1
|
Liu J, Liu Y, Wang F, Yuan Y, Ma H, Qu L. Paeonia suffruticosa Andrews root extract ameliorates photoaging via regulating IRS1/PI3K/FOXO pathway. Front Pharmacol 2025; 16:1520392. [PMID: 40115263 PMCID: PMC11923548 DOI: 10.3389/fphar.2025.1520392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025] Open
Abstract
Introduction The root of Paeonia suffruticosa Andrews (P. suffruticosa Andr.), is a traditional Chinese medicine. Numerous studies have shown that it possesses anti-inflammatory, antioxidant, and anti-aging effects due to its rich content of bioactive compounds such as polyphenols and paeonol. Thus, it finds extensively applied in the fields of medicine and cosmetics. However, there are few reports on the photoprotective effects of P. suffruticosa Andr. root bark, this study aims to investigate its research in this area. Methods This study utilized P. suffruticosa Andr. root bark sourced from Kunming, Yunnan Province, China. The P. suffruticosa Andr. root extract (PSAE) was obtained using AB-8 resin. The photoprotective effect of PSAE was assessed using HaCaT cells, HFF cells, and a 3D Reconstructed Human full T-Skin™ model. Mechanistic investigations were performed using RT-qPCR, WB, IF, H&E staining, Masson's trichrome staining and IHC staining. Finally, an assessment of the effects on humans was conducted. Results The total phenolic content in the obtained PSAE was 48.9%. Antioxidant activity studies demonstrated that PSAE effectively inhibits DPPH radicals, superoxide anions, hydroxyl radicals, and ABTS radicals, while also enhancing the inhibition rates of collagenase and hyaluronidase. In vitro studies on photoaging resistance revealed that PSAE significantly reduced the UV-induced increases in reactive oxygen species (ROS) levels and senescence-associated β-galactosidase (SA-β-gal) activity. Mechanistic studies indicated that PSAE suppressed the overexpression of IRS1 and its downstream effectors, including PI3K, AKT, and mTOR induced by UV irradiation. A human efficacy assessment was conducted by evaluating parameters such as transepidermal water loss (TEWL), epidermal moisture content, roughness and elasticity, confirming the efficacy of PSAE in humans. Discussion In summary, PSAE attenuates UV-induced oxidative damage, genetic damage, and collagen degradation associated with photoaging by modulating the IRS/PI3K/FOXO signaling pathway. This study elucidated the mechanism through which PSAE, thereby providing strong support for its application in cosmetic anti-aging formulations.
Collapse
Affiliation(s)
- Junxi Liu
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, China
| | - Youyun Liu
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, China
| | - Feifei Wang
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, China
| | - Yonglei Yuan
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, China
| | - Hongyu Ma
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, China
| | - Liping Qu
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, China
| |
Collapse
|
2
|
Ruan Y, Guan L, Wang Y, Geng Y, Wang X, Niu MM, Yang L, Xu C, Xu Z. Discovery of a Novel and Potent Dual-Targeting Inhibitor of ATM and HDAC2 Through Structure-Based Virtual Screening for the Treatment of Testicular Cancer. Drug Des Devel Ther 2024; 18:5283-5297. [PMID: 39583632 PMCID: PMC11585990 DOI: 10.2147/dddt.s479113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Dual inhibition of ataxia telangiectasia mutated (ATM) and histone deacetylase 2 (HDAC2) may be a potential strategy to improve antitumor efficacy in testicular cancer. Methods A combined virtual screening protocol including pharmacophore modeling and molecular docking was used for screening potent dual-target ATM/HDAC2 inhibitors. In order to obtain the optimal lead compound, the dual ATM/HDAC2 inhibitory activity of the screened compounds was further evaluated using enzyme inhibition methods. The binding stability of the optimal compound to the dual targets was verified by molecular dynamics (MD) simulation. MTT assay and in vivo antitumor experiment were performed to validate antitumor efficacy of the optimal compound in testicular cancer. Results Here, we successfully discovered six potent dual-target ATM/HDAC2 inhibitors (AMHs 1-6), which exhibited good inhibitory activity against both ATM and HDAC2. Among them, AMH-4 showed strong inhibitory activity against both ATM (IC50 = 1.12 ± 0.03 nM) and HDAC2 (IC50 = 3.04 ± 0.08 nM). MD simulation indicated that AMH-4 binds to ATM and HDAC2 with satisfactory stability. Importantly, AMH-4 had significant antiproliferative activity on human testicular tumor cells, especially NTERA-2 cL.D1 cells, and no inhibitory effect on normal human testicular cells. In vivo experiments exhibited that AMH-4 was more effective than lartesertib and vorinostat in inhibiting the growth of NTERA-2 cL.D1 xenograft tumors with low toxicity. Conclusion Overall, these results suggest that AMH-4 is an effective and low toxicity candidate for the treatment of testicular germ cell tumors.
Collapse
Affiliation(s)
- Yashi Ruan
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yuting Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaoran Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Li Yang
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Cen Xu
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Zhen Xu
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| |
Collapse
|
3
|
Shah P, McGuigan CW, Cheng S, Vanpouille-Box C, Demaria S, Weiss RS, Lammerding J. ATM Modulates Nuclear Mechanics by Regulating Lamin A Levels. Front Cell Dev Biol 2022; 10:875132. [PMID: 35721517 PMCID: PMC9198445 DOI: 10.3389/fcell.2022.875132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/13/2022] [Indexed: 12/18/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is one of the three main apical kinases at the crux of DNA damage response and repair in mammalian cells. ATM activates a cascade of downstream effector proteins to regulate DNA repair and cell cycle checkpoints in response to DNA double-strand breaks. While ATM is predominantly known for its role in DNA damage response and repair, new roles of ATM have recently begun to emerge, such as in regulating oxidative stress or metabolic pathways. Here, we report the surprising discovery that ATM inhibition and deletion lead to reduced expression of the nuclear envelope protein lamin A. Lamins are nuclear intermediate filaments that modulate nuclear shape, structure, and stiffness. Accordingly, inhibition or deletion of ATM resulted in increased nuclear deformability and enhanced cell migration through confined spaces, which requires substantial nuclear deformation. These findings point to a novel connection between ATM and lamin A and may have broad implications for cells with ATM mutations-as found in patients suffering from Ataxia Telangiectasia and many human cancers-which could lead to enhanced cell migration and increased metastatic potential.
