1
|
He Y, Wang Y, Li X, Qi Y, Qu Z, Hu Y. Lycium Barbarum Polysaccharides Improves Cognitive Functions in ICV-STZ-Induced Alzheimer's Disease Mice Model by Improving the Synaptic Structural Plasticity and Regulating IRS1/PI3K/AKT Signaling Pathway. Neuromolecular Med 2024; 26:15. [PMID: 38653878 DOI: 10.1007/s12017-024-08784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Lycium barbarum polysaccharide (LBP) have a certain curative effect on hypoglycemic and neuroprotective effects, but the specific mechanism is unclear and needs to be further explored. This study aimed to clarify the mechanisms of LBP in the treatment of ICV-STZ mice model of AD from the perspectives of insulin resistance, IRS1/PI3K/AKT signaling pathway, and synaptic protein expression. We used male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle as an AD model. After treatment with LBP, the learning and memory abilities of ICV-STZ mice were enhanced, and the pathological changes in brain tissue were alleviated. LBP can regulate the expression of proteins related to the IRS1/PI3K/AKT signaling pathway and thereby reducing Aβ deposition and tau protein phosphorylation in the brain of ICV-STZ mice. In addition, LBP also can up-regulate the expression of synaptic proteins. The results indicated that LBP played a neuroprotective role by regulating the IRS1/PI3K/AKT pathway, inhibiting tau protein hyperphosphorylation and improving the expression levels of synapse-related proteins.
Collapse
Affiliation(s)
- Yingxi He
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Yanyou Wang
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Xia Li
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Yanqiang Qi
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Zuwei Qu
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Yanli Hu
- Department of Phamacy, Shihezi University, Shihezi, China.
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
2
|
Li ZY, Lin LH, Liang HJ, Li YQ, Zhao FQ, Sun TY, Liu ZY, Zhu JY, Gu F, Xu JN, Hao QY, Zhou DS, Zhai HH. Lycium barbarum polysaccharide alleviates DSS-induced chronic ulcerative colitis by restoring intestinal barrier function and modulating gut microbiota. Ann Med 2023; 55:2290213. [PMID: 38061697 PMCID: PMC10836275 DOI: 10.1080/07853890.2023.2290213] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE This study examined the protective effects and mechanism of Lycium barbarum polysaccharides (LBP) in the context of intestinal barrier function and intestinal microbiota in mice with dextran sulfate sodium (DSS)-induced chronic ulcerative colitis (UC). METHODS C57BL/6J male mice were assigned to a standard normal diet without DSS (control group), a normal diet with DSS (DSS group, 2% DSS given discontinuously for 3 weeks) or a normal diet supplemented with LBP (1% dry feed weight, LBP group, 2% DSS given discontinuously for 3 weeks) for a total of 8 weeks, at which point colonic tissues and caecal contents were collected. RESULTS LBP exerted a significant effect against colitis by increasing body weight, colon length, DAI and histopathological scores. LBP inhibited proinflammatory cytokines (IL-1β, IL-6, iNOS and TNF-α) expression, improved anti-inflammatory cytokine (IL-10) expression, promoted the expression of tight junction proteins (Occludin and ZO-1) via nuclear factor erythroid 2-related factor 2 (Nrf2) activation and decreased Claudin-2 expression to maintain the intestinal mucosal barrier. In addition, the abundances of some probiotics (Ruminococcaceae, Lactobacillus, Butyricicoccus, and Akkermansia) were decreased with DSS treatment but increased obviously with LBP treatment. And LBP reduced the abundance of conditional pathogens associated with UC (Mucispirillum and Sutterella). Furthermore, LBP improved the production of short-chain fatty acids (SCFAs), including acetic acid, propionic acid, butyric acid and isobutyric acid. CONCLUSION LBP can alleviate DSS-induced UC by regulating inflammatory cytokines and tight junction proteins. Moreover, LBP promotes probiotics, suppresses conditional pathogens and increases SCFAs production, showing a strong prebiotic effect.
Collapse
Affiliation(s)
- Zhi-Yu Li
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Lan-Hui Lin
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - He-Jun Liang
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Ya-Qi Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fu-Qian Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Yi Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zi-Yu Liu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jing-Yi Zhu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Feng Gu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jia-Ning Xu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qi-Yuan Hao
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - De-Shan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui-Hong Zhai
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Peng G, Li M, Meng Z. Polysaccharides: potential bioactive macromolecules for Alzheimer's disease. Front Nutr 2023; 10:1249018. [PMID: 37781122 PMCID: PMC10540640 DOI: 10.3389/fnut.2023.1249018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of death and disability. AD is a devastating disease that has caused an overwhelming burden. However, no disease-modified treatment was discovered. The approval of sodium oligomannate (GV-971) in mild-moderate AD patients has attracted great attention to investigate the role of saccharides in AD. Therefore, summarizing and explaining the role of saccharides in AD is urgent and promising. Recent studies showed that polysaccharides (PSs) potentially benefit AD in vitro and in vivo. PSs could alleviate the pathological damage and improve cognitive symptoms via (1) antagonizing the toxicity of abnormal amyloid-beta and tau proteins; (2) attenuating oxidative stress and proinflammation; (3) rebuilding neuroplasticity. PSs exhibit one-multiple pathological hits of AD. However, a thorough chemical investigation is needed for further study.
