1
|
Zheng L, Zhang Y, Shi R, Xue X, Li K, Zhang W, Qiang J, Peng M, He Y, Fan H. Nanohybrid urate oxidase with magnetically switchable catalytic potential for precise gout therapy. Biomaterials 2025; 320:123277. [PMID: 40127507 DOI: 10.1016/j.biomaterials.2025.123277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/07/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Spatiotemporal regulation of therapeutic enzymes is desirable for enhancing the efficacy and safety of enzyme-based treatments for metabolic diseases, yet the absence of techniques capable of on-demand manipulating the in vivo catalytic activity of urate oxidase (UOx) represents a significant challenge in achieving precise gout therapy. Herein, we report a cyclic cascade nanohybrid urate oxidase (NUOx) comprised of a Fe3O4 nanoring core and a UOx shell, whose activity can be switched on and off on-demand using a deep-penetrated alternating magnetic field (AMF). The Fe3O4 nanoring under AMF exposure functions as a nanoheater to stimulate its intrinsic catalase (CAT) activity for oxygen recycling, which in turn activates UOx/CAT cascade for controlled uric acid degradation. Through the synergistic magnetothermal and UOx/CAT cyclic cascade, NUOx exhibited greatly enhanced AMF-tunability with an ON/OFF ratio as high as 7.6 and robust reversibility. This magnetically switchable NUOx enabled dynamic control of uric acid homeostasis without inducing hypouricemia and more efficient dissolution of monosodium urate crystals in vitro. In vivo experiments in a rat model of acute gout arthritis demonstrated that intra-articular administrated NUOx combined with AMF can more effectively relieve joint hypoxia, reduce uric acid levels and suppress joint inflammation, leading to a magneto-catalytic therapy with tunable therapeutic potential to enhance efficacy while minimizing potential side effects in gout treatment. These findings provide new insights into the development of nanohybrid enzymes with robust magnetic responsiveness for metabolic reprogramming and disease treatment.
Collapse
Affiliation(s)
- Lu Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Ye Zhang
- College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China
| | - Ruixing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Xiang Xue
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Kuo Li
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Wenting Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Jiabao Qiang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Agafonova A, Cosentino A, Musso N, Prinzi C, Russo C, Pellitteri R, Anfuso CD, Lupo G. Hypoxia-Induced Inflammation in In Vitro Model of Human Blood-Brain Barrier: Modulatory Effects of the Olfactory Ensheathing Cell-Conditioned Medium. Mol Neurobiol 2025; 62:4008-4022. [PMID: 39370481 PMCID: PMC11880059 DOI: 10.1007/s12035-024-04517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Hypoxia compromises the integrity of the blood-brain barrier (BBB) and increases its permeability, thereby inducing inflammation. Olfactory ensheathing cells (OECs) garnered considerable interest due to their neuroregenerative and anti-inflammatory properties. Here, we aimed to investigate the potential modulatory effects of OEC-conditioned medium (OEC-CM) on the response of human brain microvascular endothelial cells (HBMECs), constituting the BBB, when exposed to hypoxia. HBMECs were utilized to establish the in vitro BBB model. OECs were isolated from mouse olfactory bulbs, and OEC-CM was collected after 48 h of culture. The effect of OEC-CM treatment on the HBMEC viability was evaluated under both normoxic and hypoxic conditions at 6 h, 24 h, and 30 h. Western blot and immunostaining techniques were employed to assess NF-κB/phospho-NF-κB expression. HIF-1α, VEGF-A, and cPLA2 mRNA expression levels were quantified using digital PCR. ELISA assays were performed to measure PGE2, VEGF-A, IL-8 secretion, and cPLA2 specific activity. The in vitro formation of HBMEC capillary-like structures was examined using a three-dimensional matrix system. OEC-CM attenuated pro-inflammatory responses and mitigated the HIF-1α/VEGFA signaling pathway activation in HBMECs under hypoxic condition. Hypoxia-induced damage of the BBB can be mitigated by novel therapeutic strategies harnessing OEC potential.
Collapse
Affiliation(s)
- Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Chiara Prinzi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Rosalia Pellitteri
- CNR-IRIB: Institute for Biomedical Research and Innovation, National Research Council, 95126, Catania, Italy.
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy.
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| |
Collapse
|
3
|
Ran Q, Zhang J, Zhong J, Lin J, Zhang S, Li G, You B. Organ preservation: current limitations and optimization approaches. Front Med (Lausanne) 2025; 12:1566080. [PMID: 40206471 PMCID: PMC11980443 DOI: 10.3389/fmed.2025.1566080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Despite the annual rise in patients with end-stage diseases necessitating organ transplantation, the scarcity of high-quality grafts constrains the further development of transplantation. The primary causes of the graft shortage are the scarcity of standard criteria donors, unsatisfactory organ preservation strategies, and mismatching issues. Organ preservation strategies are intimately related to pre-transplant graft viability and the incidence of adverse clinical outcomes. Static cold storage (SCS) is the current standard practice of organ preservation, characterized by its cost-effectiveness, ease of transport, and excellent clinical outcomes. However, cold-induced injury during static cold preservation, toxicity of organ preservation solution components, and post-transplantation reperfusion injury could further exacerbate graft damage. Long-term ex vivo dynamic machine perfusion (MP) preserves grafts in a near-physiological condition, evaluates graft viability, and cures damage to grafts, hence enhancing the usage and survival rates of marginal organs. With the increased use of extended criteria donors (ECD) and advancements in machine perfusion technology, static cold storage is being gradually replaced by machine perfusion. This review encapsulates the latest developments in cryopreservation, subzero non-freezing storage, static cold storage, and machine perfusion. The emphasis is on the injury mechanisms linked to static cold storage and optimization strategies, which may serve as references for the optimization of machine perfusion techniques.
Collapse
Affiliation(s)
- Qiulin Ran
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jisheng Zhong
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ji Lin
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shuai Zhang
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guang Li
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bin You
- Department of Cardiovascular Surgery, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Kzar WA, Abbas RF. Association of Polymorphism with Periodontitis and Salivary Levels of Hypoxia-Inducible Factor-1α. Eur J Dent 2025; 19:133-143. [PMID: 38744330 PMCID: PMC11750348 DOI: 10.1055/s-0044-1785530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE This investigation aims to investigate the association between HIF-1α genetic polymorphism and periodontitis and examine and contrast the levels of HIF-1α present in the saliva of subjects afflicted with periodontitis and in the control group. Additionally, this study aims to establish diagnostic proficiency of this biomarker in distinguishing between periodontal health and disease. MATERIALS AND METHODS This study entailed the collection of venous blood samples and unstimulated saliva samples from a total of 160 participants, encompassing 80 individuals diagnosed with periodontitis and 80 periodontitis-free individuals. The periodontal parameters were evaluated, involving the measurement of clinical attachment loss, the probing pocket depth, and the bleeding on probing percentage. Subsequently, genetic analysis of HIF-1α using polymerase chain reaction (PCR) technique, DNA sequencing, and enzyme-linked immunosorbent assays was conducted. RESULTS The genetic analysis of 352 bp of the HIF-1α gene revealed the presence of 66 single-nucleotide polymorphisms (SNPs) in control samples, whereas 78 SNPs were found in periodontitis sample. The nucleotide A was replaced with a C nucleotide at position 207 of the amplified PCR fragments. The homozygous AA pattern was predominant in the control group, with significant differences between the two groups. In contrast, the homozygous CC pattern was more dominant in the periodontitis group, with significant differences between the two groups. The analysis of Hardy-Weinberg equilibrium for the comparison between the observed and the expected genotypes showed significant differences between the observed and the expected values in the control and periodontitis groups, as well as the total sample. The highest mean values of the measured periodontal parameters were found in the periodontitis group (clinical attachment loss = 4.759, probing pocket depth = 4.050, and bleeding on probing = 30.950) with statistically significant differences between the groups. The periodontitis group showed significantly higher salivary HIF-1α levels compared to control group (p < 0.001). Besides, HIF-1α is a good biomarker in distinguishing between periodontal health and periodontitis. CONCLUSION rs1951795 SNP of HIF-1α has no significant impact on the progression of periodontitis and the salivary level HIF-1α. Periodontitis results in a notable elevation in HIF-1α salivary levels, with an outstanding diagnostic ability to distinguish between periodontitis and periodontal health.
Collapse
Affiliation(s)
- Wael Abdulazeez Kzar
- Department of Periodontology, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Raghad Fadhil Abbas
- Department of Periodontology, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
5
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
6
|
Lee SY, Kim SJ, Park KH, Lee G, Oh Y, Ryu JH, Huh YH. Differential but complementary roles of HIF-1α and HIF-2α in the regulation of bone homeostasis. Commun Biol 2024; 7:892. [PMID: 39039245 PMCID: PMC11263705 DOI: 10.1038/s42003-024-06581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Bone is a highly dynamic tissue undergoing continuous formation and resorption. Here, we investigated differential but complementary roles of hypoxia-inducible factor (HIF)-1α and HIF-2α in regulating bone remodeling. Using RNA-seq analysis, we identified that specific genes involved in regulating osteoblast differentiation were similarly but slightly differently governed by HIF-1α and HIF-2α. We found that increased HIF-1α expression inhibited osteoblast differentiation via inhibiting RUNX2 function by upregulation of Twist2, confirmed using Hif1a conditional knockout (KO) mouse. Ectopic expression of HIF-1α via adenovirus transduction resulted in the increased expression and activity of RANKL, while knockdown of Hif1a expression via siRNA or osteoblast-specific depletion of Hif1a in conditional KO mice had no discernible effect on osteoblast-mediated osteoclast activation. The unexpected outcome was elucidated by the upregulation of HIF-2α upon Hif1a overexpression, providing evidence that Hif2a is a transcriptional target of HIF-1α in regulating RANKL expression, verified through an experiment of HIF-2α knockdown after HIF-1α overexpression. The above results were validated in an ovariectomized- and aging-induced osteoporosis model using Hif1a conditional KO mice. Our findings conclude that HIF-1α plays an important role in regulating bone homeostasis by controlling osteoblast differentiation, and in influencing osteoclast formation through the regulation of RANKL secretion via HIF-2α modulation.
