1
|
Owida HA, Abed AY, Altalbawy FMA, H M, Abbot V, Jakhonkulovna SM, Mohammad SI, Vasudevan A, Khalaf RM, Zwamel AH. NLRP3 inflammasome-based therapies by natural products: a new development in the context of cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04030-0. [PMID: 40116873 DOI: 10.1007/s00210-025-04030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
The leucine-rich repeat containing protein (NLR) canonical inflammasome family includes Nod-like receptor protein 3 (NLRP3). Via the mediation of apoptosis proteins and immunological reactions, it controls the pathogenesis of malignancy. Experimental studies showed a relationship among lymphogenesis, cancer metastasis, and NLRP3 expression. Natural products have also been used as lead-based substances in a number of investigations to speed up the creation of novel, specific NLRP3 inhibitors. Via the mediation of apoptotic proteins and immunological responses, it controls the pathogenesis of malignancy. Moreover, it was recently noted that among human cancers, chemotherapy activates NLRP3. Induction of NLRP3 could encourage the generation of IL-1β and IL-22 to facilitate the propagation of malignancy. Additionally, prior research has demonstrated that the usage of NLRP3 in cancer therapy may result in resistance to drugs. The depletion of NLRP3 could affect the survival of cells. Natural products have been used as lead materials in a number of studies to help generate novel, specific NLRP3 antagonists more quickly. In the present review, we examine the mechanism behind the beneficial effects of the natural substances on the inhibition of cancer growth and progression, with special focus on NLRP3 regulation.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Department of Medical Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ahmed Yaseen Abed
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | | | - Suleiman Ibrahim Mohammad
- Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Zarqa, Jordan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | | | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Huang M, Jin Y, Zhao D, Liu X. Potential role of lactylation in intrinsic immune pathways in lung cancer. Front Pharmacol 2025; 16:1533493. [PMID: 40166469 PMCID: PMC11955616 DOI: 10.3389/fphar.2025.1533493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Lung cancer, one of the most lethal malignancies, has seen its therapeutic strategies become a focal point of significant scientific attention. Intrinsic immune signaling pathways play crucial roles in anti-tumor immunity but face clinical application challenges despite promising preclinical outcomes. Lactylation, an emerging research focus, may influences lung cancer progression by modulating the functions of histones and non-histone proteins. Recent findings have suggested that lactylation regulates key intrinsic immune molecules, including cGAS-STING, TLR, and RIG-I, thereby impacting interferon expression. However, the precise mechanisms by which lactylation governs intrinsic immune signaling in lung cancer remain unclear. This review presents a comprehensive and systematic analysis of the relationship between lactylation and intrinsic immune signaling pathways in lung cancer and emphasizes the innovative perspective of linking lactylation-mediated epigenetic modifications with immune regulation. By thoroughly examining current research findings, this review uncovers potential regulatory mechanisms and highlights the therapeutic implications of targeting lactylation in lung cancer. Future investigations into the intricate interactions between lactylation and intrinsic immunity are anticipated to unveil novel therapeutic targets and strategies, potentially improving patient survival outcomes.
Collapse
Affiliation(s)
- Mengdie Huang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Jin
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dandan Zhao
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Zou R, Hao Y, Qi C, Peng X, Huang Z, Li D, Wang Y. Trimethyl chitosan-cysteine-based nanoparticles as an effective delivery system for portulacerebroside A in the management of hepatocellular carcinoma cells in vitro and in vivo. J Drug Target 2024; 32:570-584. [PMID: 38625591 DOI: 10.1080/1061186x.2024.2344495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Portulacerebroside A (PCA), a cerebroside compound extracted from Portulaca oleracea L., has been shown to suppress hepatocellular carcinoma (HCC) cells. This study aims to investigate the effectiveness of trimethyl chitosan-cysteine (TMC-Cys) nanocarrier in delivering PCA for HCC management and to elucidate the molecular mechanisms behind PCA's function. TMC-Cys nanocarriers notably augmented PCA's function, diminishing the proliferation, migration, and invasiveness of HCC cells in vitro, reducing hepatocellular tumorigenesis in immunocompetent mice, and impeding metastasis of xenograft tumours in nude mice. Comprehensive bioinformatics analyses, incorporating Super-PRED systems alongside pathway enrichment analysis, pinpointed toll-like receptor 4 (TLR4) and epidermal growth factor receptor (EGFR) as two promising targets of PCA, enriched in immune checkpoint pathway. PCA/nanocarrier (PCA) reduced levels of TLR4 and EGFR and their downstream proteins, including programmed cell death ligand 1, thereby increasing populations and activity of T cells co-cultured with HCC cells in vitro or in primary HCC tumours in mice. However, these effects were counteracted by additional artificial activation of TLR4 and EGFR. In conclusion, this study provides novel evidence of PCA's function in immunomodulation in addition to its direct tumour suppressive effect. TMC-Cys nanocarriers significantly enhance PCA efficacy, indicating promising application as a drug delivery system.