Collapse
Affiliation(s)
- Gong Peng
- Laboratory of Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| | - Ming Li
- Department of Neurology, The Second Hospital of Nanchang University, Nanchang, China
| | - Zhaoli Meng
- Laboratory of Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Ren Q, Bakker W, de Haan L, Rietjens IMCM, Bouwmeester H. Induction of Nrf2-EpRE-mediated gene expression by hydroxyanthraquinones present in extracts from traditional Chinese medicine and herbs. Food Chem Toxicol 2023; 176:113802. [PMID: 37116774 DOI: 10.1016/j.fct.2023.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Hydroxyanthraquinones that can be present in traditional Chinese medicine (TCM) and herbal extracts have claimed beneficial intestinal effects. We examined the ability of a panel hydroxyanthraquinones, and methanolic extracts from selected TCM and herbal granules to activate Nrf2-EpRE mediated gene expression using a reporter-gene assay. The results indicate that purpurin, aloe-emodin, 2-hydroxy-3-methylanthraquinone and rhein induced Nrf2 mediated gene expressions with a high induction factor (IFs>10), with BMCL10 values (the lower confidence limit of the concentration giving 10% added response above background) of 16 μM, 1.1 μM, 23 μM and 2.3 μM, respectively, while aurantio-obtusin, obtusifolin, rubiadin 1-methyl ether and emodin were less potent (IFs<5), with BMCL10 values for added response above background level of 4.6 μM, 15 μM, 9.8 μM and 3.8 μM, respectively. All TCM extracts and the herbal extracts of Aloe Vera, Polygonum multiflorum, Rubia (cordifolia) and Rheum officinale activated the Nrf2-EpRE pathway. Of the TCM extracts, Chuan-Xin-Lian-Kang-Yan-Pian was the most potent Nrf2-inducer. LC-MS/MS analysis indicated the presence of selected hydroxyanthraquinones in the extracts and herbs, in part explaining their Nrf2-EpRE mediated activity. In conclusion, different hydroxyanthraquinones have different potencies of Nrf2 activation. The Nrf2 activation by extracts from TCM and herbs can be partially explained by the presence of selected hydroxyanthraquinones.
Collapse
Affiliation(s)
- Qiuhui Ren
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
5
|
Lycium barbarum Polysaccharides Regulating miR-181/Bcl-2 Decreased Autophagy of Retinal Pigment Epithelium with Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9554457. [PMID: 36644575 PMCID: PMC9836813 DOI: 10.1155/2023/9554457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Disturbed structure and dysfunction of the retinal pigment epithelium (RPE) lead to degenerative diseases of the retina. Excessive accumulation of reactive oxygen species (ROS) in the RPE is thought to play an important role in RPE dysfunction and degeneration. Autophagy is a generally low-activity degradation process of cellular components that increases significantly when high levels of oxidative stress are present. Agents with antioxidant properties may decrease autophagy and provide protection against RPE dysfunction and damage caused by ROS. Lycium barbarum polysaccharide (LBP) has been widely studied as an antioxidant and cell-protective agent. Therefore, we designed this study to investigate the effects of LBP, which inhibits miR-181, on autophagy in retinal pigment epithelium (RPE) with oxidative stress in vitro and in vivo. In the current study, we found that the highly expressed miR-181 downregulated the expression of Bcl-2 in hydrogen peroxide- (H2O2-) induced ARPE-19 cells, resulting in an increase in ROS, apoptosis, and autophagy flux. LBP inhibited the expression of miR-181, decreased the levels of ROS, apoptosis, and autophagy flux, and increased cell viability in H2O2-induced ARPE-19 cells, suggesting that LBP provides protection against oxidative damage in ARPE-19 cells. We also found that LBP decreased RPE atrophy and autophagy flux in rd10 mice. Taken together, the results showed that LBP has a protective effect for RPE under oxidative stress by inhibiting miR-181 and affecting the Bcl-2/Beclin1 autophagy signaling pathway.
