1
|
Yang L, Zhang Z, Xu M, Shang M, Wang H, Liu Z. Constructing a prognostic model based on MPT-related genes and investigate the characteristics of immune infiltration in bladder cancer. Discov Oncol 2025; 16:460. [PMID: 40183970 PMCID: PMC11971081 DOI: 10.1007/s12672-025-02222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
PURPOSE Exploring the expression of Mitochondrial Permeability Transition Dependent Necrosis lncRNA in bladder cancer and elucidate their precise function within the tumor microenvironment and impact on prognosis. METHODS We employed a comprehensive bioinformatics approach to investigate the function and influence of lncRNA in bladder cancer. Gene expression data, clinical data, and mutation data of bladder cancer are obtained from TCGA database. RESULTS We developed a new prognostic model incorporating 6 lncRNAs. The predictive efficacy of this model for bladder cancer prognosis was validated. Furthermore, we investigated the influence of model on the tumor microenvironment and drug sensitivity. CONCLUSION This study presents a novel prognostic framework for bladder cancer that holds great potential for enhancing prognostic prediction accuracy and optimizing treatment strategies for patients with this disease.
Collapse
Affiliation(s)
- Lei Yang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Zhiqiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China.
- Anhui Medical University, Hefei, 230601, Anhui Province, China.
| | - Mengfan Xu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Muhan Shang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Haibing Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Zhiqi Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Anhui Medical University, Hefei, 230601, Anhui Province, China
| |
Collapse
|
2
|
Boyraz B, Robinson B, Lindeman N, Hoda SA, Solomon JP. Subareolar sclerosing ductal hyperplasia shows PI3K pathway alterations. Histopathology 2025; 86:824-827. [PMID: 39888091 DOI: 10.1111/his.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/09/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
AIMS Subareolar sclerosing ductal hyperplasia (SSDH) is a distinct type of complex sclerosing hyperplastic lesion first described by Rosen in 1987. There have been rare studies investigating SSDH; however, no genetic study has been performed to date. METHODS AND RESULTS Seven SSDH cases, diagnosed between 2013 and 2024, were identified. All were subjected to next-generation sequencing (523 genes). Patient ages ranged from 40 to 74 years (median = 46). All lesions were located in the subareolar region. Each showed the characteristic appearance of the lesion, as described in the seminal study, with usual ductal hyperplasia in a densely sclerotic background imparting an 'infiltrative' appearance. None of the cases showed atypical hyperplasia or carcinoma. DNA sequencing identified PI3K pathway alterations in all seven cases: PIK3CA (n = three, one with two alterations), PIK3R1 (n = three) and PIK3C3 (n = one, with concurrent FAT1 mutation). CONCLUSION SSDH shows PI3K pathway alterations similar to those seen in other non-atypical and atypical proliferative lesions as well as benign and malignant neoplasms of the breast. This finding may explain the rare association of SSDH with atypical hyperplasia, in-situ and invasive carcinoma.
Collapse
Affiliation(s)
- Baris Boyraz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - Neal Lindeman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - Syed A Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - James P Solomon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
3
|
Easa Y, Loza O, Cohen R, Sprinzak D. Fat4 intracellular domain controls internalization of Fat4/Dchs1 planar polarity membrane complexes. Biophys J 2025; 124:1024-1033. [PMID: 39955614 PMCID: PMC11947466 DOI: 10.1016/j.bpj.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/16/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
The Fat/Dachsous (Ft/Ds) pathway is a highly conserved pathway regulating planar cell polarity (PCP) across different animal species. Proteins from the Ft and Ds family are large transmembrane protocadherins that form heterophilic complexes on the boundaries between cells. Fat4 and Dchs1, the main mammalian homologs of this pathway, have been implicated in PCP in various epithelial tissues and were shown to form extremely stable complexes at the boundaries between cells. It is unclear, however, what are the dynamics controlling such stable boundary complexes, and how the formation and internalization of these complexes is regulated. Here, we use quantitative live imaging to elucidate the role of the intracellular domains (ICDs) of Fat4 and Dchs1 in regulating Fat4/Dchs1 complex dynamics. We show that removing the ICD of Fat4 results in a reduction of both trans-endocytosis of Dchs1 into the Fat4 cells and boundary accumulation of Fat4/Dchs1 complexes, but does not affect the diffusion of the complexes at the boundary. We further show that the ICD of Fat4 controls the internalization rate of Fat4/Dchs1 complexes. Finally, we find that while actin polymerization is required for the accumulation at the boundary of Fat4/Dchs1 complexes, we do not identify correlations between Fat4/Dchs1 complexes and local actin accumulation. Overall, we suggest that the Fat4 ICD is important for the internalization and plasticity of the highly stable Fat4/Dchs1 complexes associated with PCP.
Collapse
Affiliation(s)
- Yathreb Easa
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Olga Loza
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roie Cohen
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
4
|
Wang T, Li J, Du J, Zhou W, Lu G. Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review). Oncol Lett 2025; 29:110. [PMID: 39776648 PMCID: PMC11704873 DOI: 10.3892/ol.2024.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The FAT atypical cadherin 1 (FAT1) gene is the ortholog of the Drosophila fat gene and encodes the protocadherin FAT1. FAT1 belongs to the cadherin superfamily, a group of full-length membrane proteins that contain cadherin-like repeats. In various types of human cancer, FAT1 is one of the most commonly mutated genes, and is considered to be an emerging cancer biomarker and a potential target for novel therapies. However, the biological functions of FAT1 and the precise downstream signaling pathways that it mediates have remained to be fully elucidated. The present review discussed the current literature on FAT1, focusing on FAT1 mutations and expression levels, and their impact on signaling pathways and mechanisms in various types of cancer, including both solid tumors and hematological malignancies, such as esophageal squamous cell carcinoma, head and neck squamous cell carcinoma, lung squamous cell carcinoma, hepatocellular carcinoma, glioma, breast cancer, acute lymphoblastic leukemia, acute myeloid leukemia, lymphoma and myeloma. The present review aimed to provide further insights and research directions for future studies on FAT1 as an oncogenic factor or tumor suppressor.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Junting Li
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Wei Zhou
- Department of Ultrasonic Examination, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Guang Lu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
5
|
Zhao P, Zhang Y, Yu Y, Zhang Q, Liu X, Zhang XD, Chen S, de Bock CE, Thorne RF, Shi Y. FAT1 functions as an oncogenic driver in triple negative breast cancer through AKT pathway-driven effects on the matrisome. Int J Biol Sci 2025; 21:2201-2222. [PMID: 40083689 PMCID: PMC11900804 DOI: 10.7150/ijbs.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/17/2025] [Indexed: 03/16/2025] Open
Abstract
FAT1 cadherin exhibits dual tumor suppressor and oncogenic roles across various cancers, but its function in breast cancer remains unclear due to conflicting reports of mutational loss and overexpression. In this study, we demonstrate that FAT1 mRNA and protein levels are reduced during mammary transformation, an effect linked to promoter methylation rather than mutational events. Subtype-specific analysis reveals that high FAT1 expression correlates with poor outcomes in basal-like/triple-negative breast cancer (TNBC), while elevated FAT1 expression in luminal A/estrogen receptor-positive breast cancers is associated with improved patient prognosis. Functional studies in TNBC models using knockdown and overexpression approaches confirm that FAT1 promotes both cell proliferation and motility. High-throughput sequencing and biochemical assessments establish strong links between FAT1 phenotypes and the activation of PI3K-AKT signaling. Additionally, FAT1 manipulation induces significant changes in matrisome-related genes, extracellular matrix components, and integrin switching. Together, these findings define an oncogenic role for FAT1 in TNBC, providing mechanistic insights into how its regulation influences AKT signaling, cell proliferation, and motility.
Collapse
Affiliation(s)
- Panpan Zhao
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Yuanyuan Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Yang Yu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, 450003, China
| | - Qing Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Xiaoying Liu
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Charles E. de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Yujie Shi
- Department of Pathology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
6
|
Zhu L, Liu M, Shang Y, Cheng J, Zhao H, Zhang J, Shen D. Single-cell profiling transcriptomic reveals cellular heterogeneity and cellular crosstalk in breast cancer lymphatic node, bone, and brain metastases. Sci Rep 2025; 15:2217. [PMID: 39820531 PMCID: PMC11739685 DOI: 10.1038/s41598-025-85531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Breast cancer is the most common malignant tumor in the world, and its metastasis is the main cause of death in breast cancer patients. However, the differences between primary breast cancer tissue and lymphatic node, bone, and brain metastases at the single-cell level are not fully understood. We analyzed the microenvironment heterogeneity in samples of primary breast cancer (n = 4), breast cancer lymphatic node metastasis (n = 4), breast cancer brain metastasis (n = 3), and breast cancer bone metastasis (n = 2) using single-cell sequencing data from the GEO database. The malignant epithelial cells were characterized by InferCNV algorithm. The cell-cell communication was analyzed using CellChat package. The biological function of cell subpopulations was analyzed using gene set variation analysis. The expression of STMN1 was analyzed using immunohistochemical staining. The proportion of pCAFs in breast cancer was explored using multispectral immunohistochemical staining. We identified seven cell clusters in primary and metastatic breast cancer (Lymphatic node, brain, and bone metastases) by analyzing single-cell transcriptomic profiles. T-NK and B cells dominated breast cancer with lymphatic node metastasis, whereas fibroblasts were prevalent in brain metastases and primary breast cancer. We identified five T cells (T memory, CD8 + T cells, regulatory T cells, natural killer cells, CD4 + T cells), three B cells (naïve B cells, memory B cells, plasma B cells), and five cancer-associated fibroblasts (CAFs) subpopulations (Smooth muscle cells (SMC), pericyte, antigen-presenting CAFs (apCAFs), proliferative CAFs (pCAFs), and matrix CAFs (mCAFs)). Notably. pCAFs dominated breast cancer with lymphatic node, bone, and brain metastasis. Furthermore, we identified four malignant epithelial cell subpopulations: G0, G1, G2, and G3. The G2 cell population exhibited strong invasion ability, it can differentiate into G3 with strong proliferative ability and proliferation-related G1 cell population after metastasis. Cell-cell communication demonstrated an interaction between pCAFs and metastasis-associated malignant epithelial cells. Finally, we discovered that in advanced breast cancer, the proportion of pCAF increased and was associated with a poor prognosis of breast cancer. This study elucidated the potential cellular origins and drivers of breast cancer metastases to lymphatic nodes, brain, and bone, utilizing single-cell transcriptomic profiles. Furthermore, it demonstrated that increased pCAFs were associated with advanced breast cancer and a poor prognosis.
Collapse
Affiliation(s)
- Longyu Zhu
- Department of Radiotherapy Oncology, The Fourth Hospital of Hebei Medical University, No. 169, Tianshan Street, Hebei, Shijiazhuang, 050035, Hebei Province, China
| | - Miaomiao Liu
- The Fifth Department of Oncology, Hebei General Hospital, Shijiazhuang, 050035, Hebei, China
| | - Yuguang Shang
- Department of Radiotherapy Oncology, The Fourth Hospital of Hebei Medical University, No. 169, Tianshan Street, Hebei, Shijiazhuang, 050035, Hebei Province, China
| | - Jingge Cheng
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Hebei, Shijiazhuang, 050035, China
| | - Hongye Zhao
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Hebei, Shijiazhuang, 050035, China
| | - Jun Zhang
- Department of Radiotherapy Oncology, The Fourth Hospital of Hebei Medical University, No. 169, Tianshan Street, Hebei, Shijiazhuang, 050035, Hebei Province, China.
| | - Dongxing Shen
- Department of Radiotherapy Oncology, The Fourth Hospital of Hebei Medical University, No. 169, Tianshan Street, Hebei, Shijiazhuang, 050035, Hebei Province, China.
| |
Collapse
|
7
|
Villa M, Sharma GG, Malighetti F, Mauri M, Arosio G, Cordani N, Lobello C, Larose H, Pirola A, D'Aliberti D, Massimino L, Criscuolo L, Pagani L, Chinello C, Mastini C, Fontana D, Bombelli S, Meneveri R, Lovisa F, Mussolin L, Janikova A, Pospíšilová Š, Turner SD, Inghirami G, Magni F, Urso M, Pagni F, Ramazzotti D, Piazza R, Chiarle R, Gambacorti-Passerini C, Mologni L. Recurrent somatic mutations of FAT family cadherins induce an aggressive phenotype and poor prognosis in anaplastic large cell lymphoma. Br J Cancer 2024; 131:1781-1795. [PMID: 39478125 PMCID: PMC11589140 DOI: 10.1038/s41416-024-02881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Anaplastic Large Cell Lymphoma (ALCL) is a rare and aggressive T-cell lymphoma, classified into ALK-positive and ALK-negative subtypes, based on the presence of chromosomal translocations involving the ALK gene. The current standard of treatment for ALCL is polychemotherapy, with a high overall survival rate. However, a subset of patients does not respond to or develops resistance to these therapies, posing a serious challenge for clinicians. Recent targeted treatments such as ALK kinase inhibitors and anti-CD30 antibody-drug conjugates have shown promise but, for a fraction of patients, the prognosis is still unsatisfactory. METHODS We investigated the genetic landscape of ALK + ALCL by whole-exome sequencing; recurring mutations were characterized in vitro and in vivo using transduced ALCL cellular models. RESULTS Recurrent mutations in FAT family genes and the transcription factor RUNX1T1 were found. These mutations induced changes in ALCL cells morphology, growth, and migration, shedding light on potential factors contributing to treatment resistance. In particular, FAT4 silencing in ALCL cells activated the β-catenin and YAP1 pathways, which play crucial roles in tumor growth, and conferred resistance to chemotherapy. Furthermore, STAT1 and STAT3 were hyper-activated in these cells. Gene expression profiling showed global changes in pathways related to cell adhesion, cytoskeletal organization, and oncogenic signaling. Notably, FAT mutations associated with poor outcome in patients. CONCLUSIONS These findings provide novel insights into the molecular portrait of ALCL, that could help improve treatment strategies and the prognosis for ALCL patients.