Collapse
Affiliation(s)
- Sun Young Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Su-Jin Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ka Hyon Park
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Gyuseok Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Youngsoo Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Yun Hyun Huh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
7
|
Wang X, Wu Z, Zhang Y, Lian B, Ma L, Zhao J. Autophagy induced by hypoxia in pulpitis is mediated by HIF-1α/BNIP3. Arch Oral Biol 2024; 159:105881. [PMID: 38199116 DOI: 10.1016/j.archoralbio.2024.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
OBJECTIVE Hypoxia-inducible factor-1α (HIF-1α) and its downstream factor, 19 kDa BCL-2 interacting protein 3 (BNIP3), promote cellular autophagy under hypoxic conditions. However, their roles in pulpitis are unclear. Therefore, the changes in inflammatory response and autophagy levels caused by hypoxia during pulpitis were evaluated. Additionally, the regulatory mechanism of HIF-1α/BNIP3 in cellular autophagy in pulpitis was explored. DESIGN Pulp from dental pulp tissues of healthy individuals and patients with pulpitis (n = 10) were exposed and combined with a low oxygen simulation chamber to construct pulpitis (n = 6), hypoxia (n = 6), and hypoxia+pulpitis (n = 6) rat models. Hematoxylin and eosin and immunohistochemical staining were used to detect the localization and expression levels of HIF-1α, BNIP3, and autophagy marker protein, LC3B. Transmission electron microscopy was used to confirm autophagosome formation. An in vitro hypoxic model of human dental pulp cells was established, and HIF-1α chemical inhibitor 3-(5'-hydroxymethyl-2'-furyl)- 1-benzylindazole (YC-1) was administered. Immunofluorescence and western blotting were used to detect the localization and protein levels of HIF-1α, BNIP3, and LC3B. RESULTS Autophagy is significantly increased and HIF-1α and BNIP3 are elevated in inflamed dental pulp tissue. Both pulp exposure and hypoxia intervention cause inflammatory reactions in rat dental pulp tissue, accompanied by the autophagy activation. Hypoxia significantly enhances HIF-1α/BNIP3 and autophagy activation. BNIP3 downregulates and autophagy reduces after treatment with YC-1. CONCLUSIONS In pulpitis, activation of the HIF-1α/BNIP3 signaling pathway driven by hypoxia leads to increased autophagy. This provides a new molecular explanation for autophagy activation in apical periodontitis and new insights into the pathogenesis of the disease.
Collapse
Affiliation(s)
- Xiaohe Wang
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China
| | - Zeyu Wu
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China; Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China
| | - Yangyang Zhang
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China
| | - Bingjie Lian
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China; Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China
| | - Li Ma
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China
| | - Jin Zhao
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No. 137 South Liyushan Road, Urumqi 830054, People's Republic of China; Xinjiang Uygur Autonomous Region Clinical Research Center for Oral Diseases, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China; Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, No.137 South Liyushan Road, Urumqi 830054, People's Republic of China.
| |
Collapse
|
8
|
Valente R, Cordeiro S, Luz A, Melo MC, Rodrigues CR, Baptista PV, Fernandes AR. Doxorubicin-sensitive and -resistant colorectal cancer spheroid models: assessing tumor microenvironment features for therapeutic modulation. Front Cell Dev Biol 2023; 11:1310397. [PMID: 38188017 PMCID: PMC10771845 DOI: 10.3389/fcell.2023.1310397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: The research on tumor microenvironment (TME) has recently been gaining attention due to its important role in tumor growth, progression, and response to therapy. Because of this, the development of three-dimensional cancer models that mimic the interactions in the TME and the tumor structure and complexity is of great relevance to cancer research and drug development. Methods: This study aimed to characterize colorectal cancer spheroids overtime and assess how the susceptibility or resistance to doxorubicin (Dox) or the inclusion of fibroblasts in heterotypic spheroids influence and modulate their secretory activity, namely the release of extracellular vesicles (EVs), and the response to Dox-mediated chemotherapy. Different characteristics were assessed over time, namely spheroid growth, viability, presence of hypoxia, expression of hypoxia and inflammation-associated genes and proteins. Due to the importance of EVs in biomarker discovery with impact on early diagnostics, prognostics and response to treatment, proteomic profiling of the EVs released by the different 3D spheroid models was also assessed. Response to treatment was also monitored by assessing Dox internalization and its effects on the different 3D spheroid structures and on the cell viability. Results and Discussion: The results show that distinct features are affected by both Dox resistance and the presence of fibroblasts. Fibroblasts can stabilize spheroid models, through the modulation of their growth, viability, hypoxia and inflammation levels, as well as the expressions of its associated transcripts/proteins, and promotes alterations in the protein profile exhibit by EVs. Summarily, fibroblasts can increase cell-cell and cell-extracellular matrix interactions, making the heterotypic spheroids a great model to study TME and understand TME role in chemotherapies resistance. Dox resistance induction is shown to influence the internalization of Dox, especially in homotypic spheroids, and it is also shown to influence cell viability and consequently the chemoresistance of those spheroids when exposed to Dox. Taken together these results highlight the importance of finding and characterizing different 3D models resembling more closely the in vivo interactions of tumors with their microenvironment as well as modulating drug resistance.
Collapse
Affiliation(s)
- Ruben Valente
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sandra Cordeiro
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - André Luz
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria C. Melo
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Catarina Roma Rodrigues
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Pedro V. Baptista
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
9
|
Kosyreva AM, Dzhalilova DS, Tsvetkov IS, Makarova MA, Makarova OV. Ex Vivo Production of IL-1β and IL-10 by Activated Blood Cells of Wistar Rats with Different Resistance to Hypoxia after Systemic Inflammatory Response Syndrome. Bull Exp Biol Med 2023; 176:290-296. [PMID: 38194074 DOI: 10.1007/s10517-024-06010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 01/10/2024]
Abstract
We studied spontaneous and ex vivo activated cytokine production by blood cells of male Wistar rats with different resistance to hypoxia against the background of an LPS-induced systemic inflammatory response. In rats with low (LR) and high resistance (HR) to hypoxia, the number of leukocytes, granulocytes, and peripheral blood lymphocytes was determined, the levels of spontaneous and stimulated production of IL-1β and IL-10 and their ratio were assessed ex vivo. Against the background of a systemic inflammatory response, only HR animals showed a decrease in spontaneous and stimulated production of IL-1β and spontaneous production of IL-10. The IL-1β/IL-10 ratio decreased only in LR rats during the development of a systemic inflammatory response, while in HR animals, no changes in this indicator were observed. The obtained data suggest a high proinflammatory potential of blood cells in LR rats, which apparently determines the development of a more severe course of the systemic inflammatory response.
Collapse
Affiliation(s)
- A M Kosyreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia.
| | - D Sh Dzhalilova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - I S Tsvetkov
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - M A Makarova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - O V Makarova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| |
Collapse
|
10
|
Malkov MI, Flood D, Taylor CT. SUMOylation indirectly suppresses activity of the HIF-1α pathway in intestinal epithelial cells. J Biol Chem 2023; 299:105280. [PMID: 37742924 PMCID: PMC10616383 DOI: 10.1016/j.jbc.2023.105280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023] Open
Abstract
The hypoxia-inducible factor (HIF) is a master regulator of the cellular transcriptional response to hypoxia. While the oxygen-sensitive regulation of HIF-1α subunit stability via the ubiquitin-proteasome pathway has been well described, less is known about how other oxygen-independent post-translational modifications impact the HIF pathway. SUMOylation, the attachment of SUMO (small ubiquitin-like modifier) proteins to a target protein, regulates the HIF pathway, although the impact of SUMO on HIF activity remains controversial. Here, we examined the effects of SUMOylation on the expression pattern of HIF-1α in response to pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) in intestinal epithelial cells. We evaluated the effects of SUMO-1, SUMO-2, and SUMO-3 overexpression and inhibition of SUMOylation using a novel selective inhibitor of the SUMO pathway, TAK-981, on the sensitivity of HIF-1α in Caco-2 intestinal epithelial cells. Our findings demonstrate that treatment with TAK-981 decreases global SUMO-1 and SUMO-2/3 modification and enhances HIF-1α protein levels, whereas SUMO-1 and SUMO-2/3 overexpression results in decreased HIF-1α protein levels in response to DMOG. Reporter assay analysis demonstrates reduced HIF-1α transcriptional activity in cells overexpressing SUMO-1 and SUMO-2/3, whereas pretreatment with TAK-981 increased HIF-1α transcriptional activity in response to DMOG. In addition, HIF-1α nuclear accumulation was decreased in cells overexpressing SUMO-1. Importantly, we showed that HIF-1α is not directly SUMOylated, but that SUMOylation affects HIF-1α stability and activity indirectly. Taken together, our results indicate that SUMOylation indirectly suppresses HIF-1α protein stability, transcriptional activity, and nuclear accumulation in intestinal epithelial cells.
Collapse
Affiliation(s)
- Mykyta I Malkov
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland
| | - Darragh Flood
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland.
| |
Collapse
|
11
|
Li W, Yan W, Liu Y, Hou G, Li C. Treatment of rheumatoid arthritis with curcumin analog 3,5-bis(arylidene)-4-piperidone. Future Med Chem 2023; 15:2051-2064. [PMID: 37929594 DOI: 10.4155/fmc-2023-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease. Curcumin can inhibit NF-κB and reduce the expression of inflammation-related genes. Aim: To evaluate the potential development of 6d in the clinical treatment of inflammatory diseases such as RA. Methods: Using a skeleton fusion strategy to synthesize curcumin analogues for 6d. This work evaluates anti-inflammatory activity by conducting anti-arthritis experiments (adjuvant-induced RA models) on rats. Western blot and ELISA were used to detect the expression of inflammatory-related proteins and cytokines. Molecular docking analysis confirmed the binding effect of 6d with active sites. Conclusion: 6d inhibits NF-κB has a protective effect on arthritis caused by RA.