Collapse
|
6
|
Du X, Lou N, Hu S, Xiao R, Chu C, Huang Q, Lu L, Li S, Yang J. Anti-Aging of the Nervous System and Related Neurodegenerative Diseases With Chinese Herbal Medicine. Am J Alzheimers Dis Other Demen 2023; 38:15333175231205445. [PMID: 37818604 PMCID: PMC10624054 DOI: 10.1177/15333175231205445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Human beings have always pursued a prolonged lifespan, while the aging of the nervous system is associated with a large variety of diseases. Pathological aging of the nervous system results in a series of neurodegenerative diseases and can cause disability and death in the elderly. Therefore, there is an urgent need for the prevention and treatment of nervous system aging. Chinese herbal medicines have a long history, featuring rich and safe ingredients, and have great potential for the development of anti-aging treatment. We searched the publications on PubMed with key words "anti-aging of the nervous system" and "Chinese herbal medicine" in recent 10 years, and found sixteen Chinese herbal medicines. Then by comparing their popularity of use as well as active components based on the research articles, five common Chinese herbal medicines namely Ginseng Radix, Lycii Fructus, Astragali Radix, Coptidis Rhizoma and Ginkgo Folium, were confirmed to be the most related to anti-nervous system aging and neural degenerative diseases. At the same time, the active ingredients, research models, action mechanisms and curative effects of these five common Chinese herbal medicines were reviewed. From the five common Chinese herbal medicines reviewed in this paper, many encouraging effects of Chinese herbal medicines on treating nervous system aging and related diseases were revealed and more potent herbs would be explored with the help of the proposed possible mechanisms.
Collapse
Affiliation(s)
- Xiaohui Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Sinan Hu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ruopeng Xiao
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lin Lu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
7
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Song J, Liu L, Li Z, Mao T, Zhang J, Zhou L, Chen X, Shang Y, Sun T, Luo Y, Jiang Y, Tan D, Tong X, Dai F. Lycium barbarum polysaccharide improves dopamine metabolism and symptoms in an MPTP-induced model of Parkinson's disease. BMC Med 2022; 20:412. [PMID: 36303171 PMCID: PMC9615188 DOI: 10.1186/s12916-022-02621-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease in middle-aged and elderly populations, whereas there is no cure for PD so far. Novel animal models and medications await development to elucidate the aetiology of PD and attenuate the symptoms, respectively. METHODS A neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), was used in the current study to establish a PD pathologic model in silkworms. The time required to complete specific behaviours was recorded. Dopamine content was detected by ultra-performance liquid chromatography (UPLC). The activity of insect tyrosine hydroxylase (TH) was determined using a double-antibody sandwich method. Oxidative stress was assessed by changes in antioxidant enzyme activity and the content of oxidative products. RESULTS MPTP-treated silkworms were characterized by impaired motor ability, reduced dopamine content, and elevated oxidative stress level. The expression of TH, a dopamine biosynthetic enzyme within dopaminergic neurons in the brain, was significantly reduced, indicating that dopaminergic neurons were damaged. Moreover, MPTP-induced motility impairment and reduced dopamine level in the silkworm PD model could be rescued after feeding a combination of levodopa (L-dopa [LD]) and carbidopa (CD). MPTP-induced oxidative damage was also alleviated, in ways consistent with other PD animal models. Interestingly, administration of Lycium barbarum polysaccharide (LBP) improved the motor ability, dopamine level, and TH activity, and the oxidative damage was concomitantly reduced in the silkworm PD model. CONCLUSIONS This study provides a promising animal model for elucidating the pathogenesis of PD, as well as a relevant preliminary drug screening (e.g., LBP) and evaluation.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Lian Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ting Mao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Lei Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xin Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yunzhu Shang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Tao Sun
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Luo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Yang C, Zhao Q, Li S, Pu L, Yu L, Liu Y, Lai X. Effects of Lycium barbarum L. Polysaccharides on Vascular Retinopathy: An Insight Review. Molecules 2022; 27:5628. [PMID: 36080395 PMCID: PMC9457721 DOI: 10.3390/molecules27175628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular retinopathy is a pathological change in the retina caused by ocular or systemic vascular diseases that can lead to blurred vision and the risk of blindness. Lycium barbarum polysaccharides (LBPs) are extracted from the fruit of traditional Chinese medicine, L. barbarum. They have strong biological activities, including immune regulation, antioxidation, and neuroprotection, and have been shown to improve vision in numerous studies. At present, there is no systematic literature review of LBPs on vascular retinal prevention and treatment. We review the structural characterization and extraction methods of LBPs, focus on the mechanism and pharmacokinetics of LBPs in improving vascular retinopathy, and discuss the future clinical application and lack of work. LBPs are involved in the regulation of VEGF, Rho/ROCK, PI3K/Akt/mTOR, Nrf2/HO-1, AGEs/RAGE signaling pathways, which can alleviate the occurrence and development of vascular retinal diseases in an inflammatory response, oxidative stress, apoptosis, autophagy, and neuroprotection. LBPs are mainly absorbed by the small intestine and stomach and excreted through urine and feces. Their low bioavailability in vivo has led to the development of novel dosage forms, including multicompartment delivery systems and scaffolds. Data from the literature confirm the medicinal potential of LBPs as a new direction for the prevention and complementary treatment of vascular retinopathy.