Collapse
Affiliation(s)
- Rui Zou
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, Haikou, P.R. China
| | - Yunhe Hao
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, Haikou, P.R. China
| | - Chunchun Qi
- Medical College of Nankai University, Tianjin, P.R. China
| | - Xu Peng
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, Haikou, P.R. China
| | - Zepeng Huang
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, Haikou, P.R. China
| | - Duo Li
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, Haikou, P.R. China
| | - Yiyao Wang
- Department of Integrated Traditional Chinese and Western Medicine, Hainan Cancer Hospital, Haikou, P.R. China
| |
Collapse
|
4
|
Sun J, Zhao Z, Lu J, An W, Zhang Y, Li W, Yang L. The Tumor Microenvironment Mediates the HIF-1α/PD-L1 Pathway to Promote Immune Escape in Colorectal Cancer. Int J Mol Sci 2024; 25:3735. [PMID: 38612546 PMCID: PMC11011450 DOI: 10.3390/ijms25073735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The unsatisfactory efficacy of immunotherapy for colorectal cancer (CRC) remains a major challenge for clinicians and patients. The tumor microenvironment may promote CRC progression by upregulating the expression of hypoxia-inducing factor (HIF) and PD-L1. Therefore, this study explored the expression and correlation of HIF-1α and PD-L1 in the CRC microenvironment. The expression and correlation of HIF-1α and PD-L1 in CRC were analyzed using bioinformatics and Western blotting (WB). The hypoxia and inflammation of the CRC microenvironment were established in the CT26 cell line. CT26 cells were stimulated with two hypoxia mimics, CoCl2 and DFO, which were used to induce the hypoxic environment. Western blotting was used to assess the expression and correlation of HIF-1α and PD-L1 in the hypoxic environment.LPS stimulated CT26 cells to induce the inflammatory environment. WB and bioinformatics were used to assess the expression and correlation of TLR4, HIF-1α, and PD-L1 in the inflammatory environment. Furthermore, the impact of curcumin on the inflammatory environment established by LPS-stimulated CT26 cells was demonstrated through MTT, Transwell, molecular docking, network pharmacology and Western blotting assays. In this study, we found that the HIF-1α/PD-L1 pathway was activated in the hypoxic and inflammatory environment and promoted immune escape in CRC. Meanwhile, curcumin suppressed tumor immune escape by inhibiting the TLR4/HIF-1α/PD-L1 pathway in the inflammatory environment of CRC. These results suggest that combination therapy based on the HIF-1α/PD-L1 pathway can be a promising therapeutic option and that curcumin can be used as a potent immunomodulatory agent in clinical practice.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
- Ningbo Institute of Dalian University of Technology, No. 26, Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Zhengtian Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
| | - Jiaqi Lu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
| | - Wen An
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
| | - Yiming Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
| | - Wei Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
- Ningbo Institute of Dalian University of Technology, No. 26, Yucai Road, Jiangbei District, Ningbo 315016, China
| |
Collapse
|
5
|
