, Barreiras 47810-423, BA, Brazil
| | - Tainá D S da Conceição
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas 44380-000, BA, Brazil
| | - Adriana de O Neves
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas 44380-000, BA, Brazil
| | - Wélica Z B Rocha
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas 44380-000, BA, Brazil
- Department of Phytopathology and Nematology, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba 13418-260, SP, Brazil
| | - Beatriz S Damasceno
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas 44380-000, BA, Brazil
- Departament of Phytopathology, Federal University of Viçosa, Vicosa 36570-900, MG, Brazil
| | - Paula L C Fonseca
- Laboratory of Molecular and Computational Biology of Fungi (LBMCF), Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Paulo R Ribeiro
- Institute of Chemistry, Department of Organic Chemistry, Federal University of Bahia, Salvador 40110-909, BA, Brazil
| | - Luis M R Tome
- Laboratory of Molecular and Computational Biology of Fungi (LBMCF), Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Dener E Bortolini
- Laboratory of Molecular and Computational Biology of Fungi (LBMCF), Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Fabiano M Martins
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas 44380-000, BA, Brazil
| | - Fábio T Raya
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, University of Campinas (Unicamp), Campinas 13083-970, SP, Brazil
| | - Aristóteles Goes-Neto
- Laboratory of Molecular and Computational Biology of Fungi (LBMCF), Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Ana C F Soares
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas 44380-000, BA, Brazil
| |
Collapse
|
2
|
Dos Santos Castro G, Fernandes Sousa T, Jarline Santos da Silva I, Sena Raposo D, Carlos Ipuchima da Silva J, Peñaloza E, Garrett R, Eduardo Beleza Yamagishi M, Ferreira da Silva G, Henrique Ferreira Koolen H. Amazonins: New Peptaibol Sequences from an Endophytic Strain of Trichoderma amazonicum. Chem Biodivers 2024; 21:e202400611. [PMID: 39497364 DOI: 10.1002/cbdv.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/14/2024] [Indexed: 12/15/2024]
Abstract
Three new putative sequences of 14-residue peptaibols, named amazonins I-III were characterized from the endophytic fungus Trichoderma amazonicum via genome mining, high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS), and molecular networking. Bioinformatic analysis of the T. amazonicum genome assembly revealed 63 clusters of biosynthetic genes (BGCs) related to secondary metabolites, including a nonribosomal peptide synthetase accountable for the biosynthesis of the discovered peptide sequences. Analysis of the adenylation domains, along with manual interpretation of MS/MS spectra, allowed extensive annotation of the new peptaibol sequences. The combination of bioinformatic tools and LC-MS/MS provides a better opportunity to characterize and identify new peptaibol sequences. Thus, the importance of studies on the production and characterization of peptaibols produced by Trichoderma species from the Amazon region is highlighted.
Collapse
Affiliation(s)
- Gleucinei Dos Santos Castro
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas (UEA), 690065-130, Manaus, Brazil
| | - Thiago Fernandes Sousa
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), 69080-900, Manaus, Brazil
| | | | - Débora Sena Raposo
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas (UEA), 690065-130, Manaus, Brazil
| | - José Carlos Ipuchima da Silva
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas (UEA), 690065-130, Manaus, Brazil
| | - Evelyn Peñaloza
- Laboratório de Metabolômica (LabMeta-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-598, Brazil
| | - Rafael Garrett
- Laboratório de Metabolômica (LabMeta-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-598, Brazil
| | | | | | - Hector Henrique Ferreira Koolen
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas (UEA), 690065-130, Manaus, Brazil
| |
Collapse
|
3
|
Chohan SA, Akbar M, Iqbal U. Trichoderma based formulations control the wilt disease of chickpea ( Cicer arietinum L.) caused by Fusarium oxysporum f. sp. ciceris, better when inoculated as consortia: findings from pot experiments under field conditions. PeerJ 2024; 12:e17835. [PMID: 39175747 PMCID: PMC11340631 DOI: 10.7717/peerj.17835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Background Commercial/chemical pesticides are available to control Fusarium wilt of chickpea, but these antifungals have numerous environmental and human health hazards. Amongst various organic alternatives, use of antagonistic fungi like Trichoderma, is the most promising option. Although, Trichoderma spp. are known to control Fusarium wilt in chickpea but there are no reports that indicate the biocontrol efficacy of indigenous Trichoderma spp. against the local pathogen, in relation to environmental conditions. Methods In the present study, biological control activity of Trichoderma species formulations viz., Trichoderma asperellum, Trichoderma harzianum (strain 1), and Trichoderma harzianum (strain 2), either singly or in the form of consortia, was investigated against Fusarium oxysporum f. sp. ciceris, the cause of Fusarium wilt in chickpea, in multiyear pot trials under open field conditions. The antagonistic effect of Trichoderma spp. was first evaluated in in vitro dual culture experiments. Then the effects of Trichoderma as well as F. oxysporum, were investigated on the morphological parameters, disease incidence (DI), and disease severity (DS) of chickpea plants grown in pots. Results In dual culture experiments, all the Trichoderma species effectively reduced the mycelial growth of F. oxysporum. T. asperellum, T. harzianum (strain 1), and T. harzianum(strain 2) declined the mycelial growth of F. oxysporumby 37.6%, 40%, and 42%. In open field pot trials, the infestation of F. oxysporum in chickpea plants significantly reduced the morphological growth of chickpea. However, the application of T. asperellum, T. harzianum (strain 1), and T. harzianum (strain 2), either singly or in the form of consortia, significantly overcome the deleterious effects of the pathogen, thereby resulted in lower DI (22.2% and 11.1%) and DS (86% and 92%), and ultimately improved the shoot length, shoot fresh weight and shoot dry weight by 69% and 72%, 67% and 73%, 68% and 75%, during the years 1 and 2, respectively, in comparison with infested control. The present study concludes the usefulness and efficacy of Trichoderma species in controlling wilt disease of chickpea plants under variable weather conditions.
Collapse
Affiliation(s)
- Safeer A. Chohan
- Department of Botany, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Muhammad Akbar
- Department of Botany, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Umer Iqbal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
- Seed Health Lab., Plant Genetic Resources Institute, National Agricultural Research Centre, Islamabad, Pakistan
| |
Collapse
|
4
|
Degani O, Chen A, Dimant E, Gordani A, Malul T, Rabinovitz O. Integrated Management of the Cotton Charcoal Rot Disease Using Biological Agents and Chemical Pesticides. J Fungi (Basel) 2024; 10:250. [PMID: 38667921 PMCID: PMC11050767 DOI: 10.3390/jof10040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Charcoal rot disease (CRD), caused by the phytopathogenic fungus Macrophomina phaseolina, is a significant threat to cotton production in Israel and worldwide. The pathogen secretes toxins and degrading enzymes that disrupt the water and nutrient uptake, leading to death at the late stages of growth. While many control strategies were tested over the years to reduce CRD impact, reaching that goal remains a significant challenge. The current study aimed to establish, improve, and deepen our understanding of a new approach combining biological agents and chemical pesticides. Such intervention relies on reducing fungicides while providing stability and a head start to eco-friendly bio-protective Trichoderma species. The research design included sprouts in a growth room and commercial field plants receiving the same treatments. Under a controlled environment, comparing the bio-based coating treatments with their corresponding chemical coating partners resulted in similar outcomes in most measures. At 52 days, these practices gained up to 38% and 45% higher root and shoot weight and up to 78% decreased pathogen root infection (tracked by Real-Time PCR), compared to non-infected control plants. Yet, in the shoot weight assessment (day 29 post-sowing), the treatment with only biological seed coating outperformed (p < 0.05) all other biological-based treatments and all Azoxystrobin-based irrigation treatments. In contrast, adverse effects are observed in the chemical seed coating group, particularly in above ground plant parts, which are attributable to the addition of Azoxystrobin irrigation. In the field, the biological treatments had the same impact as the chemical intervention, increasing the cotton plants' yield (up to 17%), improving the health (up to 27%) and reducing M. phaseolina DNA in the roots (up to 37%). When considering all treatments within each approach, a significant benefit to plant health was observed with the bio-chemo integrated management compared to using only chemical interventions. Specific integrated treatments have shown potential in reducing CRD symptoms, such as applying bio-coating and sprinkling Azoxystrobin during sowing. Aerial remote sensing based on high-resolution visible-channel (RGB), green-red vegetation index (GRVI), and thermal imaging supported the above findings and proved its value for studying CRD control management. This research validates the combined biological and chemical intervention potential to shield cotton crops from CRD.
Collapse
Affiliation(s)
- Ofir Degani
- Plant Sciences Department, MIGAL—Galilee Research Institute, Tarshish 2, Kiryat Shmona 1101600, Israel; (E.D.); (A.G.); (T.M.); (O.R.)
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel Hai 1220800, Israel;
| | - Assaf Chen
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel Hai 1220800, Israel;
- Soil, Water and Environment Department, MIGAL—Galilee Research Institute, Tarshish 2, Kiryat Shmona 1101600, Israel
| | - Elhanan Dimant
- Plant Sciences Department, MIGAL—Galilee Research Institute, Tarshish 2, Kiryat Shmona 1101600, Israel; (E.D.); (A.G.); (T.M.); (O.R.)
| | - Asaf Gordani
- Plant Sciences Department, MIGAL—Galilee Research Institute, Tarshish 2, Kiryat Shmona 1101600, Israel; (E.D.); (A.G.); (T.M.); (O.R.)
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel Hai 1220800, Israel;
| | - Tamir Malul
- Plant Sciences Department, MIGAL—Galilee Research Institute, Tarshish 2, Kiryat Shmona 1101600, Israel; (E.D.); (A.G.); (T.M.); (O.R.)