Collapse
Affiliation(s)
- Chunhong Yang
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Zhao
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiling Li
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lili Pu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liqiong Yu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yaqin Liu
- Department of Chinese Medicine and Pharmacy, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianrong Lai
- Department of Ethnic Medicine, College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
10
|
Dhahri M, Alghrably M, Mohammed HA, Badshah SL, Noreen N, Mouffouk F, Rayyan S, Qureshi KA, Mahmood D, Lachowicz JI, Jaremko M, Emwas AH. Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases. Pharmaceutics 2021; 14:1. [PMID: 35056897 PMCID: PMC8777698 DOI: 10.3390/pharmaceutics14010001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases are a serious and widespread global public health burden amongst aging populations. The total estimated worldwide global cost of dementia was US$818 billion in 2015 and has been projected to rise to 2 trillion US$ by 2030. While advances have been made to understand different neurodegenerative disease mechanisms, effective therapeutic strategies do not generally exist. Several drugs have been proposed in the last two decades for the treatment of different types of neurodegenerative diseases, with little therapeutic benefit, and often with severe adverse and side effects. Thus, the search for novel drugs with higher efficacy and fewer drawbacks is an ongoing challenge in the treatment of neurodegenerative disease. Several natural compounds including polysaccharides have demonstrated neuroprotective and even therapeutic effects. Natural polysaccharides are widely distributed in plants, animals, algae, bacterial and fungal species, and have received considerable attention for their wide-ranging bioactivity, including their antioxidant, anti-neuroinflammatory, anticholinesterase and anti-amyloidogenic effects. In this review, we summarize different mechanisms involved in neurodegenerative diseases and the neuroprotective effects of natural polysaccharides, highlighting their potential role in the prevention and therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Noreen Noreen
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Fouzi Mouffouk
- Department of Chemistry, Faculty of Science, Kuwait University, Safat 13060, Kuwait;
| | - Saleh Rayyan
- Chemistry Department, Birzeit University, Birzeit P627, Palestine;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
11
|
Liang R, Zhao Q, Zhu Q, He X, Gao M, Wang Y. Lycium barbarum polysaccharide protects ARPE‑19 cells against H 2O 2‑induced oxidative stress via the Nrf2/HO‑1 pathway. Mol Med Rep 2021; 24:769. [PMID: 34490478 PMCID: PMC8436232 DOI: 10.3892/mmr.2021.12409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is a global health problem. Lycium barbarum polysaccharide (LBP), a traditional Chinese herbal medicine, has been proven to be effective against several eye diseases. However, only a few studies have investigated the effectiveness of LBP for AMD. In the present study, the human retinal epithelial cell line, ARPE-19, was pretreated with LBP for 24 h before exposure to H2O2 (500 µM). Cell viability was assessed, and a series of oxidative and antioxidant indicators were evaluated to determine the influence of LBP on H2O2-triggered oxidative stress. The present study also determined the apoptosis status, as well as the expression levels of apoptotic proteins and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway proteins. The present study aimed to determine the protective role for LBP pretreatment and its underlying molecular mechanism. The results of the present study suggest that pretreatment of ARPE-19 cells with LBP exhibit high efficacy at reducing oxidative damage and inhibiting cell apoptosis. Furthermore, LBP may modulate the expression of proteins involved in the apoptotic pathway and activate the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ran Liang
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Qi Zhao
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Qing Zhu
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Xin He
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Mingjun Gao
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Yiru Wang
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| |
Collapse
|
12
|
Ni J, Au M, Kong H, Wang X, Wen C. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complement Med Ther 2021; 21:212. [PMID: 34404395 PMCID: PMC8371808 DOI: 10.1186/s12906-021-03385-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP), the most abundant functional component of wolfberry, is considered a potent antioxidant and an anti-ageing substance. This review aims to outline the hallmarks of ageing in the pathogenesis of osteoarthritis (OA), followed by the current understanding of the senolytic effect of LBP and its potential use in the prevention and treatment of OA. This will be discussed through the lens of molecular biology and herbal medicine. METHODS A literature search was performed from inception to March 2020 using following keywords: "Lycium barbarum polysaccharide", "DNA damage", antioxidant, anti-apoptosis, anti-inflammation, anti-ageing, osteoarthritis, chondrocytes, fibroblasts, osteoblasts, osteoclasts, and "bone mesenchymal stem cell". The initial search yielded 2287 papers, from which 35 studies were selected for final analysis after screening for topic relevancy by the authors. RESULTS In literature different in vitro and in vivo ageing models are used to demonstrate LBP's ability to reduce oxidative stress, restore mitochondrial function, mitigate DNA damage, and prevent cellular senescence. All the evidence hints that LBP theoretically attenuates senescent cell accumulation and suppresses the senescence-associated secretory phenotype as observed by the reduction in pro-inflammatory cytokines, like interleukin-1beta, and matrix-degrading enzymes, such as MMP-1 and MMP-13. However, there remains a lack of evidence on the disease-modifying effect of LBP in OA, although its chondroprotective, osteoprotective and anti-inflammatory effects were reported. CONCLUSION Our findings strongly support further investigations into the senolytic effect of LBP in the context of age-related OA.