Omori Y, Noguchi K, Kitamura M, Makihara Y, Omae T, Hanawa S, Yoshikawa K, Takaoka K, Kishimoto H. Bacterial Lipopolysaccharide Induces PD-L1 Expression and an Invasive Phenotype of Oral Squamous Cell Carcinoma Cells. Cancers (Basel) 2024; 16:343. [PMID: 38254832 PMCID: PMC10813992 DOI: 10.3390/cancers16020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Expression of programmed death ligand-1 (PD-L1) is related to the prognosis of many solid malignancies, including oral squamous cell carcinoma (OSCC), but the mechanism of PD-L1 induction remains obscure. In this study, we examined the expression of PD-L1 and partial epithelial-mesenchymal transition (pEMT) induced by bacterial lipopolysaccharide (LPS) in OSCC. METHODS The expression of Toll-like receptor 4 (TLR4) recognizing LPS in OSCC cell lines was analyzed. Moreover, the induction of PD-L1 expression by Porphyromonas gingivalis (P.g) or Escherichia coli (E. coli) LPS and EMT was analyzed by western blotting and RT-PCR. Morphology, proliferation, migration, and invasion capacities were examined upon addition of LPS. PD-L1 within EXOs was examined. RESULTS PD-L1 expression and pEMT induced by LPS of P.g or E. coli in TLR4-expressing OSCC cell lines were observed. Addition of LPS did not change migration, proliferation, or cell morphology, but increased invasive ability. Moreover, higher expression of PD-L1 was observed in OSCC EXOs with LPS. CONCLUSION Oral bacterial LPS is involved in enhanced invasive potential in OSCC cells, causing PD-L1 expression and induction of pEMT. The enhancement of PD-L1 expression after addition of LPS may be mediated by EXOs.
Collapse
Affiliation(s)
| | - Kazuma Noguchi
- Departments of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, Mukogawa-cho1-1, Nishinomiya 663-8501, Japan; (Y.O.); (M.K.); (Y.M.); (T.O.); (S.H.); (K.Y.); (K.T.); (H.K.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Rawat S, Dhaundhiyal K, Dhramshaktu IS, Hussain MS, Gupta G. Targeting Toll-Like Receptors for the Treatment of Lung Cancer. IMMUNOTHERAPY AGAINST LUNG CANCER 2024:247-264. [DOI: 10.1007/978-981-99-7141-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
7
|
Han JH, Lee EJ, Park W, Choi JG, Ha KT, Chung HS. Cosmosiin Induces Apoptosis in Colorectal Cancer by Inhibiting PD-L1 Expression and Inducing ROS. Antioxidants (Basel) 2023; 12:2131. [PMID: 38136250 PMCID: PMC10740471 DOI: 10.3390/antiox12122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Immunotherapies, particularly those concerning immune checkpoint inhibitors, have transformed cancer treatment in recent years. Programmed death-ligand 1 (PD-L1) is a key target for immunotherapy that is overexpressed in the cells of colorectal cancer, a widespread malignant cancer that poses a significant healthcare challenge. This study investigated the effects of cosmosiin treatment on colorectal cancer cell lines. Cosmosiin is a naturally occurring flavone glycoside compound that has potential health benefits, including antioxidant and immunomodulatory effects. This study showed that cosmosiin effectively suppresses the expression of PD-L1 and triggers apoptosis, which is facilitated through pathways that are related to reactive oxygen species. These outcomes suggest that cosmosiin could be a promising candidate for an immune checkpoint inhibitor in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (J.H.H.); (E.-J.L.); (J.-G.C.)
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (J.H.H.); (E.-J.L.); (J.-G.C.)
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (W.P.); (K.-T.H.)
| | - Jang-Gi Choi
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (J.H.H.); (E.-J.L.); (J.-G.C.)
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (W.P.); (K.-T.H.)
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (J.H.H.); (E.-J.L.); (J.-G.C.)