Collapse
Affiliation(s)
- Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Geeta G Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Arosio
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nicoletta Cordani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cosimo Lobello
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Hugo Larose
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Deborah D'Aliberti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luca Massimino
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lucrezia Criscuolo
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lisa Pagani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Mastini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Silvia Bombelli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Neurogenomics Research Center, Fondazione Human Technopole, Milano, Italy
| | - Raffaella Meneveri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Lovisa
- Maternal and Child Health, Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
- Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Lara Mussolin
- Maternal and Child Health, Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
- Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Andrea Janikova
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mario Urso
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Haematopathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Haematology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
8
|
Wang J, Du J, Luo X, Guo L, Liu Y, Zhou J, Zou Y, Lu Z, Pan X, Chen X, Zhong A, Wan X, Wang L, Liu H, Dai S, Zhang S, Xiong X, Tan P, Wang M, Wu B, Zhang Q, Wang Y, Zhang M, Lu R, Lin H, Li Y, Li Y, Han Z, Chen L, Hu B, Liu Y, Na F, Chen C. A platform of functional studies of ESCC-associated gene mutations identifies the roles of TGFBR2 in ESCC progression and metastasis. Cell Rep 2024; 43:114952. [PMID: 39527477 DOI: 10.1016/j.celrep.2024.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/31/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Genomics studies have detected numerous genetic alterations in esophageal squamous cell carcinoma (ESCC). However, the functions of these mutations largely remain elusive, partially due to a lack of feasible animal models. Here, we report a convenient platform with CRISPR-Cas9-mediated introduction of genetic alterations and orthotopic transplantation to generate a series of primary ESCC models in mice. With this platform, we validate multiple frequently mutated genes, including EP300, FAT1/2/4, KMT2D, NOTCH2, and TGFBR2, as tumor-suppressor genes in ESCC. Among them, TGFBR2 loss dramatically promotes tumorigenesis and multi-organ metastasis. Paradoxically, TGFBR2 deficiency leads to Smad3 activation, and disruption of Smad3 partially restrains the progression of Tgfbr2-mutated tumors. Drug screening with tumor organoids identifies that pinaverium bromide represses Smad3 activity and restrains Tgfbr2-deficient ESCC. Our studies provide a highly efficient platform to investigate the in vivo functions of ESCC-associated mutations and develop potential treatments for this miserable malignancy.
Collapse
Affiliation(s)
- Jian Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajia Du
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangmeng Luo
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linjie Guo
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yixin Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Zou
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenghao Lu
- Chengdu OrganoidMed Medical Laboratory, West China Health Valley, Chengdu, Sichuan 610041, China
| | - Xiangyu Pan
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuelan Chen
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ailing Zhong
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xudong Wan
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siqi Dai
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Manli Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Baohong Wu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Zhang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingjie Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengsha Zhang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Runda Lu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huahang Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Li
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaxin Li
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zongkai Han
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Bing Hu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yu Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Feifei Na
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chong Chen
- Department of Gastroenterology, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, No387-201 Hemin st., Chengdu, Sichuan 610212, China; Children's Medicine Key Laboratory of Sichuan Province, Sichuan 610041, China.
| |
Collapse
|
9
|
Wang M, Yan X, Dong Y, Li X, Gao B. From driver genes to gene families: A computational analysis of oncogenic mutations and ubiquitination anomalies in hepatocellular carcinoma. Comput Biol Chem 2024; 112:108119. [PMID: 38852361 DOI: 10.1016/j.compbiolchem.2024.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a widespread primary liver cancer with a high fatality rate. Despite several genes with oncogenic effects in HCC have been identified, many remain undiscovered. In this study, we conducted a comprehensive computational analysis to explore the involvement of genes within the same families as known driver genes in HCC. Specifically, we expanded the concept beyond single-gene mutations to encompass gene families sharing homologous structures, integrating various omics data to comprehensively understand gene abnormalities in cancer. Our analysis identified 74 domains with an enriched mutation burden, 404 domain mutation hotspots, and 233 dysregulated driver genes. We observed that specific low-frequency somatic mutations may contribute to HCC occurrence, potentially overlooked by single-gene algorithms. Furthermore, we systematically analyzed how abnormalities in the ubiquitinated proteasome system (UPS) impact HCC, finding that abnormal genes in E3, E2, DUB families, and Degron genes often result in HCC by affecting the stability of oncogenic or tumor suppressor proteins. In conclusion, expanding the exploration of driver genes to include gene families with homologous structures emerges as a promising strategy for uncovering additional oncogenic alterations in HCC.
Collapse
Affiliation(s)
- Meng Wang
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| | - Xinyue Yan
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| | - Yanan Dong
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| | - Xiaoqin Li
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China.
| | - Bin Gao
- Faculty of Environment and Life of Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Jiang Z, Zhu M, Zhang L, Cui H, Jiang R, Yang Y. Antitumor immunity and prognosis value elicited by FAT3 and LRP1B co-mutation in endometrial cancer. Gynecol Oncol 2024; 187:1-11. [PMID: 38696842 DOI: 10.1016/j.ygyno.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVE FAT3 and LRP1B are two tumor suppressor genes with high mutation frequency in multiple cancer types, we sought to investigate the prognostic and immunological significance of these two genes in EC. METHODS Based on a cohort of 502 EC samples, we conducted a comprehensive analysis of its multidimensional data types including genomic, transcriptomic, and clinical information, the potential impact of FAT3 and LRP1B co-mutation on antitumor immune response and prognosis were systematically discussed. RESULTS We observed that FAT3 and LRP1B co-mutation was not only defined a dataset with prominently increased TMB, decreased tumor aneuploidy, and specially enriched in MSI-H subtype, but also manifested increased expression of immune-related markers, especially exclusive upregulation of PD-L1 levels and higher PD-L1+/CD8A+ proportion. Further analysis focused on lymphocyte infiltration and pathway enrichment explored the immune cell composition of the microenvironment and underlying molecular mechanisms affecting tumor development. Furthermore, EC patients with FAT3 and LRP1B co-mutation possessed significantly prolonged PFS and OS, and the co-mutation status was proved to be an independent prognostic factor. And a nomogram with high predictive performance was constructed by incorporating co-mutation with clinical features. More strikingly, the prognosis of MSI-H patients in EC with co-mutation was significantly improved, and their survival reached a level consistent with the POLE subtype. CONCLUSIONS In endometrial cancer, co-mutation of FAT3 and LRP1B not only leads to activation of the immune state, but also represents a subgroup with an improved prognosis, particularly in the MSI-H subtype.
Collapse
Affiliation(s)
- Zhansheng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, China.
| | - Mingyu Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Center for Precision Cancer Medicine & Translational Research, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, China
| | - Lu Zhang
- Center for Precision Cancer Medicine & Translational Research, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, China
| | - Haiyan Cui
- Center for Precision Cancer Medicine & Translational Research, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Center for Precision Cancer Medicine & Translational Research, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, China.
| | - Yanfang Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of the second breast cancer, Tianjin Medical University Cancer Institute and Hospital, China.
| |
Collapse
|
11
|
Messeha SS, Zarmouh NO, Maku H, Gendy S, Yedjou CG, Elhag R, Latinwo L, Odewumi C, Soliman KFA. Prognostic and Therapeutic Implications of Cell Division Cycle 20 Homolog in Breast Cancer. Cancers (Basel) 2024; 16:2546. [PMID: 39061186 PMCID: PMC11274456 DOI: 10.3390/cancers16142546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Cell division cycle 20 homolog (CDC20) is a well-known regulator of cell cycle progression. Abnormal expression of CDC20 leads to mitotic defects, which play a significant role in cancer development. In breast cancer (BC), CDC20 has been identified as a biomarker that has been linked to poor patient outcomes. In this study, we investigated the association of CDC20 with BC prognosis and immune cell infiltration by using multiple online databases, including UALCAN, KM plotter, TIMER2.0, HPA, TNM-plot, bc-GenExMiner, LinkedOmics, STRING, and GEPIA. The results demonstrate that BC patients have an elevated CDC20 expression in tumor tissues compared with the adjacent normal tissue. In addition, BC patients with overexpressed CDC20 had a median survival of 63.6 months compared to 169.2 months in patients with low CDC20 expression. Prognostic analysis of the examined data indicated that elevated expression of CDC20 was associated with poor prognosis and a reduction of overall survival in BC patients. These findings were even more prevalent in chemoresistance triple-negative breast cancer (TNBC) patients. Furthermore, the Gene Set Enrichment Analysis tool indicated that CDC20 regulates BC cells' cell cycle and apoptosis. CDC20 also significantly correlates with increased infiltrating B cells, CD4+ T cells, neutrophils, and dendritic cells in BC. In conclusion, the findings of this study suggest that CDC20 may be involved in immunomodulating the tumor microenvironment and provide evidence that CDC20 inhibition may serve as a potential therapeutic approach for the treatment of BC patients. In addition, the data indicates that CDC20 can be a reliable prognostic biomarker for BC.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL 32307, USA
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata LY72, Libya;
| | - Henrietta Maku
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Clement G. Yedjou
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Rashid Elhag
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Lekan Latinwo
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Caroline Odewumi
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Karam F. A. Soliman
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL 32307, USA
| |
Collapse
|
12
|
Ma MC, Lavi ES, Altwerger G, Lin ZP, Ratner ES. Predictive modeling of gene mutations for the survival outcomes of epithelial ovarian cancer patients. PLoS One 2024; 19:e0305273. [PMID: 38976671 PMCID: PMC11230535 DOI: 10.1371/journal.pone.0305273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Epithelial ovarian cancer (EOC) has a low overall survival rate, largely due to frequent recurrence and acquiring resistance to platinum-based chemotherapy. EOC with homologous recombination (HR) deficiency has increased sensitivity to platinum-based chemotherapy because platinum-induced DNA damage cannot be repaired. Mutations in genes involved in the HR pathway are thought to be strongly correlated with favorable response to treatment. Patients with these mutations have better prognosis and an improved survival rate. On the other hand, mutations in non-HR genes in EOC are associated with increased chemoresistance and poorer prognosis. For this reason, accurate predictions in response to treatment and overall survival remain challenging. Thus, analyses of 360 EOC cases on NCI's The Cancer Genome Atlas (TCGA) program were conducted to identify novel gene mutation signatures that were strongly correlated with overall survival. We found that a considerable portion of EOC cases exhibited multiple and overlapping mutations in a panel of 31 genes. Using logistical regression modeling on mutational profiles and patient survival data from TCGA, we determined whether specific sets of deleterious gene mutations in EOC patients had impacts on patient survival. Our results showed that six genes that were strongly correlated with an increased survival time are BRCA1, NBN, BRIP1, RAD50, PTEN, and PMS2. In addition, our analysis shows that six genes that were strongly correlated with a decreased survival time are FANCE, FOXM1, KRAS, FANCD2, TTN, and CSMD3. Furthermore, Kaplan-Meier survival analysis of 360 patients stratified by these positive and negative gene mutation signatures corroborated that our regression model outperformed the conventional HR genes-based classification and prediction of survival outcomes. Collectively, our findings suggest that EOC exhibits unique mutation signatures beyond HR gene mutations. Our approach can identify a novel panel of gene mutations that helps improve the prediction of treatment outcomes and overall survival for EOC patients.