Collapse
Affiliation(s)
- Wenxuan Li
- School of Pharmacy, the Key Laboratory of Prescription Effect & Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, Shandong, China
- Pharmacy Department, Sunshine Union Hospital, Weifang, Shandong, China
| | - Weibin Yan
- School of Pharmacy, the Key Laboratory of Prescription Effect & Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, Shandong, China
| | - Yongjun Liu
- Department of Chinese Medicine, Shandong Drug & Food Vocational College, Weihai, Shandong, China
| | - Guige Hou
- School of Pharmacy, the Key Laboratory of Prescription Effect & Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, Shandong, China
| | - Chengbo Li
- School of Pharmacy, the Key Laboratory of Prescription Effect & Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
12
|
Akinsulie OC, Shahzad S, Ogunleye SC, Oladapo IP, Joshi M, Ugwu CE, Gbadegoye JO, Hassan FO, Adeleke R, Afolabi Akande Q, Adesola RO. Crosstalk between hypoxic cellular micro-environment and the immune system: a potential therapeutic target for infectious diseases. Front Immunol 2023; 14:1224102. [PMID: 37600803 PMCID: PMC10434535 DOI: 10.3389/fimmu.2023.1224102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
There are overwhelming reports on the promotional effect of hypoxia on the malignant behavior of various forms of cancer cells. This has been proposed and tested exhaustively in the light of cancer immunotherapy. However, there could be more interesting functions of a hypoxic cellular micro-environment than malignancy. There is a highly intricate crosstalk between hypoxia inducible factor (HIF), a transcriptional factor produced during hypoxia, and nuclear factor kappa B (NF-κB) which has been well characterized in various immune cell types. This important crosstalk shares common activating and inhibitory stimuli, regulators, and molecular targets. Impaired hydroxylase activity contributes to the activation of HIFs. Inflammatory ligands activate NF-κB activity, which leads to the expression of inflammatory and anti-apoptotic genes. The eventual sequelae of the interaction between these two molecular players in immune cells, either bolstering or abrogating functions, is largely cell-type dependent. Importantly, this holds promise for interesting therapeutic interventions against several infectious diseases, as some HIF agonists have helped prevent immune-related diseases. Hypoxia and inflammation are common features of infectious diseases. Here, we highlighted the role of this crosstalk in the light of functional immunity against infection and inflammation, with special focus on various innate and adaptive immune cells. Particularly, we discussed the bidirectional effects of this crosstalk in the regulation of immune responses by monocytes/macrophages, dendritic cells, neutrophils, B cells, and T cells. We believe an advanced understanding of the interplay between HIFs and NF-kB could reveal novel therapeutic targets for various infectious diseases with limited treatment options.
Collapse
Affiliation(s)
- Olalekan Chris Akinsulie
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sammuel Shahzad
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Seto Charles Ogunleye
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Ifeoluwa Peace Oladapo
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Melina Joshi
- Center for Molecular Dynamics Nepal, Kathmandu, Nepal
| | - Charles Egede Ugwu
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
| | - Joy Olaoluwa Gbadegoye
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Richard Adeleke
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Qudus Afolabi Akande
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | | |
Collapse
|
13
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
14
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
15
|
Qiu B, Yuan P, Du X, Jin H, Du J, Huang Y. Hypoxia inducible factor-1α is an important regulator of macrophage biology. Heliyon 2023; 9:e17167. [PMID: 37484306 PMCID: PMC10361316 DOI: 10.1016/j.heliyon.2023.e17167] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1), a heterodimeric transcription factor composed of the α and β subunits, regulates cellular adaptive responses to hypoxia. Macrophages, which are derived from monocytes, function as antigen-presenting cells that activate various immune responses. HIF-1α regulates the immune response, viability, migration, phenotypic plasticity, and metabolism of macrophages. Specifically, macrophage-derived HIF-1α can prevent excessive pro-inflammatory responses by attenuating the transcriptional activity of nuclear factor-kappa B in vivo and in vitro. HIF-1α modulates macrophage migration by inducing the release of various chemokines and providing necessary energy. HIF-1α promotes macrophage M1 polarization by targeting glucose metabolism. Additionally, HIF-1α induces the upregulation of glycolysis-related enzymes and intermediates of the tricarboxylic acid cycle and pentose phosphate pathway. HIF-1α promotes macrophage apoptosis, necroptosis and reduces autophagy. The current review highlights the mechanisms associated with the regulation of HIF-1α stabilization in macrophages as well as the role of HIF-1α in modulating the physiological functions of macrophages.
Collapse
Affiliation(s)
- Bingquan Qiu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Piaoliu Yuan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Xiaojuan Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| |
Collapse
|
16
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
17
|
Lombardi F, Augello FR, Palumbo P, Bonfili L, Artone S, Altamura S, Sheldon JM, Latella G, Cifone MG, Eleuteri AM, Cinque B. Bacterial Lysate from the Multi-Strain Probiotic SLAB51 Triggers Adaptative Responses to Hypoxia in Human Caco-2 Intestinal Epithelial Cells under Normoxic Conditions and Attenuates LPS-Induced Inflammatory Response. Int J Mol Sci 2023; 24:ijms24098134. [PMID: 37175841 PMCID: PMC10179068 DOI: 10.3390/ijms24098134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α), a central player in maintaining gut-microbiota homeostasis, plays a pivotal role in inducing adaptive mechanisms to hypoxia and is negatively regulated by prolyl hydroxylase 2 (PHD2). HIF-1α is stabilized through PI3K/AKT signaling regardless of oxygen levels. Considering the crucial role of the HIF pathway in intestinal mucosal physiology and its relationships with gut microbiota, this study aimed to evaluate the ability of the lysate from the multi-strain probiotic formulation SLAB51 to affect the HIF pathway in a model of in vitro human intestinal epithelium (intestinal epithelial cells, IECs) and to protect from lipopolysaccharide (LPS) challenge. The exposure of IECs to SLAB51 lysate under normoxic conditions led to a dose-dependent increase in HIF-1α protein levels, which was associated with higher glycolytic metabolism and L-lactate production. Probiotic lysate significantly reduced PHD2 levels and HIF-1α hydroxylation, thus leading to HIF-1α stabilization. The ability of SLAB51 lysate to increase HIF-1α levels was also associated with the activation of the PI3K/AKT pathway and with the inhibition of NF-κB, nitric oxide synthase 2 (NOS2), and IL-1β increase elicited by LPS treatment. Our results suggest that the probiotic treatment, by stabilizing HIF-1α, can protect from an LPS-induced inflammatory response through a mechanism involving PI3K/AKT signaling.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Serena Artone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Serena Altamura
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Jenna Marie Sheldon
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314-7796, USA
| | - Giovanni Latella
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
18
|
Lan T, Ji N, Tian QQ, Zhan Y, He W. An edoplasmic reticulum-targeted NIR fluorescent probe with a large Stokes shift for hypoxia imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122201. [PMID: 36463622 DOI: 10.1016/j.saa.2022.122201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia is closely linked to various diseases, including solid tumors. The level of nitroreductase (NTR) is usually abnormally upregulated in hypoxic conditions, which can be a biomarker of hypoxia. Herein, the first endoplasmic reticulum-targeting NIR fluorescent probe, ISO-NTR, was developed for highly selective and sensitive detection of NTR. It shows a large Stokes shift (185 nm) and a 5-fold increases in fluorescence intensity. Meanwhile, the ISO-NTR probe with a dicyanoisophorone derivative has excellent endoplasmic reticulum targeting in living systems with high Pearson's correlation coefficients (Rr = 0.9489). Molecular docking calculations and high binding energy between the probe and NTR (-10.78 kcal·mol-1) may explain the high selectivity of ISO-NTR. Additionally, it has been successfully applied to NTR imaging in vitro and vivo due to its good sensitivity, high selectivity and large Stokes shift, which may provide an effective method for studying the physiological and pathological functions of NTR in living systems. This probe could be developed as a potential imaging tool to further explore the pathogenesis of hypoxia-related diseases in endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ting Lan
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Nan Ji
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Qin-Qin Tian
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Yu Zhan
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Wei He
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| |
Collapse
|
19
|
Salyha N, Oliynyk I. Hypoxia modeling techniques: A review. Heliyon 2023; 9:e13238. [PMID: 36718422 PMCID: PMC9877323 DOI: 10.1016/j.heliyon.2023.e13238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Hypoxia is the main cause and effect of a large number of diseases, including the most recent one facing the world, the coronavirus disease (COVID-19). Hypoxia is divided into short-term, long-term, and periodic, it can be the result of diseases, climate change, or living and traveling in the high mountain regions of the world. Since each type of hypoxia can be a cause and a consequence of various physiological changes, the methods for modeling these hypoxias are also different. There are many techniques for modeling hypoxia under experimental conditions. The most common animal for modeling hypoxia is a rat. Hypoxia models (hypoxia simulations) in rats are a tool to study the effect of various conditions on the oxygen supply of the body. These models can provide a necessary information to understand hypoxia and also provide effective treatment, highlighting the importance of various reactions of the body to hypoxia. The main parameters when choosing a model should be reproducibility and the goal that the scientist wants to achieve. Hypoxia in rats can be reproduced both ways exogenously and endogenously. The reason for writing this review was the aim to systematize the models of rats available in the literature in order to facilitate their selection by scientists. The relative strengths and limitations of each model need to be identified and understood in order to evaluate the information obtained from these models and extrapolate these results to humans to develop the necessary generalizations. Despite these problems, animal models have been and remain vital to understanding the mechanisms involved in the development and progression of hypoxia. The eligibility criteria for the selected studies was a comprehensive review of the methods and results obtained from the studies. This made it possible to make generalizations and give recommendations on the application of these methods. The review will assist scientists in choosing an appropriate hypoxia simulation method, as well as assist in interpreting the results obtained with these methods.
Collapse
Affiliation(s)
- Nataliya Salyha
- Institute of Animal Biology NAAS, Lviv, Ukraine,Corresponding author
| | | |
Collapse
|
20
|
Wang Y, Tang T, Ren J, Zhao Y, Hou Y, Nie X. Hypoxia aggravates the burden of yellowstripe goby (Mugilogobius chulae) under atorvastatin exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106381. [PMID: 36587518 DOI: 10.1016/j.aquatox.2022.106381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In the present study, an estuarine benthic fish, Mugilogobius chulae (M. chulae), was exposed to hypoxia, atorvastatin (ATV), a highly used and widely detected lipid-lowering drug in aquatic environment, and the combination of hypoxia and ATV for 7 days, respectively, so as to address and compare the effects of the combination of hypoxia and ATV exposure on M. chulae. The results showed that lipid metabolism in M. chulae was greatly affected: lipid synthesis was blocked and catabolism was enhanced, exhibiting that lipids content were heavily depleted. The combined exposure of hypoxia and ATV caused oxidative stress and induced massive inflammatory response in the liver of M. chulae. Signaling pathways involving in energy metabolism and redox responses regulated by key factors such as HIF, PPAR, p53 and sirt1 play important regulatory roles in hypoxia-ATV stress. Critically, we found that the response of M. chulae to ATV was more sensitive under hypoxia than normoxia. ATV exposure to aquatic non-target organisms under hypoxic conditions may make a great impact on the detoxification and energy metabolism, especially lipid metabolism, and aggravate the oxidative pressure of the exposed organisms.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Tianli Tang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Dumanska H, Veselovsky N. Protein kinase C mediates hypoxia-induced long-term potentiation of NMDA neurotransmission in the visual retinocollicular pathway. Front Cell Neurosci 2023; 17:1141689. [PMID: 36909286 PMCID: PMC9998674 DOI: 10.3389/fncel.2023.1141689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
The identification of processes and mechanisms underlying the early stage of hypoxic injury of the retinocollicular pathway may be beneficial for the future prevention and treatment of navigation, orientation, and visual attention impairments. Previously, we have demonstrated that short-term hypoxia led to long-term potentiation (LTP) of NMDA neurotransmission in the background of long-term depression of GABAA retinocollicular transmission. Here, we sought to obtain insight into the mechanisms of hypoxia-induced LTP of NMDA retinocollicular neurotransmission and the role of the protein kinase C (PKC) signaling pathway in it. To investigate these, we recorded pharmacologically isolated NMDA transmission in cocultivated pairs of rat retinal ganglion cells and superficial superior colliculus neurons under normoxic and hypoxic conditions, using the paired patch-clamp technique and method of fast local superfusion. We tested the involvement of the PKC by adding the potent and selective inhibitor chelerythrine chloride (ChC, 5 μM). We observed that hypoxia-induced LTP of NMDA neurotransmission is associated with the shortening of current kinetics. We also found that the PKC signaling pathway mediates hypoxia-induced LTP and associated shortening of NMDA currents. The ChC completely blocked the induction of LTP by hypoxia and associated kinetic changes. Contrary effects of ChC were observed with already induced LTP. ChC led to the reversal of LTP to the initial synaptic strength but the current kinetics remain irreversibly shortened. Our results show that ChC is a promising agent for the prevention and treatment of hypoxic injuries of NMDA retinocollicular neurotransmission and provide necessary electrophysiological basics for further research.