Collapse
Affiliation(s)
- Pragya Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Connor W. McGuigan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Svea Cheng
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York City, NY, United States
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York City, NY, United States
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, United States
| | - Robert S. Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Mehlich D, Łomiak M, Sobiborowicz A, Mazan A, Dymerska D, Szewczyk ŁM, Mehlich A, Borowiec A, Prełowska MK, Gorczyński A, Jabłoński P, Iżycka-Świeszewska E, Nowis D, Marusiak AA. MLK4 regulates DNA damage response and promotes triple-negative breast cancer chemoresistance. Cell Death Dis 2021; 12:1111. [PMID: 34839359 PMCID: PMC8627512 DOI: 10.1038/s41419-021-04405-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022]
Abstract
Chemoresistance constitutes a major challenge in the treatment of triple-negative breast cancer (TNBC). Mixed-Lineage Kinase 4 (MLK4) is frequently amplified or overexpressed in TNBC where it facilitates the aggressive growth and migratory potential of breast cancer cells. However, the functional role of MLK4 in resistance to chemotherapy has not been investigated so far. Here, we demonstrate that MLK4 promotes TNBC chemoresistance by regulating the pro-survival response to DNA-damaging therapies. We observed that MLK4 knock-down or inhibition sensitized TNBC cell lines to chemotherapeutic agents in vitro. Similarly, MLK4-deficient cells displayed enhanced sensitivity towards doxorubicin treatment in vivo. MLK4 silencing induced persistent DNA damage accumulation and apoptosis in TNBC cells upon treatment with chemotherapeutics. Using phosphoproteomic profiling and reporter assays, we demonstrated that loss of MLK4 reduced phosphorylation of key DNA damage response factors, including ATM and CHK2, and compromised DNA repair via non-homologous end-joining pathway. Moreover, our mRNA-seq analysis revealed that MLK4 is required for DNA damage-induced expression of several NF-кB-associated cytokines, which facilitate TNBC cells survival. Lastly, we found that high MLK4 expression is associated with worse overall survival of TNBC patients receiving anthracycline-based neoadjuvant chemotherapy. Collectively, these results identify a novel function of MLK4 in the regulation of DNA damage response signaling and indicate that inhibition of this kinase could be an effective strategy to overcome TNBC chemoresistance.
Collapse
Affiliation(s)
- Dawid Mehlich
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.,Doctoral School of Medical University of Warsaw, Warsaw, Poland.,Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michał Łomiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Sobiborowicz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Mazan
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.,ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Dagmara Dymerska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz M Szewczyk
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Mehlich
- Department of Internal Diseases Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Borowiec
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Monika K Prełowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Adam Gorczyński
- Department of Pathology and Neuropathology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Paweł Jabłoński
- Department of Pathomorphology, Copernicus P.L., Gdansk, Poland
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland. .,ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
5
|
Cho E, Rowan-Carroll A, Williams A, Corton JC, Li HH, Fornace AJ, Hobbs CA, Yauk CL. Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Arch Toxicol 2021; 95:1631-1645. [PMID: 33770205 DOI: 10.1007/s00204-021-03014-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Transcriptomic biomarkers can be used to inform molecular initiating and key events involved in a toxicant's mode of action. To address the limited approaches available for identifying epigenotoxicants, we developed and assessed a transcriptomic biomarker of histone deacetylase inhibition (HDACi). First, we assembled a set of ten prototypical HDACi and ten non-HDACi reference compounds. Concentration-response experiments were performed for each chemical to collect TK6 human lymphoblastoid cell samples after 4 h of exposure and to assess cell viability following a 20-h recovery period in fresh media. One concentration was selected for each chemical for whole transcriptome profiling and transcriptomic signature derivation, based on cell viability at the 24-h time point and on maximal induction of HDACi-response genes (RGL1, NEU1, GPR183) or cellular stress-response genes (ATF3, CDKN1A, GADD45A) analyzed by TaqMan qPCR assays after 4 h of exposure. Whole transcriptomes were profiled after 4 h exposures by Templated Oligo-Sequencing (TempO-Seq). By applying the nearest shrunken centroid (NSC) method to the whole transcriptome profiles of the reference compounds, we derived an 81-gene toxicogenomic (TGx) signature, referred to as TGx-HDACi, that classified all 20 reference compounds correctly using NSC classification and the Running Fisher test. An additional 4 HDACi and 7 non-HDACi were profiled and analyzed using TGx-HDACi to further assess classification performance; the biomarker accurately classified all 11 compounds, including 3 non-HDACi epigenotoxicants, suggesting a promising specificity toward HDACi. The availability of TGx-HDACi increases the diversity of tools that can facilitate mode of action analysis of toxicants using gene expression profiling.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC, USA
| | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Cheryl A Hobbs
- Integrated Laboratory Systems, LLC, Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Chang MC, Tang CM, Lin YH, Liu HC, Wang TM, Lan WC, Cheng RH, Lin YR, Chang HH, Jeng JH. Toxic mechanisms of Roth801, Canals, microparticles and nanoparticles of ZnO on MG-63 osteoblasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111635. [PMID: 33321673 DOI: 10.1016/j.msec.2020.111635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
ZnO eugenol-based materials are widely used for restoration of caries cavity, apical retrograde filling and root canal sealer. Their effects on apical bone healing await investigation. The toxic mechanisms of ZnO particles and nanoparticles to MG-63 osteoblastic cells were studied. We found the different morphology and size of various particles as observed by scanning electron microscope. Particles of Canals and Roth801 were larger than ZnO-205532 microparticles and ZnO-677450 nanoparticles. Four ZnO particles showed cytotoxicity (>25 μg/ml) as analyzed by MTT. Transmission electron microscope found intracellular vacuoles with particle content. Exposure to ZnO particles induced ROS production and cell cycle arrest as studied by DCF and propidium iodide flow cytometry. ZnO particles activated ATM, ATR, Chk1, Chk2, γ-H2AX, ERK and p38 phosphorylation as detected by immunofluorescent staining and western blotting. The protein expression of cdc2, cyclin B1 and cdc25C were decreased, whereas GADD45α and hemeoxygenase-1 (HO-1) were stimulated. ZnO particles' cytotoxicity to MG63 cells was prevented by N-acetylcysteine (NAC), but not CGK733, AZD7762, U0126 and SB203580. ZnO showed little effect on IL-8 and sICAM-1 secretion. These results indicated that ZnO particles are toxic to osteoblasts. ZnO particles' toxicity were related to ROS, and DNA damage responses, checkpoint kinases, cell cycle arrest, ERK and p38 signaling, but not IL-8 and ICAM-1. These results were useful for materials' development and promote apical healing. Dentists should avoid of extruding ZnO-based sealers excessively over root apex and prevent residual ZnO-based retrograde filling materials in apical area during endodontic practice.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan; Department of Dentistry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Mei Tang