Collapse
Affiliation(s)
- Mirielle C Ma
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ethan S Lavi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Z Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Elena S Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
13
|
Wang Y, Shang P, Xu C, Dong W, Zhang X, Xia Y, Sui C, Yang C. Novel genetic alterations in liver cancer distinguish distinct clinical outcomes and combination immunotherapy responses. Front Pharmacol 2024; 15:1416295. [PMID: 38948469 PMCID: PMC11211383 DOI: 10.3389/fphar.2024.1416295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction: Genomic profiling has revolutionized therapeutic interventions and the clinical management of liver cancer. However, pathogenetic mechanisms, molecular determinants of recurrence, and predictive biomarkers for first-line treatment (anti-PD-(L)1 plus bevacizumab) in liver cancer remain incompletely understood. Materials and methods: Targeted next-generation sequencing (tNGS) (a 603-cancer-gene panel) was applied for the genomic profiling of 232 hepatocellular carcinoma (HCC) and 22 intrahepatic cholangiocarcinoma (ICC) patients, among which 47 unresectable/metastatic HCC patients underwent anti-PD-1 plus bevacizumab therapy. Genomic alterations were estimated for their association with vascular invasion (VI), location of onset, recurrence, overall survival (OS), recurrence-free survival (RFS), and anti-PD-1 plus bevacizumab therapy response. Results: The genomic landscape exhibited that the most commonly altered genes in HCC were TP53, FAT3, PDE4DIP, KMT2C, FAT1, and MYO18A, while TP53, FAT1, FAT3, PDE4DIP, ROS1, and GALNT11 were frequently altered in ICC; notably, KRAS (18.18% vs. 1.29%) and BAP1 (13.64% vs. 1.29%) alterations were significantly more prevalent in ICC. Comparison analysis demonstrated the distinct clinicopathological/genomic characterizations between Chinese and Western HCC cohorts. Genomic profiling of HCC underlying VI showed that LDLR, MSH2, KDM5D, PDE3A, and FOXO1 were frequently altered in the VI group compared to patients without VIs. Compared to the right hepatic lobes of HCC patients, the left hepatic lobe of HCC patients had superior OS (median OS: 36.77 months vs. unreached, p < 0.05). By further comparison, Notch signaling pathway-related alterations were significantly prevalent among the right hepatic lobes of HCC patients. Of note, multivariate Cox regression analysis showed that altered RB1, NOTCH3, MGA, SYNE1, and ZFHX3, as independent prognostic factors, were significantly correlated with the OS of HCC patients. Furthermore, altered LATS1 was abundantly enriched in the HCC-recurrent group, and impressively, it was independent of clinicopathological features in predicting RFS (median RFS of altered type vs. wild-type: 5.57 months vs. 22.47 months, p < 0.01). Regarding those treated HCC patients, TMB value, altered PTPRZ1, and cell cycle-related alterations were identified to be positively associated with the objective response rate (ORR), but KMT2D alterations were negatively correlated with ORR. In addition, altered KMT2D and cell cycle signaling were significantly associated with reduced and increased time to progression-free survival (PFS), respectively. Conclusion: Comprehensive genomic profiling deciphered distinct molecular characterizations underlying VI, location of onset, recurrence, and survival time in liver cancer. The identification of novel genetic predictors of response to anti-PD-1 plus bevacizumab in HCC facilitated the development of an evidence-based approach to therapy.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Peipei Shang
- Department of Medical Oncology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chang Xu
- Department of General Surgery, Biliary Tract Disease Institute, Biliary Tract Disease Center, and Cancer Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaofeng Zhang
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chengjun Sui
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Yang
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Li Q, Chu Y, Yao Y, Song Q. FAT4 Mutation is Related to Tumor Mutation Burden and Favorable Prognosis in Gastric Cancer. Curr Genomics 2024; 25:380-389. [PMID: 39323626 PMCID: PMC11420567 DOI: 10.2174/0113892029300694240612081006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Objective This study aimed to investigate the frequently mutated genes in Gastric Cancer (GC), assess their association with Tumor Mutation Burden (TMB) and the patients' survival, and identify the potential biomarkers for tailored therapy. Methods Simple somatic mutation data of GC were collected from the TCGA and ICGC databases. The high-frequency mutated genes were identified from both datasets. The samples were initially dichotomized into wild-type and mutation groups based on the status of overlapping genes. TMB difference between the two groups was evaluated by the Mann-Whitney U-test. Survival difference between the two groups was compared by the Kaplan-Meier method with a log-rank test. The prognostic value of the target gene was assessed by the Cox proportional hazards model. The signaling pathways involved in FAT4 mutation were identified by Gene Set Enrichment Analysis (GSEA). The fractions of different tumor-infiltrating immune cells were calculated by the CIBERSORT algorithm. Results 21 overlapping genes with frequent mutation were identified in both datasets. Mutation of these genes was significantly associated with higher TMB (P<0.05) in GC. The survival of the FAT4 mutation group was superior to the wild-type group. FAT4 mutation was also identified as an independent favorable prognostic factor for the GC patients. GSEA indicated that FAT4 mutation activated the signaling pathways involved in energy metabolism. Finally, CD4 memory-activated T cells, follicular helper T cells, and gamma delta T cells were significantly more enriched, while naïve B cells and regulatory T cells (Tregs) were significantly less enriched in the FAT4 mutation group (P<0.05). Conclusion FAT4 mutation is relevant to TMB and favorable prognosis in GC, which may become a useful biomarker for immunotherapy of GC patients.
Collapse
Affiliation(s)
- Qingqing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuxin Chu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
15
|
Wang M, Yan X, Dong Y, Li X, Gao B. Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment. PLoS Comput Biol 2024; 20:e1012113. [PMID: 38728362 PMCID: PMC11230636 DOI: 10.1371/journal.pcbi.1012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/08/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.
Collapse
Affiliation(s)
- Meng Wang
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Xinyue Yan
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Yanan Dong
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Xiaoqin Li
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| | - Bin Gao
- Faculty of Environment and Life of Beijing University of Technology, Beijing, China
| |
Collapse
|
16
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
17
|
Yue C, Lian W, Fan Z, Li H, Duan M, Qin L, Cao X, Peng J. The role of PKP1 in tumor progression in melanoma: Analysis of a cell adhesion-related model. ENVIRONMENTAL TOXICOLOGY 2024; 39:915-926. [PMID: 37966033 DOI: 10.1002/tox.24017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
The incidence rate of melanoma varies across regions, with Europe, the United States, and Australia having 10-25, 20-30, and 50-60 cases per 1 00 000 people. In China, patients with melanoma exhibit different clinical manifestations, pathogenesis, and outcomes. Current treatments include surgery, adjuvant therapy, and immune checkpoint inhibitors. Nonetheless, complications may arise during treatment. Melanoma development is heavily reliant on cell adhesion molecules (CAMs), and studying these molecules could provide new research directions for metastasis and progression. CAMs include the integrin, immunoglobulin, selectin, and cadherin families, and they affect multiple processes, such as maintenance, morphogenesis, and migration of adherens junction. In this study, a cell adhesion-related risk prognostic signature was constructed using bioinformatics methods, and survival analysis was performed. Plakophilin 1 (PKP1) was observed to be crucial to the immune microenvironment and has significant effects on melanoma cell proliferation, migration, invasion, and the cell cycle. This signature demonstrates high reliability and has potential for clinical applications.
Collapse
Affiliation(s)
- Chao Yue
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, Hangzhou, China
| | - Wenqin Lian
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongru Fan
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | | | - Mengying Duan
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, Hangzhou, China
| | | | - Xianbin Cao
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, Hangzhou, China
| | - Jianzhong Peng
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, Hangzhou, China
| |
Collapse
|
18
|
Yu X, Li W, Sun S, Li J. Investigating the prognostic value of mTORC1 signaling in bladder cancer via bioinformatics evaluation. Sci Rep 2023; 13:22066. [PMID: 38086955 PMCID: PMC10716140 DOI: 10.1038/s41598-023-49366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Bladder cancer, a prevalent and heterogeneous malignancy, necessitates the discovery of pertinent biomarkers to enable personalized treatment. The mammalian target of rapamycin complex 1 (mTORC1), a pivotal regulator of cellular growth, metabolism, and immune response, exhibits activation in a subset of bladder cancer tumors. In this study, we explore the prognostic significance of mTORC1 signaling in bladder cancer through the utilization of bioinformatics analysis. Our investigation incorporates transcriptomic, somatic mutation, and clinical data, examining the mTORC1 score of each sample, as well as the enrichment of differentially expressed genes (DEGs), differentiation characteristics, immunological infiltration, and metabolic activity. Our findings reveal that elevated mTORC1 levels serve as an adverse prognostic indicator for bladder cancer patients, exhibiting a significant association with Basal-type bladder cancer. Patients with heightened mTORC1 activation display heightened levels of pro-carcinogenic metabolism. Additionally, these individuals demonstrate enhanced response to immunotherapy. Finally, we develop an mTORC1-related signature capable of predicting the prognosis of bladder cancer patients.The signature offers novel mTORC1-related biomarkers and provides fresh insights into the involvement of mTORC1 in the pathogenesis of bladder cancer.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, People's Republic of China.
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, People's Republic of China.
- Department of General Surgery, Taikang Tongji (Wuhan) Hospital, 322 Sixin North Road, Wuhan, 430050, Hubei Province, People's Republic of China.
| |
Collapse
|
19
|
León X, Llansana A, Pérez-Ugarte L, García J, Valero C, Quer M, Camacho M. Predictive capacity of FAT1 transcriptional expression in patients with head and neck squamous cell carcinomas treated with radiotherapy. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2023; 74:359-364. [PMID: 37931687 DOI: 10.1016/j.otoeng.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/11/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To analyze the predictive capacity at the primary location of the tumor of the FAT1 transcriptional expression in patients with head and neck squamous cell carcinoma treated with radiotherapy. MATERIAL AND METHODS We conducted a retrospective study from biopsies of the primary location of the tumor in 82 patients with head and neck squamous cell carcinoma treated with radiotherapy. The transcriptional expression of FAT1 was determined by RT-PCR. The level of FAT1 transcriptional expression was categorized according to the local control after radiotherapy using a recursive partitioning analysis. RESULTS Elevated FAT1 transcriptional expression was associated with an increased risk of local recurrence after radiotherapy. Patients with a high expression level of FAT1 (n=18; 22.0%) had a 5-year local recurrence-free survival of 42.1% (95% CI: 18.6%-65.6%), whereas for patients with a low expression (n=64; 78.0%) it was 72.4% (95% CI: 61.5%-83.3%) (p=0.002). According to the result of a multivariate analysis, patients with a high FAT1 expression category had a 2.3-fold increased risk of local recurrence (95% CI: 1.0-5.2; p=0.043). CONCLUSIONS Elevated FAT1 transcriptional expression was associated with a significantly increased risk of local recurrence in patients with head and neck squamous cell carcinoma treated with radiotherapy.
Collapse
Affiliation(s)
- Xavier León
- Servicio de Otorrinolaringología, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Universitat de Vic (UVic) - Universitat Central de Catalunya, Vic, Barcelona, Spain
| | - Albert Llansana
- Servicio de Otorrinolaringología, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Leyre Pérez-Ugarte
- Servicio de Otorrinolaringología, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Jacinto García
- Servicio de Otorrinolaringología, Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina Valero
- Servicio de Otorrinolaringología, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miquel Quer
- Servicio de Otorrinolaringología, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Mercedes Camacho
- Genomics of Complex Diseases, Research Institute Hospital Sant Pau, IIB Sant Pau, Barcelona, Spain
| |
Collapse
|
20
|
Wang H, Mazzocca A, Gao P. Cadherin dysregulation in gastric cancer: insights into gene expression, pathways, and prognosis. J Gastrointest Oncol 2023; 14:2064-2082. [PMID: 37969819 PMCID: PMC10643585 DOI: 10.21037/jgo-23-700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
Background The Cadherin gene family holds immense significance in maintaining the integrity and functionality of stomach tissues, playing crucial roles in cell-cell adhesion, cell migration and differentiation. Dysregulation of cadherin expression and function has been closely associated with various gastric diseases, particularly gastric cancer (GC). Understanding the regulation and clinical implications of cadherin genes in GC is essential to improve our knowledge and to identify new potential prognostic markers and therapeutic targets. Methods In this study, we provide an overview on the role of cadherin family genes in GC using bioinformatics analysis. We analyzed the expression, mutational status, and prognostic value of these genes based on available public datasets. Our methodology involved data mining, differential expression analysis, functional enrichment analysis, and survival analysis to explore the association between cadherin gene expression and clinical outcomes in GC patients. Additionally, we investigated the relationship between cadherin expression and immune cell infiltration to gain insights into the tumor microenvironment's role in GC progression. Results Our bioinformatics analysis revealed significant differential expression of 16 cadherin genes in GC samples compared to normal tissues. Approximately up to 52% of the analyzed cancer samples exhibited genomic alterations in these cadherins, indicating their potential relevance in GC development. Functional enrichment analysis demonstrated that these differentially expressed cadherins were closely associated with critical cellular processes, including cell adhesion and immune-modulation. Remarkably, lower expression levels of most cadherin genes were linked to improved prognosis in GC patients, suggesting their potential importance as valuable prognostic biomarkers. Conclusions The findings deriving from our comprehensive study provide important insights into the dysregulation of cadherin genes in GC and their impact on gene expression, molecular pathways, and prognosis. The associations with clinical outcomes and immune cell infiltration highlight the potential role of cadherin genes as prognostic biomarkers and therapeutic targets in GC.