Collapse
Affiliation(s)
- Hanna Dumanska
- Department of Neuronal Network Physiology, Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Nikolai Veselovsky
- Department of Neuronal Network Physiology, Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
22
|
Han Y, Jia R, Zhang J, Zhu Q, Wang X, Ji Q, Zhang W. Hypoxia Attenuates Colonic Innate Immune Response and Inhibits TLR4/NF-κB Signaling Pathway in Lipopolysaccharide-Induced Colonic Epithelial Injury Mice. J Interferon Cytokine Res 2023; 43:43-52. [PMID: 36603105 DOI: 10.1089/jir.2022.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
High altitude hypoxia can lead to a spectrum of gastrointestinal problems. As the first line of host immune defense, innate immune response in the intestinal mucosa plays a pivotal role in maintaining intestinal homeostasis and protecting against intestinal injury at high altitude. This study aimed to investigate the effect of hypoxia on the colonic mucosal barrier and toll-like receptor 4 (TLR4)-mediated innate immune responses in the colon. The mice were exposed to a hypobaric chamber to simulate a 5,000 m plateau environment for 7 days, and the colonic mucosa changes were recorded. At the same time, the inflammation model was established by lipopolysaccharide (LPS) to explore the effects of hypoxia on the TLR4/nuclear factor kappa B (NF-κB) signaling pathway and its downstream inflammatory factors [tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and interferon (IFN)-γ] in the colon. We found that hypoxic exposure caused weight loss and structural disturbance of the colonic mucosa in mice. Compared with the control group, the protein levels of TLR4 [fold change (FC) = 0.75 versus FC = 0.23], MyD88 (FC = 0.80 versus FC = 0.30), TIR-domain-containing adaptor protein inducing interferon-β (TRIF: FC = 0.89 versus FC = 0.38), and NF-κB p65 (FC = 0.75 versus FC = 0.24) in the colon of mice in the hypobaric hypoxia group were significantly decreased. LPS-induced upregulation of the TLR4/NF-κB signaling and its downstream inflammatory factors was inhibited by hypoxia. Specifically, compared with the LPS group, the protein levels of TLR4 (FC = 1.18, FC = 0.86), MyD88 (FC = 1.20, FC = 0.80), TRIF (FC = 1.20, FC = 0.86), and NF-κB p65 (FC = 1.29, FC = 0.62) and the mRNA levels of IL-1β (FC = 7.38, FC = 5.06), IL-6 (FC = 16.06, FC = 9.22), and IFN-γ (FC = 2.01, FC = 1.16) were reduced in the hypobaric hypoxia plus LPS group. Our findings imply that hypoxia could lead to marked damage of the colonic mucosa and a reduction of TLR4-mediated colonic innate immune responses, potentially reducing host defense responses to colonic pathogens.
Collapse
Affiliation(s)
- Ying Han
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ruhan Jia
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Jingxuan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Xiaozhou Wang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qiaorong Ji
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| |
Collapse
|
23
|
Lun J, Zhang H, Guo J, Yu M, Fang J. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Front Pharmacol 2023; 14:1045997. [PMID: 37201028 PMCID: PMC10187758 DOI: 10.3389/fphar.2023.1045997] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Guo
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang,
| |
Collapse
|
24
|
Li Q, Xu Z, Fang F, Shen Y, Lei H, Shen X. Identification of key pathways, genes and immune cell infiltration in hypoxia of high-altitude acclimatization via meta-analysis and integrated bioinformatics analysis. Front Genet 2023; 14:1055372. [PMID: 37035734 PMCID: PMC10080023 DOI: 10.3389/fgene.2023.1055372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background: For individuals acutely exposed to high-altitude regions, environmental hypobaric hypoxia induces several physiological or pathological responses, especially immune dysfunction. Therefore, hypoxia is a potentially life-threatening factor, which has closely related to high-altitude acclimatization. However, its specific molecular mechanism is still unclear. Methods: The four expression profiles about hypoxia and high altitude were downloaded from the Gene Expression Omnibus database in this study. Meta-analysis of GEO datasets was performed by NetworkAnalyst online tool. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO) enrichment analysis, and visualization were performed using R (version 4.1.3) software, respectively. The CIBERSORT analysis was conducted on GSE46480 to examine immune cell infiltration. In addition, we experimentally verified the bioinformatics analysis with qRT-PCR. Results: The meta-analysis identified 358 differentially expressed genes (DEGs), with 209 upregulated and 149 downregulated. DEGs were mostly enriched in biological processes and pathways associated with hypoxia acclimatization at high altitudes, according to both GO and KEGG enrichment analyses. ERH, VBP1, BINP3L, TOMM5, PSMA4, and POLR2K were identified by taking intersections of the DEGs between meta-analysis and GSE46480 and verified by qRT-PCR experiments, which were inextricably linked to hypoxia. Immune infiltration analysis showed significant differences in immune cells between samples at sea level and high altitudes. Conclusion: Identifying the DEGs and pathways will improve our understanding of immune function during high-altitude hypoxia at a molecular level. Targeting hypoxia-sensitive pathways in immune cells is interesting in treating high-altitude sickness. This study provides support for further research on high-altitude acclimatization.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Zhichao Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fujin Fang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Huan Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- *Correspondence: Xiaobing Shen,
| |
Collapse
|
25
|
Ma S, Yeom J, Lim YH. Specific activation of hypoxia-inducible factor-2α by propionate metabolism via a β-oxidation-like pathway stimulates MUC2 production in intestinal goblet cells. Biomed Pharmacother 2022; 155:113672. [PMID: 36095963 DOI: 10.1016/j.biopha.2022.113672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/20/2022] Open
Abstract
Microbiota-derived short-chain fatty acids (SCFAs) are known to stimulate mucin expression in the intestine, which contributes to the gut mucosal immune responses, and the gut mucosal immune system extends to the brain and other organs through several axes. Hypoxia-inducible factors (HIFs), especially HIF-1α, are known to act as the master regulator of mucin expression, however, underlying mechanism of mucin expression during hypoxia by SCFAs remains unclear. In this study, we investigated the mechanism of MUC2 expression by propionate, an SCFA, in intestinal goblet cells. The real time oxygen consumption rate (OCR) and ATPase activity were measured to investigate the induction of hypoxia by propionate. Using 2-dimensional electrophoresis (2-DE), microarray analysis, and siRNA-induced gene silencing, we found that propionate is metabolized via a β-oxidation-like pathway instead of the vitamin B12-dependent carboxylation pathway (also known as the methylmalonyl pathway). We verified the results by analyzing several intermediates in the pathway using LC-MS and GC-MS. Propionate metabolism via the β-oxidation-like pathway leads to the depletion of oxygen and thereby induces hypoxia. Analysis of HIFs revealed that HIF-2α is the primary HIF whose activation is induced by propionate metabolism in a hypoxic environment and that HIF-2α regulates the expression of MUC2. Thus, hypoxia induced during propionate metabolism via a β-oxidation-like pathway specifically activates HIF-2α, stimulating MUC2 production in LS 174 T goblet cells. Our findings show that propionate-induced selective HIF-2α stimulation contributes to intestinal mucosal defense.
Collapse
Affiliation(s)
- Seongho Ma
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Jiah Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea; School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea.
| |
Collapse
|
26
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
27
|
Li X, Guo L, Sato F, Kitayama T, Tewari N, Makishima M, Hamada N, Liu Y, Bhawal UK. Dec2 negatively regulates bone resorption in periodontitis. J Periodontal Res 2022; 57:1056-1069. [DOI: 10.1111/jre.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology Capital Medical University Beijing China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology Capital Medical University Beijing China
| | - Fuyuki Sato
- Pathology Division Shizuoka Cancer Center Shizuoka Japan
| | - Toshiyasu Kitayama
- Department of Anesthesiology Nihon University School of Dentistry Tokyo Japan
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry Centre for Dental Education and Research, All India Institute of Medical Sciences New Delhi India
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences Nihon University School of Medicine Tokyo Japan
| | - Nobushiro Hamada
- Department of Oral Microbiology Kanagawa Dental University Yokosuka Japan
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology Capital Medical University Beijing China
- Immunology Research Center for Oral and Systematic Health, Beijing Friendship Hospital Capital Medical University Beijing China
| | - Ujjal K. Bhawal
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Chiba Japan
- Department of Pharmacology, Saveetha Dental College Saveetha Institute of Medical and Technical Sciences Chennai India
| |
Collapse
|
28
|
Magoon R, Kashav R, Jose J, Walian A, Dey S. COVID-19 Positive Cohort Undergoing Cardiac Surgery: A Possible Un(3H)oly Trinity of Hypoxia-Hemolysis-Hyperinflammation. Braz J Cardiovasc Surg 2022; 37:587-590. [PMID: 35244375 PMCID: PMC9423808 DOI: 10.21470/1678-9741-2021-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
While the fraternity continues to ponder on the mechanisms by which coronavirus disease (COVID-19) positivity affects the outcome of cardiac surgical subset, we put forth a 3H (Hypoxia-Hemolysis-Hyperinflammation) trilogy aimed at elucidating the liaison between cardiopulmonary bypass (commonly employed for cardiac surgical conduct) and COVID-19 infection. A sound comprehension of the same can doubtlessly assist the perioperative team in staging a well-directed pathophysiology-driven management approach.