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Heng Lin
- Department of Dentistry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | | | - Tong-Mei Wang
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Lan
- Department of Oral Hygiene Care, Ching Kuo Institute of Management & Health, Keelong, Taiwan
| | - Ru-Hsiu Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Ru Lin
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jiiang-Huei Jeng
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Miao T, Peng C, Tang Z, Zeng M, Wang S, Wang X, Guo L, Wang X, Zhao J, Zhao M, Chen J, Liu C. Implication of Ataxia-Telangiectasia-mutated kinase in epithelium-mesenchyme transition. Carcinogenesis 2021; 42:640-649. [PMID: 33417668 DOI: 10.1093/carcin/bgab002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/22/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023] Open
Abstract
Impairment of genome instability drives the development of cancer by disrupting anti-cancer barriers. Upon genotoxic insults, DNA damage responsive factors, notably ATM kinase, is crucial to protect genomic integrity while promoting cell death. Meanwhile, cytotoxic therapy-inducing DNA lesions is double-edged sword by causing cancer metastasis based on animal models and clinical observations. The underlying mechanisms for the procancer effect of cytotoxic therapies are poorly understood. Here, we report that cancer cells subjected to cytotoxic treatments elicit dramatic alteration of gene expression controlling the potential of epithelium-mesenchyme transition (EMT). Resultantly, EMT-dependent cell mobility is potently induced upon DNA damage. This stimulation of EMT is mainly Ataxia-Telangiectasia-mutated (ATM)-dependent, as the chemical inhibitor specifically inhibiting ATM kinase activity can suppress the EMT gene expression and thus cell mobility. At last, we show that cancer cells with ATM activation display increased metastatic potential in ovarian cancer tissues. Taken together, we reveal a novel role of ATM in promoting metastatic potential of cancer cells by favoring EMT gene expression.
Collapse
Affiliation(s)
- Tianyu Miao
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, PR China
| | - Changsheng Peng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Zizhi Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Ming Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Shi Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Xiaojun Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Liandi Guo
- College of Pharmacy, Southwest Minzu University, Chengdu, PR China
| | - Xiaobo Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Jichun Zhao
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, PR China
| | - Mingcai Zhao
- Department of Clinical Laboratory, Suining Central Hospital, Suining, PR China
| | - Jie Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Cong Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology, West China Second University Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
8
|
Sekine S, Sekiguchi M, Matsushita N. Enhanced transcription activity of histone acetyltransferase HBO1 after genotoxic stress. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Dewey EB, Parra AS, Johnston CA. Loss of the spectraplakin gene Short stop induces a DNA damage response in Drosophila epithelia. Sci Rep 2020; 10:20165. [PMID: 33214581 PMCID: PMC7677407 DOI: 10.1038/s41598-020-77159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelia are an eminent tissue type and a common driver of tumorigenesis, requiring continual precision in cell division to maintain tissue structure and genome integrity. Mitotic defects often trigger apoptosis, impairing cell viability as a tradeoff for tumor suppression. Identifying conditions that lead to cell death and understanding the mechanisms behind this response are therefore of considerable importance. Here we investigated how epithelia of the Drosophila wing disc respond to loss of Short stop (Shot), a cytoskeletal crosslinking spectraplakin protein that we previously found to control mitotic spindle assembly and chromosome dynamics. In contrast to other known spindle-regulating genes, Shot knockdown induces apoptosis in the absence of Jun kinase (JNK) activation, but instead leads to elevated levels of active p38 kinase. Shot loss leads to double-strand break (DSB) DNA damage, and the apoptotic response is exacerbated by concomitant loss of p53. DSB accumulation is increased by suppression of the spindle assembly checkpoint, suggesting this effect results from chromosome damage during error-prone mitoses. Consistent with DSB induction, we found that the DNA damage and stress response genes, Growth arrest and DNA damage (GADD45) and Apoptosis signal-regulating kinase 1 (Ask1), are transcriptionally upregulated as part of the shot-induced apoptotic response. Finally, co-depletion of Shot and GADD45 induced significantly higher rates of chromosome segregation errors in cultured cells and suppressed shot-induced mitotic arrest. Our results demonstrate that epithelia are capable of mounting molecularly distinct responses to loss of different spindle-associated genes and underscore the importance of proper cytoskeletal organization in tissue homeostasis.
Collapse
Affiliation(s)
- Evan B Dewey
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Amalia S Parra
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | |
Collapse
|
10
|
Mitrentsi I, Yilmaz D, Soutoglou E. How to maintain the genome in nuclear space. Curr Opin Cell Biol 2020; 64:58-66. [PMID: 32220808 DOI: 10.1016/j.ceb.2020.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/28/2020] [Accepted: 02/23/2020] [Indexed: 01/27/2023]
Abstract
Genomic instability can be life-threatening. The fine balance between error-free and mutagenic DNA repair pathways is essential for maintaining genome integrity. Recent advances in DNA double-strand break induction and detection techniques have allowed the investigation of DNA damage and repair in the context of the highly complex nuclear structure. These studies have revealed that the 3D genome folding, nuclear compartmentalization and cytoskeletal components control the spatial distribution of DNA lesions within the nuclear space and dictate their mode of repair.