Collapse
Affiliation(s)
- Junguo Ni
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Manting Au
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hangkin Kong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xinluan Wang
- Centre for Translational Medical Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shen Zhen, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Lycium Barbarum Polysaccharides and Wolfberry Juice Prevent DEHP-Induced Hepatotoxicity via PXR-Regulated Detoxification Pathway. Molecules 2021; 26:molecules26040859. [PMID: 33562043 PMCID: PMC7915231 DOI: 10.3390/molecules26040859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental di(2-Ethylhexyl) phthalate (DEHP) is widely used in various industries as a plasticizer, and has been reported to induce reproductive and developmental toxicities in organisms. The purpose of this study was to evaluate the detoxification capacity of Lycium barbarum polysaccharides (LBP) and wolfberry juice (WJ) against DEHP-induced hepatotoxicity. Two groups of rats were purchased to study two different intervention method experiments: LBP (50, 100, 200 mg/kg·bw) intervention before DEHP (2000 mg/kg·bw) exposure, and LBP (200 mg/kg·bw) or WJ (8 mL/kg·bw) intervention after DEHP (3000 mg/kg·bw) exposure. The rats were exposed to DEHP once, while the intervention lasted for seven days. At the end of the intervention, enzyme-linked immunosorbent assay (ELISA) was used to measure the related index. The LBP intervention before DEHP exposure experiment (the first experimental method) found that LBP group rats showed a strong capacity toward DEHP detoxification, evidenced by the significant upregulation of activities and concentrations of the partner retinoid, X receptor alpha (RXRα), and downstream regulators Cytochrome P4502E1 (CYP2E1), Cytochrome P4503A1 (CYP3A1), Glutathione S-Transferase Pi (GSTpi), and UDP-glucuronosyltransferase 1 (UGT1) in a dose-dependent manner. The LBP and WJ intervention after DEHP exposure experiment (the second intervention experiment) found that WJ could downregulate pregnane X receptor (PXR), and upregulate downstream regulators, CYP2E1, CYP3A1, and Glutathione S-Transferase (GST) with the extension of intervention time, to alleviate the toxicity of DEHP. However, the intervention effect of WJ was more obvious than that of LBP. These results suggested that LBP and WJ might be effective detoxification agents against DEHP-induced toxic effects, by activating PXR and PXR-related detoxifying enzymes.
Collapse
|
14
|
Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, Farzaei MH, Sobarzo-Sánchez E. Attenuation of Nrf2/Keap1/ARE in Alzheimer's Disease by Plant Secondary Metabolites: A Mechanistic Review. Molecules 2020; 25:molecules25214926. [PMID: 33114450 PMCID: PMC7663041 DOI: 10.3390/molecules25214926] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neuronal/cognitional dysfunction, leading to disability and death. Despite advances in revealing the pathophysiological mechanisms behind AD, no effective treatment has yet been provided. It urges the need for finding novel multi-target agents in combating the complex dysregulated mechanisms in AD. Amongst the dysregulated pathophysiological pathways in AD, oxidative stress seems to play a critical role in the pathogenesis progression of AD, with a dominant role of nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)/antioxidant responsive elements (ARE) pathway. In the present study, a comprehensive review was conducted using the existing electronic databases, including PubMed, Medline, Web of Science, and Scopus, as well as related articles in the field. Nrf2/Keap1/ARE has shown to be the upstream orchestrate of oxidative pathways, which also ameliorates various inflammatory and apoptotic pathways. So, developing multi-target agents with higher efficacy and lower side effects could pave the road in the prevention/management of AD. The plant kingdom is now a great source of natural secondary metabolites in targeting Nrf2/Keap1/ARE. Among natural entities, phenolic compounds, alkaloids, terpene/terpenoids, carotenoids, sulfur-compounds, as well as some other miscellaneous plant-derived compounds have shown promising future accordingly. Prevailing evidence has shown that activating Nrf2/ARE and downstream antioxidant enzymes, as well as inhibiting Keap1 could play hopeful roles in overcoming AD. The current review highlights the neuroprotective effects of plant secondary metabolites through targeting Nrf2/Keap1/ARE and downstream interconnected mediators in combating AD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
- Correspondence: (A.P.); (M.H.F.)