- Korean Convergence Medical Science Major, University of Science and Technology (UST), KIOM Campus, Daegu 41062, Republic of Korea
| |
Collapse
|
8
|
Pastwińska J, Karwaciak I, Karaś K, Bachorz RA, Ratajewski M. RORγT agonists as immune modulators in anticancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189021. [PMID: 37951483 DOI: 10.1016/j.bbcan.2023.189021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
RORγT is a transcription factor that directs the development of Th17 lymphocytes and other IL-17-expressing cells (e.g., Tc17 and ILC3 cells). These cells are involved in the body's defense against pathogenic bacteria and fungi, but they also participate in maintaining the proinflammatory environment in some autoimmune diseases and play a role in the immune system's response to cancer. Similar to other members of the nuclear receptor superfamily, the activity of RORγT is regulated by low-molecular-weight ligands. Therefore, extensive efforts have been dedicated to identifying inverse agonists that diminish the activity of this receptor and subsequently inhibit the development of autoimmune diseases. Unfortunately, in the pursuit of an ideal inverse agonist, the development of agonists has been overlooked. It is important to remember that these types of compounds, by stimulating lymphocytes expressing RORγT (Th17 and Tc17), can enhance the immune system's response to tumors. In this review, we present recent advancements in the biology of RORγT agonists and their potential application in anticancer therapy.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Rafał A Bachorz
- Laboratory of Molecular Modeling, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
9
|
Chen Y, Li L, Liu Z, Liu M, Wang Q. A series of ligustrazine platinum(IV) complexes with potent anti-proliferative and anti-metastatic properties that exert chemotherapeutic and immunotherapeutic effects. Dalton Trans 2023; 52:13097-13109. [PMID: 37664893 DOI: 10.1039/d3dt02358c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The development of novel anticancer drugs with antiproliferative and antimetastatic activities is of great importance in the pharmaceutical field. Herein, a series of ligustrazine (LSZ) platinum(IV) complexes with chemotherapeutic and immunotherapeutic effects were designed, prepared and evaluated as antitumor agents for the first time. Complex 4 with potent antitumor activities both in vitro and in vivo was screened out as a candidate. Notably, it displays significantly more effective anti-metastatic activities than the platinum(II) drugs cisplatin and oxaliplatin. Mechanism detection discloses that it causes serious DNA damage and increases the expression of γ-H2AX and P53. Then, the apoptosis of tumor cells is promoted by activating the mitochondrial apoptotic pathway Bcl-2/Bax/caspase-3 and causing autophagy via modulating LC3-I/II and P62 expression. Furthermore, the immune therapeutic responses are significantly elevated by blocking HIF-1α, ERK 1/2 and COX-2 pathways to reduce PD-L1 expression, and further increasing CD3+ and CD8+ T cells to elevate T cell immunity in tumors. Tumor metastasis is blocked by the synergistic functions of DNA damage, hypoxia modulation and immune activation.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Linming Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
| |
Collapse
|
10
|
Chotphruethipong L, Chanvorachote P, Reudhabibadh R, Singh A, Benjakul S, Roytrakul S, Hutamekalin P. Chitooligosaccharide from Pacific White Shrimp Shell Chitosan Ameliorates Inflammation and Oxidative Stress via NF-κB, Erk1/2, Akt and Nrf2/HO-1 Pathways in LPS-Induced RAW264.7 Macrophage Cells. Foods 2023; 12:2740. [PMID: 37509832 PMCID: PMC10379839 DOI: 10.3390/foods12142740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Chitooligosaccharide (COS), found in both insects and marine sources, has several bioactivities, such as anti-inflammation and antioxidant activities. However, the mechanism of shrimp shell COS on retardation of inflammatory and antioxidant effects is limited. Therefore, the aim of this study is to examine the mechanism of the aforementioned activities of COS in LPS-activated RAW264.7 macrophage cells. COS significantly improved cell viability in LPS-activated cells. COS at the level of 500 µg/mL could reduce the TNF-α, NO and IL-6 generations in LPS-activated cells (p < 0.05). Furthermore, COS could reduce ROS formation, NF-κB overactivation, phosphorylation of Erk1/2 and Akt and Nrf2/HO-1 in LPS-exposed cells. These results indicate that COS manifests anti-inflammatory activity and antioxidant action via NF-κB, Erk1/2, Akt and Nrf2/HO-1 signaling with an increasing relevance for inflammatory disorders.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- Department of Food Science, Faculty of Science, Burapha University, Mueang Chonburi, Chonburi 20131, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