- Faculty of Sciences, Tel-Hai College, Upper Galilee, Tel Hai 1220800, Israel;
| | - Onn Rabinovitz
- Plant Sciences Department, MIGAL—Galilee Research Institute, Tarshish 2, Kiryat Shmona 1101600, Israel; (E.D.); (A.G.); (T.M.); (O.R.)
| |
Collapse
|
5
|
Zhao R, Chen KY, Mao LJ, Zhang CL. Eleven new species of Trichoderma (Hypocreaceae, Hypocreales) from China. Mycology 2024; 16:180-209. [PMID: 40083403 PMCID: PMC11899217 DOI: 10.1080/21501203.2024.2330400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 03/16/2025] Open
Abstract
Trichoderma spp. are globally distributed and are considered significant fungal resources. This study presents the discovery of 11 new species of Trichoderma: T. caeruleum, T. gongcheniae, T. graminicola, T. graminis, T. hongkuii, T. parapeberdyi, T. neoguizhouense, T. neohongkuii, T. parahamatum, T. parahongkuii, and T. shaanxiensis. All of these new species were isolated from soils, except for T. caeruleum, T. graminicola, T. graminis, and T. neohongkuii, which were found as endophytes in Poaceae plants. The phylogenetic position of these novel species was determined by analysing the concatenated sequences of the second largest nuclear RNA polymerase subunit encoding gene (rpb2) and the translation elongation factor 1-alpha encoding gene (tef1). The results of the phylogenetic analysis revealed that each new species formed a distinct lineage: T. gongcheniae, T. graminicola, T. graminis, T. neoguizhouense, T. parapeberdyi, and T. shaanxiensis belong to the Harzianum Clade, T. hongkuii, T. parahongkuii, and T. neohongkuii are new members of the Koningii Clade, T. parahamatum belongs to the Hamatum Clade, and T. caeruleum does not fall within any of the named clades. The study also provided a detailed description of the morphology and cultural characteristics of the newly discovered Trichoderma species. The discovery contributes to the advancement of knowledge about Trichoderma species resources in China.
Collapse
Affiliation(s)
- Rui Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ke-Yu Chen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Li-Juan Mao
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chu-Long Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Ye C, Jing T, Sha Y, Mo M, Yu Z. Two new Trichoderma species (Hypocreales, Hypocreaceae) isolated from decaying tubers of Gastrodiaelate. MycoKeys 2023; 99:187-207. [PMID: 37719304 PMCID: PMC10504636 DOI: 10.3897/mycokeys.99.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Species of Trichoderma are widely distributed around the world. In this study, two new species in Trichoderma, named as T.albidum and T.variegatum, were introduced and illustrated. These species were isolated from diseased tubers of Gastrodiaelata in China and identified based on morphological characteristics and multi-gene sequence analyses of three loci that is the internal transcribed spacer regions of the ribosomal DNA (ITS), the translation elongation factor 1-α encoding gene (tef1-α) and the gene encoding the second largest nuclear RNA polymerase subunit (rpb2). Distinctions between the new species and their close relatives were discussed. According to results of the phylogenetic analyses, T.albidum belonged to the Harzianum clade and T.variegatum are grouped with species of the Spirale clade. The expansion of two clades provided research foundations for the prevention and control of tuber diseases in G.elata.
Collapse
Affiliation(s)
- Chuwen Ye
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Tingting Jing
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Yuru Sha
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Minghe Mo
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| |
Collapse
|
7
|
Nascimento Brito V, Lana Alves J, Sírio Araújo K, de Souza Leite T, Borges de Queiroz C, Liparini Pereira O, de Queiroz MV. Endophytic Trichoderma species from rubber trees native to the Brazilian Amazon, including four new species. Front Microbiol 2023; 14:1095199. [PMID: 37143529 PMCID: PMC10151590 DOI: 10.3389/fmicb.2023.1095199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Fungi belonging to the genus Trichoderma have been widely recognized as efficient controllers of plant diseases. Although the majority of isolates currently deployed, thus far, have been isolated from soil, endophytic Trichoderma spp. is considered to be a promising option for application in biocontrol. In this study, 30 endophytic Trichoderma isolates-obtained from the leaves, stems, and roots of wild Hevea spp. in the Brazilian Amazon-were analyzed using specific DNA barcodes: sequences of internal transcribed spacers 1 and 2 of rDNA (ITS region), genes encoding translation elongation factor 1-α (TEF1-α), and the second largest subunit of RNA polymerase II (RPB2). The genealogical concordance phylogenetic species recognition (GCPSR) concept was used for species delimitation. A phylogenetic analysis showed the occurrence of Trichoderma species, such as T. erinaceum, T. ovalisporum, T. koningiopsis, T. sparsum, T. lentiforme, T. virens, and T. spirale. Molecular and morphological features resulted in the discovery of four new species, such as T. acreanum sp. nov., T. ararianum sp. nov., T. heveae sp. nov., and T. brasiliensis sp. nov. The BI and ML analyses shared a similar topology, providing high support to the final trees. The phylograms show three distinct subclades, namely, T. acreanum and T. ararianum being paraphyletic with T. koningiopsis; T. heveae with T. subviride; and T. brasiliensis with T. brevicompactum. This study adds to our knowledge of the diversity of endophytic Trichoderma species in Neotropical forests and reveals new potential biocontrol agents for the management of plant diseases.
Collapse
Affiliation(s)
| | - Janaina Lana Alves
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Kaliane Sírio Araújo
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tiago de Souza Leite
- Instituto Federal do Sudeste de Minas Gerais—Campus Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Casley Borges de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
8
|
Cao ZJ, Qin WT, Zhao J, Liu Y, Wang SX, Zheng SY. Three New Trichoderma Species in Harzianum Clade Associated with the Contaminated Substrates of Edible Fungi. J Fungi (Basel) 2022; 8:1154. [PMID: 36354921 PMCID: PMC9696741 DOI: 10.3390/jof8111154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 04/16/2024] Open
Abstract
Trichoderma is known worldwide as biocontrol agents of plant diseases, producers of enzymes and antibiotics, and competitive contaminants of edible fungi. In this investigation of contaminated substrates of edible fungi from North China, 39 strains belonging to 10 Trichoderma species isolated from four kinds of edible fungi were obtained, and three novel species belonging to the Harzianum clade were isolated from the contaminated substrates of Auricularia heimuer and Pholiota adipose. They were recognized based on integrated studies of phenotypic features, culture characteristics, and molecular analyses of RNA polymerase II subunit B and translation elongation factor 1-α genes. Trichoderma auriculariae was strongly supported as a separate lineage and differed from T. vermifimicola due to its larger conidia. Trichoderma miyunense was closely related to T. ganodermatigerum but differed due to its smaller conidia and higher optimum mycelial growth temperature. As a separate lineage, T. pholiotae was distinct from T. guizhouense and T. pseudoasiaticum due to its higher optimum mycelial growth temperature and larger conidia. This study extends the understanding of Trichoderma spp. contaminating substrates of edible fungi and updates knowledge of species diversity in the group.
Collapse
Affiliation(s)
- Zi-Jian Cao
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wen-Tao Qin
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Juan Zhao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yu Liu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shou-Xian Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Su-Yue Zheng
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
9
|
Zhao Y, Chen X, Cheng J, Xie J, Lin Y, Jiang D, Fu Y, Chen T. Application of Trichoderma Hz36 and Hk37 as Biocontrol Agents against Clubroot Caused by Plasmodiophora brassicae. J Fungi (Basel) 2022; 8:jof8080777. [PMID: 35893144 PMCID: PMC9331738 DOI: 10.3390/jof8080777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Clubroot, a soil-infective disease caused by Plasmodiophora brassicae, is a serious disease affecting cruciferous plants around the world. There is no effective control measure to completely remove this pathogen from fields after infection. Here, we screened and identified two strains (Hz36, Trichoderma guizhouense; Hk37, Trichoderma koningiopsis) of Trichoderma from the gall of clubroot in rapeseed fields with biocontrol potential for clubroot. The fermentation broth of Hz36 could significantly inhibit the germination of resting spores of P. brassicae, and promote the seed germination and root growth of rapeseed. The biocontrol efficiency of Hz36 strain on clubroot for rapeseed and Arabidopsis thaliana was 44.29% and 52.18%, respectively. The qPCR results revealed that strain Hz36 treatment could significantly reduce the content of P. brassicae in root cells, and paraffin section analysis revealed that it could delay the development of P. brassicae. Strain Hk37 showed similar effects to strain Hz36, whose biocontrol efficiency of clubroot could reach 57.30% in rapeseed and 68.01% in A. thaliana. These results indicate that strains Hz36 and Hk37 have the potential for the biocontrol of clubroot.
Collapse
|
10
|
Phylogenetic Analysis of Trichoderma Species Associated with Green Mold Disease on Mushrooms and Two New Pathogens on Ganoderma sichuanense. J Fungi (Basel) 2022; 8:jof8070704. [PMID: 35887460 PMCID: PMC9318549 DOI: 10.3390/jof8070704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Edible and medicinal mushrooms are extensively cultivated and commercially consumed around the world. However, green mold disease (causal agent, Trichoderma spp.) has resulted in severe crop losses on mushroom farms worldwide in recent years and has become an obstacle to the development of the Ganoderma industry in China. In this study, a new species and a new fungal pathogen on Ganoderma sichuanense fruitbodies were identified based on the morphological characteristics and phylogenetic analysis of two genes, the translation elongation factor 1-α (TEF1) and the second-largest subunit of RNA polymerase II (RPB2) genes. The new species, Trichoderma ganodermatigerum sp. nov., belongs to the Harzianum clade, and the new fungal pathogen was identified as Trichoderma koningiopsis. Furthermore, in order to better understand the interaction between Trichoderma and mushrooms, as well as the potential biocontrol value of pathogenic Trichoderma, we summarized the Trichoderma species and their mushroom hosts as best as possible, and the phylogenetic relationships within mushroom pathogenic Trichoderma species were discussed.