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Correspondence: (A.P.); (M.H.F.)
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| |
Collapse
|
15
|
Club Cell Heme Oxygenase-1 Deletion: Effects in Hyperoxia-Exposed Adult Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2908271. [PMID: 32587658 PMCID: PMC7303751 DOI: 10.1155/2020/2908271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/29/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
Thioredoxin reductase-1 (TXNRD1) inhibition activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) responses and prevents acute lung injury (ALI). Heme oxygenase-1 (HO-1) induction following TXNRD1 inhibition is Nrf2-dependent in airway epithelial (club) cells in vitro. The influence of club cell HO-1 on lung development and lung injury responses is poorly understood. The present studies characterized the effects of hyperoxia on club cell-specific HO-1 knockout (KO) mice. These mice were generated by crossing Hmox1 flox mice with transgenic mice expressing cre recombinase under control of the club cell-specific Scgb1a1 promoter. Baseline analyses of lung architecture and function performed in age-matched adult wild-type and KO mice indicated an increased alveolar size and airway resistance in HO-1 KO mice. In subsequent experiments, adult wild-type and HO-1 KO mice were either continuously exposed to >95% hyperoxia or room air for 72 h or exposed to >95 hyperoxia for 48 h followed by recovery in room air for 48 h. Injury was quantitatively assessed by calculating right lung/body weight ratios (g/kg). Analyses indicated an independent effect of hyperoxia but not genotype on right lung/body weight ratios in both wild-type and HO-1 KO mice. The magnitude of increases in right lung/body weight ratios was similar in mice of both genotypes. In the recovery model, an independent effect of hyperoxia but not genotype was also detected. In contrast to the continuous exposure model, right lung/body weight ratio mice were significantly elevated in HO-1 KO but not wild-type mice. Though club cell HO-1 does not alter hyperoxic sensitivity in adult mice, it significantly influences lung development and resolution of lung injury following acute hyperoxic exposure.
Collapse
|
16
|
Zhou S, Rahman A, Li J, Wei C, Chen J, Linhardt RJ, Ye X, Chen S. Extraction Methods Affect the Structure of Goji ( Lycium barbarum) Polysaccharides. Molecules 2020; 25:molecules25040936. [PMID: 32093113 PMCID: PMC7070559 DOI: 10.3390/molecules25040936] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 01/02/2023] Open
Abstract
Polysaccharides are considered to be the most important active substances in Goji. However, the structure of polysaccharides varies according to the extraction methods applied, and the solution used to prepare Goji polysaccharides (LBPs) were limited. Thus, it is important to clarify the connection between extraction methods and structure of Goji polysaccharide. In view of the complex composition of cell wall polysaccharides and the various forms of interaction, different extraction methods will release different parts of the cell wall. The present study compared the effects of different extraction methods, which have been used to prepare different types of plant cell wall polysaccharides based on various sources, on the structure of cell-wall polysaccharides from Goji, by the single separate use of hot water, hydrochloric acid (0.4%) and sodium hydroxide (0.6%), at both high and low temperatures. Meanwhile, in order to explore the limitations of single extraction, sequential extraction methods were applied. Structural analysis including monosaccharide analysis, GPC-MALLS, AFM and 1H-NMR suggested the persistence of more extensively branched rhamnogalacturonan I (RG-I) domains in the procedures involving low-temperature-alkali, while procedures prepared by high-temperature-acid contains more homogalacturonan (HG) regions and results in the removal of a substantial part of the side chain, specifically the arabinan. A kind of acidic heteropolysaccharide was obtained by hot water extraction. SEC-MALLS and AFM confirmed large-size polymers with branched morphologies in alkali-extracted polysaccharides. Our results provide new insight into the extraction of Goji polysaccharides, which differ from the hot water extraction used by traditional Chinese medicine.
Collapse
Affiliation(s)
- Shengyi Zhou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (S.Z.); (A.R.); (J.L.); (C.W.); (J.C.)
| | - Atikur Rahman
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (S.Z.); (A.R.); (J.L.); (C.W.); (J.C.)
| | - Junhui Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (S.Z.); (A.R.); (J.L.); (C.W.); (J.C.)
| | - Chaoyang Wei
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (S.Z.); (A.R.); (J.L.); (C.W.); (J.C.)
| | - Jianle Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (S.Z.); (A.R.); (J.L.); (C.W.); (J.C.)
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Xingqian Ye
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (S.Z.); (A.R.); (J.L.); (C.W.); (J.C.)
- Correspondence: (X.Y.); (S.C.); Tel./Fax: +86-0571-88982151 (S.C.)
| | - Shiguo Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; (S.Z.); (A.R.); (J.L.); (C.W.); (J.C.)