11
|
Zhang T, Yu-Jing L, Ma T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 2023; 14:1029438. [PMID: 36969168 PMCID: PMC10035551 DOI: 10.3389/fimmu.2023.1029438] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Long term immunosuppression is problematic during sepsis. The PD-1 and PD-L1 immune checkpoint proteins have potent immunosuppressive functions. Recent studies have revealed several features of PD-1 and PD-L1 and their roles in sepsis. Here, we summarize the overall findings of PD-1 and PD-L1 by first reviewing the biological features of PD-1 and PD-L1 and then discussing the mechanisms that control the expression of PD-1 and PD-L1. We then review the functions of PD-1 and PD-L1 in physiological settings and further discuss PD-1 and PD-L1 in sepsis, including their involvement in several sepsis-related processes and their potential therapeutic relevance in sepsis. In general, PD-1 and PD-L1 have critical roles in sepsis, indicating that their regulation may be a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
12
|
Wu X, Zhang H, Jiang G, Peng M, Li C, Lu J, Jiang S, Yang X, Jiang Y. Exosome-transmitted S100A4 induces immunosuppression and non-small cell lung cancer development by activating STAT3. Clin Exp Immunol 2022; 210:309-320. [PMID: 36370151 PMCID: PMC9985167 DOI: 10.1093/cei/uxac102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the primary reason of tumor morbidity and mortality worldwide. We aimed to study the transfer process of S100A4 between cells and whether it affected NSCLC development by affecting STAT3 expression. First, S100A4 expression in NSCLC cells was measured. The exosomes in MRC-5, A549, and H1299 cells were isolated and identified. We constructed si-S100A4 and si-PD-L1 to transfect A549 cells and oe-S100A4 to transfect H1299 cells, and tested the transfection efficiency. Cell function experiments were performed to assess cell proliferation, clone number, apoptosis, cell cycle, migration, and invasion abilities. In addition, ChIP was applied to determine the targeting relationship between S100A4 and STAT3. Next, we explored NSCLC cell-derived exosomes role in NSCLC progress by transmitting S100A4. Finally, we verified the function of exosome-transmitted S100A4 in NSCLC in vivo. High expression of S100A4 was secreted by exosomes. After knocking down S100A4, cell proliferation ability was decreased, clones number was decreased, apoptosis was increased, G1 phase was increased, S phase was repressed, and migration and invasion abilities were also decreased. ChIP validated STAT3 and PD-L1 interaction. After knocking down S100A4, PD-L1 expression was decreased, while ov-STAT3 reversed the effect of S100A4 on PD-L1 expression. Meanwhile, S100A4 inhibited T-cell immune activity by activating STAT3. In addition, knockdown of PD-L1 inhibited cell proliferation, migration, and invasion. NSCLC cell-derived exosomes promoted cancer progression by transmitting S100A4 to activate STAT3 pathway. Finally, in vivo experiments further verified that exosome-transmitted S100A4 promoted NSCLC progression. Exosome-transmitted S100A4 induces immunosuppression and the development of NSCLC by activating STAT3.
Collapse
Affiliation(s)
- Xu Wu
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hui Zhang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Gang Jiang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Minlian Peng
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Cheng Li
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Jiaxin Lu
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Shiyin Jiang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Drugs of Hunan Province, Changsha, China
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| |
Collapse
|
13
|
Anticancer natural products targeting immune checkpoint protein network. Semin Cancer Biol 2022; 86:1008-1032. [PMID: 34838956 DOI: 10.1016/j.semcancer.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.