Collapse
Affiliation(s)
- Huan Wang
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | | | - Puyue Gao
- Department of Digestive Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
21
|
Li J, Lv M, Huang Q, Hu R, Zhong X, Sun X, Feng W, Han Z, Ma M, Zhang W, Zhou X. FAT4 expression in peripheral blood mononuclear cells is associated with prognosis and immune cell infiltration in hepatocellular carcinoma. Sci Rep 2023; 13:15735. [PMID: 37735184 PMCID: PMC10514079 DOI: 10.1038/s41598-023-42560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Peripheral blood mononuclear cell (PBMC) genes reflect the host immune status and could be suitable for evaluating the prognosis of patients with hepatocellular carcinoma (HCC), for which a reliable biomarker is unavailable and the host immune responses to cancer cells. This study aimed to investigate prognostically relevant genes in HCC PBMCs and assessed whether their expression represents tumor immune infiltration. Gene expression in PBMCs from patients with advanced or terminal HCC who had survived or died was examined. Correlations among FAT atypical cadherin 4 (FAT4) expression, cancer immune characteristics, and infiltrated immune cell gene marker sets were analyzed. FAT4 expression was lower in the PBMCs of patients with advanced or terminal HCC who had died than that in patients who survived. Kaplan-Meier analysis indicated that FAT4 downregulation was associated with a relatively poor prognosis while overexpression was positively correlated with immune cell infiltration, several immune cell markers, and immune checkpoint expression. Hsa-miR-93-5p represented the most probable upstream microRNA of FAT4. Thus, upregulated FAT4 in PBMCs and HCC tissues might indicate a favorable prognosis and increased immune cell infiltration, while miRNA-93-5p could be a modulator of FAT4 expression. Collectively, these findings suggest novel immunotherapy targets for HCC.
Collapse
Affiliation(s)
- Jing Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China
- Faculty of Chinese Medicine, Taipa, Macau University of Science and Technology, Macao, People's Republic of China
| | - Minling Lv
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China
| | - Qi Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China
| | - Rui Hu
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China
- Faculty of Chinese Medicine, Taipa, Macau University of Science and Technology, Macao, People's Republic of China
| | - Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China
| | - Xinfeng Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China
| | - Wenxing Feng
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China
| | - Zhiyi Han
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China
| | - MengQing Ma
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China
| | - Wei Zhang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, People's Republic of China.
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, People's Republic of China.
| |
Collapse
|
22
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
23
|
Cai R, Zhu H, Liu Y, Sha H, Peng W, Yin R, Zhou G, Fang Y. To be, or not to be: the dilemma of immunotherapy for non-small cell lung cancer harboring various driver mutations. J Cancer Res Clin Oncol 2023; 149:10027-10040. [PMID: 37261523 PMCID: PMC10423141 DOI: 10.1007/s00432-023-04919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Lung cancer is one of primary cancer type with high incidence and mortality, non-small cell lung cancer (NSCLC) is the most common type of lung cncer. For advanced lung cancer, traditional chemotherapy and targeted therapy become difficult to solve the dilemma of further progress. In recent years, with the clinical application of immunotherapy, the therapeutic strategy of lung cancer has changed dramatically. At present, immunotherapy has shown conspicuous efficacy in NSCLC patients with high expression of programmed death-ligand 1 (PD-L1) and high tumor mutational burden (TMB). The discovery of driver mutations brings delightful hope for targeted cancer therapy. However, it remains controversial whether immunotherapy can be used in NSCLC patients with these specific driver mutations. METHOD This article summarized the latest research progresses of immunotherapy in advanced NSCLC. We paid close attention to the relevance of various driver mutations and immunotherapy in NSCLC patients, and summarized the predictive effects of several driver mutations and immunotherapy. RESULTS The mutations of KRAS, KRAS+TP53, EPHA (especially EPHA5), ZFHX3, ZFHX3+TP53, NOTCH, BRAF and LRP1B+FAT3 have potential to be used as biomarkers to predict the positive effectiveness of immunotherapy. ZFHX3, ZFHX3+TP53, STKII/LKB1+KEAP1+SMARCA4+PBRM1 mutations in LUAD patients get more positive effect in immunotherapy. While the mutations of EGFR, KEAP1, STKII/LKB1+KRAS, EML4-ALK, MET exon 14 skipping mutation, PBRM1, STKII/LKB1+KEAP1+SMARCA4+PBRM1, ERBB2, PIK3CA and RET often indicate poor benefit from immunotherapy. CONCLUSION Many gene mutations have been shown to be associated with immunotherapy efficacy. Gene mutations should be combined with PD-L1, TMB, etc. to predict the effect of immunotherapy.
Collapse
Affiliation(s)
- Ruoxue Cai
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, People's Republic of China
| | - Hongyu Zhu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, People's Republic of China
| | - Ying Liu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, People's Republic of China
| | - Huanhuan Sha
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Weiwei Peng
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, People's Republic of China
| | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, People's Republic of China.
| | - Ying Fang
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
24
|
Tatarczuch M, Waltham M, Shortt J, Polekhina G, Hawkes EA, Ho SJ, Trotman J, Brasacchio D, Co M, Li J, Ramakrishnan V, Dunne K, Opat SS, Gregory GP. Molecular associations of response to the new-generation BTK inhibitor zanubrutinib in marginal zone lymphoma. Blood Adv 2023; 7:3531-3539. [PMID: 36947202 PMCID: PMC10368859 DOI: 10.1182/bloodadvances.2022009412] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023] Open
Abstract
Using tissue whole exome sequencing (WES) and circulating tumor cell-free DNA (ctDNA), this Australasian Leukaemia & Lymphoma Group translational study sought to characterize primary and acquired molecular determinants of response and resistance of marginal zone lymphoma (MZL) to zanubrutinib for patients treated in the MAGNOLIA clinical trial. WES was performed on baseline tumor samples obtained from 18 patients. For 7 patients, ctDNA sequence was interrogated using a bespoke hybrid-capture next-generation sequencing assay for 48 targeted genes. Somatic mutations were correlated with objective response data and survival analysis using Fisher exact test and Kaplan-Meier (log-rank) method, respectively. Baseline WES identified mutations in 33 of 48 (69%) prioritized genes. NF-κB, NOTCH, or B-cell receptor (BCR) pathway genes were implicated in samples from 16 of 18 patients (89%). KMT2D mutations (n = 11) were most common, followed by FAT1 (n = 9), NOTCH1, NOTCH2, TNFAIP3 (n = 5), and MYD88 (n = 4) mutations. MYD88 or TNFAIP3 mutations correlated with improved progression-free survival (PFS). KMT2D mutations trended to worse PFS. Acquired resistance mutations PLCG2 (R665W/R742P) and BTK (C481Y/C481F) were detected in 2 patients whose disease progressed. A BTK E41K noncatalytic activating mutation was identified before treatment in 1 patient who was zanubrutinib-refractory. MYD88, TNFAIP3, and KMT2D mutations correlate with PFS in patients with relapsed/refractory MZL treated with zanubrutinib. Detection of acquired BTK and PLCG2 mutations in ctDNA while on therapy is feasible and may herald clinical disease progression. This trial was registered at https://anzctr.org.au/ as #ACTRN12619000024145.
Collapse
Affiliation(s)
- Maciej Tatarczuch
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | - Mark Waltham
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | - Jake Shortt
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | - Galina Polekhina
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Eliza A. Hawkes
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Eastern Health, Melbourne, VIC, Australia
- Olivia Newton John Cancer Research Institute at Austin Health, Melbourne, VIC, Australia
| | - Shir-Jing Ho
- St George Hospital, Sydney, NSW, Australia
- St George & Sutherland Clinical School, University of NSW, Sydney, Australia
| | - Judith Trotman
- Department of Hematology, Concord Repatriation General Hospital, Sydney, NSW, Australia
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Daniella Brasacchio
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | | | | | | | - Karin Dunne
- Australasian Leukaemia & Lymphoma Group, Melbourne, VIC, Australia
| | - Stephen S. Opat
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | - Gareth P. Gregory
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | - Australasian Leukaemia and Lymphoma Group
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Eastern Health, Melbourne, VIC, Australia
- Olivia Newton John Cancer Research Institute at Austin Health, Melbourne, VIC, Australia
- St George Hospital, Sydney, NSW, Australia
- St George & Sutherland Clinical School, University of NSW, Sydney, Australia
- Department of Hematology, Concord Repatriation General Hospital, Sydney, NSW, Australia
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia
- BeiGene Co Ltd, USA Inc, San Mateo, CA
- Australasian Leukaemia & Lymphoma Group, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Xu L, Pierce JL, Sanchez A, Chen KS, Shukla AA, Fustino NJ, Stuart SH, Bagrodia A, Xiao X, Guo L, Krailo MD, Shaikh F, Billmire DF, Pashankar F, Bestrashniy J, Oosterhuis JW, Gillis AJM, Xie Y, Teot L, Mora J, Poynter JN, Rakheja D, Looijenga LHJ, Draper BW, Frazier AL, Amatruda JF. Integrated genomic analysis reveals aberrations in WNT signaling in germ cell tumors of childhood and adolescence. Nat Commun 2023; 14:2636. [PMID: 37149691 PMCID: PMC10164134 DOI: 10.1038/s41467-023-38378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
Germ cell tumors (GCTs) are neoplasms of the testis, ovary and extragonadal sites that occur in infants, children, adolescents and adults. Post-pubertal (type II) malignant GCTs may present as seminoma, non-seminoma or mixed histologies. In contrast, pre-pubertal (type I) GCTs are limited to (benign) teratoma and (malignant) yolk sac tumor (YST). Epidemiologic and molecular data have shown that pre- and post-pubertal GCTs arise by distinct mechanisms. Dedicated studies of the genomic landscape of type I and II GCT in children and adolescents are lacking. Here we present an integrated genomic analysis of extracranial GCTs across the age spectrum from 0-24 years. Activation of the WNT pathway by somatic mutation, copy-number alteration, and differential promoter methylation is a prominent feature of GCTs in children, adolescents and young adults, and is associated with poor clinical outcomes. Significantly, we find that small molecule WNT inhibitors can suppress GCT cells both in vitro and in vivo. These results highlight the importance of WNT pathway signaling in GCTs across all ages and provide a foundation for future efforts to develop targeted therapies for these cancers.
Collapse
Affiliation(s)
- Lin Xu
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Joshua L Pierce
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angelica Sanchez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abhay A Shukla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas J Fustino
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Blank Children's Hospital, Des Moines, IA, USA
| | - Sarai H Stuart
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aditya Bagrodia
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Xue Xiao
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark D Krailo
- Department of Preventative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
- Children's Oncology Group, Monrovia, CA, USA
| | - Furqan Shaikh
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Farzana Pashankar
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Ad J M Gillis
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Yang Xie
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lisa Teot
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Jaume Mora
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - Jenny N Poynter
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Dinesh Rakheja
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| | - A Lindsay Frazier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Han M, Moon S, Lee S, Kim K, An WJ, Ryu H, Kang E, Ahn JH, Sung HY, Park YS, Lee SE, Lee SH, Jeong KH, Ahn C, Kelly TN, Hsu JY, Feldman HI, Park SK, Oh KH. Novel Genetic Variants Associated with Chronic Kidney Disease Progression. J Am Soc Nephrol 2023; 34:857-875. [PMID: 36720675 PMCID: PMC10125649 DOI: 10.1681/asn.0000000000000066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/11/2022] [Indexed: 02/02/2023] Open
Abstract
SIGNIFICANCE STATEMENT eGFR slope has been used as a surrogate outcome for progression of CKD. However, genetic markers associated with eGFR slope among patients with CKD were unknown. We aimed to identify genetic susceptibility loci associated with eGFR slope. A two-phase genome-wide association study identified single nucleotide polymorphisms (SNPs) in TPPP and FAT1-LINC02374 , and 22 of them were used to derive polygenic risk scores that mark the decline of eGFR by disrupting binding of nearby transcription factors. This work is the first to identify the impact of TPPP and FAT1-LINC02374 on CKD progression, providing predictive markers for the decline of eGFR in patients with CKD. BACKGROUND The incidence of CKD is associated with genetic factors. However, genetic markers associated with the progression of CKD have not been fully elucidated. METHODS We conducted a genome-wide association study among 1738 patients with CKD, mainly from the KoreaN cohort study for Outcomes in patients With CKD. The outcome was eGFR slope. We performed a replication study for discovered single nucleotide polymorphisms (SNPs) with P <10 -6 in 2498 patients with CKD from the Chronic Renal Insufficiency Cohort study. Several expression quantitative trait loci (eQTL) studies, pathway enrichment analyses, exploration of epigenetic architecture, and predicting disruption of transcription factor (TF) binding sites explored potential biological implications of the loci. We developed and evaluated the effect of polygenic risk scores (PRS) on incident CKD outcomes. RESULTS SNPs in two novel loci, TPPP and FAT1-LINC02374 , were replicated (rs59402340 in TPPP , Pdiscovery =7.11×10 -7 , PCRIC =8.13×10 -4 , Pmeta =7.23×10 -8 ; rs28629773 in FAT1-LINC02374 , Pdiscovery =6.08×10 -7 , PCRIC =4.33×10 -2 , Pmeta =1.87×10 -7 ). The eQTL studies revealed that the replicated SNPs regulated the expression level of nearby genes associated with kidney function. Furthermore, these SNPs were near gene enhancer regions and predicted to disrupt the binding of TFs. PRS based on the independently significant top 22 SNPs were significantly associated with CKD outcomes. CONCLUSIONS This study demonstrates that SNP markers in the TPPP and FAT1-LINC02374 loci could be predictive markers for the decline of eGFR in patients with CKD.