Collapse
|
11
|
de Oliveira Amaral A, E Ferreira AFTAF, da Silva Bentes JL. Fungal endophytic community associated with Hevea spp.: diversity, enzymatic activity, and biocontrol potential. Braz J Microbiol 2022; 53:857-872. [PMID: 35247168 PMCID: PMC9151944 DOI: 10.1007/s42770-022-00709-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Plants of the genus Hevea present a great diversity of endophytic fungal species, which can provide bioactive compounds and enzymes for biotechnological use, and antagonist agents for plant disease biological control. The diversity of endophytic fungi associated with leaves of Hevea spp. clones in western Amazonia was explored using cultivation-based techniques, combined with the sequencing of the ITS rRNA-region. A total of 269 isolates were obtained, and phylogenetic analysis showed that they belong to 47 putative species, of which 24 species were unambiguous. The phylum Ascomycota was the most abundant (95.4%), with predominance of the genera Colletotrichum and Diaporthe, followed by the phylum Basidiomycota (4.6%), with abundance of the genera Trametes and Phanerochaete. Endophytic composition was influenced by the clones, with few species shared among them, and the greatest diversity was found in clone C44 (richness: 26, Shannon: 14,15, Simpson: 9.11). The potential for biocontrol and enzymatic production of endophytes has been investigated. In dual culture tests, 95% of the isolates showed inhibitory activity against C. gloeosporioides, and 84% against C. cassiicola. Efficient inhibition was obtained with isolates HEV158C and HEV255M (Cophinforma atrovirens and Polyporales sp. 2) for C. gloeosporioides, and HEV1A and HEV8B (Phanerochaete sp. 3 and Diaporthe sp. 4) for C. cassiicola. The endophytic isolates were positive for lipase (69.6%), amylase (67.6%), cellulase (33.3%), and protease (20.6%). The enzyme index ≥ 2 was found for amylase and lipase. The isolates obtained from rubber trees showed good antimicrobial and enzymatic potential, which can be tested in the future for use in the industry, and in the control of plant pathogens.
Collapse
Affiliation(s)
- Adriene de Oliveira Amaral
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Ciências Florestais e Ambientais, Manaus, Amazonas, Brazil
| | | | - Jânia Lília da Silva Bentes
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Ciências Florestais e Ambientais, Manaus, Amazonas, Brazil.
- Universidade Federal do Amazonas, Programa de Pós-Graduação em Agronomia Tropical, Manaus, Amazonas, Brazil.
| |
Collapse
|
12
|
Zhang GZ, Yang HT, Zhang XJ, Zhou FY, Wu XQ, Xie XY, Zhao XY, Zhou HZ. Five new species of Trichoderma from moist soils in China. MycoKeys 2022; 87:133-157. [PMID: 35221753 PMCID: PMC8873192 DOI: 10.3897/mycokeys.87.76085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
Trichoderma isolates were collected from moist soils near a water source in different areas of China. ITS sequences were submitted to MIST (Multiloci Identification System for Trichoderma) and meets the Trichoderma [ITS76] standard. Combined analyses of phylogenetic analyses of both phylograms (tef1-α and rpb2) and morphological characteristics, revealed five new species of Trichoderma, namely Trichoderma hailarense, T. macrofasciculatum, T. nordicum, T. shangrilaense and T. vadicola. Phylogenetic analyses showed T. macrofasciculatum and T. shangrilaense belong to the Polysporum clade, T. hailarense, while T. nordicum and T. vadicola belong to the Viride clade. Each new taxon formed a distinct clade in phylogenetic analysis and have unique sequences of tef1-α and rpb2 that meet the Trichoderma new species standard. The conidiation of T. macrofasciculatum typically appeared in white pustules in concentric rings on PDA or MEA and its conidia had one or few distinctly verrucose. Conidiophores of T. shangrilaense are short and rarely branched, phialides usually curved and irregularly disposed. The aerial mycelium of T. hailarense and T. vadicola formed strands to floccose mat, conidiation tardy and scattered in tufts, conidiophores repeatedly rebranching in dendriform structure. The phialides of T. nordicum lageniform are curved on PDA and its conidia are globose to obovoidal and large.
Collapse
|
13
|
Olowe OM, Nicola L, Asemoloye MD, Akanmu AO, Babalola OO. Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. Microbiol Res 2022; 257:126978. [DOI: 10.1016/j.micres.2022.126978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
|
14
|
Bustamante DE, Calderon MS, Leiva S, Mendoza JE, Arce M, Oliva M. Three new species of Trichoderma in the Harzianum and Longibrachiatum lineages from Peruvian cacao crop soils based on an integrative approach. Mycologia 2021; 113:1056-1072. [PMID: 34128770 DOI: 10.1080/00275514.2021.1917243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The hyperdiverse genus Trichoderma is one of most useful groups of microbes for a number of human activities, and their accurate identification is crucial. The structural simplicity and lack of distinctive phenotypic variation in this group enable the use of DNA-based species delimitation methods in combination with phylogenies (and morphology when feasible) to establish well-supported boundaries among species. Our study employed a multilocus phylogeny and four DNA-based methods (automated barcode gap discovery [ABGD], statistical parsimony [SPN], generalized mixed Yule coalescent [GMYC], and Bayesian phylogenetics and phylogeography [BPP]) for four molecular markers (acl1, act, rpb2, and tef1) to delimit species of two lineages of Trichoderma. Although incongruence among these methods was observed in our analyses, the genetic distance (ABGD) and coalescence (BPP) methods and the multilocus phylogeny strongly supported and confirmed recognition of 108 and 39 different species in the Harzianum and Longibrachiatum lineages, including three new species associated with cacao farms in northern Peru, namely, T.awajun, sp. nov., T. jaklitschii, sp. nov., and T. peruvianum, sp. nov. Morphological distinctions between the new species and their close relatives are primarily related to growth rates, colony appearance, and size of phialides and conidia. This study confirmed that an integrative approach (DNA-based methods, multilocus phylogeny, and phenotype) is more likely to reliably verify supported species boundaries in Trichoderma.
Collapse
Affiliation(s)
- Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.,Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Martha S Calderon
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.,Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Santos Leiva
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Jani E Mendoza
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Marielita Arce
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Manuel Oliva
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| |
Collapse
|
15
|
Del Carmen H Rodríguez M, Evans HC, de Abreu LM, de Macedo DM, Ndacnou MK, Bekele KB, Barreto RW. New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Sci Rep 2021; 11:5671. [PMID: 33707461 PMCID: PMC7952591 DOI: 10.1038/s41598-021-84111-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/04/2021] [Indexed: 01/23/2023] Open
Abstract
A survey for species of the genus Trichoderma occurring as endophytes of Coffea, and as mycoparasites of coffee rusts (Hemileia), was undertaken in Africa; concentrating on Cameroon and Ethiopia. Ninety-four isolates of Trichoderma were obtained during this study: 76 as endophytes of healthy leaves, stems and berries and, 18 directly from colonized rust pustules. A phylogenetic analysis of all isolates used a combination of three genes: translation elongation factor-1α (tef1), rpb2 and cal for selected isolates. GCPSR criteria were used for the recognition of species; supported by morphological and cultural characters. The results reveal a previously unrecorded diversity of Trichoderma species endophytic in both wild and cultivated Coffea, and mycoparasitic on Hemileia rusts. Sixteen species were delimited, including four novel taxa which are described herein: T. botryosum, T. caeruloviride, T. lentissimum and T. pseudopyramidale. Two of these new species, T. botryosum and T. pseudopyramidale, constituted over 60% of the total isolations, predominantly from wild C. arabica in Ethiopian cloud forest. In sharp contrast, not a single isolate of Trichoderma was obtained using the same isolation protocol during a survey of coffee in four Brazilian states, suggesting the existence of a 'Trichoderma void' in the endophyte mycobiota of coffee outside of Africa. The potential use of these African Trichoderma isolates in classical biological control, either as endophytic bodyguards-to protect coffee plants from Hemileia vastatrix, the fungus causing coffee leaf rust (CLR)-or to reduce its impact through mycoparasitism, is discussed, with reference to the on-going CLR crisis in Central America.