Collapse
|
14
|
Li T, Liu T, Zhao Z, Pan Y, Xu X, Zhang Y, Zhan S, Zhou S, Zhu W, Guo H, Yang R. Antifungal immunity mediated by C-type lectin receptors may be a novel target in immunotherapy for urothelial bladder cancer. Front Immunol 2022; 13:911325. [PMID: 36131933 PMCID: PMC9483128 DOI: 10.3389/fimmu.2022.911325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapies, such as immune-checkpoint blockade and adoptive T-cell therapy, offer novel treatment options with good efficacy for patients with urothelial bladder cancer. However, heterogeneity and therapeutic resistance have limited the use of immunotherapy. Further research into immune-regulatory mechanisms in bladder cancer is urgently required. Emerging evidence demonstrates that the commensal microbiota and its interactions with host immunity play pivotal roles in a variety of physiological and pathological processes, including in cancer. The gut microbiota has been identified as a potentially effective target of treatment that can be synergized with immunotherapy. The urothelial tract is also a key site for multiple microbes, although the immune-regulatory role of the urinary microbiome in the process of carcinogenesis of bladder cancer remains to be elucidated. We performed a comprehensive analysis of the expression and biological functions of C-type lectin receptors (CLRs), which have been recognized as innate pathogen-associated receptors for fungal microbiota, in bladder cancer. In line with previous research on fungal colonization of the urothelial tract, we found that CLRs, including Dectin-1, Dectin-2, Dectin-3, and macrophage-inducible Ca2+-dependent lectin receptor (Mincle), had a significant association with immune infiltration in bladder cancer. Multiple innate and adaptive pathways are positively correlated with the upregulation of CLRs. In addition, we found a significant correlation between the expression of CLRs and a range of immune-checkpoint proteins in bladder cancer. Based on previous studies and our findings, we hypothesize that the urinary mycobiome plays a key role in the pathogenesis of bladder cancer and call for more research on CLR-mediated anti-fungal immunity against bladder cancer as a novel target for immunotherapy in urothelial bladder cancer.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xinyan Xu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yulin Zhang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Shoubin Zhan
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengkai Zhou
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Zhu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Rong Yang, ; Hongqian Guo,
| | - Rong Yang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Rong Yang, ; Hongqian Guo,
| |
Collapse
|
15
|
Inhibition of NLRP3 by Fermented Quercetin Decreases Resistin-Induced Chemoresistance to 5-Fluorouracil in Human Colorectal Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15070798. [PMID: 35890097 PMCID: PMC9324057 DOI: 10.3390/ph15070798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023] Open
Abstract
The drug resistance of colorectal cancer (CRC) cells against 5-fluorouracil (5-FU) therapy is a major challenge to successful cancer treatment. While previous studies have proposed several 5-FU resistance mechanisms, the effects of the adipokines on cancer cells remain unclear. Thus, this study investigated the effect of resistin on 5-FU-treated CRC cell lines. The upregulation of NLRP3 can regulate the inflammatory responses in cancer cells and then enhance cancer progression. This study investigated the expression level and the function of NLRP3 on 5-FU-induced cytotoxicity in CRC cells and found that resistin-induced ERK activation and increased NLRP3 expression in CRC HCT-116 and DLD-1 cells were mediated by Toll-like receptor 4 (TLR4). The inhibition of TLR4 and ERK by pharmacological inhibitors attenuated the resistin-induced NLRP3 mRNA and protein levels. In contrast, the knockdown of NLRP3 enhanced the cytotoxic effects of 5-FU. Furthermore, quercetin is an effective chemopreventive compound. This study showed that quercetin fermented by Lactobacillus could exhibit low cytotoxicity on normal mucosa cells and improve the function of inhibiting CRC cells. The treatment of CRC cells with fermented quercetin increased the cytotoxicity and enhanced cell death in the presence of resistin. In this study, fermented quercetin induced the cytotoxicity and cell death of 5-FU in resistin-treated CRC cells, which is associated with the downregulation of NLRP3 expression and ERK phosphorylation. These results indicate the role of NLRP3 in the development of drug resistance to 5-FU in CRC cells. Elucidating the mechanism regarding the cytotoxicity effect of quercetin may provide another vision for the development of a chemotherapy strategy for CRC in the future.