Collapse
Affiliation(s)
- Ioanna Mitrentsi
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France
| | - Duygu Yilmaz
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Celullaire, 67404, Illkirch, France; Institut National de La Santé et de La Recherche Médicale, U964, 67404, Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404, Illkirch, France; Université de Strasbourg, 67081, Strasbourg, France.
| |
Collapse
|
11
|
Sasaki-Honda M, Jonouchi T, Arai M, Hotta A, Mitsuhashi S, Nishino I, Matsuda R, Sakurai H. A patient-derived iPSC model revealed oxidative stress increases facioscapulohumeral muscular dystrophy-causative DUX4. Hum Mol Genet 2018; 27:4024-4035. [PMID: 30107443 PMCID: PMC6240734 DOI: 10.1093/hmg/ddy293] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022] Open
Abstract
Double homeobox 4 (DUX4), the causative gene of facioscapulohumeral muscular dystrophy (FSHD), is ectopically expressed in the skeletal muscle cells of FSHD patients because of chromatin relaxation at 4q35. The diminished heterochromatic state at 4q35 is caused by either large genome contractions [FSHD type 1 (FSHD1)] or mutations in genes encoding chromatin regulators, such as SMCHD1 [FSHD type 2 (FSHD2)]. However, the mechanism by which DUX4 expression is regulated remains largely unknown. Here, using a myocyte model developed from patient-derived induced pluripotent stem cells, we determined that DUX4 expression was increased by oxidative stress (OS), a common environmental stress in skeletal muscle, in both FSHD1 and FSHD2 myocytes. We generated FSHD2-derived isogenic control clones with SMCHD1 mutation corrected by clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR associated 9 (Cas9) and homologous recombination and found in the myocytes obtained from these clones that DUX4 basal expression and the OS-induced upregulation were markedly suppressed due to an increase in the heterochromatic state at 4q35. We further found that DNA damage response (DDR) was involved in OS-induced DUX4 increase and identified ataxia-telangiectasia mutated, a DDR regulator, as a mediator of this effect. Our results suggest that the relaxed chromatin state in FSHD muscle cells permits aberrant access of OS-induced DDR signaling, thus increasing DUX4 expression. These results suggest OS could represent an environmental risk factor that promotes FSHD progression.
Collapse
Affiliation(s)
- Mitsuru Sasaki-Honda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Tatsuya Jonouchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Meni Arai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Agricultural and Environmental Engineering, Faculty of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
12
|
Yin L, Liu Y, Peng Y, Peng Y, Yu X, Gao Y, Yuan B, Zhu Q, Cao T, He L, Gong Z, Sun L, Fan X, Li X. PARP inhibitor veliparib and HDAC inhibitor SAHA synergistically co-target the UHRF1/BRCA1 DNA damage repair complex in prostate cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:153. [PMID: 30012171 PMCID: PMC6048811 DOI: 10.1186/s13046-018-0810-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Background The poly ADP ribose polymerase (PARP) inhibitor olaparib has been approved for treating prostate cancer (PCa) with BRCA mutations, and veliparib, another PARP inhibitor, is being tested in clinical trials. However, veliparib only showed a moderate anticancer effect, and combination therapy is required for PCa patients. Histone deacetylase (HDAC) inhibitors have been tested to improve the anticancer efficacy of PARP inhibitors for PCa cells, but the exact mechanisms are still elusive. Methods Several types of PCa cells and prostate epithelial cell line RWPE-1 were treated with veliparib or SAHA alone or in combination. Cell viability or clonogenicity was tested with violet crystal assay; cell apoptosis was detected with Annexin V-FITC/PI staining and flow cytometry, and the cleaved PARP was tested with western blot; DNA damage was evaluated by staining the cells with γH2AX antibody, and the DNA damage foci were observed with a fluorescent microscopy, and the level of γH2AX was tested with western blot; the protein levels of UHRF1 and BRCA1 were measured with western blot or cell immunofluorescent staining, and the interaction of UHRF1 and BRCA1 proteins was detected with co-immunoprecipitation when cells were treated with drugs. The antitumor effect of combinational therapy was validated in DU145 xenograft models. Results PCa cells showed different sensitivity to veliparib or SAHA. Co-administration of both drugs synergistically decreased cell viability and clonogenicity, and synergistically induced cell apoptosis and DNA damage, while had no detectable toxicity to normal prostate epithelial cells. Mechanistically, veliparib or SAHA alone reduced BRCA1 or UHRF1 protein levels, co-treatment with veliparib and SAHA synergistically reduced BRCA1 protein levels by targeting the UHRF1/BRCA1 protein complex, the depletion of UHRF1 resulted in the degradation of BRCA1 protein, while the elevation of UHRF1 impaired co-treatment-reduced BRCA1 protein levels. Co-administration of both drugs synergistically decreased the growth of xenografts. Conclusions Our studies revealed that the synergistic lethality of HDAC and PARP inhibitors resulted from promoting DNA damage and inhibiting HR DNA damage repair pathways, in particular targeting the UHRF1/BRCA1 protein complex. The synergistic lethality of veliparib and SAHA shows great potential for future PCa clinical trials. Electronic supplementary material The online version of this article (10.1186/s13046-018-0810-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linglong Yin
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youhong Liu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchong Peng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbo Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xiaohui Yu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Gao
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Bowen Yuan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Qianling Zhu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Tuoyu Cao
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Leye He
- Research Institute for Prostate Disease, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuegong Fan
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China. .,Research Institute for Prostate Disease, Central South University, Changsha, China.