- Correspondence: (X.Y.); (S.C.); Tel./Fax: +86-0571-88982151 (S.C.)
| |
Collapse
|
17
|
Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review. Biomolecules 2019; 9:biom9090389. [PMID: 31438522 PMCID: PMC6770593 DOI: 10.3390/biom9090389] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Lycium barbarum polysaccharides (LBPs), as bioactive compounds extracted from L. barbarum L. fruit, have been widely explored for their potential health properties. The extraction and structural characterization methods of LBPs were reviewed to accurately understand the extraction method and structural and biological functions of LBPs. An overview of the biological functions of LBPs, such as antioxidant function, antitumor activity, neuroprotective effects, immune regulating function, and other functions, were summarized. This review provides an overview of LBPs and a theoretical basis for further studying and extending the applications of LBPs in the fields of medicine and food.
Collapse
|
18
|
Liu L, Zhao Z, Yin Q, Zhang X. TTB Protects Astrocytes Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via Activation of Nrf2/HO-1 Signaling Pathway. Front Pharmacol 2019; 10:792. [PMID: 31379570 PMCID: PMC6646521 DOI: 10.3389/fphar.2019.00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoxic/ischemic encephalopathy (NHIE) is a severe condition that leads to death or neurological disability in newborns. The underlying pathological mechanisms are unclear, and developing the target neuroprotective strategies are urgent. 2,7,2′-trihydroxy-4,4′7′-trimethoxy-1,1′-biphenanthrene (TTB) is a natural product isolated from Cremastra appendiculata (D. Don) Makino and Liparis nervosa (Thunb.) Lindl. TTB has demonstrated potent cytotoxic activity against stomach (HGC-27) and colon (HT-29) cancer cell lines. However, none of the studies have addressed the effects of TTB in NHIE. In the present study, an oxygen-glucose deprivation/reoxygenation (OGD/R)-induced astrocyte injury model was established to investigate the effect of TTB and its potential mechanisms. Our results showed that TTB alleviated the OGD/R-induced reactive oxygen species increase and the intracellular antioxidant capacity of superoxide dismutase activity decrease. Moreover, TTB potentially prolonged the activation state of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and maintained the protection against oxidative stress in OGD/R-induced astrocytes by inducing the nuclear translocation and up-regulation of Nrf2 along with the enhanced expression of the downstream target gene HO-1. Furthermore, TTB treatment diminished the accumulation of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression induced by OGD/R. We also found TTB-treated astrocytes reversed the inhibition of OGD/R on neurite growth of neurons by the astrocyte-neuron coculture system. In conclusion, TTB inhibited the OGD/R-induced astrocyte oxidative stress at least partially through the inhibition of HIF-1α and VEGF via the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Liang Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhichen Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Qimeng Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xiaolu Zhang
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Cao X, Liu D, Xia Y, Cai T, He Y, Liu J. A novel polysaccharide from Lentinus edodes mycelia protects MIN6 cells against high glucose-induced damage via the MAPKs and Nrf2 pathways. Food Nutr Res 2019; 63:1598. [PMID: 31217790 PMCID: PMC6560380 DOI: 10.29219/fnr.v63.1598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022] Open
Abstract
Background Diabetes mellitus is one of the most widespread diseases in the world, high glucose can damage islet cells, it is important to discover new natural products to inhibit high glucose damage. The protective effects and mechanisms of a novel Lentinus edodes mycelia polysaccharide (LMP) against damage induced by high glucose in MIN6 cells were explored. Methods Cell viability, malondialdehyde (MDA) inhibition, lactate dehydrogenase (LDH) release and the activity of superoxide dismutase (SOD) were evaluated under 40 mM glucose with or without LMP for 48 h. Cell signaling pathway analysis was performed to investigate the possible mechanisms of the protective effects of LMP in MIN6 cells. Results The results showed that LMP could increase cell viability and the activity of SOD, decrease the reactive oxygen species ( ROS) production, and reduce the MDA content and LDH release in high glucose-induced MIN6 cells. Moreover, LMP prevented high glucose-induced apoptosis by decreasing the expression of Bax and the activation of caspase-1 and caspase-3. Cell signaling pathway analysis showed that p38 mitogen-activated protein kinase (MAPK) and JNK pathways were inhibited and the Nrf2 pathway was activated after treated with LMP. Conclusion The protective effects of LMP against MIN6 cells damage induced by high glucose might rely on the regulation of the MAPK and Nrf2 pathways. These results indicated that LMP had great potential as a therapeutic agent for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Xiangyu Cao
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| | - Dan Liu
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| | - Ying Xia