Collapse
Affiliation(s)
| | - Harry C Evans
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
- CAB International, Bakeham Lane, Egham, Surrey, TW20 9TY, UK.
| | - Lucas M de Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Davi M de Macedo
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Miraine K Ndacnou
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- IRAD-Institut de Recheche Agricole pour le Developpement, BP 2067, Yaoundé, Cameroon
| | - Kifle B Bekele
- Department of Horticulture and Plant Science, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 397, Jimma, Ethiopia
- Ethiopian Institute of Agriculture Research, P.O. Box 192, Jimma, Ethiopia
| | - Robert W Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
16
|
Cai F, Druzhinina IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00464-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractModern taxonomy has developed towards the establishment of global authoritative lists of species that assume the standardized principles of species recognition, at least in a given taxonomic group. However, in fungi, species delimitation is frequently subjective because it depends on the choice of a species concept and the criteria selected by a taxonomist. Contrary to it, identification of fungal species is expected to be accurate and precise because it should predict the properties that are required for applications or that are relevant in pathology. The industrial and plant-beneficial fungi from the genus Trichoderma (Hypocreales) offer a suitable model to address this collision between species delimitation and species identification. A few decades ago, Trichoderma diversity was limited to a few dozen species. The introduction of molecular evolutionary methods resulted in the exponential expansion of Trichoderma taxonomy, with up to 50 new species recognized per year. Here, we have reviewed the genus-wide taxonomy of Trichoderma and compiled a complete inventory of all Trichoderma species and DNA barcoding material deposited in public databases (the inventory is available at the website of the International Subcommission on Taxonomy of Trichodermawww.trichoderma.info). Among the 375 species with valid names as of July 2020, 361 (96%) have been cultivated in vitro and DNA barcoded. Thus, we have developed a protocol for molecular identification of Trichoderma that requires analysis of the three DNA barcodes (ITS, tef1, and rpb2), and it is supported by online tools that are available on www.trichokey.info. We then used all the whole-genome sequenced (WGS) Trichoderma strains that are available in public databases to provide versatile practical examples of molecular identification, reveal shortcomings, and discuss possible ambiguities. Based on the Trichoderma example, this study shows why the identification of a fungal species is an intricate and laborious task that requires a background in mycology, molecular biological skills, training in molecular evolutionary analysis, and knowledge of taxonomic literature. We provide an in-depth discussion of species concepts that are applied in Trichoderma taxonomy, and conclude that these fungi are particularly suitable for the implementation of a polyphasic approach that was first introduced in Trichoderma taxonomy by John Bissett (1948–2020), whose work inspired the current study. We also propose a regulatory and unifying role of international commissions on the taxonomy of particular fungal groups. An important outcome of this work is the demonstration of an urgent need for cooperation between Trichoderma researchers to get prepared to the efficient use of the upcoming wave of Trichoderma genomic data.
Collapse
|
17
|
Afzal I, Sabir A, Sikandar S. Trichoderma: Biodiversity, Abundances, and Biotechnological Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Araújo KS, Brito VN, Veloso TGR, de Leite TS, Alves JL, da Hora Junior BT, Moreno HLA, Pereira OL, Mizubuti ESG, de Queiroz MV. Diversity and distribution of endophytic fungi in different tissues of Hevea brasiliensis native to the Brazilian Amazon forest. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01613-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Tan D, Fu L, Sun X, Xu L, Zhang J. Genetic Analysis and Immunoelectron Microscopy of Wild and Mutant Strains of the Rubber Tree Endophytic Bacterium Serratia marcescens Strain ITBB B5-1 Reveal Key Roles of a Macrovesicle in Storage and Secretion of Prodigiosin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5606-5615. [PMID: 32227934 DOI: 10.1021/acs.jafc.0c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rubber tree is an economically important tropical crop. Its endophytic bacterial strain Serratia marcescens ITBB B5-1 contains an intracellular macrovesicle and red pigment. In this research, the red pigment was identified as prodigiosin by quadrupole time-of-flight mass spectrometry. Prodigiosin has a wide range of potential medical values such as anticancer and antiorgan transplant rejection. The strain ITBB B5-1 accumulated prodigiosin up to 2000 mg/L, which is higher production compared to most known Serratia strains. The formation of the macrovesicle and prodigiosin biosynthesis were highly associated and were both temporal- and temperature-dependent. A mutant strain B5-1mu that failed to produce prodigiosin was obtained by ultraviolet mutagenesis. Whole genome sequencing of wild-type and mutant strains indicated that the PigC gene encoding the last-step enzyme in the prodigiosin biosynthesis pathway was mutated in B5-1mu by a 17-bp deletion. Transmission electron microscopy analysis showed that the macrovesicle was absent in the mutant strain, indicating that formation of the macrovesicle relied on prodigiosin biosynthesis. Immunoelectron microscopy using prodigiosin-specific antiserum showed the presence of prodigiosin in the macrovesicle, the cell wall, and the extracellular vesicles, while immuno-reaction was not observed in the mutant cell. These results indicate that the macrovesicle serves as a storage organelle of prodigiosin, and secretes prodigiosin into cell envelop and culture medium as extracellular vesicles.
Collapse
Affiliation(s)
- Deguan Tan
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, CATAS, Xueyuan Road 4, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, CATAS, Xueyuan Road 4, Haikou 571101, China
| | - Lili Fu
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, CATAS, Xueyuan Road 4, Haikou 571101, China
| | - Xuepiao Sun
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, CATAS, Xueyuan Road 4, Haikou 571101, China
| | - Long Xu
- College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangshu 210095, China
| | - Jiaming Zhang
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, CATAS, Xueyuan Road 4, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, CATAS, Xueyuan Road 4, Haikou 571101, China
| |
Collapse
|
20
|
Wang YF, Hou XY, Deng JJ, Yao ZH, Lyu MM, Zhang RS. AUXIN RESPONSE FACTOR 1 Acts as a Positive Regulator in the Response of Poplar to Trichoderma asperellum Inoculation in Overexpressing Plants. PLANTS 2020; 9:plants9020272. [PMID: 32092896 PMCID: PMC7076496 DOI: 10.3390/plants9020272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 02/15/2020] [Indexed: 11/16/2022]
Abstract
Numerous Trichoderma strains have been reported to be optimal biofertilizers and biocontrol agents with low production costs and environmentally friendly properties. Trichoderma spp. promote the growth and immunity of plants by multiple means. Interfering with the hormonal homeostasis in plants is the most critical strategy. However, the mechanisms underlying plants' responses to Trichoderma remain to be further elucidated. Auxin is the most important phytohormone that regulates almost every aspect of a plant's life, especially the trade-off between growth and defense. The AUXIN RESPONSE FACTOR (ARF) family proteins are key players in auxin signaling. We studied the responses and functions of the PdPapARF1 gene in a hybrid poplar during its interaction with beneficial T. asperellum strains using transformed poplar plants with PdPapARF1 overexpression (on transcription level in this study). We report that PdPapARF1 is a positive regulator for promoting poplar growth and defense responses, as does T. asperellum inoculation. PdPapARF1 also turned out to be a positive stimulator of adventitious root formation. Particularly, the overexpression of PdPapARF1 induced a 32.3% increase in the height of 40-day-old poplar plants and a 258% increase in the amount of adventitious root of 3-week-old subcultured plant clones. Overexpressed PdPapARF1 exerted its beneficial functions through modulating the hormone levels of indole acetic acid (IAA), jasmonic acid (JA), and salicylic acid (SA) in plants and activating their signaling pathways, creating similar results as inoculated with T. asperellum. Particularly, in the overexpressing poplar plants, the IAA level increased by approximately twice of the wild-type plants; and the signaling pathways of IAA, JA, and SA were drastically activated than the wild-type plants under pathogen attacks. Our report presents the potential of ARFs as the crucial and positive responders in plants to Trichoderma inducing.
Collapse
Affiliation(s)
- Yue-Feng Wang
- College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (Y.-F.W.); (X.-Y.H.); (J.-J.D.)
- Photosynthesis Research Center, CAS Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Yue Hou
- College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (Y.-F.W.); (X.-Y.H.); (J.-J.D.)
| | - Jun-Jie Deng
- College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (Y.-F.W.); (X.-Y.H.); (J.-J.D.)
| | - Zhi-Hong Yao
- College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (Y.-F.W.); (X.-Y.H.); (J.-J.D.)
| | - Man-Man Lyu
- College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (Y.-F.W.); (X.-Y.H.); (J.-J.D.)
| | - Rong-Shu Zhang
- College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (Y.-F.W.); (X.-Y.H.); (J.-J.D.)
- Correspondence: ; Tel.: +86-0451-8219-0610
| |
Collapse
|
21
|
El Enshasy HA, Ambehabati KK, El Baz AF, Ramchuran S, Sayyed RZ, Amalin D, Dailin DJ, Hanapi SZ. Trichoderma: Biocontrol Agents for Promoting Plant Growth and Soil Health. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
One stop shop III: taxonomic update with molecular phylogeny for important phytopathogenic genera: 51–75 (2019). FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00433-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Twarużek M, Dembek R, Pańka D, Soszczyńska E, Zastempowska E, Grajewski J. Evaluation of Cytotoxicity and Mould Contamination of Selected Plants from Meadows Covered by the Agri-Environmental Program. Toxins (Basel) 2019; 11:E228. [PMID: 30999701 PMCID: PMC6520750 DOI: 10.3390/toxins11040228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/03/2022] Open
Abstract
The aim of the study was the evaluation of selected species of meadow plants obtained from the first cut from the area covered by the agri-environmental program 'Natura 2000' in terms of the presence of cytotoxic compounds detected by the MTT test and the level of fungal contamination. The research was carried out on plant species that were evaluated differently in previously used methods for quality assessment of pasture feeds according to Klapp and Filipek. Twenty-six plant species were harvested in 2014 from meadows located in the valley of the Bydgoszcz Canal. Mycological examination of meadow plant samples was carried out according to PN-ISO 7954:1999. Cytotoxicity evaluation was performed using the MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test. Selected samples were also subjected to evaluation of the endophytes occurrence in grasses using PCR. Natural meadow positions included in the study were dominated by moulds belonging to Humicola spp., Alternaria spp., Cladosporium spp., Torula spp., Fusarium spp. and Mucor spp. The highest level of fungal contamination was observed for Carex acutiformis Ehrh. The most infested grasses were Deschampsia caespitosa (L.) P.Beauv., Festuca arundinacea Schreb. and Lolium perenne L. The MTT test showed that the most cytotoxic species were Arrhenatherum elatius (L.) P.Beauv. (IC50 1.563 mg/mL) and Ranunculus repens L. (IC50 3.125 mg/mL). Epichloë endophytes were detected in one of 13 examined grass samples. Our own research suggests that previously used feed quality assessments should be verified by introducing modern methods of molecular biology and instrumental analysis. Results of this study may broaden the knowledge of the causes of problems resulting from feeding of roughage, mainly from natural meadows, and help in creating new rankings of the feed value of meadow sward components.