Collapse
Affiliation(s)
- Rohan Magoon
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee
Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, Baba
Kharak Singh Marg, New Delhi, India
| | - Ramesh Kashav
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee
Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, Baba
Kharak Singh Marg, New Delhi, India
| | - Jes Jose
- Department of Anaesthesia, Atal Bihari Vajpayee
Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, Baba
Kharak Singh Marg, New Delhi, India
| | - Ashish Walian
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee
Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, Baba
Kharak Singh Marg, New Delhi, India
| | - Souvik Dey
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee
Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, Baba
Kharak Singh Marg, New Delhi, India
| |
Collapse
|
29
|
Wang Y, Zhang L, Shi G, Liu M, Zhao W, Zhang Y, Wang Y, Zhang N. Effects of Inflammatory Response Genes on the Immune Microenvironment in Colorectal Cancer. Front Genet 2022; 13:886949. [PMID: 35464849 PMCID: PMC9032353 DOI: 10.3389/fgene.2022.886949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The close relationship between colorectal cancer and inflammation has been widely reported. However, the relationship between colorectal cancer and inflammation at the genetic level is not fully understood.Method: From a genetic perspective, this study explored the relationship between inflammation-related genes and the immune microenvironment in colorectal cancer. We identified prognostic genes, namely CX3CL1, CCL22, SERPINE1, LTB4R, XCL1, GAL, TIMP1, ADIPOQ, and CRH, by using univariate and multivariate regression analyses. A risk scoring model for inflammatory response was established, and patients in The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database were divided into two groups: high risk group and low risk group.Results: The analysis showed that the prognosis of the two groups was significantly different, and the low-risk group had a higher survival rate and longer survival time. Pathways related to apoptosis, inflammatory response, and hypoxia were significantly enriched as shown via Gene Set Enrichment Analysis (GSEA). Activated dendritic cell infiltration was found in both the TCGA and GEO databases, and the CCL21 gene played a significant role in the process of activated dendritic cell infiltration. CCL21 gene was also positively correlated with inflammatory response, and the gene expression and risk score were significantly different between the two groups.Conclusion: In summary, inflammatory response has a direct impact on patients with colorectal cancer in the prognosis and immune infiltration and further research studies on the inflammatory response can help in advancing the development of immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Wang
- *Correspondence: Ying Wang, ; Nan Zhang,
| | - Nan Zhang
- *Correspondence: Ying Wang, ; Nan Zhang,
| |
Collapse
|
30
|
Xu Y, Lin H, Yan W, Li J, Sun M, Chen J, Xu Z. Full-Length Transcriptome of Red Swamp Crayfish Hepatopancreas Reveals Candidate Genes in Hif-1 and Antioxidant Pathways in Response to Hypoxia-Reoxygenation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:55-67. [PMID: 34997878 DOI: 10.1007/s10126-021-10086-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Red swamp crayfish is particularly prone to exposure to hypoxia-reoxygenation stress on account of the respiration and rhythmic, light-dependent photosynthetic activity of the algae and aquatic grass. Up to now, the regulation mechanisms of the adverse effects of hypoxia-reoxygenation for this species were still unknown, especially the roles of the antioxidant enzymes in reducing oxidative damage during reoxygenation. To screen for vital genes or pathways upon hypoxic-reoxygenation stress, hepatopancreas gene expression profiles were investigated by using a strategy combining second and third generation sequencing. Five groups of samples, including hypoxia for 1 and 6 h with DO of 1.0 mg/L, reoxygenation for 1 and 12 h with DO of 6.8 mg/L, and the samples under normoxia condition, were used for transcriptome sequencing. Twenty Illumina cDNA libraries were prepared to screen for the differentially expressed genes (DEGs) among the 5 groups of samples. Based on the assembled reference full-length transcriptome, 389 and 533 significantly DEGs were identified in the groups under severe hypoxia treatment for 1 and 6 h, respectively. The top three enriched pathways for these DEGs were "protein processing in endoplasmic reticulum," "MAPK signaling pathway," and "endocytosis." Among these DEGs, hypoxia-inducible factor 1α (Hif-1α) and some Hif-1 downstream genes, such as Ugt-1, Egfr, Igfbp-1, Pk, and Hsp70, were significant differentially expressed when exposed to hypoxia stress. A series of antioxidant enzymes, including two types of superoxide dismutase (Cu/ZnSOD and MnSOD), catalase (CAT), and glutathione peroxidase (GPx), were identified to be differentially expressed during hypoxia-reoxygenation treatment, implying their distinct modulation roles on reoxygenation-induced oxidative stress. The full-length transcriptome and the critical genes characterized should contribute to the revelation of intrinsic molecular mechanism being associated with hypoxia/reoxygenation regulation and provide useful foundation for future genetic breeding of the red swamp crayfish.
Collapse
Affiliation(s)
- Yu Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Hai Lin
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Weihui Yan
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Jiajia Li
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Jiaping Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China.
| |
Collapse
|
31
|
Perissiou M, Bailey TG, Saynor ZL, Shepherd A, Harwood AE, Askew CD. The physiological and clinical importance of cardiorespiratory fitness in people with abdominal aortic aneurysm. Exp Physiol 2022; 107:283-298. [PMID: 35224790 PMCID: PMC9311837 DOI: 10.1113/ep089710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/21/2022] [Indexed: 12/01/2022]
Abstract
New Findings What is the topic of this review? This review focuses on the physiological impact of abdominal aortic aneurysm (AAA) on cardiorespiratory fitness and the negative consequences of low fitness on clinical outcomes in AAA. We also discuss the efficacy of exercise training for improving cardiorespiratory fitness in AAA. What advances does it highlight? We demonstrate the negative impact of low fitness on disease progression and clinical outcomes in AAA. We highlight potential mechanistic determinants of low fitness in AAA and present evidence that exercise training can be an effective treatment strategy for improving cardiorespiratory fitness, postoperative mortality and disease progression.
Abstract An abdominal aortic aneurysm (AAA) is an abnormal enlargement of the aorta, below the level of the renal arteries, where the aorta diameter increases by >50%. As an aneurysm increases in size, there is a progressive increase in the risk of rupture, which ranges from 25 to 40% for aneurysms >5.5 cm in diameter. People with AAA are also at a heightened risk of cardiovascular events and associated mortality. Cardiorespiratory fitness is impaired in people with AAA and is associated with poor (postoperative) clinical outcomes, including increased length of hospital stay and postoperative mortality after open surgical or endovascular AAA repair. Although cardiorespiratory fitness is a well‐recognized prognostic marker of cardiovascular health and mortality, it is not assessed routinely, nor is it included in current clinical practice guidelines for the management of people with AAA. In this review, we discuss the physiological impact of AAA on cardiorespiratory fitness, in addition to the consequences of low cardiorespiratory fitness on clinical outcomes in people with AAA. Finally, we summarize current evidence for the effect of exercise training interventions on cardiorespiratory fitness in people with AAA, including the associated improvements in postoperative mortality, AAA growth and cardiovascular risk. Based on this review, we propose that cardiorespiratory fitness should be considered as part of the routine risk assessment and monitoring of people with AAA and that targeting improvements in cardiorespiratory fitness with exercise training might represent a viable adjunct treatment strategy for reducing postoperative mortality and disease progression.
Collapse
Affiliation(s)
- Maria Perissiou
- Physical Activity Health and Rehabilitation Thematic Research Group School of Sport Health and Exercise Science Faculty of Science and Health University of Portsmouth Portsmouth UK
| | - Tom G. Bailey
- Physiology and ultrasound Laboratory in Science and Exercise Centre for Research on Exercise Physical Activity and Health School of Human Movement and Nutrition Sciences University of Queensland Brisbane Australia
- School of Nursing Midwifery and Social Work University of Queensland Brisbane Australia
| | - Zoe L. Saynor
- Physical Activity Health and Rehabilitation Thematic Research Group School of Sport Health and Exercise Science Faculty of Science and Health University of Portsmouth Portsmouth UK
| | - Anthony Shepherd
- Physical Activity Health and Rehabilitation Thematic Research Group School of Sport Health and Exercise Science Faculty of Science and Health University of Portsmouth Portsmouth UK
| | - Amy E. Harwood
- Centre for Sport Exercise & Life Sciences Institute of Health and Wellbeing Coventry University Coventry UK
| | - Christopher D. Askew
- VasoActive Research Group School of Health and Behavioural Sciences University of the Sunshine Coast Sippy Downs Queensland Australia
- Sunshine Cost Health Institute Sunshine Coast Hospital and Health Service Birtinya Queensland Australia
| |
Collapse
|
32
|
Amano-Iga R, Hasegawa T, Takeda D, Murakami A, Yatagai N, Saito I, Arimoto S, Kakei Y, Sakakibara A, Akashi M. Local Application of Transcutaneous Carbon Dioxide Paste Decreases Inflammation and Accelerates Wound Healing. Cureus 2021; 13:e19518. [PMID: 34917429 PMCID: PMC8670822 DOI: 10.7759/cureus.19518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Delayed wound healing after surgery lowers the long-term quality of a patient's life and leads to discomfort and pain. However, treatments for wound healing are often difficult and have not yet been fully established. In this study, we investigated the effect of a special paste that can be administered transdermally and holds a non-gaseous carbon dioxide (CO2) source in its carrier, which can be applied to the head and neck region for wound healing in a rat skin defect model. METHODS Forty-eight Sprague Dawley rats were randomized into control and CO2 groups. We punched a 6.2-mm wound on the back of each rat. The control rats were left untreated, whereas rats in the CO2 group were treated with the CO2 paste every day after surgery. We evaluated wound healing 3, 7, 14, and 21 days after wounding by analyzing the diameter of the wound, gene expression of inflammatory markers vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β, hypoxia-inducible factor (HIF)-1α, interleukin (IL)-1β, and IL-6 using quantitative real-time polymerase chain reaction, hematoxylin and eosin, and immunohistochemical staining patterns. RESULTS Rats in the CO2 group showed accelerated wound healing compared to those in the control group. Furthermore, VEGF and TGF-β were overexpressed, whereas HIF-1α, IL-1β, and IL-6 were downregulated in the rats treated with CO2. Immunohistochemical analysis also revealed similar patterns of expression. CONCLUSION Taken together, the CO2 paste promoted wound healing by regulating the hypoxic environment, reducing inflammation, and accelerating angiogenesis.