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| | - Tiange Cai
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| | - Yin He
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| | - Jianli Liu
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Ge XH, Shao L, Zhu GJ. Oxymatrine attenuates brain hypoxic-ischemic injury from apoptosis and oxidative stress: role of p-Akt/GSK3β/HO-1/Nrf-2 signaling pathway. Metab Brain Dis 2018; 33:1869-1875. [PMID: 30032345 DOI: 10.1007/s11011-018-0293-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/16/2018] [Indexed: 01/21/2023]
Abstract
To investigate the potential neuroprotection of oxymatrine in hypoxic-ischemic injury in rat's brain and the associated underlying mechanisms, modified neurological severity scores (mNSS) for neurological functional deficits, 2,3,5-triphenyl-tetrazolium chloride (TTC) staining for infarct volume, TUNEL assay and flow cytometry analysis for apoptosis were assessed. The expressions of Akt, glycogen synthase kinase 3 beta (GSK3β), phosphorylated Akt (p-Akt), phosphorylated GSK3β (p-GSK3β), nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) were measured by western blot. Our results showed that infarct volume and the apoptosis of NeuN-positive cells were significantly reduced in rats that administrated oxymatrine, with a corresponding improvement in neurological function after H/I. Upregulated p-Akt, p-GSK3β, Nrf-2 and HO-1 expressions were observed in response to oxymatrine treatment. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 counteracted the protective effect of oxymatrine, evidenced by western blot and histological outcomes. To conclude, our results suggested that oxymatrine could exert efficacious neuroprotective effect against H/I injury by inhibiting apoptosis and oxidative stress, which might be related to the activation of Akt and GSK3β and modulation of Nrf-2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xu-Hua Ge
- Department of General medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Li Shao
- Department of Neruology, Xuzhou First People's Hospital, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Guo-Ji Zhu
- Department of Internal Medicine, Soochow University Affiliated Children's Hospital, 303 Jingde Road, Suzhou, Jiangsu, 215003, People's Republic of China.
| |
Collapse
|
21
|
Skenderidis P, Kerasioti E, Karkanta E, Stagos D, Kouretas D, Petrotos K, Hadjichristodoulou C, Tsakalof A. Assessment of the antioxidant and antimutagenic activity of extracts from goji berry of Greek cultivation. Toxicol Rep 2018; 5:251-257. [PMID: 29854596 PMCID: PMC5977381 DOI: 10.1016/j.toxrep.2018.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022] Open
Abstract
Goji bery extracts scavenged at low concentrations free radicals. Extracts protected at low concentrations peroxyl radical-induced DNA damage. Extracts increased GSH levels in C2C12 muscle cells. Extracts decreased lipid peroxidation and protein oxidation in C2C12 muscle cells.
The aim of this study was to assess the antioxidant and antimutagenic activities of ultrasound assisted aqueous extracts from dry goji berry fruits cultivated in Greece. The extracts’ free radical scavenging activity was assessed by the DPPH• and ABTS•+ assays. The results from both assays demonstrated that the extracts exhibited strong radical scavenging activity with IC50 values ranging from 1.29 to 3.00 mg/ml for DPPH• and from 0.39 to 1.10 mg/mL for ABTS•+ assay. The investigated extracts also inhibited free radical-induced DNA damage induced by peroxyl (ROO•) radicals with IC50 ranging from 0.69 to 6.90 mg/mL. Τhe antioxidant activity of the goji berry extract exhibited the highest potency in the above assays was also examined in muscle cells. In particular, muscle C2C12 cells were treated with the selected extract at non cytotoxic concentrations for 24 h and four oxidative stress markers were measured: total reactive oxygen species (ROS), glutathione (GSH), lipid peroxidation and protein carbonyl levels. The results showed that the extract at 25 and 100 μg/mL increased GSH levels up to 189.5% and decreased lipid peroxidation and protein carbonyls by 21.8 and 29.1% respectively. The present study was the first on the antioxidant effects of ultrasound assisted aqueous extracts from goji berry fruits in muscle cells.
Collapse
Affiliation(s)
- Prodromos Skenderidis
- Department of Medicine, Lab of Hygiene and Epidemiology, University of Thessaly, Larisa, Viopolis, 41500, Greece.,Technological Educational Institute of Thessaly, Dept. of Biosystems Engineering, Larisa, Greece
| | - Efthalia Kerasioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, 41500, Greece
| | - Eleftheria Karkanta
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, 41500, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, 41500, Greece
| | - Konstantinos Petrotos
- Technological Educational Institute of Thessaly, Dept. of Biosystems Engineering, Larisa, Greece
| | - Christos Hadjichristodoulou
- Department of Medicine, Lab of Hygiene and Epidemiology, University of Thessaly, Larisa, Viopolis, 41500, Greece
| | - Andreas Tsakalof
- Department of Medicine, Lab of Hygiene and Epidemiology, University of Thessaly, Larisa, Viopolis, 41500, Greece
| |
Collapse
|