| |
Collapse
|
13
|
Salunkhe S, Mishra SV, Nair J, Ghosh S, Choudhary N, Kaur E, Shah S, Patkar K, Anand D, Khattry N, Hasan SK, Dutt S. Inhibition of novel GCN5-ATM axis restricts the onset of acquired drug resistance in leukemia. Int J Cancer 2018; 142:2175-2185. [DOI: 10.1002/ijc.31242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sameer Salunkhe
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Saket V. Mishra
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Jyothi Nair
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Samadri Ghosh
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Neha Choudhary
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Ekjot Kaur
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Sanket Shah
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Ketaki Patkar
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Dev Anand
- Department of Medical Oncology; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Navin Khattry
- Department of Medical Oncology; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Syed K. Hasan
- Department of Medical Oncology; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Shilpee Dutt
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| |
Collapse
|
14
|
Alzoubi S, Brody L, Rahman S, Mahul-Mellier AL, Mercado N, Ito K, El-Bahrawy M, Silver A, Boobis A, Bell JD, Hajji N. Synergy between histone deacetylase inhibitors and DNA-damaging agents is mediated by histone deacetylase 2 in colorectal cancer. Oncotarget 2018; 7:44505-44521. [PMID: 27283986 PMCID: PMC5190114 DOI: 10.18632/oncotarget.9887] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/28/2016] [Indexed: 12/22/2022] Open
Abstract
Previous studies have associated the overexpression of histone deacetylase 2 (HDAC2) and the presence of TP53 mutations with the progression to advanced stage drug resistant colorectal cancer (CRC). However, the mechanistic link between HDAC2 expression and the TP53 mutational status has remained unexplored. Here, we investigated the function of HDAC2 in drug resistance by assessing the synergistic effects of DNA-targeted chemotherapeutic agents and HDAC inhibitors (HDACis) on two TP53-mutated colorectal adenocarcinoma CRC cell lines (SW480 and HT-29) and on the TP53-wild type carcinoma cell line (HCT116 p53+/+) and its TP53 deficient sub-line (HCT116 p53−/−). We showed that in the untreated SW480 and HT-29 cells the steady-state level of HDAC2 was low compared to a TP53-wild type carcinoma cell line (HCT116 p53+/+). Increased expression of HDAC2 correlated with drug resistance, and depletion by shRNA sensitised the multi-drug resistance cell line HT-29 to CRC chemotherapeutic drugs such as 5-fluorouracil (5-FU) and oxaliplatin (Oxa). Combined treatment with the HDACi suberoylanilide hydroxamic acid plus 5-FU or Oxa reduced the level of HDAC2 expression, modified chromatin structure and induced mitotic cell death in HT-29 cells. Non-invasive bioluminescence imaging revealed significant reductions in xenograft tumour growth with HDAC2 expression level reduced to <50% in treated animals. Elevated levels of histone acetylation on residues H3K9, H4K12 and H4K16 were also found to be associated with resistance to VPA/Dox or SAHA/Dox treatment. Our results suggest that HDAC2 expression rather than the p53 mutation status influences the outcome of combined treatment with a HDACi and DNA-damaging agents in CRC.
Collapse
Affiliation(s)
- Samer Alzoubi
- Department of Medicine, Division of Experimental Medicine, Centre for Pharmacology & Therapeutics, Toxicology Unit, Imperial College London, London, UK
| | - Leigh Brody
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, UK
| | - Sunniyat Rahman
- Department of Medicine, Division of Experimental Medicine, Centre for Pharmacology & Therapeutics, Toxicology Unit, Imperial College London, London, UK
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Mercado
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Mona El-Bahrawy
- Department of Histopathology, Imperial College London, London, UK
| | - Andrew Silver
- Colorectal Cancer Genetics, Centre for Genomics & Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Alan Boobis
- Department of Medicine, Division of Experimental Medicine, Centre for Pharmacology & Therapeutics, Toxicology Unit, Imperial College London, London, UK
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, UK
| | - Nabil Hajji
- Department of Medicine, Division of Experimental Medicine, Centre for Pharmacology & Therapeutics, Toxicology Unit, Imperial College London, London, UK
| |
Collapse
|
15
|
Sharp JA, Brennan AJ, Polekhina G, Ascher DB, Lefevre C, Nicholas KR. Dimeric but not monomeric α-lactalbumin potentiates apoptosis by up regulation of ATF3 and reduction of histone deacetylase activity in primary and immortalised cells. Cell Signal 2017; 33:86-97. [DOI: 10.1016/j.cellsig.2017.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/25/2022]
|
16
|
Raschellà G, Melino G, Malewicz M. New factors in mammalian DNA repair-the chromatin connection. Oncogene 2017; 36:4673-4681. [PMID: 28394347 PMCID: PMC5562846 DOI: 10.1038/onc.2017.60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 12/12/2022]
Abstract
In response to DNA damage mammalian cells activate a complex network of stress response pathways collectively termed DNA damage response (DDR). DDR involves a temporary arrest of the cell cycle to allow for the repair of the damage. DDR also attenuates gene expression by silencing global transcription and translation. Main function of DDR is, however, to prevent the fixation of debilitating changes to DNA by activation of various DNA repair pathways. Proper execution of DDR requires careful coordination between these interdependent cellular responses. Deregulation of some aspects of DDR orchestration is potentially pathological and could lead to various undesired outcomes such as DNA translocations, cellular transformation or acute cell death. It is thus critical to understand the regulation of DDR in cells especially in the light of a strong linkage between the DDR impairment and the occurrence of common human diseases such as cancer. In this review we focus on recent advances in understanding of mammalian DNA repair regulation and a on the function of PAXX/c9orf142 and ZNF281 proteins that recently had been discovered to play a role in that process. We focus on regulation of double-strand DNA break (DSB) repair via the non-homologous end joining pathway, as unrepaired DSBs are the primary cause of pathological cellular states after DNA damage. Interestingly these new factors operate at the level of chromatin, which reinforces a notion of a central role of chromatin structure in the regulation of cellular DDR regulation.