Collapse
Affiliation(s)
- Rika Amano-Iga
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Takumi Hasegawa
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Daisuke Takeda
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Aki Murakami
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Nanae Yatagai
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Izumi Saito
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Satomi Arimoto
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Yasumasa Kakei
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Akiko Sakakibara
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| | - Masaya Akashi
- Oral and Maxillofacial Surgery, Kobe University Hospital, Kobe, JPN
| |
Collapse
|
33
|
Lam CKC, Truong K. Design of a synthesis-friendly hypoxia-responsive promoter for cell-based therapeutics. Eng Life Sci 2021; 21:848-856. [PMID: 34899121 PMCID: PMC8638314 DOI: 10.1002/elsc.202100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/11/2021] [Accepted: 10/16/2021] [Indexed: 11/24/2022] Open
Abstract
Towards the goal of making 'smart' cell therapies, one that recognizes disease conditions (e.g. hypoxia) and then produces mitigating biologics, it is important to develop suitable promoters. Currently, hypoxia responsive promoters are composed of strongly repeated sequences containing hypoxia response elements upstream of a minimal core promoter. Unfortunately, such repeated sequences have inherent genomic instability that may compromise the long-term consistency of cell-based therapeutics. Thus, we designed a synthesis-friendly hypoxia-inducible promoter (named SFHp) that has GC content between 25% and 75% and no repeats greater than 9 base pairs. In HEK293 cells stably integrated with genes regulated by synthetic SFHp, we demonstrated inducible reporter expression with fluorescent proteins, cell morphology rewiring with our previously engineered RhoA protein and intercellular cell signalling with secreted cytokines. These experiments exemplify the potential usage of SFHp in cell-based therapeutics with integrated genetic circuits that inducibly respond to the disease microenvironment.
Collapse
Affiliation(s)
| | - Kevin Truong
- Institute of Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Edward S. RogersSr. Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONCanada
| |
Collapse
|
34
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
35
|
Rodrigues AQ, Picolo VL, Goulart JT, Silva IMG, Ribeiro RB, Aguiar BA, Ferreira YB, Oliveira DM, Lucci CM, de Bem AF, Paulini F. Metabolic activity in cryopreserved and grafted ovarian tissue using high-resolution respirometry. Sci Rep 2021; 11:21517. [PMID: 34728762 PMCID: PMC8563867 DOI: 10.1038/s41598-021-01082-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
Cryopreservation of ovarian tissue followed by transplantation represents a strategy to restore ovarian function and fertility. Stress from cryopreservation-thawing processes can lead to alterations and/or damage to mitochondrial structure and functionality. High resolution respirometry and histological analysis were used to evaluate the effect of cryopreservation and transplantation on ovarian tissue. Four different conditions were performed: Fresh non-transplanted tissue, Fresh transplanted tissue, Cryopreserved non-transplanted tissue and Cryopreserved transplanted tissue. All groups were able to respond to the substrates-uncoupler-inhibitor protocol. We found a dramatic decrease in general oxygen consumption in hemi-ovaries submitted to cryopreservation and/or transplantation. The effect of cryopreservation on mitochondrial metabolism was less intense than effect of transplantation, since the transplantation affected all of the mitochondrial states. A total of 2644 follicles were analyzed. Of these, 2198 were classified as morphologically normal. The percentage of morphologically normal follicles was significantly lower in the Cryopreserved transplanted group when compared to the Cryopreserved non-transplanted group and the Fresh transplanted group (p-value < 0.05). Despite decreased follicular viability and mitochondrial activity, the cryopreservation followed by transplantation of ovarian tissue proved feasible for attempts to restore ovarian function.
Collapse
Affiliation(s)
- Aline Q Rodrigues
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Victor L Picolo
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Jair T Goulart
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Isabella M G Silva
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Rayane B Ribeiro
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Beatriz A Aguiar
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Yasmin B Ferreira
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Daniela M Oliveira
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Carolina M Lucci
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Andreza F de Bem
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Fernanda Paulini
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
36
|
Gamah M, Alahdal M, Zhang Y, Zhou Y, Ji Q, Yuan Z, Han Y, Shen X, Ren Y, Zhang W. High-altitude hypoxia exacerbates dextran sulfate sodium (DSS)-induced colitis by upregulating Th1 and Th17 lymphocytes. Bioengineered 2021; 12:7985-7994. [PMID: 34666625 PMCID: PMC8806510 DOI: 10.1080/21655979.2021.1975017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
High altitude hypoxia (HAH) involves the pathogenesis of ulcerative colitis (UC) and gastrointestinal erosions. However, the mechanism of effects of HAH in colitis remains controversial. This study reports the immunomodulation mediated by HAH to enhancing the severity of UC in the mice model. BALB/c mice were used to establish the UC model by dextran sulfate sodium (DSS) compared to wild type mice. Mice groups were exposed to hypoxic conditions in a hypobaric chamber with an altitude of 5000 m for 7 days. Then, Spleen, mesenteric lymph nodes and colon tissues were collected. The activity of UC, the infiltration of the immune cells, and the released cytokines were investigated. Results showed that the severity of DSS-induced UC significantly increased in mice exposed to HAH. The analysis of pathological changes showed increased weight loss and decreased colon length accompanied by diarrhea and bloody feces in the hypobaric hypoxia group. Interestingly, the levels of inflammatory cytokines IL-17, TNF-α, and IFN-γ in the spleen and mesenteric lymph node showed a significant increase within the colon of the hypobaric hypoxia group. The population of Th 1 and Th 17 cells in the spleen was significantly increased in mice exposed to hypobaric hypoxia compared NC group. Suggesting that high altitude hypoxia enhances colitis in mice through activating the increase of inflammatory Th1 and Th17 lymphocytes. In conclusion, this study revealed that hypobaric hypoxia directly increases the severity of UC in the mice model via increasing the activity of inflammatory CD4+ Th1 and Th 17 lymphocytes.
Collapse
Affiliation(s)
- Mohammed Gamah
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, Qinghai, 810001, China.,Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen P. R. China.,Medical Laboratory Department, Faculty of Medicine and Health Sciences, Hodeidah University, Al Hudaydah, Yemen
| | - Yu Zhang
- Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Yiling Zhou
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, Qinghai, 810001, China
| | - Qiaorong Ji
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Zhouyang Yuan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Han
- Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Xiangqun Shen
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, Qinghai, 810001, China
| | - Yanming Ren
- Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, Qinghai, 810001, China.,Medical College of Qinghai University, Xining, Qinghai, 810001, China
| |
Collapse
|
37
|
Zaiatz Bittencourt V, Jones F, Doherty G, Ryan EJ. Targeting Immune Cell Metabolism in the Treatment of Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1684-1693. [PMID: 33693743 PMCID: PMC8522790 DOI: 10.1093/ibd/izab024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/17/2022]
Abstract
The cells of the immune system are highly dynamic, constantly sensing and adapting to changes in their surroundings. Complex metabolic pathways govern leukocytes' ability to fine-tune their responses to external threats. Mammalian target of rapamycin complex 1 and hypoxia inducible factor are important hubs of these pathways and play a critical role coordinating cell activation and proliferation and cytokine production. For this reason, these molecules are attractive therapeutic targets in inflammatory disease. Insight into perturbations in immune cell metabolic pathways and their impact on inflammatory bowel disease (IBD) progression are starting to emerge. However, it remains to be determined whether the aberrations in immune metabolism that occur in gut resident immune cells contribute to disease pathogenesis or are reflected in the peripheral blood of patients with IBD. In this review, we explore what is known about the metabolic profile of T cells, monocytes, macrophages, dendritic cells, and natural killer cells in IBD and discuss the potential of manipulating immune cell metabolism as a novel approach to treating IBD.
Collapse
Affiliation(s)
- Vanessa Zaiatz Bittencourt
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Fiona Jones
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Glen Doherty
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St. Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
- Department of Biological Sciences, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
38
|
Yuniati R, Innelya I, Rachmawati A, Charlex HJM, Rahmatika A, Khrisna MB, Mundhofir FEP, Hario Seno KHN, Kristina TN. Application of Topical Sucralfate and Topical Platelet-Rich Plasma Improves Wound Healing in Diabetic Ulcer Rats Wound Model. J Exp Pharmacol 2021; 13:797-806. [PMID: 34429664 PMCID: PMC8374851 DOI: 10.2147/jep.s296767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/24/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose One of the most serious and devastating complications of diabetes mellitus is diabetic ulcers. They are difficult to treat and often result in limb loss. Topical sucralfate and platelet-rich plasma have the potential to improve the healing outcomes of chronic ulcers, including diabetic ulcers. This research aims to determine the effectiveness of sucralfate and platelet-rich plasma therapy for the improvement of diabetic ulcer wound healing. Patients and Methods Ninety Wistar rats were used in this study and were classified into five groups. Four of the five groups were diabetic induced and were treated with topical sucralfate only, platelet-rich plasma only, combination of topical sucralfate and platelet-rich plasma, and diabetic control group which received standard therapy only. The non-diabetic control group did not receive any therapy. We observed macrophage amount, platelet-derived growth factor, vascular endothelial growth factor, and hypoxia-inducible factor as a biomarker. Rats were terminated after 7th and 14th days and were subjected to immunohistochemistry staining and examination. Results We found that topical sucralfate and platelet-rich plasma increase macrophage levels, vascular endothelial growth factor expression and platelet-derived growth factor expression in diabetic wound cells. We also found a reduction in hypoxia inducible factor-1α expression. Combination of topical sucralfate and platelet-rich plasma for 14 days gave the most significant improvement in terms of wound healing compared to topical sucralfate or platelet-rich plasma alone. Conclusion The combination of topical sucralfate and platelet-rich plasma therapy results in the best improvement in diabetic ulcer wound healing compared to sucralfate or platelet-rich plasma monotherapy or conventional wound healing therapy.