Collapse
Affiliation(s)
- Magdalena Twarużek
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland.
| | - Romuald Dembek
- Department of Agrotechnology, Faculty of Agriculture and Biotechnology, UTP University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland.
| | - Dariusz Pańka
- Department of Phytopathology and Molecular Mycology, Faculty of Agriculture and Biotechnology, UTP University of Science and Technology, Kordeckiego 20, 85-225 Bydgoszcz, Poland.
| | - Ewelina Soszczyńska
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland.
| | - Ewa Zastempowska
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland.
| | - Jan Grajewski
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland.
| |
Collapse
|
24
|
Cruz-Magalhães V, Nieto-Jacobo MF, van Zijll de Jong E, Rostás M, Padilla-Arizmendi F, Kandula D, Kandula J, Hampton J, Herrera-Estrella A, Steyaert JM, Stewart A, Loguercio LL, Mendoza-Mendoza A. The NADPH Oxidases Nox1 and Nox2 Differentially Regulate Volatile Organic Compounds, Fungistatic Activity, Plant Growth Promotion and Nutrient Assimilation in Trichoderma atroviride. Front Microbiol 2019; 9:3271. [PMID: 30728815 PMCID: PMC6351448 DOI: 10.3389/fmicb.2018.03271] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/17/2018] [Indexed: 12/04/2022] Open
Abstract
In eukaryotic systems, membrane-bound NADPH oxidases (Nox) generate reactive oxygen species (ROS) as a part of normal physiological functions. In the soil-borne mycoparasitic and plant facultative symbiont Trichoderma atroviride, Nox1 and the regulator NoxR are involved in differentiation induced by mechanical damage, while the role of Nox2 has not been determined. The knock-out strains Δnox1, ΔnoxR and Δnox2 were compared to the parental strain (WT) in their ability to grow and conidiate under a series of stress conditions (osmotic, oxidative, membrane, and cell-wall stresses). All three genes were differentially involved in the stress-response phenotypes. In addition, several interactive experiments with biotic factors (plant seedlings and other fungi) were performed comparing the mutant phenotypes with the WT, which was used as the reference strain. Δnox1 and ΔnoxR significantly reduced the antagonistic activity of T. atroviride against Rhizoctonia solani and Sclerotinia sclerotiorum in direct confrontation assays, but Δnox2 showed similar activity to the WT. The Δnox1, ΔnoxR, and Δnox2 mutants showed quantitative differences in the emission of several volatile organic compounds (VOCs). The effects of a blend of these volatiles on plant-growth promotion of Arabidopsis thaliana seedlings were determined in closed-chamber experiments. The increase in root and shoot biomass induced by T. atroviride VOCs was significantly lowered by ΔnoxR and Δnox1, but not by Δnox2. In terms of fungistatic activity at a distance, Δnox2 had a significant reduction in this trait against R. solani and S. sclerotiorum, while fungistasis was highly increased by ΔnoxR and Δnox1. Identification and quantification of individual VOCs in the blends emitted by the strains was performed by GC-MS and the patterns of variation observed for individual volatiles, such as 6-Pentyl-2H-pyran-2-one (6PP-1) and (E)-6-Pent-1-enylpyran-2-one (6PP-2) were consistent with their negative effects in plant-growth promotion and positive effects in fungistasis at a distance. Nox1 and NoxR appear to have a ubiquitous regulatory role of in a variety of developmental and interactive processes in T. atroviride either as positive or negative modulators. Nox2 may also have a role in regulating production of VOCs with fungistatic activity.
Collapse
Affiliation(s)
- Valter Cruz-Magalhães
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.,Department of Biological Sciences (DCB), State University of Santa Cruz (UESC), Ilhéus, Brazil
| | | | | | - Michael Rostás
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | | | - Diwakar Kandula
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Janaki Kandula
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - John Hampton
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | | | | | - Alison Stewart
- The Foundation for Arable Research (FAR), Christchurch, New Zealand
| | - Leandro Lopes Loguercio
- Department of Biological Sciences (DCB), State University of Santa Cruz (UESC), Ilhéus, Brazil
| | | |
Collapse
|
25
|
Kaliane SA, Vanessa NB, Tomás GRV, Tiago DSL, Olinto LP, Eduardo SGM, Marisa VDQ. Diversity of culturable endophytic fungi of Hevea guianensis: A latex producer native tree from the Brazilian Amazon. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajmr2018.8980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
Chen K, Zhuang WY. Discovery from a large-scaled survey of Trichoderma in soil of China. Sci Rep 2017; 7:9090. [PMID: 28831112 PMCID: PMC5567330 DOI: 10.1038/s41598-017-07807-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/30/2017] [Indexed: 01/29/2023] Open
Abstract
The first large-scaled survey of soil-inhabiting Trichoderma is conducted in 23 provinces of China. Twenty-three new species belonging to the green-ascospored clades are discovered. Their phylogenetic positions are determined by sequence analyses of the combined partial sequences of translation elongation factor 1-alpha and the second largest RNA polymerase subunit encoding genes. Morphology and culture characteristics are observed, described and illustrated in detail. Distinctions between the new species and their close relatives are compared and discussed. They are named as: T. aggregatum, T. alpinum, T. bannaense, T. breve, T. brevicrassum, T. byssinum, T. chlamydosporicum, T. concentricum, T. ganodermatis, T. hainanense, T. hengshanicum, T. hirsutum, T. hunanense, T. ingratum, T. liberatum, T. linzhiense, T. longisporum, T. polypori, T. pseudodensum, T. simplex, T. solum, T. undatipile and T. zayuense.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Rocha SL, Evans HC, Jorge VL, Cardoso LAO, Pereira FST, Rocha FB, Barreto RW, Hart AG, Elliot SL. Recognition of endophytic Trichoderma species by leaf-cutting ants and their potential in a Trojan-horse management strategy. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160628. [PMID: 28484603 PMCID: PMC5414240 DOI: 10.1098/rsos.160628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/09/2017] [Indexed: 05/14/2023]
Abstract
Interactions between leaf-cutting ants, their fungal symbiont (Leucoagaricus) and the endophytic fungi within the vegetation they carry into their colonies are still poorly understood. If endophytes antagonistic to Leucoagaricus were found in plant material being carried by these ants, then this might indicate a potential mechanism for plants to defend themselves from leaf-cutter attack. In addition, it could offer possibilities for the management of these important Neotropical pests. Here, we show that, for Atta sexdens rubropilosa, there was a significantly greater incidence of Trichoderma species in the vegetation removed from the nests-and deposited around the entrances-than in that being transported into the nests. In a no-choice test, Trichoderma-infested rice was taken into the nest, with deleterious effects on both the fungal gardens and ant survival. The endophytic ability of selected strains of Trichoderma was also confirmed, following their inoculation and subsequent reisolation from seedlings of eucalyptus. These results indicate that endophytic fungi which pose a threat to ant fungal gardens through their antagonistic traits, such as Trichoderma, have the potential to act as bodyguards of their plant hosts and thus might be employed in a Trojan-horse strategy to mitigate the negative impact of leaf-cutting ants in both agriculture and silviculture in the Neotropics. We posit that the ants would detect and evict such 'malign' endophytes-artificially inoculated into vulnerable crops-during the quality-control process within the nest, and, moreover, that the foraging ants may then be deterred from further harvesting of 'Trichoderma-enriched' plants.
Collapse
Affiliation(s)
- Silma L. Rocha
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, 36570-900 Minas Gerais, Brazil
| | - Harry C. Evans
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, 36570-900 Minas Gerais, Brazil
- Department of Phytopathology, Universidade Federal de Viçosa, Viçosa, 36570-900 Minas Gerais, Brazil
- CAB International, E-UK, Egham, Surrey TW20 9TY, UK
| | - Vanessa L. Jorge
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, 36570-900 Minas Gerais, Brazil
| | - Lucimar A. O. Cardoso
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, 36570-900 Minas Gerais, Brazil
| | - Fernanda S. T. Pereira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, 36570-900 Minas Gerais, Brazil
| | - Fabiano B. Rocha
- Department of Phytopathology, Universidade Federal de Viçosa, Viçosa, 36570-900 Minas Gerais, Brazil
| | - Robert W. Barreto
- Department of Phytopathology, Universidade Federal de Viçosa, Viçosa, 36570-900 Minas Gerais, Brazil
| | - Adam G. Hart
- Department of Natural and Social Sciences, University of Gloucestershire, The Park, Cheltenham, Gloucestershire GL50 2RH, UK
| | - Simon L. Elliot
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, 36570-900 Minas Gerais, Brazil
| |
Collapse
|
28
|
Cummings NJ, Ambrose A, Braithwaite M, Bissett J, Roslan HA, Abdullah J, Stewart A, Agbayani FV, Steyaert J, Hill RA. Diversity of root-endophytic Trichoderma from Malaysian Borneo. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1192-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Martins F, Pereira JA, Bota P, Bento A, Baptista P. Fungal endophyte communities in above- and belowground olive tree organs and the effect of season and geographic location on their structures. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Montoya QV, Meirelles LA, Chaverri P, Rodrigues A. Unraveling Trichoderma species in the attine ant environment: description of three new taxa. Antonie Van Leeuwenhoek 2016; 109:633-51. [PMID: 26885975 DOI: 10.1007/s10482-016-0666-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/03/2016] [Indexed: 11/25/2022]
Abstract
Fungus-growing "attine" ants forage diverse substrates to grow fungi for food. In addition to the mutualistic fungal partner, the colonies of these insects harbor a rich microbiome composed of bacteria, filamentous fungi and yeasts. Previous work reported some Trichoderma species in the fungus gardens of leafcutter ants. However, no studies systematically addressed the putative association of Trichoderma with attine ants, especially in non-leafcutter ants. Here, a total of 62 strains of Trichoderma were analyzed using three molecular markers (ITS, tef1 and rpb2). In addition, 30 out of 62 strains were also morphologically examined. The strains studied correspond to the largest sampling carried out so far for Trichoderma in the attine ant environment. Our results revealed the richness of Trichoderma in this environment, since we found 20 Trichoderma species, including three new taxa described in the present work (Trichoderma attinorum, Trichoderma texanum and Trichoderma longifialidicum spp. nov.) as well as a new phylogenetic taxon (LESF 545). Moreover, we show that all 62 strains grouped within different clades across the Trichoderma phylogeny, which are identical or closely related to strains derived from several other environments. This evidence supports the transient nature of the genus Trichoderma in the attine ant colonies. The discovery of three new species suggests that the dynamic foraging behavior of these insects might be responsible for accumulation of transient fungi into their colonies, which might hold additional fungal taxa still unknown to science.