Collapse
Affiliation(s)
- G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Rome, Italy
| | - G Melino
- Department of Experimental Medicine &Surgery, University of Rome Tor Vergata, Rome, Italy.,MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| | - M Malewicz
- MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| |
Collapse
|
17
|
Saenglee S, Jogloy S, Patanothai A, Leid M, Senawong T. Cytotoxic effects of peanut phenolics possessing histone deacetylase inhibitory activity in breast and cervical cancer cell lines. Pharmacol Rep 2016; 68:1102-1110. [DOI: 10.1016/j.pharep.2016.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/22/2016] [Accepted: 06/27/2016] [Indexed: 12/28/2022]
|
18
|
|
19
|
Jia Z, Gao S, M'Rabet N, De Geyter C, Zhang H. Sp1 is necessary for gene activation of Adamts17 by estrogen. J Cell Biochem 2014; 115:1829-39. [PMID: 24906090 DOI: 10.1002/jcb.24855] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022]
Abstract
Adamts17 is a member of a family of secreted metalloproteinases. In this report, we show that knockdown of Adamts17 expression induces apoptosis and inhibits breast cancer cell growth. Adamts17 expression can rapidly be induced by estrogens. siRNA knockdown of Sp1 or Myc demonstrated that Sp1 is required to induce Adamts17 gene expression in response to estrogen. Moreover, reporter assays showed that the proximal promoter and the upstream sequences were not capable of conferring estrogen responsiveness, suggesting that Sp1 elements may be located in the downstream intronic region. We further demonstrated that Sp1 and Myc binding in the proximal promoter region contributed to the Adamts17 basal expression. Furthermore, histone deacetylase (HDAC) and methylase inhibitors also induced Adamts17 expression, indicating that epigenetic alterations, such as aberrant HDAC and/or methylation are associated with dysregulated Adamts17 expression. By meta-analysis using Oncomine microarray data, we found that higher Adamts17 expression is found in several human cancer cell subtypes, especially in breast ductal carcinoma. Moreover, we found that there is an inverse correlation between higher Adamts17 expression and patients' survival. Our study suggests that Adamts17 may support breast cancer cell growth and survival.
Collapse
Affiliation(s)
- Zanhui Jia
- Clinic of Gynecological Endocrinology and Reproductive Medicine, University of Basel, Spitalstrasse 21, CH-4031, Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland; Department of Gynecology and Obstetrics, Second Hospital of Jilin University, Changchun City, Jilin Province, P.R. China
| | | | | | | | | |
Collapse
|
20
|
Kenney SC, Mertz JE. Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol 2014; 26:60-8. [PMID: 24457012 PMCID: PMC4048781 DOI: 10.1016/j.semcancer.2014.01.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection contributes to the development of several different types of human malignancy, including Burkitt lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma. As a herpesvirus, EBV can establish latent or lytic infection in cells. EBV-positive tumors are composed almost exclusively of cells with latent EBV infection. Strategies for inducing the lytic form of EBV infection in tumor cells are being investigated as a potential therapy for EBV-positive tumors. In this article, we review how cellular and viral proteins regulate the latent-lytic EBV switch in infected B cells and epithelial cells, and discuss how harnessing lytic viral reactivation might be used therapeutically.
Collapse
Affiliation(s)
- Shannon C Kenney
- McArdle Laboratory for Cancer Research, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Oncology, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Medicine, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA.
| | - Janet E Mertz
- McArdle Laboratory for Cancer Research, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Oncology, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| |
Collapse
|
21
|
Oleson BJ, Broniowska KA, Schreiber KH, Tarakanova VL, Corbett JA. Nitric oxide induces ataxia telangiectasia mutated (ATM) protein-dependent γH2AX protein formation in pancreatic β cells. J Biol Chem 2014; 289:11454-11464. [PMID: 24610783 PMCID: PMC4036281 DOI: 10.1074/jbc.m113.531228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
In this study, the effects of cytokines on the activation of the DNA double strand break repair factors histone H2AX (H2AX) and ataxia telangiectasia mutated (ATM) were examined in pancreatic β cells. We show that cytokines stimulate H2AX phosphorylation (γH2AX formation) in rat islets and insulinoma cells in a nitric oxide- and ATM-dependent manner. In contrast to the well documented role of ATM in DNA repair, ATM does not appear to participate in the repair of nitric oxide-induced DNA damage. Instead, nitric oxide-induced γH2AX formation correlates temporally with the onset of irreversible DNA damage and the induction of apoptosis. Furthermore, inhibition of ATM attenuates cytokine-induced caspase activation. These findings show that the formation of DNA double strand breaks correlates with ATM activation, irreversible DNA damage, and ATM-dependent induction of apoptosis in cytokine-treated β cells.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Biochemistry and Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | - Katherine H Schreiber
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Vera L Tarakanova
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - John A Corbett
- Department of Biochemistry and Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
22
|
Szabó DR, Baghy K, Szabó PM, Zsippai A, Marczell I, Nagy Z, Varga V, Éder K, Tóth S, Buzás EI, Falus A, Kovalszky I, Patócs A, Rácz K, Igaz P. Antitumoral effects of 9-cis retinoic acid in adrenocortical cancer. Cell Mol Life Sci 2014; 71:917-32. [PMID: 23807211 PMCID: PMC11113805 DOI: 10.1007/s00018-013-1408-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 01/08/2023]
Abstract
The currently available medical treatment options of adrenocortical cancer (ACC) are limited. In our previous meta-analysis of adrenocortical tumor genomics data, ACC was associated with reduced retinoic acid production and retinoid X receptor-mediated signaling. Our objective has been to study the potential antitumoral effects of 9-cis retinoic acid (9-cisRA) on the ACC cell line NCI-H295R and in a xenograft model. Cell proliferation, hormone secretion, and gene expression have been studied in the NCI-H295R cell line. A complex bioinformatics approach involving pathway and network analysis has been performed. Selected genes have been validated by real-time qRT-PCR. Athymic nude mice xenografted with NCI-H295R have been used in a pilot in vivo xenograft model. 9-cisRA significantly decreased cell viability and steroid hormone secretion in a concentration- and time-dependent manner in the NCI-H295R cell line. Four major molecular pathways have been identified by the analysis of gene expression data. Ten genes have been successfully validated involved in: (1) steroid hormone secretion (HSD3B1, HSD3B2), (2) retinoic acid signaling (ABCA1, ABCG1, HMGCR), (3) cell-cycle damage (GADD45A, CCNE2, UHRF1), and the (4) immune response (MAP2K6, IL1R2). 9-cisRA appears to directly regulate the cell cycle by network analysis. 9-cisRA also reduced tumor growth in the in vivo xenograft model. In conclusion, 9-cisRA might represent a promising new candidate in the treatment of hormone-secreting adrenal tumors and adrenocortical cancer.