Collapse
Affiliation(s)
- Renni Yuniati
- Dermatology and Venereology Department, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Innelya Innelya
- Undergraduate Student, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Arti Rachmawati
- Undergraduate Student, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | | | - Alfi Rahmatika
- Undergraduate Student, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Matthew Brian Khrisna
- Dermatology and Venereology Department, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | | | | | - Tri Nur Kristina
- Microbiology Department, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
39
|
Alhusaini A, Alhumaidan S, Almogren R, Alsaif S, Alsultan E, Hussein I. Nano-Curcumin Protects Against Sodium Nitrite-Induced Lung Hypoxia Through Modulation of Mitogen-Activated Protein Kinases/c-Jun NH2-Terminal Kinase Signaling Pathway. Dose Response 2021; 19:15593258211033148. [PMID: 34393686 PMCID: PMC8351036 DOI: 10.1177/15593258211033148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background and objective This study was designed to compare the efficacy of curcumin (CRN) with that of nano-curcumin (N-CRN) in the mitigation of various biochemical indices in hypoxic lung induced by sodium nitrite (SN) in rats. Methods Twenty-four adult male albino rats were divided into 4 groups. Group 1: control group received carboxy methyl cellulose; Group 2: hypoxic group injected with single dose of SN (60 mg/kg, s.c.); Group 3: SN-intoxicated rats pre-injected with CRN (100 mg/kg, i.p.); and Group 4: SN-intoxicated rats pre-injected with N-CRN (100 mg/kg, i.p.). Curcumin and N-CRN were administered intraperitoneally 2 hour prior to SN intoxication. Hemoglobin concentration, serum tumor necrosis factor-alpha (TNF-α), and caspase-3 were analyzed. Gene expression of hypoxia inducible factor-1 (HIF-1α), matrix metallo-proteinases (MMP)-2, and tissue inhibitors of metalloproteinases (TIMPs)-2, as well as the protein expression of mitogen-activated protein kinases (MAPKs) and c-Jun NH2-terminal kinase (JNK) were examined in lung tissues. Results Hemoglobin level was markedly reduced, and serum TNF-α and caspase-3 were significantly elevated post SN intoxication. The lung MMP-2 and HIF-1α mRNA were overexpressed in the hypoxic group; while TIMP-2 mRNA was downregulated. Sodium nitrite administration increased proteins’ expressions of MAPK and JNK. Pretreatment with CRN or N-CRN markedly mitigated those alterations. These results were supported by histopathological examinations of lung tissue. Conclusion Interestingly, N-CRN exhibited a pronounced protective effect via suppression of inflammatory and apoptotic biomarkers and modulation of MAPK/JNK signaling pathway.
Collapse
Affiliation(s)
- Ahlam Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sara Alhumaidan
- College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Renad Almogren
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaikha Alsaif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam Alsultan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Hypoxia-Inducible Factor Signaling in Macrophages Promotes Lymphangiogenesis in Leishmania major Infection. Infect Immun 2021; 89:e0012421. [PMID: 34031127 PMCID: PMC8281282 DOI: 10.1128/iai.00124-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vascular remodeling is a phenomenon seen in the cutaneous lesions formed during infection with Leishmania parasites. Within the lesion, Leishmania major infection leads to the infiltration of inflammatory cells, including macrophages, and is associated with hypoxic conditions and lymphangiogenesis in the local site. This low-oxygen environment is concomitant with the expression of hypoxic inducible factors (HIFs), which initiate the expression of vascular endothelial growth factor-A (VEGF-A) in macrophages during the infection. Here, we found that macrophage hypoxia is elevated in the skin, and the HIF target Vegfa is preferentially expressed at the site of infection. Further, transcripts indicative of both HIF-1α and HIF-2α activation were increased at the site of infection. Given that HIF mediates VEGF-A and that VEGF-A/VEGFR-2 signaling induces lymphangiogenesis, we wanted to investigate the link between myeloid HIF activation and lymphangiogenesis during L. major infection. We show that myeloid aryl hydrocarbon receptor nuclear translocator (ARNT)/HIF/VEGF-A signaling promotes lymphangiogenesis (the generation of newly formed vessels within the local lymphatic network), which helps resolve the lesion by draining away inflammatory cells and fluid. Concomitant with impaired lymphangiogenesis, we find the deletion of myeloid ARNT/HIF signaling leads to an exacerbated inflammatory response associated with a heightened CD4+ Th1 immune response following L. major infection. Altogether, our data suggest that VEGF-A-mediated lymphangiogenesis occurs through myeloid ARNT/HIF activation following Leishmania major infection and this process is critical in limiting immunopathology.
Collapse
|
41
|
Pham K, Parikh K, Heinrich EC. Hypoxia and Inflammation: Insights From High-Altitude Physiology. Front Physiol 2021; 12:676782. [PMID: 34122145 PMCID: PMC8188852 DOI: 10.3389/fphys.2021.676782] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
The key regulators of the transcriptional response to hypoxia and inflammation (hypoxia inducible factor, HIF, and nuclear factor-kappa B, NF-κB, respectively) are evolutionarily conserved and share significant crosstalk. Tissues often experience hypoxia and inflammation concurrently at the site of infection or injury due to fluid retention and immune cell recruitment that ultimately reduces the rate of oxygen delivery to tissues. Inflammation can induce activity of HIF-pathway genes, and hypoxia may modulate inflammatory signaling. While it is clear that these molecular pathways function in concert, the physiological consequences of hypoxia-induced inflammation and how hypoxia modulates inflammatory signaling and immune function are not well established. In this review, we summarize known mechanisms of HIF and NF-κB crosstalk and highlight the physiological consequences that can arise from maladaptive hypoxia-induced inflammation. Finally, we discuss what can be learned about adaptive regulation of inflammation under chronic hypoxia by examining adaptive and maladaptive inflammatory phenotypes observed in human populations at high altitude. We aim to provide insight into the time domains of hypoxia-induced inflammation and highlight the importance of hypoxia-induced inflammatory sensitization in immune function, pathologies, and environmental adaptation.
Collapse
Affiliation(s)
| | | | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
42
|
Rathor R, Agrawal A, Kumar R, Suryakumar G, Singh SN. Ursolic acid ameliorates hypobaric hypoxia-induced skeletal muscle protein loss via upregulating Akt pathway: An experimental study using rat model. IUBMB Life 2021; 73:375-389. [PMID: 33368975 DOI: 10.1002/iub.2435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Hypobaric hypoxic stress leads to oxidative stress, inflammation, and disturbance in protein turnover rate. Aggregately, this imbalance in redox homeostasis is responsible for skeletal muscle protein loss and a decline in physical performance. Hence, an urgent medical need is required to ameliorate skeletal muscle protein loss. The present study investigated the efficacy of ursolic acid (UA), a pentacyclic triterpene acid to ameliorate hypobaric hypoxia (HH)-induced muscle protein loss. UA is a naturally occurring pentacyclic triterpene acid present in several edible herbs and fruits such as apples. It contains skeletal muscle hypertrophy activity; still its potential against HH-induced muscle protein loss is unexplored. To address this issue, an in vivo study was planned to examine the beneficial effect of UA supplementation on HH-induced skeletal muscle loss. Male Sprague Dawley rats were exposed to HH with and without UA supplementation (20 mg/kg; oral) for 3 continuous days. The results described the beneficial role of UA as supplementation of UA with HH exposure attenuated reactive oxygen species production and oxidative protein damage, which indicate the potent antioxidant activity. Furthermore, UA supplementation enhanced Akt, pAkt, and p70S6kinase activity (Akt pathway) and lowered the pro-inflammatory cytokines in HH exposed rats. UA has potent antioxidant and anti-inflammatory activity, and it enhanced the protein content via upregulation of Akt pathway-related proteins against HH exposure. These three biological activities of UA make it a novel candidate for amelioration of HH-induced skeletal muscle damage and protein loss.
Collapse
Affiliation(s)
- Richa Rathor
- Cellular Biochemistry Division, DRDO Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Akanksha Agrawal
- Cellular Biochemistry Division, DRDO Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Ravi Kumar
- Cellular Biochemistry Division, DRDO Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Geetha Suryakumar
- Cellular Biochemistry Division, DRDO Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Som Nath Singh
- Cellular Biochemistry Division, DRDO Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
43
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
44
|
Fenofibrate Protects Cardiomyocytes from Hypoxia/Reperfusion- and High Glucose-Induced Detrimental Effects. PPAR Res 2021; 2021:8895376. [PMID: 33505452 PMCID: PMC7811426 DOI: 10.1155/2021/8895376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 01/11/2023] Open
Abstract
Lesions caused by high glucose (HG), hypoxia/reperfusion (H/R), and the coexistence of both conditions in cardiomyocytes are linked to an overproduction of reactive oxygen species (ROS), causing irreversible damage to macromolecules in the cardiomyocyte as well as its ultrastructure. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, promotes beneficial activities counteracting cardiac injury. Therefore, the objective of this work was to determine the potential protective effect of fenofibrate in cardiomyocytes exposed to HG, H/R, and HG+H/R. Cardiomyocyte cultures were divided into four main groups: (1) control (CT), (2) HG (25 mM), (3) H/R, and (4) HG+H/R. Our results indicate that cell viability decreases in cardiomyocytes undergoing HG, H/R, and both conditions, while fenofibrate improves cell viability in every case. Fenofibrate also decreases ROS production as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH) subunit expression. Regarding the antioxidant defense, superoxide dismutase (SOD Cu2+/Zn2+ and SOD Mn2+), catalase, and the antioxidant capacity were decreased in HG, H/R, and HG+H/R-exposed cardiomyocytes, while fenofibrate increased those parameters. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) increased significantly in treated cells, while pathologies increased the expression of its inhibitor Keap1. Oxidative stress-induced mitochondrial damage was lower in fenofibrate-exposed cardiomyocytes. Endothelial nitric oxide synthase was also favored in cardiomyocytes treated with fenofibrate. Our results suggest that fenofibrate preserves the antioxidant status and the ultrastructure in cardiomyocytes undergoing HG, H/R, and HG+H/R preventing damage to essential macromolecules involved in the proper functioning of the cardiomyocyte.