Collapse
Affiliation(s)
- Quimi Vidaurre Montoya
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, CEP: 13.506-900, Brazil
| | - Lucas Andrade Meirelles
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, CEP: 13.506-900, Brazil.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Priscila Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, 2112 Plant Sciences Building, College Park, MD, 20742, USA.,Escuela de Biología, Universidad de Costa Rica, Apartado 11501-2060, San Pedro, San José, Costa Rica
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Avenida 24-A, n. 1515, Bela Vista, Rio Claro, SP, CEP: 13.506-900, Brazil.
| |
Collapse
|
31
|
Druzhinina IS, Kubicek CP. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:69-147. [PMID: 27261782 DOI: 10.1016/bs.aambs.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) has properties of an efficient cell factory for protein production that is exploited by the enzyme industry, particularly with respect to cellulase and hemicellulase formation. Under conditions of industrial fermentations it yields more than 100g secreted protein L(-1). Consequently, T. reesei has been intensively studied in the 20th century. Most of these investigations focused on the biochemical characteristics of its cellulases and hemicellulases, on the improvement of their properties by protein engineering, and on enhanced enzyme production by recombinant strategies. However, as the fungus is rare in nature, its ecology remained unknown. The breakthrough in the understanding of the fundamental biology of T. reesei only happened during 2000s-2010s. In this review, we compile the current knowledge on T. reesei ecology, physiology, and genomics to present a holistic view on the natural behavior of the organism. This is not only critical for science-driven further improvement of the biotechnological applications of this fungus, but also renders T. reesei as an attractive model of filamentous fungi with superior saprotrophic abilities.
Collapse
Affiliation(s)
- I S Druzhinina
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - C P Kubicek
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
32
|
Gunawardana M, Hyde ER, Lahmeyer S, Dorsey BL, La Val TP, Mullen M, Yoo J, Knight R, Baum MM. Euphorbia plant latex is inhabited by diverse microbial communities. AMERICAN JOURNAL OF BOTANY 2015; 102:1966-1977. [PMID: 26656131 DOI: 10.3732/ajb.1500223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY The antimicrobial properties and toxicity of Euphorbia plant latex should make it a hostile environment to microbes. However, when specimens from Euphorbia spp. were propagated in tissue culture, microbial growth was observed routinely, raising the question whether the latex of this diverse plant genus can be a niche for polymicrobial communities. METHODS Latex from a phylogenetically diverse set of Euphorbia species was collected and genomic microbial DNA extracted. Deep sequencing of bar-coded amplicons from taxonomically informative gene fragments was used to measure bacterial and fungal species richness, evenness, and composition. KEY RESULTS Euphorbia latex was found to contain unexpectedly complex bacterial (mean: 44.0 species per sample; 9 plants analyzed) and fungal (mean: 20.9 species per sample; 22 plants analyzed) communities using culture-independent methods. Many of the identified taxa are known plant endophytes, but have not been previously found in latex. CONCLUSIONS Our results suggest that Euphorbia plant latex, a putatively hostile antimicrobial environment, unexpectedly supports diverse bacterial and fungal communities. The ecological roles of these microorganisms and potential interactions with their host plants are unknown and warrant further research.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, California 91016 USA
| | - Embriette R Hyde
- BioFrontiers Institute, the University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 USA; present address: Department of Pediatrics, the University of California at San Diego, 9600 Gilman Drive, La Jolla, California 92093 USA
| | - Sean Lahmeyer
- The Huntington Library, Art Collections, and Botanical Gardens, 1151 Oxford Road, San Marino, California 91108 USA
| | - Brian L Dorsey
- The Huntington Library, Art Collections, and Botanical Gardens, 1151 Oxford Road, San Marino, California 91108 USA
| | - Taylor P La Val
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, California 91016 USA
| | - Madeline Mullen
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, California 91016 USA
| | - Jennifer Yoo
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, California 91016 USA
| | - Rob Knight
- BioFrontiers Institute, the University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 USA; present address: Department of Pediatrics, the University of California at San Diego, 9600 Gilman Drive, La Jolla, California 92093 USA Departments of Chemistry and Biochemistry and Computer Science, the University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 USA; present address: Departments of Pediatrics and Computer Science and Engineering, the University of California at San Diego, 9600 Gilman Drive, La Jolla, California 92093 USA
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, California 91016 USA
| |
Collapse
|
33
|
Gazis R, Kuo A, Riley R, LaButti K, Lipzen A, Lin J, Amirebrahimi M, Hesse CN, Spatafora JW, Henrissat B, Hainaut M, Grigoriev IV, Hibbett DS. The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biol 2015; 120:26-42. [PMID: 26693682 DOI: 10.1016/j.funbio.2015.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/18/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Xylona heveae has only been isolated as an endophyte of rubber trees. In an effort to understand the genetic basis of endophytism, we compared the genome contents of X. heveae and 36 other Ascomycota with diverse lifestyles and nutritional modes. We focused on genes that are known to be important in the host-fungus interaction interface and that presumably have a role in determining the lifestyle of a fungus. We used phylogenomic data to infer the higher-level phylogenetic position of the Xylonomycetes, and mined ITS sequences to explore its taxonomic and ecological diversity. The X. heveae genome contains a low number of enzymes needed for plant cell wall degradation, suggesting that Xylona is a highly adapted specialist and likely dependent on its host for survival. The reduced repertoire of carbohydrate active enzymes could reflect an adaptation to intercellulary growth and to the avoidance of the host's immune system, suggesting that Xylona has a strictly endophytic lifestyle. Phylogenomic data resolved the position of Xylonomycetes as sister to Lecanoromycetes and Eurotiomycetes and placed the beetle-endosymbiont Symbiotaphrina as a member of this class. ITS data revealed that Trinosporium is also part of the Xylonomycetes, extending the taxonomic and ecological diversity of this group.
Collapse
Affiliation(s)
- Romina Gazis
- Clark University, Biology Department, 950 Main Street, Worcester, MA 01610, USA.
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Junyan Lin
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Mojgan Amirebrahimi
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Cedar N Hesse
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331, USA; Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | - Joseph W Spatafora
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331, USA
| | - Bernard Henrissat
- Aix-Marseille Université, CNRS, UMR 7257, Marseille, France; Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, 13288 Marseille cedex 9, France; King Abdulaziz University, Department of Biological Sciences, Jeddah 21589, Saudi Arabia
| | | | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - David S Hibbett
- Clark University, Biology Department, 950 Main Street, Worcester, MA 01610, USA
| |
Collapse
|
34
|
Tan D, Fu L, Han B, Sun X, Zheng P, Zhang J. Identification of an Endophytic Antifungal Bacterial Strain Isolated from the Rubber Tree and Its Application in the Biological Control of Banana Fusarium Wilt. PLoS One 2015; 10:e0131974. [PMID: 26133557 PMCID: PMC4489675 DOI: 10.1371/journal.pone.0131974] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/09/2015] [Indexed: 01/13/2023] Open
Abstract
Banana Fusarium wilt (also known as Panama disease) is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4). Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt.
Collapse
Affiliation(s)
- Deguan Tan
- MOA Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, Hainan Province, 571101, China
| | - Lili Fu
- MOA Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, Hainan Province, 571101, China
| | - Bingyin Han
- MOA Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, Hainan Province, 571101, China
| | - Xuepiao Sun
- MOA Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, Hainan Province, 571101, China
| | - Peng Zheng
- Lijiang Teachers College, Lijiang, Yunnan Province, 674110, China
| | - Jiaming Zhang
- MOA Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, Hainan Province, 571101, China
| |
Collapse
|
35
|
Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 2015; 107:558-590. [PMID: 25661720 PMCID: PMC4885665 DOI: 10.3852/14-147] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/05/2015] [Indexed: 02/04/2023]
Abstract
Trichoderma harzianum is known as a cosmopolitan, ubiquitous species associated with a wide variety of substrates. It is possibly the most commonly used name in agricultural applications involving Trichoderma, including biological control of plant diseases. While various studies have suggested that T. harzianum is a species complex, only a few cryptic species are named. In the present study the taxonomy of the T. harzianum species complex is revised to include at least 14 species. Previously named species included in the complex are T. guizhouense, T. harzianum, and T. inhamatum. Two new combinations are proposed, T. lentiforme and T. lixii. Nine species are described as new, T. afarasin, T. afroharzianum, T. atrobrunneum, T. camerunense, T. endophyticum, T. neotropicale, T. pyramidale, T. rifaii and T. simmonsii. We isolated Trichoderma cultures from four commercial biocontrol products reported to contain T. harzianum. None of the biocontrol strains were identified as T. harzianum s. str. In addition, the widely applied culture 'T. harzianum T22' was determined to be T. afroharzianum. Some species in the T. harzianum complex appear to be exclusively endophytic, while others were only isolated from soil. Sexual states are rare. Descriptions and illustrations are provided. A secondary barcode, nuc translation elongation factor 1-α (TEF1) is needed to identify species in this complex.