Collapse
Affiliation(s)
- Miyeun Han
- Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
- Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sangjun Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
| | - Kyungsik Kim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea
| | - Woo Ju An
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eunjeong Kang
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hye Youn Sung
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Ho Lee
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung Hwan Jeong
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, National Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
| | - Jesse Y. Hsu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Harold I. Feldman
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
27
|
Xu Q, Xu X, Tang H, Yan J, Li J, Bao H, Wu X, Shao Y, Luo C, Wen H, Jin J, Ying J. Exploring potential molecular resistance and clonal evolution in advanced HER2-positive gastric cancer under trastuzumab therapy. Oncogenesis 2023; 12:21. [PMID: 37072406 PMCID: PMC10113330 DOI: 10.1038/s41389-023-00466-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
HER2-positive gastric cancer (GC) makes up 15-20% of all GC incidences, and targeted therapy with trastuzumab is the standard of treatment. However, the mechanisms of resistance to trastuzumab are still not fully understood and presents a significant challenge in clinical practice. In this study, whole exome sequencing (WES) was performed on paired tumor tissues before trastuzumab treatment (at baseline) and at progressive disease (PD) in 23 GC patients. Clinicopathological and molecular features that may be associated with primary and/or acquired resistance to trastuzumab were identified. Lauren classification of intestinal type was associated with a more prolonged progression-free survival (PFS) than diffuse type (HR = 0.29, P = 0.019). Patients with low tumor mutation burden (TMB) showed significantly worse PFS, while high chromosome instability (CIN) was correlated with prolonged OS (HR = 0.27; P = 0.044). Patients who responded to treatment had a higher CIN than nonresponders, and a positive trend towards increasing CIN was observed as response improved (P = 0.019). In our cohort, the most common genes to acquire mutations are AURKA, MYC, STK11, and LRP6 with four patients each. We also discovered an association between clonal branching pattern and survival, with an extensive clonal branching pattern being more closely related to a shorter PFS than other branching patterns (HR = 4.71; P = 0.008). We identified potential molecular and clinical factors that provide insight regarding potential association to trastuzumab resistance in advanced HER2-positive GC patients.
Collapse
Affiliation(s)
- Qi Xu
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Xiaoqing Xu
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
- Department of Medical Oncology, The Second Clinical Medical College of Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Haimeng Tang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., 210031, Nanjing, China
| | - Junrong Yan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., 210031, Nanjing, China
| | - Jingjing Li
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., 210031, Nanjing, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., 210031, Nanjing, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., 210031, Nanjing, China
- School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
| | - Cong Luo
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Haimin Wen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Jianying Jin
- Department of Medical Oncology, Taizhou Hospital of Zhejiang Province, 317000, Taizhou, China.
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, 310022, Hangzhou, China.
| |
Collapse
|
28
|
Li R, Shao J, Jin YJ, Kawase H, Ong YT, Troidl K, Quan Q, Wang L, Bonnavion R, Wietelmann A, Helmbacher F, Potente M, Graumann J, Wettschureck N, Offermanns S. Endothelial FAT1 inhibits angiogenesis by controlling YAP/TAZ protein degradation via E3 ligase MIB2. Nat Commun 2023; 14:1980. [PMID: 37031213 PMCID: PMC10082778 DOI: 10.1038/s41467-023-37671-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
Activation of endothelial YAP/TAZ signaling is crucial for physiological and pathological angiogenesis. The mechanisms of endothelial YAP/TAZ regulation are, however, incompletely understood. Here we report that the protocadherin FAT1 acts as a critical upstream regulator of endothelial YAP/TAZ which limits the activity of these transcriptional cofactors during developmental and tumor angiogenesis by promoting their degradation. We show that loss of endothelial FAT1 results in increased endothelial cell proliferation in vitro and in various angiogenesis models in vivo. This effect is due to perturbed YAP/TAZ protein degradation, leading to increased YAP/TAZ protein levels and expression of canonical YAP/TAZ target genes. We identify the E3 ubiquitin ligase Mind Bomb-2 (MIB2) as a FAT1-interacting protein mediating FAT1-induced YAP/TAZ ubiquitination and degradation. Loss of MIB2 expression in endothelial cells in vitro and in vivo recapitulates the effects of FAT1 depletion and causes decreased YAP/TAZ degradation and increased YAP/TAZ signaling. Our data identify a pivotal mechanism of YAP/TAZ regulation involving FAT1 and its associated E3 ligase MIB2, which is essential for YAP/TAZ-dependent angiogenesis.
Collapse
Affiliation(s)
- Rui Li
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Jingchen Shao
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Young-June Jin
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Haruya Kawase
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Yu Ting Ong
- Max Planck Institute for Heart and Lung Research, Angiogenesis & Metabolism Laboratory, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Kerstin Troidl
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
- Department of Vascular and Endovascular Surgery, Cardiovascular Surgery Clinic, University Hospital Frankfurt and Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Qi Quan
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Lei Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Remy Bonnavion
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Max Planck Institute for Heart and Lung Research, Small Animal Imaging Service Group, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Francoise Helmbacher
- Aix Marseille Université, CNRS, IBDM UMR 7288, Parc Scientifique de Luminy, Case 907, 13288, Marseille, France
| | - Michael Potente
- Max Planck Institute for Heart and Lung Research, Angiogenesis & Metabolism Laboratory, Ludwigstr. 43, 61231, Bad Nauheim, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry Service Group, Ludwigstr. 43, 61231, Bad Nauheim, Germany
- Institute of Translational Proteomics, Department of Medicine, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043, Marburg, Germany
| | - Nina Wettschureck
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Cardiopulmonary Institute, Bad Nauheim, Germany
- German Center for Cardiovascular Research, Partner Site Frankfurt, Bad Nauheim, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany.
- Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Cardiopulmonary Institute, Bad Nauheim, Germany.
- German Center for Cardiovascular Research, Partner Site Frankfurt, Bad Nauheim, Germany.
| |
Collapse
|
29
|
Ostadali Dehagi M, Rostami S, Shamshiri A, Safari F, Haji Hosseini R, Thorne RF, Ghavamzadeh A. FAT1 Gene Expression in Iranian Acute Lymphoid and Myeloid Leukemia Patients. Int J Hematol Oncol Stem Cell Res 2023; 17:81-88. [PMID: 37637767 PMCID: PMC10452949 DOI: 10.18502/ijhoscr.v17i2.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/31/2022] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND FAT atypical cadherin 1 (FAT1) is a member of the cadherin superfamily whose loss or gain is associated with the initiation and/or progression of different cancers. FAT1 overexpression has been reported in hematological malignancies. This research intended to investigate FAT1 gene expression in adult Iranian acute leukemia patients, compared to normal mobilized peripheral blood CD34+ cells. MATERIALS AND METHODS The peripheral blast (peripheral blood mononuclear cells) cells of 22 acute myeloid leukemia (AML), 14 acute lymphoid leukemia (ALL) patients, and mobilized peripheral blood CD34+ cells of 12 healthy volunteer stem cell donors were collected. Then, quantitative real-time polymerase chain reaction (qPCR) was used to compare FAT1 gene expression. RESULTS Overall, there were no significant differences in FAT1 expression between AML and ALL patients (p>0.2). Nonetheless, the mean expression level of FAT1 was significantly higher in leukemic patients (AML and ALL) than in normal CD34+ cells (p=0.029). Additionally, the FAT1 expression levels were significantly higher in both CD34+ and CD34- leukemic patients than in normal CD34+ cells (p=0.028). CONCLUSION No significant differences were found between FAT1 expression in CD34+ and CD34- leukemic samples (p> 0.3). Thus, higher FAT1 expression was evident in ALL and AML leukemia cells but this appeared unrelated to CD34 expression. This suggests in a proportion of adult acute leukemia, FAT1 expression may prove to be a suitable target for therapeutic strategies.
Collapse
Affiliation(s)
- Mohammadreza Ostadali Dehagi
- Hematology, Oncology and Cell Therapy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrbano Rostami
- Hematology, Oncology and Cell Therapy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Shamshiri
- Research Center for Caries Prevention, Dentistry Research Institute, Department of Community Oral Health, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Safari
- Department of Biology, Payame Noor University, Tehran, Iran
| | | | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China
- School of Environmental & Life Sciences, University of Newcastle, NSW 2258, Australia
| | - Ardeshir Ghavamzadeh
- Cancer & Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Zhang R, Wei B, Hu Y, Lv W, Adilai A, Yang F, Zhang J, Cheng G. Whole-Exome Sequencing Revealed the Mutational Profiles of Primary Central Nervous System Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:291-302. [PMID: 36725383 DOI: 10.1016/j.clml.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Primary central nervous system lymphoma (PCNSL) is a highly aggressive type of extranodal non-Hodgkin lymphoma, of which approximately 90% of the cases are diffuse large B-cell lymphoma (DLBCL). In recent years, the incidence of PCNSL has significantly increased in women and older men. Although advanced treatments such as high-dose methotrexate (HD-MTX) and targeted agents have been introduced, the prognosis of these patients remains poorer than those with other forms of non-Hodgkin's lymphoma. METHODS Twelve cases of Chinese PCNSL were analyzed to detect their genetic alterations using whole-exome sequencing (WES). We identified 448 potential somatic single nucleotide variants (SNVs) with a median of 12 SNVs per PCNSL sample and 35 small indels with potentially protein-changing features in 9 PCNSL samples. RESULTS We found that myeloid differentiation factor 88 (MYD88) had the highest mutation frequency, which affected the activity of the nuclear factor-κB (NF-κB) pathway. PCNSL samples with low-density lipoprotein receptor-related protein 1B (LRP1B) mutations had a higher mutation rate than samples with wild-type LRP1B. Polycystic kidney and hepatic disease 1 (PKHD1), the causal gene of autosomal recessive polycystic kidney disease (ARPKD), was identified in 2 PCNSL cases and exhibited missense mutations. Pathway analysis revealed enrichment in pathways associated with central carbon metabolism in cancer, renal cell carcinoma, nicotine addiction, bladder cancer, and long-term depression. CONCLUSIONS WES revealed significantly mutated genes associated with the molecular mechanisms of PCNSL, which could serve as therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Boyuan Wei
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yiyang Hu
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Wenying Lv
- Department of Neurosurgery, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing,China
| | - Abudurexiti Adilai
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fan Yang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jianning Zhang
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Gang Cheng
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
31
|
Proteomics and Molecular Docking Analyses Reveal the Bio-Chemical and Molecular Mechanism Underlying the Hypolipidemic Activity of Nano-Liposomal Bioactive Peptides in 3T3-L1 Adipocytes. Foods 2023; 12:foods12040780. [PMID: 36832854 PMCID: PMC9956075 DOI: 10.3390/foods12040780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity is a global health concern. Physical activities and eating nutrient-rich functional foods can prevent obesity. In this study, nano-liposomal encapsulated bioactive peptides (BPs) were developed to reduce cellular lipids. The peptide sequence NH2-PCGVPMLTVAEQAQ-CO2H was chemically synthesized. The limited membrane permeability of the BPs was improved by encapsulating the BPs with a nano-liposomal carrier, which was produced by thin-layer formation. The nano-liposomal BPs had a diameter of ~157 nm and were monodispersed in solution. The encapsulation capacity was 61.2 ± 3.2%. The nano-liposomal BPs had no significant cytotoxicity on the tested cells, keratinocytes, fibroblasts, and adipocytes. The in vitro hypolipidemic activity significantly promoted the breakdown of triglycerides (TGs). Lipid droplet staining was correlated with TG content. Proteomics analysis identified 2418 differentially expressed proteins. The nano-liposomal BPs affected various biochemical pathways beyond lipolysis. The nano-liposomal BP treatment decreased the fatty acid synthase expression by 17.41 ± 1.17%. HDOCK revealed that the BPs inhibited fatty acid synthase (FAS) at the thioesterase domain. The HDOCK score of the BPs was lower than that of orlistat, a known obesity drug, indicating stronger binding. Proteomics and molecular docking analyses confirmed that the nano-liposomal BPs were suitable for use in functional foods to prevent obesity.