Collapse
|
45
|
Wu Z, Zuo M, Zeng L, Cui K, Liu B, Yan C, Chen L, Dong J, Shangguan F, Hu W, He H, Lu B, Song Z. OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development. EMBO Rep 2021; 22:e50827. [PMID: 33314701 PMCID: PMC7788456 DOI: 10.15252/embr.202050827] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Many cancer cells maintain enhanced aerobic glycolysis due to irreversible defective mitochondrial oxidative phosphorylation (OXPHOS). This phenomenon, known as the Warburg effect, is recently challenged because most cancer cells maintain OXPHOS. However, how cancer cells coordinate glycolysis and OXPHOS remains largely unknown. Here, we demonstrate that OMA1, a stress-activated mitochondrial protease, promotes colorectal cancer development by driving metabolic reprogramming. OMA1 knockout suppresses colorectal cancer development in AOM/DSS and xenograft mice models of colorectal cancer. OMA1-OPA1 axis is activated by hypoxia, increasing mitochondrial ROS to stabilize HIF-1α, thereby promoting glycolysis in colorectal cancer cells. On the other hand, under hypoxia, OMA1 depletion promotes accumulation of NDUFB5, NDUFB6, NDUFA4, and COX4L1, supporting that OMA1 suppresses OXPHOS in colorectal cancer. Therefore, our findings support a role for OMA1 in coordination of glycolysis and OXPHOS to promote colorectal cancer development and highlight OMA1 as a potential target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhida Wu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Meiling Zuo
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Ling Zeng
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Kaisa Cui
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Bing Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Chaojun Yan
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Li Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Jun Dong
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Fugen Shangguan
- Attardi Institute of Mitochondrial BiomedicineSchool of Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wanglai Hu
- School of Basic Medical ScienceAnhui Medical UniversityHefeiAnhuiChina
| | - He He
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Bin Lu
- Attardi Institute of Mitochondrial BiomedicineSchool of Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhiyin Song
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| |
Collapse
|
46
|
Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants (Basel) 2021; 10:antiox10010064. [PMID: 33430227 PMCID: PMC7825667 DOI: 10.3390/antiox10010064] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial disorder in which external and environmental factors have a large influence on its onset and development, especially in genetically susceptible individuals. Crohn’s disease (CD), one of the two types of IBD, is characterized by transmural inflammation, which is most frequently located in the region of the terminal ileum. Oxidative stress, caused by an overabundance of reactive oxygen species, is present locally and systemically in patients with CD and appears to be associated with the well-described imbalanced immune response and dysbiosis in the disease. Oxidative stress could also underlie some of the environmental risk factors proposed for CD. Although the exact etiopathology of CD remains unknown, the key role of oxidative stress in the pathogenesis of CD is extensively recognized. Epigenetics can provide a link between environmental factors and genetics, and numerous epigenetic changes associated with certain environmental risk factors, microbiota, and inflammation are reported in CD. Further attention needs to be focused on whether these epigenetic changes also have a primary role in the pathogenesis of CD, along with oxidative stress.
Collapse
|
47
|
Vilys L, Peciuliene I, Jakubauskiene E, Zinkeviciute R, Makino Y, Kanopka A. U2AF - Hypoxia-induced fas alternative splicing regulator. Exp Cell Res 2020; 399:112444. [PMID: 33347855 DOI: 10.1016/j.yexcr.2020.112444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023]
Abstract
The splicing machinery heavily contributes to biological complexity and especially to the ability of cells to adapt to altered cellular conditions. Hypoxia also plays a key role in the pathophysiology of many disease states. Recent studies have revealed that tumorigenesis and hypoxia are involved in large-scale alterations in alternative pre-mRNA splicing. Fas pre-mRNA is alternatively spliced by excluding exon 6 to produce soluble Fas (sFas) protein that lacks a transmembrane domain and acts by inhibiting Fas mediated apoptosis. In the present study we show that U2AF is involved in hypoxia dependent anti-apoptotic Fas mRNA isoform formation. Our performed studies show that U2AF-RNA interaction is reduced in hypoxic cells, leading to reduction of Fas and increased sFas mRNAs formation. Efficient U2AF-RNA interactions of both subunits are important for Fas exon 6 inclusion into forming mRNA in normoxic and hypoxic cells.
Collapse
Affiliation(s)
- Laurynas Vilys
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Inga Peciuliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egle Jakubauskiene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ruta Zinkeviciute
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Yuichi Makino
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical College, Asahikawa, Hokkaido, Japan
| | - Arvydas Kanopka
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
48
|
Chang SN, Dey DK, Oh ST, Kong WH, Cho KH, Al-Olayan EM, Hwang BS, Kang SC, Park JG. Phorbol 12-Myristate 13-Acetate Induced Toxicity Study and the Role of Tangeretin in Abrogating HIF-1α-NF-κB Crosstalk In Vitro and In Vivo. Int J Mol Sci 2020; 21:9261. [PMID: 33291656 PMCID: PMC7729754 DOI: 10.3390/ijms21239261] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Phorbol 12-myristate 13-acetate (PMA) is a potent tumor promoter and highly inflammatory in nature. Here, we investigated the toxic effects of PMA on different model system. PMA (10 μg) caused chromosomal aberrations on the Allium cepa root tip and induced mitotic dysfunction. Similarly, PMA caused embryonic and larval deformities and a plummeted survivability rate on zebrafish embryo in a dose-dependent manner. Persistently, PMA treatment on immortalized human keratinocyte human keratinocyte (HaCaT) cells caused massive inflammatory rush at 4 h and a drop in cell survivability at 24 h. Concomitantly, we replicated a cutaneous inflammation similar to human psoriasis induced by PMA. Herein, we used tangeretin (TAN), as an antagonist to counteract the inflammatory response. Results from an in vivo experiment indicated that TAN (10 and 30 mg/kg) significantly inhibited PMA stimulated epidermal hyperplasia and intra-epidermal neutrophilic abscesses. In addition, its treatment effectively neutralized PMA induced elevated reactive oxygen species (ROS) generation on in vitro and in vivo systems, promoting antioxidant response. The association of hypoxia-inducible factor 1-alpha (HIF-1α)-nuclear factor kappa-light-chain-enhancer of activated b cells (NF-κB) crosstalk triggered by PMA enhanced PKCα-ERK1/2-NF-κB pathway; its activation was also significantly counteracted after TAN treatment. Conclusively, we demonstrated TAN inhibited the nuclear translocation of HIF-1α and NF-κB p65. Collectively, TAN treatment ameliorated PMA incited malignant inflammatory response by remodeling the cutaneous microenvironment.
Collapse
Affiliation(s)
- Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.)
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
| | - Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.)
| | - Seong Taek Oh
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
- Okinawa Research Center Co. Ltd., 13-33, Suzaki, Uruma-si, Okinawa Ken 904-2234, Japan
| | - Won Ho Kong
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
| | - Kiu Hyung Cho
- Research Group, Gyeongbuk Institute for Bio Industry (GIB), Andong 36728, Korea;
| | - Ebtesam M. Al-Olayan
- Department of Zoology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea;
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.)
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
| |
Collapse
|
49
|
Integrative Analysis Reveals the Landscape of Hypoxia-Inducible Factor (HIF) Family Genes in Pan-Cancer. JOURNAL OF ONCOLOGY 2020; 2020:8873104. [PMID: 33299416 PMCID: PMC7710422 DOI: 10.1155/2020/8873104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023]
Abstract
Inside the cancer microenvironment, reduced O2 concentration, termed as hypoxia, is a common phenotype and leads to cancer progression. However, little is known about how and when those HIF members are dysregulated in distinct cancers. Here, by integrating a full range of data of thousands of patients, we comprehensively analyzed the genetics, epigenetics, and transcriptomic level of HIF genes and further defined pathways triggered by disrupted hypoxia-inducible factors. We reveal the expression landscape of HIF family genes and further demonstrate that copy number variations underlie such dysregulation. Further analysis indicates that HIF genes associate with cancer hallmarks such as cell cycle and DNA damage response. Drug resistance analysis showed that HIF globally impacts drug effectiveness such as docetaxel. In summary, the overall analysis reveals the landscape of HIF genes in pan-cancer and may assist mechanism research about hypoxia.
Collapse
|
50
|
Bak M, Jess T, Flachs EM, Zwisler AD, Juel K, Frederiksen H. Risk of Inflammatory Bowel Disease in Patients with Chronic Myeloproliferative Neoplasms: A Danish Nationwide Cohort Study. Cancers (Basel) 2020; 12:cancers12092700. [PMID: 32967227 PMCID: PMC7564361 DOI: 10.3390/cancers12092700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary We wanted to investigate the risk of inflammatory bowel disease (IBD) in patients with Philadelphia-negative chronic myeloproliferative neoplasms (MPNs), since up to 50% of these patients experience gastrointestinal symptoms and several studies have suggested an association between hematological cancers and IBD. We included ∼8000 patients and ∼80,000 sex- and age-matched, non-MPN comparisons from the general population, and found that MPN patients were two to three times more likely to develop IBD, but the absolute risk of IBD was modest. In addition, MPN patients were also 40% more likely to have a prior diagnosis of IBD. Our results pose intriguing questions about the causal pathways linking MPN and IBD, which may include genetic, treatment-related and immune-mediated factors. Moreover, it shows that abdominal symptoms in MPN patients may not only be caused by an enlarged spleen or treatment side-effects. Conversely, persistent leucocytosis and/or increased platelets in IBD patients may reflect concomitant MPN. Abstract An association between hematological cancers and inflammatory bowel disease (IBD) has previously been suggested, but the risk of IBD in patients with myeloproliferative neoplasms (MPNs) is unknown. We conducted a nationwide population-based cohort study using Danish registries, to estimate the risk of IBD in individuals diagnosed with essential thrombocythemia, polycythemia vera, myelofibrosis or unclassifiable MPN during 1994–2013. MPN patients were matched 1:10 with sex- and age-matched comparisons. Everyone was followed until a diagnosis of IBD, death/emigration, or 31 December 2013. The risk of IBD overall and according to MPN subtype was calculated using Cox regression and presented as hazard ratios (HRs) with 95% confidence intervals (CI). Of 8207 MPN patients followed for 45,232 person-years, 80 were diagnosed with IBD (61 ulcerative colitis, 19 Crohn’s disease). The rate of IBD per 1000 person-years was 1.8 (95% CI:1.4–2.2) in patients vs. 0.8 (95% CI:0.7–0.8) in comparisons, and the absolute 10-year risk of IBD was 0.8% (95% CI:0.6–1.0) in patients vs. 0.4% (95% CI:0.4–0.5) in comparisons. The HR of IBD was 2.4 (95% CI:2.1–2.9) with similar HRs for ulcerative colitis and Crohn’s disease. MPN subtype risks varied from 2.1 (95% CI:1.6–2.7) to 2.8 (95% CI:2.1–3.7). Our unselected cohort study showed a more than 2-fold increased risk of IBD in MPN patients.
Collapse
Affiliation(s)
- Marie Bak
- Department of Haematology, Zealand University Hospital, University of Copenhagen, 4000 Roskilde, Denmark
- Correspondence: ; Tel.: +45-47324894
| | - Tine Jess
- Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark;
| | - Esben Meulengracht Flachs
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark;
| | - Ann-Dorthe Zwisler
- Danish Knowledge Centre for Rehabilitation and Palliative Care, University of Southern Denmark and Odense University Hospital, 5800 Nyborg, Denmark;
| | - Knud Juel
- National Institute of Public Health, University of Southern Denmark, 1455 Copenhagen, Denmark;
| | - Henrik Frederiksen
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Epidemiology, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|