Collapse
Affiliation(s)
- Priscila Chaverri
- University of Maryland, Department of Plant Science and Landscape
Architecture, 2112 Plant Sciences Building, College Park, Maryland 20742,
and Universidad de Costa Rica, Escuela de Biología, Apartado
11501-2060, San Pedro, San José, Costa Rica
| | - Fabiano Branco-Rocha
- Empresa de Pesquisa Agropecuária e Extensão Rural de
Santa Catarina - EPAGRI, Estação Experimental de São
Joaquim, São Joaquim, Santa Catarina, 88600-000, Brazil
| | - Walter Jaklitsch
- University of Vienna, Department of Systematic and Evolutionary
Botany, Faculty Centre of Biodiversity, Rennweg 14, 1030 Vienna,
Austria
| | - Romina Gazis
- Clark University, Biology Department, 950 Main Street, Worcester,
Massachusetts 01610
| | - Thomas Degenkolb
- Interdisciplinary Research Centre for BioSystems, Land Use and
Nutrition (IFZ), Department of Food Science, Institute of Nutritional
Science, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen,
Germany
| | - Gary J. Samuels
- United States Dept. of Agriculture, Agriculture Research Service,
Systematic Mycology and Microbiology Lab., B-010, Beltsville, Maryland
20705
| |
Collapse
|
36
|
Abstract
The first large-scale survey of sexual and asexual Trichoderma morphs collected from plant and fungal materials conducted in Southern Europe and Macaronesia including a few collections from French islands east of Africa yielded more than 650 specimens identified to the species level. Routine sequencing of tef1 revealed a genetic variation among these isolates that exceeds previous experience and ca. 90 species were recognized, of which 74 are named and 17 species newly described. Aphysiostroma stercorarium is combined in Trichoderma. For the first time a sexual morph is described for T. hamatum. The hitherto most complete phylogenetic tree is presented for the entire genus Trichoderma, based on rpb2 sequences. For the first time also a genus-wide phylogenetic tree based on acl1 sequences is shown. Detailed phylogenetic analyses using tef1 sequences are presented in four separate trees representing major clades of Trichoderma. Discussions involve species composition of clades and ecological and biogeographic considerations including distribution of species.
Collapse
Affiliation(s)
- W.M. Jaklitsch
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Wien, Austria
- Department for Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), University of Natural Resources and Life Sciences, Hasenauerstraße 38, A-1190 Wien, Austria
- Correspondence: W.M. Jaklitsch.
| | - H. Voglmayr
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Wien, Austria
- Department for Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), University of Natural Resources and Life Sciences, Hasenauerstraße 38, A-1190 Wien, Austria
| |
Collapse
|
37
|
Qian CD, Fu YH, Jiang FS, Xu ZH, Cheng DQ, Ding B, Gao CX, Ding ZS. Lasiodiplodia sp. ME4-2, an endophytic fungus from the floral parts of Viscum coloratum, produces indole-3-carboxylic acid and other aromatic metabolites. BMC Microbiol 2014; 14:297. [PMID: 25433389 PMCID: PMC4255639 DOI: 10.1186/s12866-014-0297-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/13/2014] [Indexed: 11/30/2022] Open
Abstract
Background Studies on endophytes, a relatively under-explored group of microorganisms, are currently popular amongst biologists and natural product researchers. A fungal strain (ME4-2) was isolated from flower samples of mistletoe (Viscum coloratum) during a screening program for endophytes. As limited information on floral endophytes is available, the aim of the present study is to characterise fungal endophytes using their secondary metabolites. Results ME4-2 grew well in both natural and basic synthetic media but produced no conidia. Sequence analysis of its internal transcribed spacer rDNA demonstrated that ME4-2 forms a distinct branch within the genus Lasiodiplodia and is closely related to L. pseudotheobromae. This floral endophyte was thus identified as Lasiodiplodia sp. based on its molecular biological characteristics. Five aromatic compounds, including cyclo-(Trp-Ala), indole-3-carboxylic acid (ICA), indole-3-carbaldehyde, mellein and 2-phenylethanol, were found in the culture. The structures of these compounds were determined using spectroscopic methods combined with gas chromatography. To the best of our knowledge, our work is the first to report isolation of these aromatic metabolites from a floral endophyte. Interestingly, ICA, a major secondary metabolite produced by ME4-2, seemed to be biosynthesized via an unusual pathway. Furthermore, our results indicate that the fungus ME4-2 is a potent producer of 2-phenylethanol, which is a common component of floral essential oils. Conclusions This study introduces a fungal strain producing several important aromatic metabolites with pharmaceutical or food applications and suggests that endophytic fungi isolated from plant flowers are promising natural sources of aromatic compounds.
Collapse
Affiliation(s)
- Chao-Dong Qian
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang province, China.
| | - Yu-Hang Fu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang province, China.
| | - Fu-Sheng Jiang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang province, China.
| | - Zheng-Hong Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang province, China.
| | - Dong-Qing Cheng
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang province, China.
| | - Bin Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang province, China.
| | - Cheng-Xian Gao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang province, China.
| | - Zhi-Shan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang province, China.
| |
Collapse
|
38
|
Röhrich CR, Jaklitsch WM, Voglmayr H, Iversen A, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. FUNGAL DIVERS 2014; 69:117-146. [PMID: 25722662 PMCID: PMC4338523 DOI: 10.1007/s13225-013-0276-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately 950 individual sequences of non-ribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocrea that belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus, they are comprehensively named peptaibiotics. Notably, peptaibiotics represent ca. 80 % of the total inventory of secondary metabolites currently known from Trichoderma/Hypocrea. Their unique membrane-modifying bioactivity results from amphipathicity and helicity, thus making them ideal candidates in assisting both colonisation and defence of the natural habitats by their fungal producers. Despite this, reports on the in vivo-detection of peptaibiotics have scarcely been published in the past. In order to evaluate the significance of peptaibiotic production for a broader range of potential producers, we screened nine specimens belonging to seven hitherto uninvestigated fungicolous or saprotrophic Trichoderma/Hypocrea species by liquid chromatography coupled to electrospray high resolution mass spectrometry. Sequences of peptaibiotics found were independently confirmed by analysing the peptaibiome of pure agar cultures obtained by single-ascospore isolation from the specimens. Of the nine species examined, five were screened positive for peptaibiotics. A total of 78 peptaibiotics were sequenced, 56 (=72 %) of which are new. Notably, dihydroxyphenylalaninol and O-prenylated tyrosinol, two C-terminal residues, which have not been reported for peptaibiotics before, were found as well as new and recurrent sequences carrying the recently described tyrosinol residue at their C-terminus. The majority of peptaibiotics sequenced are 18- or 19-residue peptaibols. Structural homologies with 'classical representatives' of subfamily 1 (SF1)-peptaibiotics argue for the formation of transmembrane ion channels, which are prone to facilitate the producer capture and defence of its substratum.
Collapse
Affiliation(s)
- Christian R Röhrich
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany. Present Address: AB SCIEX Germany GmbH, Landwehrstrasse 54, 64293 Darmstadt, Germany
| | - Walter M Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Anita Iversen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark. Present Address: Danish Emergency Management Agency, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Vilcinskas
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany; Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Ulf Thrane
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Hans von Döhren
- Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of Berlin, Franklinstrasse 29, 10587 Berlin, Germany
| | - Hans Brückner
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Thomas Degenkolb
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
39
|
Yabuki T, Miyazaki K, Okuda T. Japanese species of the Longibrachiatum Clade of Trichoderma. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Augustin JO, Groenewald JZ, Nascimento RJ, Mizubuti ESG, Barreto RW, Elliot SL, Evans HC. Yet more "weeds" in the garden: fungal novelties from nests of leaf-cutting ants. PLoS One 2013; 8:e82265. [PMID: 24376525 PMCID: PMC3869688 DOI: 10.1371/journal.pone.0082265] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/25/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Symbiotic relationships modulate the evolution of living organisms in all levels of biological organization. A notable example of symbiosis is that of attine ants (Attini; Formicidae: Hymenoptera) and their fungal cultivars (Lepiotaceae and Pterulaceae; Agaricales: Basidiomycota). In recent years, this mutualism has emerged as a model system for studying coevolution, speciation, and multitrophic interactions. Ubiquitous in this ant-fungal symbiosis is the "weedy" fungus Escovopsis (Hypocreales: Ascomycota), known only as a mycoparasite of attine fungal gardens. Despite interest in its biology, ecology and molecular phylogeny--noting, especially, the high genetic diversity encountered--which has led to a steady flow of publications over the past decade, only two species of Escovopsis have formally been described. METHODS AND RESULTS We sampled from fungal gardens and garden waste (middens) of nests of the leaf-cutting ant genus Acromyrmex in a remnant of subtropical Atlantic rainforest in Minas Gerais, Brazil. In culture, distinct morphotypes of Escovopsis sensu lato were recognized. Using both morphological and molecular analyses, three new species of Escovopsis were identified. These are described and illustrated herein--E. lentecrescens, E. microspora, and E. moelleri--together with a re-description of the genus and the type species, E. weberi. The new genus Escovopsioides is erected for a fourth morphotype. We identify, for the first time, a mechanism for horizontal transmission via middens. CONCLUSIONS The present study makes a start at assigning names and formal descriptions to these specific fungal parasites of attine nests. Based on the results of this exploratory and geographically-restricted survey, we expect there to be many more species of the genus Escovopsis and its relatives associated with nests of both the lower and higher Attini throughout their neotropical range, as suggested in previous studies.