Collapse
|
16
|
Bacterial Species Associated with Highly Allergenic Plant Pollen Yield a High Level of Endotoxins and Induce Chemokine and Cytokine Release from Human A549 Cells. Inflammation 2022; 45:2186-2201. [PMID: 35668156 DOI: 10.1007/s10753-022-01684-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022]
Abstract
Sensitization to pollen allergens has been increasing in Europe every year. Most studies in this field are related to climate change, phenology, allergens associated with different pollens, and allergic disorders. As a plant microhabitat, pollen is colonized by diverse microorganisms, including endotoxin-producing bacteria which may contribute to pollen allergy (pollinosis). Therefore, bacteria isolated from high allergenic and low allergenic plant pollen, as well as the pollen itself with all microbial inhabitants, were used to assess the effect of the pollen by measuring the endotoxins lipopolysaccharides (LPS) and lipoteichoic acid (LTA) concentrations and their effect on chemokine and cytokine release from transwell cultured epithelial A549 cells as a model of epithelial lung barrier. High allergenic pollen showed a significantly higher level of bacterial endotoxins; interestingly, the endotoxin level found in the bacterial isolates from high allergenic pollen was significantly higher compared to that of bacteria from low allergenic pollen. Moreover, bacterial LPS concentrations across different pollen species positively correlated with the LPS concentration across their corresponding bacterial isolates. Selected bacterial isolates from hazel pollen (HA5, HA13, and HA7) co-cultured with A549 cells induced a potent concentration-dependent release of the chemokine interleukin-8 and monocyte chemotactic protein-1 as well as the cytokine TNF-alpha and interleukin-2 to both apical and basal compartments of the transwell model. This study clearly shows the role of bacteria and bacterial endotoxins in the pollen allergy as well as seasonal allergic rhinitis.
Collapse
|
17
|
Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:878740. [PMID: 35514980 PMCID: PMC9066637 DOI: 10.3389/fimmu.2022.878740] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Shuo Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| |
Collapse
|
18
|
Wu Y, Wang H, Wei D. Oncogenic magnesium transporter 1 upregulates programmed death-1-ligand 1 expression and contributes to growth and radioresistance of glioma cells through the ERK/MAPK signaling pathway. Bioengineered 2022; 13:9575-9587. [PMID: 35416125 PMCID: PMC9161830 DOI: 10.1080/21655979.2022.2037214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy has been established as a major therapeutic modality for glioma, whereas new therapeutic targets are needed to prevent tumor recurrence. This study intends to explore the regulatory role of magnesium transporter 1 (MAGT1) in radiotherapy resistance of glioma through modulating ERK and programmed death-1-ligand 1 (PD-L1). Our bioinformatics analysis identified differentially expressed MAGT1 in glioma, expression of which was subsequently determined in cohort data of TCGA database and microarray dataset as well as glioma cell lines. Artificial modulation of MAGT1, ERK, and PD-L1 expression was performed to examine their effects on glioma cell proliferation and radioresistance, as reflected by MTT and colony formation assays under irradiation. Mouse glioma cells with manipulated MAGT1 and ERK inhibitors were further injected into mice to assess the in vivo tumor formation ability of glioma cells. It was noted that MAGT1 expression was highly expressed in glioma tissues of TCGA data and microarray dataset, which was then validated in glioma cell lines. Ectopic expression of MAGT1 was revealed to promote the proliferation and radioresistance of glioma cells, which was attributed to the MAGT1-mediated activation of the ERK/MAPK signaling pathway. It was illuminated that MAGT1 stimulated PD-L1 expression through the ERK/MAPK pathway and thus facilitated glioma cell growth. Additionally, MAGT1 overexpression accelerated the in vivo tumor formation of glioma cells, while the ERK inhibitor negated its effect. In conclusion, MAGT1 enhances the growth and radioresistance of glioma cells through the ERK/MAPK signaling pathway-mediated upregulation of PD-L1 expression.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Tumor Radiotherapy, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Hongbing Wang
- Department of Tumor Radiotherapy, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Dongdong Wei