Collapse
Affiliation(s)
- Diana Rita Szabó
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői Str. 26, Budapest, 1088 Hungary
| | - Peter M. Szabó
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - Adrienn Zsippai
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - István Marczell
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - Zoltán Nagy
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - Vivien Varga
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - Katalin Éder
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad Sq. 4, Budapest, 1089 Hungary
| | - Sára Tóth
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad Sq. 4, Budapest, 1089 Hungary
| | - Edit I. Buzás
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad Sq. 4, Budapest, 1089 Hungary
| | - András Falus
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad Sq. 4, Budapest, 1089 Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői Str. 26, Budapest, 1088 Hungary
| | - Attila Patócs
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - Károly Rácz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - Peter Igaz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| |
Collapse
|
23
|
Brochier C, Langley B. Chromatin modifications associated with DNA double-strand breaks repair as potential targets for neurological diseases. Neurotherapeutics 2013; 10:817-30. [PMID: 24072514 PMCID: PMC3805873 DOI: 10.1007/s13311-013-0210-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. Neurons, due to their post-mitotic state, high metabolism, and longevity are particularly prone to the accumulation of DNA lesions. Indeed, DNA damage has been suggested as a major contributor to both age-associated neurodegenerative diseases and acute neurological injury. The DNA damage response is a key factor in maintaining genome integrity. It relies on highly dynamic posttranslational modifications of the chromatin and DNA repair proteins to allow signaling, access, and repair of the lesion. Drugs that modulate the activity of the enzymes responsible for these modifications have emerged as attractive therapeutic compounds to treat neurodegeneration. In this review, we discuss the role of DNA double-strand breaks and abnormal chromatin modification patterns in a range of neurodegenerative conditions, and the chromatin modifiers that might ameliorate them. Finally, we suggest that understanding the epigenetic modifications specific to neuronal DNA repair is crucial for the development of efficient neurotherapeutic strategies.
Collapse
Affiliation(s)
- Camille Brochier
- The Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA,
| | | |
Collapse
|
24
|
Moskalev A, Plyusnina E, Shaposhnikov M, Shilova L, Kazachenok A, Zhavoronkov A. The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance. Cell Cycle 2012; 11:4222-41. [PMID: 23095639 PMCID: PMC3524218 DOI: 10.4161/cc.22545] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a relationship between various cellular stress factors and aging. In earlier studies, we demonstrated that overexpression of the D-GADD45 gene increases the life span of Drosophila melanogaster. In this study, we investigate the relationship between D-GADD45 activity and resistance to oxidative, genotoxic and thermal stresses as well as starvation. In most cases, flies with constitutive and conditional D-GADD45 overexpression in the nervous system were more stress-resistant than ones without overexpression. At the same time, most of the studied stress factors increased D-GADD45 expression in the wild-type strain. The lifespan-extending effect of D-GADD45 overexpression was also retained after exposure to chronic and acute gamma-irradiation, with doses of 40 сGy and 30 Gy, respectively. However, knocking out D-GADD45 resulted in a significant reduction in lifespan, lack of radiation hormesis and radioadaptive response. A dramatic decrease in the spontaneous level of D-GADD45 expression was observed in the nervous system as age progressed, which may be one of the causes of the age-related deterioration of organismal stress resistance. Thus, D-GADD45 expression is activated by most of the studied stress factors, and D-GADD45 overexpression resulted in an increase of stress resistance.
Collapse
Affiliation(s)
- Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, Russia.
| | | | | | | | | | | |
Collapse
|
25
|
Su JH, Chang WB, Chen HM, El-Shazly M, Du YC, Kung TH, Chen YC, Sung PJ, Ho YS, Kuo FW, Lu MC. 10-acetylirciformonin B, a sponge furanoterpenoid, induces DNA damage and apoptosis in leukemia cells. Molecules 2012; 17:11839-48. [PMID: 23047484 PMCID: PMC6268031 DOI: 10.3390/molecules171011839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/16/2012] [Accepted: 09/14/2012] [Indexed: 12/28/2022] Open
Abstract
10-Acetylirciformonin B, a furanoterpenoid derived from irciformonin B found in a marine sponge, has been reported to possess potent cytotoxic activity against several cancer cell lines. However, the mechanism of its apoptotic activity against human leukemia cells has never been reported. The purpose of this study was to investigate the cytotoxic effects of 10-acetylirciformonin B and its possible mechanism of action against leukemia HL 60 cells. We found that 10-acetylirciformonin B decreased cell viability through the inhibition of cell growth as well as the induction of DNA damage and apoptosis in a dose-dependent manner. The induction of DNA damage was mediated by the increase of p-CHK2 and γ-H2A.X, which was suggested from the increase of tail movement in the neutral Comet assay. Induction of apoptosis was mediated with the increase in caspases 8, 9 and 3 activation as well as PARP cleavage. In summary, our resultsindicate that 10-acetylirciformonin B treatment causes apoptosis in leukaemia cells; probably through a caspase-dependent regulatory pathway.
Collapse
Affiliation(s)
- Jui-Hsin Su
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan
| | - Wen-Been Chang
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan
- Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Pingtung 944, Taiwan
| | - Huei-Mei Chen
- Department of Nutrition, Lee’s Endocrinology Clinics, Pintung 900, Taiwan
| | - Mohamed El-Shazly
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt
| | - Ying-Chi Du
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ting-Hsuan Kung
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Yu-Cheng Chen
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan
| | - Yuan-Shing Ho
- Eastern Marine Biology Research Center, Fisheries Research Institute, Taitung 961, Taiwan
| | - Fu-Wen Kuo
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan
- Author to whom correspondence should be addressed; ; Fax: +886-8-882-5087
| |
Collapse
|
26
|
Scholl C, Weiβmüller K, Holenya P, Shaked-Rabi M, Tucker KL, Wölfl S. Distinct and overlapping gene regulatory networks in BMP- and HDAC-controlled cell fate determination in the embryonic forebrain. BMC Genomics 2012; 13:298. [PMID: 22748179 PMCID: PMC3460768 DOI: 10.1186/1471-2164-13-298] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 06/12/2012] [Indexed: 12/11/2022] Open
Abstract
Background Both bone morphogenetic proteins (BMPs) and histone deacetylases (HDACs) have previously been established to play a role in the development of the three major cell types of the central nervous system: neurons, astrocytes, and oligodendrocytes. We have previously established a connection between these two protein families, showing that HDACs suppress BMP-promoted astrogliogenesis in the embryonic striatum. Since HDACs act in the nucleus to effect changes in transcription, an unbiased analysis of their transcriptional targets could shed light on their downstream effects on BMP-signaling. Results Using neurospheres from the embryonic striatum as an in vitro system to analyze this phenomenon, we have performed microarray expression profiling on BMP2- and TSA-treated cultures, followed by validation of the findings with quantitative RT-PCR and protein analysis. In BMP-treated cultures we first observed an upregulation of genes involved in cell-cell communication and developmental processes such as members of BMP and canonical Wnt signaling pathways. In contrast, in TSA-treated cultures we first observed an upregulation of genes involved in chromatin modification and transcription. Interestingly, we could not record direct changes in the protein levels of canonical members of BMP2 signaling, but we did observe an upregulation of both the transcription factor STAT3 and its active isoform phospho-STAT3 at the protein level. Conclusions STAT3 and SMAD1/5/8 interact synergistically to promote astrogliogenesis, and thus we show for the first time that HDACs act to suppress BMP-promoted astrogliogenesis by suppression of the crucial partner STAT3.