Collapse
Affiliation(s)
- Juliana O. Augustin
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Johannes Z. Groenewald
- Centraalbureau voor Schimmelcultures–Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Robson J. Nascimento
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Eduardo S. G. Mizubuti
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Robert W. Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Simon L. Elliot
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Harry C. Evans
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Centre for Agriculture and Biosciences International, Egham, Surrey, United Kingdom
| |
Collapse
|
41
|
López-Quintero CA, Atanasova L, Franco-Molano AE, Gams W, Komon-Zelazowska M, Theelen B, Müller WH, Boekhout T, Druzhinina I. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species. Antonie van Leeuwenhoek 2013; 104:657-74. [PMID: 23884864 PMCID: PMC3824238 DOI: 10.1007/s10482-013-9975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/13/2013] [Indexed: 01/24/2023]
Abstract
The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution.
Collapse
|
42
|
Chaverri P, Samuels GJ. Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 2013; 67:2823-37. [PMID: 24094336 DOI: 10.1111/evo.12169] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 05/14/2013] [Indexed: 01/11/2023]
Abstract
Host jumps by microbial symbionts are often associated with bursts of species diversification driven by the exploitation of new adaptive zones. The objective of this study was to infer the evolution of habitat preference (decaying plants, soil, living fungi, and living plants), and nutrition mode (saprotrophy and mycoparasitism) in the fungal genus Trichoderma to elucidate possible interkingdom host jumps and shifts in ecology. Host and ecological role shifts were inferred by phylogenetic analyses and ancestral character reconstructions. The results support several interkingdom host jumps and also show that the preference for a particular habitat was gained or lost multiple times. Diversification analysis revealed that mycoparasitism is associated with accelerated speciation rates, which then suggests that this trait may be linked to the high number of species in Trichoderma. In this study it was also possible to infer the cryptic roles that endophytes or soil inhabitants play in their hosts by evaluating their closest relatives and determining their most recent ancestors. Findings from this study may have implications for understanding certain evolutionary processes such as species radiations in some hyperdiverse groups of fungi, and for more applied fields such as the discovery and development of novel biological control strategies.
Collapse
Affiliation(s)
- Priscila Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, 2112 Plant Science Building, College Park, Maryland, 20742.
| | | |
Collapse
|
43
|
Rinu K, Sati P, Pandey A. Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 2013; 54:408-17. [PMID: 23564225 DOI: 10.1002/jobm.201200579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/01/2012] [Indexed: 11/06/2022]
Abstract
An endophytic fungus has been isolated from the lateral roots of lentil (Lens esculenta Moench), growing under mountain ecosystem of Indian Himalayan Region (IHR). While the fungus was observed as fast growing with white scanty mycelium turning to turmeric brown in 5 days of incubation at 25 °C, it also produced a unique odor. The fungus exhibited growth between 4 and 30 °C (optimum 25 °C) and tolerated pH between 2.0 and 13.5 (optimum 4-6). Based on phenotypic (colony morphology and microscopy) and genotypic (18S rRNA analysis) characters, the fungus was identified as Trichoderma gamsii (99% similarity). The fungus was evaluated for its plant growth promotion and biocontrol properties. The fungus was found to be positive for phosphate solubilization, chitinase activity, and production of ammonia and salicylic acid, while the results for production of IAA, HCN, and siderophores were negative. Out of the seven phytopathogenic fungi tested, it showed antagonism against six. Bioassays conducted under green house using four test crops (two cereals and two legumes) showed its potential in plant growth promotion. The fungus has potential to be developed as a bioformulation for application under mountain ecosystem.
Collapse
Affiliation(s)
- K Rinu
- G. B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal, Almora, Uttarakhand, India
| | | | | |
Collapse
|
44
|
Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 2012; 52:522-9. [PMID: 24293705 DOI: 10.1007/s12088-012-0308-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/17/2012] [Indexed: 12/13/2022] Open
Abstract
Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.
Collapse
|
45
|
Gazis R, Miadlikowska J, Lutzoni F, Arnold AE, Chaverri P. Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes. Mol Phylogenet Evol 2012; 65:294-304. [PMID: 22772026 DOI: 10.1016/j.ympev.2012.06.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
Through a culture-based survey of living sapwood and leaves of rubber trees (Hevea spp.) in remote forests of Peru, we discovered a new major lineage of Ascomycota, equivalent to a class rank. Multilocus phylogenetic analyses reveal that this new lineage originated during the radiation of the 'Leotiomyceta', which resulted not only in the evolution of the Arthoniomycetes, Dothideomycetes, Eurotiomycetes, Geoglossomycetes, Lecanoromycetes, Leotiomycetes, Lichinomycetes, and Sordariomycetes, but also of the majority of hyperdiverse foliar endophytes. Because its origin is nested within this major burst of fungal diversification, we could not recover strong support for its phylogenetic relationship within the 'Leotiomyceta'. Congruent with their long phylogenetic history and distinctive preference for growing in sapwood, this new lineage displays unique morphological, physiological, and ecological traits relative to known endophytes and currently described members of the 'Leotiomyceta'. In marked contrast to many foliar endophytes, the strains we isolated fail to degrade cellulose and lignin in vitro. Discovery of the new class, herein named Xylonomycetes and originally mis-identified by ITSrDNA sequencing alone, highlights the importance of inventorying tropical endophytes from unexplored regions, using multilocus data sets to infer the phylogenetic placement of unknown strains, and the need to sample diverse plant tissues using traditional methods to enhance efforts to discover the evolutionary, taxonomic, and functional diversity of symbiotrophic fungi.
Collapse
Affiliation(s)
- R Gazis
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|
46
|
Jaklitsch WM, Stadler M, Voglmayr H. Blue pigment in Hypocrea caerulescens sp. nov. and two additional new species in sect. Trichoderma. Mycologia 2012; 104:925-41. [PMID: 22453122 PMCID: PMC3432493 DOI: 10.3852/11-327] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Three new species of Hypocrea/Trichoderma sect. Trichoderma (Hypocreaceae, Hypocreales, Ascomycota, Fungi) are described from recent collections in southern Europe and the Canary Islands. They have been characterized by morphological and molecular methods, including microscopic examination of the teleomorph in thin sections, the anamorph, growth rate experiments and phylogenetic analyses based on a part of the translation elongation factor 1-alpha encoding gene (tef1) containing the two last introns and a part of the rpb2 gene, encoding the second largest RNA polymerase subunit. Analyses involving tef1 did not unequivocally resolve the sister clade relationship of Hypocrea caerulescens relative to the Koningii and Viride clades, while analyses based on rpb2 clearly suggest a close relationship with the former, although the phenotype of H. caerulescens is similar to H. viridescens, particularly by its warted conidia and a coconut-like odor in CMD culture. Hypocrea hispanica and T. samuelsii however are clearly related to the Viride clade by both phylogenetic markers, despite their morphological similarity to H. koningii and its relatives. An apparently specific blue pigment is formed in CMD cultures by Hypocrea caerulescens but could not be obtained by extraction with organic solvents.
Collapse
Affiliation(s)
- Walter M Jaklitsch
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
47
|
Li QR, Tan P, Jiang YL, Hyde KD, Mckenzie EHC, Bahkali AH, Kang JC, Wang Y. A novel Trichoderma species isolated from soil in Guizhou, T. guizhouense. Mycol Prog 2012. [DOI: 10.1007/s11557-012-0821-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP. Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 2011; 9:749-59. [PMID: 21921934 DOI: 10.1038/nrmicro2637] [Citation(s) in RCA: 473] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Trichoderma is a genus of common filamentous fungi that display a remarkable range of lifestyles and interactions with other fungi, animals and plants. Because of their ability to antagonize plant-pathogenic fungi and to stimulate plant growth and defence responses, some Trichoderma strains are used for biological control of plant diseases. In this Review, we discuss recent advances in molecular ecology and genomics which indicate that the interactions of Trichoderma spp. with animals and plants may have evolved as a result of saprotrophy on fungal biomass (mycotrophy) and various forms of parasitism on other fungi (mycoparasitism), combined with broad environmental opportunism.
Collapse
Affiliation(s)
- Irina S Druzhinina
- Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gazis R, Rehner S, Chaverri P. Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Mol Ecol 2011; 20:3001-13. [PMID: 21557783 DOI: 10.1111/j.1365-294x.2011.05110.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The estimation of species diversity in fungal endophyte communities is based either on species counts or on the assignment of operational taxonomic units (OTUs). Consequently, the application of different species recognition criteria affects not only diversity estimates but also the ecological hypotheses that arise from those observations. The main objective of the study was to examine how the choice and number of genetic markers and species delimitation criteria influence biodiversity estimates. Here, we compare approaches to defining species boundaries in three dominant species complexes of tropical endophytes, specially Colletotrichum gloeosporioides agg., Pestalotiopsis microspora agg. and Trichoderma harzianum agg., from two Amazonian trees: Hevea brasiliensis and H. guianensis. Molecular tools were used to describe and compare the diversity of the different assemblages. Multilocus phylogenetic analyses [gpd, internal transcribed spacer (ITS) and tef1] and modern techniques for phylogenetic species delimitation were overlaid with ecological data to recognize putative species or OTUs. The results demonstrate that ITS alone generally underestimates the number of species predicted by other nuclear loci. These results question the use of ITS and arbitrary divergence thresholds for species delimitation.
Collapse
Affiliation(s)
- Romina Gazis
- Department of Plant Sciences and Landscape Architecture, University of Maryland, 2112 Plant Sciences Building, College Park, MD 20742, USA.
| | | | | |
Collapse
|