- Department of Tumor Radiotherapy, Cangzhou Central Hospital, Cangzhou, P. R. China
| |
Collapse
|
19
|
Rui C, Defu L, Lingling W, Jiahui D, Richeng X, Yuanyuan Y, Zhenhui G, Wenjie H. Cigarette Smoke or Motor Vehicle Exhaust Exposure Induces PD-L1 Upregulation in Lung Epithelial Cells in COPD Model Rats. COPD 2022; 19:206-215. [PMID: 35416743 DOI: 10.1080/15412555.2022.2058924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
A high smoking-independent chronic obstructive pulmonary disease (COPD) prevalence is observed in lung cancer patients. However, the underlying connection between these two diseases still remains unclear. Cigarette smoking and ambient air pollution are common risk factors for COPD and lung cancer. In this study, we established rat COPD model through exposure to cigarette smoke (CS) or motor vehicle exhaust (MVE). The model rats developed COPD-like phenotypes, manifested as lung functions decline, lung inflammation, emphysema-like alveolar enlargement and airway remodeling. The programmed death-ligand 1 (PD-L1), a factor contributing to immune escape of tumor cells, was overexpressed in lungs from COPD model rats, though more severe COPD phenotypes did not bring with further PD-L1 overexpression in lung. The upregulations of proinflammatory cytokines and PD-L1 were also observed in cultured human bronchial epithelial cells BEAS-2B upon treatment with cigarette smoke extract (CSE) or diesel-related particulate matter 2.5 (PM2.5, SEM1650b). The inflammatory cytokines produced in BEAS-2B cells reflected the PD-L1 levels. Furthermore, ERK1/2, a kinase mediating PD-L1 upregulation in premalignant bronchial cells or NSCLC cells, and STAT1/3, which was reportedly associated with PD-L1 expression in lung tumors, were activated in COPD rats' lungs or in BEAS-2B cells treated with CSE or PM2.5. Therefore, we proposed that inflammation associated PD-L1 overexpression in airway epithelial cells could be the underlying factor facilitating lung cancer incidence in COPD.
Collapse
Affiliation(s)
- Chen Rui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Li Defu
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Wang Lingling
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Dong Jiahui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Xiong Richeng
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Ye Yuanyuan
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Guo Zhenhui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Huang Wenjie
- Department of Respiratory Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
| |
Collapse
|
20
|
Cai H, Zhang Y, Wang J, Gu J. Defects in Macrophage Reprogramming in Cancer Therapy: The Negative Impact of PD-L1/PD-1. Front Immunol 2021; 12:690869. [PMID: 34248982 PMCID: PMC8260839 DOI: 10.3389/fimmu.2021.690869] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Classically activated M1 macrophages and alternatively activated M2 macrophages are two polarized subsets of macrophages at the extreme ends of a constructed continuum. In the field of cancer research, M2 macrophage reprogramming is defined as the repolarization of pro-tumoral M2 to anti-tumoral M1 macrophages. It is known that colony-stimulating factor 1 (CSF1)/CSF1 receptor (CSF1R) and CSF2/CSF2R signaling play important roles in macrophage polarization. Targeting CSF1/CSF1R for M2 macrophage reprogramming has been widely performed in clinical trials for cancer therapy. Other targets for M2 macrophage reprogramming include Toll-like receptor 7 (TLR7), TLR8, TLR9, CD40, histone deacetylase (HDAC), and PI3Kγ. Although macrophages are involved in innate and adaptive immune responses, M1 macrophages are less effective at phagocytosis and antigen presenting, which are required properties for the activation of T cells and eradication of cancer cells. Similar to T and dendritic cells, the "functionally exhausted" status might be attributed to the high expression of programmed death-ligand 1 (PD-L1) or programmed cell death protein 1 (PD-1). PD-L1 is expressed on both M1 and M2 macrophages. Macrophage reprogramming from M2 to M1 might increase the expression of PD-L1, which can be transcriptionally activated by STAT3. Macrophage reprogramming or PD-L1/PD-1 blockade alone is less effective in the treatment of most cancers. Since PD-L1/PD-1 blockade could make up for the defect in macrophage reprogramming, the combination of macrophage reprogramming and PD-L1/PD-1 blockade might be a novel treatment strategy for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|