Collapse
Affiliation(s)
- Catharina Scholl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Sharma A, Bode B, Wenger RH, Lehmann K, Sartori AA, Moch H, Knuth A, von Boehmer L, van den Broek M. γ-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One 2011; 6:e28217. [PMID: 22140550 PMCID: PMC3226680 DOI: 10.1371/journal.pone.0028217] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 11/03/2011] [Indexed: 12/28/2022] Open
Abstract
Background γ-radiation is an effective treatment for cancer. There is evidence that radiotherapy supports tumor-specific immunity. It was described that irradiation induces de novo protein synthesis and enhances antigen presentation, we therefore investigated whether γ-radiation results in increased expression of cancer-testis (CT) antigens and MHC-I, thus allowing efficient immunological control. This is relevant because the expression of CT-antigens and MHC-I on tumor cells is often heterogeneous. We found that the changes induced by γ-radiation promote the immunological recognition of the tumor, which is illustrated by the increased infiltration by lymphocytes after radiotherapy. Methods/Findings We compared the expression of CT-antigens and MHC-I in various cancer cell lines and fresh biopsies before and after in vitro irradiation (20 Gy). Furthermore, we compared paired biopsies that were taken before and after radiotherapy from sarcoma patients. To investigate whether the changed expression of CT-antigens and MHC-I is specific for γ-radiation or is part of a generalized stress response, we analyzed the effect of hypoxia, hyperthermia and genotoxic stress on the expression of CT-antigens and MHC-I. In vitro irradiation of cancer cell lines and of fresh tumor biopsies induced a higher or de novo expression of different CT-antigens and a higher expression of MHC-I in a time- and dose-dependent fashion. Importantly, we show that irradiation of cancer cells enhances their recognition by tumor-specific CD8+ T cells. The analysis of paired biopsies taken from a cohort of sarcoma patients before and after radiotherapy confirmed our findings and, in addition showed that irradiation resulted in higher infiltration by lymphocytes. Other forms of stress did not have an impact on the expression of CT-antigens or MHC-I. Conclusions Our findings suggest that γ-radiation promotes the immunological recognition of the tumor. We therefore propose that combining radiotherapy with treatments that support tumor specific immunity may result in increased therapeutic efficacy.
Collapse
Affiliation(s)
- Anu Sharma
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Beata Bode
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Roland H. Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Kuno Lehmann
- Department of Visceral Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Holger Moch
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Knuth
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Lotta von Boehmer
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Maries van den Broek
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Rajendran P, Ho E, Williams DE, Dashwood RH. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 2011; 3:4. [PMID: 22247744 PMCID: PMC3255482 DOI: 10.1186/1868-7083-3-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.
Collapse
Affiliation(s)
- Praveen Rajendran
- Cancer Chemoprotection Program, Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis OR 97331, USA
| | | | | | | |
Collapse
|
29
|
Radiation hormesis and radioadaptive response in Drosophila melanogaster flies with different genetic backgrounds: the role of cellular stress-resistance mechanisms. Biogerontology 2011; 12:253-63. [PMID: 21234801 DOI: 10.1007/s10522-011-9320-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
The purpose of this work is to investigate the role of cellular stress-resistance mechanisms in the low-dose irradiation effects on Drosophila melanogaster lifespan. In males and females with the wild type Canton-S genotype the chronic low dose irradiation (40 cGy) induced the hormetic effect and radiation adaptive response to acute irradiation (30 Gy). The hormesis and radioadaptive responses were observed in flies with mutations in autophagy genes (atg7, atg8a) but absent in flies with mutations in FOXO, ATM, ATR, and p53 homologues. The hormetic effect was revealed in Sirt2 mutant males but not in females. On the contrary, the females but not males of JNK/+ mutant strain showed adaptive response. The obtained results demonstrate the essential role of FOXO, SIRT1, JNK, ATM, ATR, and p53 genes in hormesis and radiation adaptive response of the whole organism.
Collapse
|
30
|
Jazirehi AR. Regulation of apoptosis-associated genes by histone deacetylase inhibitors: implications in cancer therapy. Anticancer Drugs 2010; 21:805-13. [PMID: 20679890 DOI: 10.1097/cad.0b013e32833dad91] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 2010; 584:3682-95. [PMID: 20655309 PMCID: PMC2946096 DOI: 10.1016/j.febslet.2010.07.029] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 10/25/2022]
Abstract
Genomes are subject to constant threat by damaging agents that generate DNA double-strand breaks (DSBs). The ends of linear chromosomes need to be protected from DNA damage recognition and end-joining, and this is achieved through protein-DNA complexes known as telomeres. The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in detection and signaling of DSBs, as well as the repair pathways of homologous recombination (HR) and non-homologous end-joining (NHEJ). In addition, MRN associates with telomeres and contributes to their maintenance. Here, we provide an overview of MRN functions at DSBs, and examine its roles in telomere maintenance and dysfunction.
Collapse
Affiliation(s)
- Brandon J Lamarche
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nicole I Orazio
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA 92093, USA
| | - Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|