Collapse
|
32
|
Bonis A, Dell’Amore A, Verzeletti V, Melan L, Zambello G, Nardocci C, Comacchio GM, Pezzuto F, Calabrese F, Rea F. Hepatoid Adenocarcinoma of the Lung: A Review of the Most Updated Literature and a Presentation of Three Cases. J Clin Med 2023; 12:1411. [PMID: 36835946 PMCID: PMC9964907 DOI: 10.3390/jcm12041411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
In a Surgical Thoracic Center, two females and a man were unexpectedly diagnosed with hepatoid adenocarcinoma of the lung (HAL) in a single year. HAL is a rare lung cancer with pathological features of hepatocellular carcinoma with no evidence of liver tumor or other primitive sites of neoplasms. As of today, a comprehensive treatment is still not written. We reviewed the most updated literature on HAL, aiming to highlight the proposed treatments available, and comparing them in terms of survival. General hallmarks of HAL are confirmed: it typically affects middle-aged, heavy-smoker males with a median of 5 cm bulky right upper lobe mass. Overall survival remains poor (13 months), with a longer but non-significant survival in females. Treatments are still unsatisfactory today: surgery guarantees a small benefit compared to non-operated HALs, and only N0 patients demonstrated improved survival (p = 0.04) compared to N1, N2, and N3. Even though the histology is fearsome, these are probably the patients who will benefit from upfront surgery. Chemotherapy seemed to behave as surgery, and there is no statistical difference between chemotherapy only, surgery, or adjuvant treatments, even though adjuvant treatments tend to be more successful. New chemotherapies have been reported with notable results in recent years, such as Tyrosine Kinase Inhibitors and monoclonal antibodies. In this complicated picture, new cases are needed to further build shared evidence in terms of diagnosis, treatments, and survival opportunities.
Collapse
Affiliation(s)
- Alessandro Bonis
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health–DSCTV, University of Padova, 35122 Padova, Italy
| | - Andrea Dell’Amore
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health–DSCTV, University of Padova, 35122 Padova, Italy
| | - Vincenzo Verzeletti
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health–DSCTV, University of Padova, 35122 Padova, Italy
| | - Luca Melan
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health–DSCTV, University of Padova, 35122 Padova, Italy
| | - Giovanni Zambello
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health–DSCTV, University of Padova, 35122 Padova, Italy
| | - Chiara Nardocci
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health–DSCTV, University of Padova, 35122 Padova, Italy
| | - Giovanni Maria Comacchio
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health–DSCTV, University of Padova, 35122 Padova, Italy
| | - Federica Pezzuto
- Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health–DSCTV, University of Padova, 35122 Padova, Italy
| | - Fiorella Calabrese
- Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health–DSCTV, University of Padova, 35122 Padova, Italy
| | - Federico Rea
- Thoracic Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health–DSCTV, University of Padova, 35122 Padova, Italy
| |
Collapse
|
33
|
Huang ZL, Zhang PB, Zhang JT, Li F, Li TT, Huang XY. Comprehensive Genomic Profiling Identifies FAT1 as a Negative Regulator of EMT, CTCs, and Metastasis of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:369-382. [PMID: 36915393 PMCID: PMC10007982 DOI: 10.2147/jhc.s398573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Background FAT atypical cadherin 1 (FAT1) acts as a tumor suppressor or oncogene, which regulates cell adherence, proliferation, motility, and actin kinetics. FAT1 gene expression is closely related to hepatocarcinogenesis; however, the function and mechanism of FAT1 in hepatocellular carcinoma (HCC) remain unclear. Methods Here, we screened for the FAT1, which is intimately linked to the development and progression of HCC, both in circulating tumor cells (CTCs) and tumor tissues using next generation sequencing (NGS). Immunohistochemical staining was performed to detect FAT1 protein expression. To determine the impact of FAT1 on epithelial-mesenchymal transition (EMT), migration and invasion of HCC, an in vitro transwell assay and Western blot were performed. Moreover, Gene Set Enrichment Analysis was carried out to discover the underlying mechanism. Finally, animal experiments were conducted to confirm the effects of FAT1 on HCC metastasis and tumorigenicity. Results Our results showed that FAT1 expression was decreased in HCC tissues, while in vitro and in vivo, the FAT1 knockdown facilitated invasion, cell motility, colony formation, and proliferation. FAT1 knockdown also resulted in decreased expression of E-cadherin and markedly elevated expression of N-cadherin, vimentin, and snail. We also confirmed our hypothesis from the analysis of group differences in the CTC phenotype and lung metastasis in nude mice. Conclusion Our findings illustrated that FAT1 played a negative regulatory role in the HCC EMT and metastasis, providing further evidence for the role played by FAT1 in the formation and progression of HCC.
Collapse
Affiliation(s)
- Zi-Li Huang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China.,Department of Radiology, Xuhui District Central Hospital of Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ping-Bao Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jun-Tao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Feng Li
- School of Materials of Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ting-Ting Li
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Xiu-Yan Huang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Yang Y, Li Y, Yang Q, Liu Z, Chang X, Yang H, Liu J, Li Z, Zuo D. FAT4 activation inhibits epithelial-mesenchymal transition (EMT) by promoting autophagy in H2228/Cer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:64. [PMID: 36576661 DOI: 10.1007/s12032-022-01934-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
As a tumor suppressor in lung cancer, FAT atypical cadherin 4 (FAT4) has a critical role in epithelial-mesenchymal transition (EMT). However, the role of FAT4 in ceritinib-resistant anaplastic lymphoma kinase (ALK) positive non-small cell lung cancer (NSCLC) EMT has not been reported. It is necessary to discuss the role of FAT4 in this process and its potential mechanism of interaction. We found that the expression level of FAT4 was downregulated markedly in ceritinib-resistant NCI-H2228 (H2228/Cer) cells. Jujuboside A, a FAT4 activator, diminished EMT and metastasis of H2228/Cer cells. Importantly, autophagy inhibition inverted the inhibitory effect of FAT4 activation on EMT. Furthermore, we found the regulatory action of FAT4 on autophagy was related to proteasome 26S subunit ubiquitin receptor and non-ATPase 4 (PSMD4) and proteasome 20S subunit beta 4 (PSMB4), and the inhibitory effect of autophagy on EMT might be related to ROS/NF-κB/IκB-α and Wnt/β-catenin pathways. In conclusion, FAT4 activation can inhibit the process of EMT in H2228/Cer cells by promoting autophagy, which provides a potential target for ceritinib-resistant ALK positive NSCLC therapy.
Collapse
Affiliation(s)
- Yuying Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Yang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Qian Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Huan Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Jingang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
35
|
Sun Y, Jin D, Zhang Z, Jin D, Xue J, Duan L, Zhang Y, Kang X, Lian F. The critical role of the Hippo signaling pathway in kidney diseases. Front Pharmacol 2022; 13:988175. [PMID: 36483738 PMCID: PMC9723352 DOI: 10.3389/fphar.2022.988175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/03/2022] [Indexed: 09/14/2023] Open
Abstract
The Hippo signaling pathway is involved in cell growth, proliferation, and apoptosis, and it plays a key role in regulating organ size, tissue regeneration, and tumor development. The Hippo signaling pathway also participates in the occurrence and development of various human diseases. Recently, many studies have shown that the Hippo pathway is closely related to renal diseases, including renal cancer, cystic kidney disease, diabetic nephropathy, and renal fibrosis, and it promotes the transformation of acute kidney disease to chronic kidney disease (CKD). The present paper summarizes and analyzes the research status of the Hippo signaling pathway in different kidney diseases, and it also summarizes the expression of Hippo signaling pathway components in pathological tissues of kidney diseases. In addition, the present paper discusses the positive therapeutic significance of traditional Chinese medicine (TCM) in regulating the Hippo signaling pathway for treating kidney diseases. This article introduces new targets and ideas for drug development, clinical diagnosis, and treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Di Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - JiaoJiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - LiYun Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - YuQing Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoMin Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - FengMei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
36
|
Zhang W, Ji K, Min C, Zhang C, Yang L, Zhang Q, Tian Z, Zhang M, Wang X, Li X. Oncogenic LINC00857 recruits TFAP2C to elevate FAT1 expression in gastric cancer. Cancer Sci 2022; 114:63-74. [PMID: 35524544 PMCID: PMC9807510 DOI: 10.1111/cas.15394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 01/07/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1) is a mutant gene frequently found in human cancers and mainly accumulates at the plasma membrane of cancer cells. Emerging evidence has implicated FAT1 in the progression of gastric cancer (GC). This study intended to identify a regulatory network related to FAT1 in GC development. Upregulated expression of FAT1 was confirmed in GC tissues, and silencing FAT1 was observed to result in suppression of GC cell oncogenic phenotypes. Mechanistic investigation results demonstrated that FAT1 upregulated AP-1 expression by phosphorylating c-JUN and c-FOS, whereas LINC00857 elevated the expression of FAT1 by recruiting a transcription factor TFAP2C. Functional experiments further suggested that LINC00857 enhanced the malignant biological characteristics of GC cells through TFAP2C-mediated promotion of FAT1. More importantly, LINC00857 silencing delayed the tumor growth and blocked epithelial-mesenchymal transition in tumor-bearing mice, which was associated with downregulated expression of TFAP2C/FAT1. To conclude, LINC00857 plays an oncogenic role in GC through regulating the TFAP2C/FAT1/AP-1 axis. Therefore, this study contributes to extended the understanding of gastric carcinogenesis and LINC00857 may serve as a therapeutic target for GC.
Collapse
Affiliation(s)
- Wenqing Zhang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Kaiyue Ji
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | | | - Cuiping Zhang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Lin Yang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Qi Zhang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zibin Tian
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Mengyuan Zhang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xinyu Wang
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaoyu Li
- Department of GastroenterologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
37
|
Li R, Tong R, Zhang Z, Deng M, Wang T, Hou G. Single-cell sequencing analysis and transcriptome analysis constructed the macrophage related gene-related signature in lung adenocarcinoma and verified by an independent cohort. Genomics 2022; 114:110520. [PMID: 36372305 DOI: 10.1016/j.ygeno.2022.110520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Recent studies have emphasized the close relationship between macrophages and tumor immunity, and the prognosis of lung adenocarcinoma (LUAD) patients is intimately linked to this. Nonetheless, the prognostic signature and classification of different immune patterns in LUAD patients based on the macrophages is largely unexplored. METHODS Two sc-RNAseq datasets of LUAD patients were collected and reprocessed. The differentially expressed genes (DEGs) related to macrophages between LUAD tissues and normal lung tissues were then identified. Based upon the above genes, three distinct immune patterns in the TCGA-LUAD cohort were identified. The ssGSEA and CIBERSORT were applied for immune profiling and characterization of different subtypes. A four-gene prognostic signature for LUAD patients was established based on the DEGs between the subtypes using stepwise multi-Cox regression. TCGA-LUAD cohort was used as training set. Five GEO-LUAD datasets and an independent cohort containing 112 LUAD samples were used for validation. TIDE (tumor immune dysfunction and exclusion) and drug sensitivity analyses were also performed. RESULTS Macrophage-related differentially expressed genes were found out using the publicly available scRNA-seq data of LUAD. Three different immune patterns which were proved to have distinct immune infiltration characteristics in the TCGA-LUAD cohort were recognized based on the above macrophage-related genes. Thereafter, 174 DEGs among the above three different immune patterns were figured out; on the basis of this, a four-gene prognostic signature was constructed. This signature distinguished the prognosis of LUAD patients well in various GSE datasets as well as our independent cohort. Further analyses revealed that patients which had a higher risk score also accompanied with a lower immune infiltration level and a worse response to several immunotherapy biomarkers. CONCLUSION This study highlighted that macrophage were significantly associated with TME diversity and complexity. The four-gene prognostic signature could be used for predicting outcomes and immune landscapes for patients with LUAD.
Collapse
Affiliation(s)
- Ruixia Li
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang 110001, China
| | - Run Tong
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; National Center for Respiratory Medicine, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Zhe Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110001, China
| | - Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Tao Wang
- Department of Pathology, Shenyang KingMed Center for Clinical Laboratory Co., Ltd., Shenyang 110001, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; National Center for Respiratory Medicine, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.
| |
Collapse
|
38
|
Buhigas C, Warren AY, Leung WK, Whitaker HC, Luxton HJ, Hawkins S, Kay J, Butler A, Xu Y, Woodcock DJ, Merson S, Frame FM, Sahli A, Abascal F, Martincorena I, Bova GS, Foster CS, Campbell P, Maitland NJ, Neal DE, Massie CE, Lynch AG, Eeles RA, Cooper CS, Wedge DC, Brewer DS. The architecture of clonal expansions in morphologically normal tissue from cancerous and non-cancerous prostates. Mol Cancer 2022; 21:183. [PMID: 36131292 PMCID: PMC9494848 DOI: 10.1186/s12943-022-01644-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/17/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in the prostate. RESULTS Single nucleotide variants (P = 7.0 × 10-03, Wilcoxon rank sum test) and small insertions and deletions (indels, P = 8.7 × 10-06) were significantly higher in morphologically normal samples, including BPH, from men with prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, supported by a high level of mutations, were significantly associated with samples from men with prostate cancer (P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the prostate estimated as epithelial (P = 5.94 × 10-05, paired Wilcoxon signed rank test) which, along with analysis of primary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal samples have significantly less single nucleotide variants (P = 3.72 × 10-09, paired Wilcoxon signed rank test), have very few rearrangements and a complete lack of copy number alterations. CONCLUSIONS Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational processes similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection approaches.
Collapse
Affiliation(s)
- Claudia Buhigas
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Wing-Kit Leung
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Hayley C Whitaker
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Molecular Diagnostics and Therapeutics Group, Division of Surgery and Interventional Sciences University College London, London, W1W 7TS, UK
| | - Hayley J Luxton
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Molecular Diagnostics and Therapeutics Group, Division of Surgery and Interventional Sciences University College London, London, W1W 7TS, UK
| | - Steve Hawkins
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Jonathan Kay
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Molecular Diagnostics and Therapeutics Group, Division of Surgery and Interventional Sciences University College London, London, W1W 7TS, UK
| | - Adam Butler
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Yaobo Xu
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Dan J Woodcock
- Oxford Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Sue Merson
- The Institute of Cancer Research, London, SW7 3RP, UK
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, YO10 5DD, North Yorkshire, UK
| | - Atef Sahli
- Oxford Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - G Steven Bova
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33014, Tampere, FI, Finland
| | | | - Peter Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, YO10 5DD, North Yorkshire, UK
| | - David E Neal
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Charlie E Massie
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Andy G Lynch
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- School of Medicine/School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9AJ, UK
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, SW7 3RP, UK
- Royal Marsden NHS Foundation Trust, London and Sutton, SM2 5PT, UK
| | - Colin S Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- The Institute of Cancer Research, London, SW7 3RP, UK
| | - David C Wedge
- Oxford Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK
| | - Daniel S Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- Earlham Institute, Norwich, NR4 7UZ, UK.
| |
Collapse
|
39
|
Sugiyama A, Hirashima M. Fetal nuchal edema and developmental anomalies caused by gene mutations in mice. Front Cell Dev Biol 2022; 10:949013. [PMID: 36111337 PMCID: PMC9468611 DOI: 10.3389/fcell.2022.949013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Fetal nuchal edema, a subcutaneous accumulation of extracellular fluid in the fetal neck, is detected as increased nuchal translucency (NT) by ultrasonography in the first trimester of pregnancy. It has been demonstrated that increased NT is associated with chromosomal anomalies and genetic syndromes accompanied with fetal malformations such as defective lymphatic vascular development, cardiac anomalies, anemia, and a wide range of other fetal anomalies. However, in many clinical cases of increased NT, causative genes, pathogenesis and prognosis have not been elucidated in humans. On the other hand, a large number of gene mutations have been reported to induce fetal nuchal edema in mouse models. Here, we review the relationship between the gene mutants causing fetal nuchal edema with defective lymphatic vascular development, cardiac anomalies, anemia and blood vascular endothelial barrier anomalies in mice. Moreover, we discuss how studies using gene mutant mouse models will be useful in developing diagnostic method and predicting prognosis.
Collapse
|
40
|
Yao Y, Guan X, Bao G, Liang J, Li T, Zhong X. Whole-exome sequencing and bioinformatics analysis of a case of non-alpha-fetoprotein-elevated lung hepatoid adenocarcinoma. Front Pharmacol 2022; 13:945038. [PMID: 36091765 PMCID: PMC9462446 DOI: 10.3389/fphar.2022.945038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatoid adenocarcinoma of the lung (HAL) is an exceptionally rare malignant tumor with prominent hepatocellular carcinoma (HCC)-like characteristics in organs or tissues outside the liver, while there is no tumor in the liver. Most HAL cases have various degrees of serum alpha-fetoprotein (AFP) levels and exhibit a similar origin and clonal evolution process to HCC. We studied a case of HAL without elevating the AFP level by performing whole-exome sequencing (WES) and bioinformatics analyses after surgical resection. Our results showed mutations in two driver genes, NLRP3 and PBX1, and we identified HNRNPR, TP73, CFAP57, COL11A1, RUSC1, SLC6A9, DISC1, NBPF26, and OR10K1 as potential driver mutation genes in HAL. In addition, 76 significantly mutated genes (SMG) were identified after the statistical test of each mutation type on genes.
Collapse
Affiliation(s)
- Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojiao Guan
- Department of Pathology, Second Affiliated Hospital, China Medical University, Shenyang, China
| | - Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jie Liang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
41
|
Mai Z, Yuan J, Yang H, Fang S, Xie X, Wang X, Xie J, Wen J, Fu J. Inactivation of Hippo pathway characterizes a poor-prognosis subtype of esophageal cancer. JCI Insight 2022; 7:155218. [PMID: 35993362 PMCID: PMC9462502 DOI: 10.1172/jci.insight.155218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Identification of molecular subtypes that reflect different prognoses and treatment responses, especially immune checkpoint inhibitors (ICIs) in esophageal squamous cell carcinoma (ESCC), is essential for treatment decisions. We performed targeted sequencing in 201 patients with ESCC to discover genetic subtypes and validate our findings via multiple data sets. We identified 3 driver genes (FCGBP, GRIN2B, and FRY), and recurrent truncating mutations in FRY impaired its tumor-suppressive function and promoted tumor proliferation. A 3-gene mutation signature (FAT1, FAT3, and FRY) recognized a molecular subtype named “FAT/FRY” with frequent Hippo pathway–related mutations. In multiple ESCC cohorts, the patients with the FAT/FRY subtype had poorer prognosis than did patients in the WT group. Transcriptome analysis indicated that the FAT/FRY subtype was characterized by inactivation of the Hippo pathway, hypoxia, chemoresistance, higher infiltration of CD8+ T cells and activated DCs, and a transcriptome similar to that of cancer responders. Furthermore, the 3-gene signature predicted better survival for patients treated with ICIs, partially explained by its positive correlation with the tumor mutation burden and neoantigen burden. The 3-gene signature is a biomarker to recognize the FAT/FRY molecular subtype, evaluate prognosis, and select potential beneficiaries of ICIs in ESCC.
Collapse
Affiliation(s)
- Zihang Mai
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jianye Yuan
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Hong Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Shuogui Fang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Xiuying Xie
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Xinye Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jiaxin Xie
- School of Statistics, Renmin University of China, Beijing, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Jianhua Fu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| |
Collapse
|
42
|
Mao W, Zhou J, Hu J, Zhao K, Fu Z, Wang J, Mao K. A pan-cancer analysis of FAT atypical cadherin 4 (FAT4) in human tumors. Front Public Health 2022; 10:969070. [PMID: 36051999 PMCID: PMC9424548 DOI: 10.3389/fpubh.2022.969070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Objective We performed a pan-cancer analysis to explore the potential mechanisms of FAT4 in 33 different tumors. Methods In this study, we selected 33 types of cancers based on the datasets of TCGA (the cancer genome atlas). We analyzed the expression of FAT4 in tumor and normal tissues. Meanwhile, we analyzed the expression levels of FAT4 in tissues from tumors of different stages. Kaplan-Meier survival analysis, Tumor Mutational Burden (TMB), Microsatellite Instability (MSI), immune infiltration analysis, Gene set enrichment analysis (GSEA), and FAT4-related gene enrichment analysis were performed. Results FAT4 expression in most tumor tissues was lower than in corresponding control tissues. FAT4 expression was different in different stages of bladder cancer (BLCA), kidney clear cell carcinoma (KIRC), and breast cancer (BRCA). In addition, the expression level of FAT4 in different types of tumors has an important impact on the prognosis of patients. FAT4 might influence the efficacy of immunotherapy via tumor burden and microsatellite instability. We observed a statistically positive correlation between cancer-associated fibroblasts and FAT4 expression in most tumors. GSEA of BLCA indicated that low FAT4 expression groups were mainly enriched in calcium signaling pathway and chemokine signaling pathway. GSEA analysis of KIRC suggested low FAT4 expression groups were mainly involved in olfactory transduction and oxidative phosphorylation. Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the role of FAT4 in the pathogenesis of cancer may be related to human papillomavirus infection, Hippo signaling pathway, PI3K-Akt signaling pathway, etc. Gene Ontology (GO) enrichment analysis further showed that most of these genes were related to the pathways or cell biology, such as peptidyl-tyrosine phosphorylation, cell junction assembly, protein tyrosine kinase activity, etc. Conclusion Our study summarized and analyzed the antitumor effect of FAT4 in different tumors comprehensively, which aided in understanding the role of FAT4 in tumorigenesis from the perspective of clinical tumor samples. Pan-cancer analysis showed that FAT4 to be novel biomarkers for various cancers prognosis.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jiajing Zhou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Jie Hu
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kui Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenling Fu
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jun Wang
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China,*Correspondence: Jun Wang
| | - Kaili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China,Kaili Mao
| |
Collapse
|
43
|
Wang Q, Cui L, Li P, Wang Y. Somatic Mutation of FAT Family Genes Implicated Superior Prognosis in Patients With Stomach Adenocarcinoma. Front Med (Lausanne) 2022; 9:873836. [PMID: 35836939 PMCID: PMC9273734 DOI: 10.3389/fmed.2022.873836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
FAT family genes encode protocadherin, which regulates tumor cell proliferation and migration. Although transcriptional levels of FAT family members had been reported in multiple malignant tumors, the association between mutation and prognosis of the FAT family in stomach adenocarcinoma (STAD) has not been investigated. Herein, we performed a multi-omics integrative bioinformatics analysis using genomic and mRNA expression data to explore the role of gene mutations across the FAT family on clinical outcomes of STAD. The results showed that FAT mutations occurred in 174 of 435 (40%) of the samples. Patients with FAT mutations possessed significantly better progression-free survival (P = 0.019) and overall survival (P = 0.034) than those with non-FAT mutations, and FAT mutations exhibited significantly higher tumor mutational burden (TMB) and microsatellite instability. Notably, FAT mutations had a greater effect on somatic single-nucleotide variation than copy number variation and resulted in more abundant DNA damage repair (DDR) mutations. Further investigation demonstrated that FAT mutations contributed to an inflammatory tumor microenvironment (TME), as indicated by significantly increased numbers of activated CD4 and CD8 T cells, and significantly decreased numbers of mast cell, plasmacytoid dendritic cell, type 2 T helper cell, and high expression of immune-promoting genes. Moreover, biological process antigen processing and presentation, DNA replication, and DDR-related pathways were significantly upregulated in patients with FAT mutations. Collectively, FAT mutations significantly improved the survival of patients with STAD by enhancing tumor immunogenicity (e.g., TMB and DDR mutations) and an inflamed TME, indicating that the FAT family might be a potential prognostic and therapeutic biomarker for STAD.
Collapse
Affiliation(s)
- Qingjun Wang
- Department of Clinical Trial, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liang Cui
- GenePlus-Beijing Institute, Beijing, China
| | - Pansong Li
- GenePlus-Beijing Institute, Beijing, China
| | - Yuanyuan Wang
- Department of Clinical Trial, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Yuanyuan Wang,
| |
Collapse
|
44
|
Irshad K, Srivastava C, Malik N, Arora M, Gupta Y, Goswami S, Sarkar C, Suri V, Mahajan S, Gupta DK, Suri A, Chattopadhyay P, Sinha S, Chosdol K. Upregulation of Atypical Cadherin FAT1 Promotes an Immunosuppressive Tumor Microenvironment via TGF-β. Front Immunol 2022; 13:813888. [PMID: 35720420 PMCID: PMC9205206 DOI: 10.3389/fimmu.2022.813888] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
FAT atypical cadherin 1 (FAT1) promotes glioblastoma (GBM) by promoting protumorigenic inflammatory cytokine expression in tumor cells. However, tumors also have an immunosuppressive microenvironment maintained by mediators such as transforming growth factor (TGF)-β cytokines. Here, we have studied the role of FAT1 in tumor immune suppression. Our preliminary TIMER2.0 analysis of The Cancer Genome Atlas (TCGA) database revealed an inverse correlation of FAT1 expression with infiltration of tumor-inhibiting immune cells (such as monocytes and T cells) and a positive correlation with tumor-promoting immune cells [such as myeloid-derived suppressor cells (MDSCs)] in various cancers. We have analyzed the role of FAT1 in modulating the expression of TGF-β1/2 in resected human gliomas, primary glioma cultures, and other cancer cell lines (U87MG, HepG2, Panc-1, and HeLa). Positive correlations of gene expression of FAT1 and TGF-β1/2 were observed in various cancers in TCGA, Glioma Longitudinal Analysis Consortium (GLASS), and Chinese Glioma Genome Atlas (CGGA) databases. Positive expression correlations of FAT1 were also found with TGF-β1/2 and Serpine1 (downstream target) in fresh-frozen GBM samples using q-PCR. siRNA-mediated FAT1 knockdown in cancer cell lines and in primary cultures led to decreased TGF-β1/2 expression/secretion as assessed by q-PCR, Western blotting, and ELISA. There was increased chemotaxis (transmigration) of THP-1 monocytes toward siFAT1-transfected tumor cell supernatant as a consequence of decreased TGF-β1/2 secretion. Reduced TGF-β1 expression was also observed in THP-1 cultured in conditioned media from FAT1-depleted glioma cells, thus contributing to immune suppression. In U87MG cells, decreased TGF-β1 upon FAT1 knockdown was mediated by miR-663a, a known modulator. FAT1 expression was also observed to correlate positively with the expression of surrogate markers of MDSCs [programmed death ligand-1 (PD-L1), PD-L2, and interleukin (IL)-10] in glioma tumors, suggesting a potential role of FAT1 in MDSC-mediated immunosuppression. Hence, our findings elaborate contributions of FAT1 to immune evasion, where FAT1 enables an immunosuppressive microenvironment in GBM and other cancers via TGF-β1/2.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitrangda Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manvi Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Goswami
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Kumar Gupta
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
45
|
Jiang NN, Gar-Lee Yue G, Li P, Ye YS, Gomes AJ, Hin-Fai Kwok F, Kin-Ming Lee J, Gao S, Lau CBS, Xu G. Discovery of dearomatized isoprenylated acylphloroglucinols with colon tumor suppressive activities in mice via inhibiting NFκB-FAT1-PDCD4 signaling activation. Eur J Med Chem 2022; 239:114532. [PMID: 35749988 DOI: 10.1016/j.ejmech.2022.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Dearomatized isoprenylated acylphloroglucinols (DIAPs) are specific natural products mainly distributed in the plants of genus Hypericum. In this study, guided by HPLC-UV screening, 46 DIAPs (approximately 70% of all DIAPs) including 20 new ones and an unprecedented architecture, were discovered from the roots of Hypericum henryi, which were elucidated by comprehensive spectroscopic, X-ray crystallography, and ECD methods. Compounds 1-7, 39, and 41-42 exhibited remarkable cytotoxicities (IC50 = 0.84-5.63 μM) in human colon cancer HCT116 cells, in which 2 and 6 possessed selective cytotoxicities towards colon cancer cells. The preliminary structure-activity relationships of these tested compounds were discussed. In addition, mechanistic investigations demonstrated that 2 and 6 could significantly suppress the expressions of NFκB, FAT1, and promoted novel tumor suppressor gene PDCD4 in HCT116 cells. Furthermore, in HCT116 colon xenograft-bearing mouse model, treatments with 2 and 6 reduced the growth of xenograft tumors in dose-dependent manner. Expressions of FAT1 in tumors were also decreased in mice treated with 2 and 6, suggesting their anti-tumor effects were via FAT1 signaling pathway. In conclusion, this is the first report on the mechanistic and in vivo studies of DIAP, indicating that these metabolites can be considered as a new type of anti-colon cancer lead agents for further drug development.
Collapse
Affiliation(s)
- Na-Na Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peng Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China
| | - Adele Joyce Gomes
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Frankie Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Si Gao
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China.
| |
Collapse
|
46
|
Lan T, Ge Q, Zheng K, Huang L, Yan Y, Zheng L, Lu Y, Zheng D. FAT1 Upregulates in Oral Squamous Cell Carcinoma and Promotes Cell Proliferation via Cell Cycle and DNA Repair. Front Oncol 2022; 12:870055. [PMID: 35646625 PMCID: PMC9130556 DOI: 10.3389/fonc.2022.870055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Objective Previous studies have revealed that FAT atypical cadherin 1 (FAT1) plays a tumor-suppressive or oncogenic role in a context-dependent manner in various cancers. However, the functions of FAT1 are ambiguous in tumorigenesis owing to inconsistent research in oral squamous cell carcinoma (OSCC). The present study aimed at gaining an insight into the role of FAT1 in the tumor genesis and development. Methods The expression, mutant, and survival data analyses were done using data from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database, verified with clinical samples via real-time polymerase chain reaction (qRT-PCR), Western blot (WB), and immunohistochemical (IHC) staining. OSCC cells transfected with siRNA were employed for in vitro assessment in cell proliferation, apoptosis, and migration ability in appropriate ways. The underlying mechanism was explored by RNA sequencing after FAT1 silencing. Results Overall, FAT1 significantly increased in OSCC with a poor prognosis outcome. The in vitro experiment showed the promoting effect of FAT1 in the proliferation and migration of OSCC cells. FAT1 can also inhibit both the early and late apoptosis of OSCC cells. RNA-sequencing analysis of FAT1 silencing revealed that the cell cycle, DNA replication, and some core genes (MCM2, MCM5, CCNE1 SPC24, MYBL2, KIF2C) may be the potential mechanism in OSCC. Conclusions FAT1 may act as an oncogene in OSCC with potential mechanism influencing the cell cycle and DNA repair.
Collapse
Affiliation(s)
- Ting Lan
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Qi Ge
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ke Zheng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Li Huang
- Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lixin Zheng
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
47
|
Wu C, Qin C, Fu X, Huang X, Tian K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Vet Res 2022; 18:167. [PMID: 35524260 PMCID: PMC9074311 DOI: 10.1186/s12917-022-03253-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3β, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/β-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFβ, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China. .,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
48
|
Faraji F, Ramirez SI, Anguiano Quiroz PY, Mendez-Molina AN, Gutkind JS. Genomic Hippo Pathway Alterations and Persistent YAP/TAZ Activation: New Hallmarks in Head and Neck Cancer. Cells 2022; 11:1370. [PMID: 35456049 PMCID: PMC9028246 DOI: 10.3390/cells11081370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a highly prevalent and deadly malignancy worldwide. The prognosis for locoregionally advanced HNSCC has not appreciably improved over the past 30 years despite advances in surgical, radiation, and targeted therapies and less than 20% of HNSCC patients respond to recently approved immune checkpoint inhibitors. The Hippo signaling pathway, originally discovered as a mechanism regulating tissue growth and organ size, transduces intracellular and extracellular signals to regulate the transcriptional co-activators YAP and TAZ. Alterations in the Hippo pathway resulting in persistent YAP and TAZ activation have emerged as major oncogenic drivers. Our analysis of the human HNSCC oncogenome revealed multiple genomic alterations impairing Hippo signaling and activating YAP and TAZ, which in turn contribute to HNSCC development. This includes mutations and deletions of the FAT1 gene (29%) and amplification of the WWTR1 (encoding TAZ, 14%) and YAP1 genes (8%), together representing one of the most genetically altered signaling mechanisms in this malignancy. Here, we discuss key elements of the mammalian Hippo pathway, detail mechanisms by which perturbations in Hippo signaling promote HNSCC initiation and progression and outline emerging strategies to target Hippo signaling vulnerabilities as part of novel multimodal precision therapies for HNSCC.
Collapse
Affiliation(s)
- Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sydney I. Ramirez
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Disease and Global Public Health, Department of Internal Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | | | | | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
49
|
Takenaka IKTM, Bartelli TF, Defelicibus A, Sendoya JM, Golubicki M, Robbio J, Serpa MS, Branco GP, Santos LBC, Claro LCL, Dos Santos GO, Kupper BEC, da Silva IT, Llera AS, de Mello CAL, Riechelmann RP, Dias-Neto E, Iseas S, Aguiar S, Nunes DN. Exome and Tissue-Associated Microbiota as Predictive Markers of Response to Neoadjuvant Treatment in Locally Advanced Rectal Cancer. Front Oncol 2022; 12:809441. [PMID: 35392220 PMCID: PMC8982181 DOI: 10.3389/fonc.2022.809441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical and pathological responses to multimodal neoadjuvant therapy in locally advanced rectal cancers (LARCs) remain unpredictable, and robust biomarkers are still lacking. Recent studies have shown that tumors present somatic molecular alterations related to better treatment response, and it is also clear that tumor-associated bacteria are modulators of chemotherapy and immunotherapy efficacy, therefore having implications for long-term survivorship and a good potential as the biomarkers of outcome. Here, we performed whole exome sequencing and 16S ribosomal RNA (rRNA) amplicon sequencing from 44 pre-treatment LARC biopsies from Argentinian and Brazilian patients, treated with neoadjuvant chemoradiotherapy or total neoadjuvant treatment, searching for predictive biomarkers of response (responders, n = 17; non-responders, n = 27). In general, the somatic landscape of LARC was not capable to predict a response; however, a significant enrichment in mutational signature SBS5 was observed in non-responders (p = 0.0021), as well as the co-occurrence of APC and FAT4 mutations (p < 0.05). Microbiota studies revealed a similar alpha and beta diversity of bacteria between response groups. Yet, the linear discriminant analysis (LDA) of effect size indicated an enrichment of Hungatella, Flavonifractor, and Methanosphaera (LDA score ≥3) in the pre-treatment biopsies of responders, while non-responders had a higher abundance of Enhydrobacter, Paraprevotella (LDA score ≥3) and Finegoldia (LDA score ≥4). Altogether, the evaluation of these biomarkers in pre-treatment biopsies could eventually predict a neoadjuvant treatment response, while in post-treatment samples, it could help in guiding non-operative treatment strategies.
Collapse
Affiliation(s)
| | - Thais F Bartelli
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Alexandre Defelicibus
- Laboratory of Bioinformatics and Computational Biology, International Center for Research, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Juan M Sendoya
- Laboratorio de Terapia Molecular y Celular - Genomics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariano Golubicki
- Oncology Unit, Hospital de Gastroenterología Carlos Bonorino Udaondo, Buenos Aires, Argentina.,Clinical Oncology, Intergrupo Argentino para el Tratamiento de los Tumores Gastrointestinales (IATTGI), Buenos Aires, Argentina
| | - Juan Robbio
- Clinical Oncology, Intergrupo Argentino para el Tratamiento de los Tumores Gastrointestinales (IATTGI), Buenos Aires, Argentina
| | - Marianna S Serpa
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Gabriela P Branco
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Luana B C Santos
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Laura C L Claro
- Department of Pathology, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Bruna E C Kupper
- Colorectal Cancer Department, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Israel T da Silva
- Laboratory of Bioinformatics and Computational Biology, International Center for Research, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Andrea S Llera
- Laboratorio de Terapia Molecular y Celular - Genomics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Celso A L de Mello
- Department of Clinical Oncology, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Emmanuel Dias-Neto
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil.,Laboratory of Neurosciences (LIM-27) Alzira Denise Hertzog Silva, Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Soledad Iseas
- Oncology Unit, Hospital de Gastroenterología Carlos Bonorino Udaondo, Buenos Aires, Argentina
| | - Samuel Aguiar
- Colorectal Cancer Department, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Diana Noronha Nunes
- Medical Genomics Laboratory, International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil.,National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
| |
Collapse
|
50
|
Takai E, Nakamura H, Chiku S, Kubo E, Ohmoto A, Totoki Y, Shibata T, Higuchi R, Yamamoto M, Furuse J, Shimizu K, Takahashi H, Morizane C, Furukawa T, Yachida S. Whole-exome Sequencing Reveals New Potential Susceptibility Genes for Japanese Familial Pancreatic Cancer. Ann Surg 2022; 275:e652-e658. [PMID: 32826389 DOI: 10.1097/sla.0000000000004213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The primary objective of this study was to identify novel genes that predispose people in the Japanese population to FPC. SUMMARY OF BACKGROUND DATA Familial history of pancreatic cancer is an important risk factor but, to date, few genes predisposing individuals to increased risk of developing FPC have been identified. METHODS We performed whole-exome sequencing of germline DNA from 81 Japanese FPC patients. We also investigated somatic gene alterations in 21 matched tumor tissues through whole-exome sequencing and copy number analysis. RESULTS Our germline variants identified previously known FPC susceptibility genes such as ATM and BRCA2, and several novel tumor suppressor genes with potentially deleterious variants for FPC. Interestingly, somatic whole-exome analysis demonstrated that most tumor samples with suspicious loss of heterozygosity of candidate genes were KRAS wild-types, implying that these cases may not have required KRAS activation as a driver event for carcinogenesis. CONCLUSIONS Our findings indicate that FPC patients harbor potentially deleterious causative germline variants in tumor suppressor genes, which are known to acquire somatic mutations in pancreatic cancer, and that somatic loss of heterozygosity of some FPC susceptibility genes may contribute to the development of FPC in the absence of somatic KRAS-activating mutation. Genetic testing for a wider variety of FPC-predisposition genes could provide better screening approach for high-risk groups of pancreatic cancer.
Collapse
Affiliation(s)
- Erina Takai
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Suenori Chiku
- Information and Communication Research Division, Mizuho Information and Research Institute, Tokyo, Japan
| | - Emi Kubo
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiro Ohmoto
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryota Higuchi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junji Furuse
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Kyoko Shimizu
- Department of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideaki Takahashi
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|