1
|
Pich K, Respekta-Długosz N, Kurowska P, Opydo M, Smolińska N, Dupont J, Rak A. Intelectin-1 promotes granulosa cells proliferation and modulates apoptosis via ERK1/2, AKT, and insulin receptor signaling pathways in Large White and Meishan pigs. Gen Comp Endocrinol 2025; 367:114722. [PMID: 40250633 DOI: 10.1016/j.ygcen.2025.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Maintaining the proper balance between granulosa cells (Gc) proliferation and apoptosis is crucial for folliculogenesis and female fertility. Our previous study showed expression of omentin-1 (intelectin-1, ITLN1) in the porcine ovarian follicles; however, its impact on Gc functions remains unknown. Therefore, this study aimed to determine the in vitro effects of ITLN1 on Gc proliferation and apoptosis in Large White (LW) and Meishan (MS) pigs. These breeds were chosen due to their distinct reproductive characteristics: MS pigs are known for maintaining a higher number of follicles during the follicular phase and exhibiting greater estradiol synthesis compared to LW pigs. Porcine Gc were incubated with ITLN1 (10-100 ng/mL) for 24-72 h, and the viability/proliferation (alamarBlue/BrdU assays), cell cycle progression (flow cytometry) and the gene and protein expression of proliferation/apoptotic markers (PCNA, cyclins A1, B2, D1, E1, caspases-3, -9, BCL-2, BAX, FAS, FADD, XIAP) (real-time PCR, western blotting) were assessed. Next, the effect of ITLN1 on the phosphorylation of several kinases (AKT, AMPK, ERK1/2, STAT3, PKA) and the gene and protein expression of the insulin receptor (INSR) were studied (real-time PCR, western blotting). Then, using pharmacological inhibitors of ERK1/2 (PD98059, 5 μM), AKT (LY294002, 10 μM) and INSR (1 μM), treated alone or with ITLN1 (S961, 50 ng/mL), we analyzed its involvement in the effects of ITLN1 on Gc proliferation/apoptosis. We demonstrated that ITLN1 had a mitogenic effect on Gc by enhancing cell cycle progression and modulating the levels of PCNA, cyclins and apoptotic factors via ERK1/2, AKT, and INSR, suggesting that ITLN1 is a newly identified regulator in ovarian folliculogenesis, regardless of the fatness degree of pigs.
Collapse
Affiliation(s)
- Karolina Pich
- Jagiellonian University in Krakow, Faculty of Biology, Institute of Zoology and Biomedical Research, Laboratory of Physiology and Toxicology of Reproduction, Poland; Jagiellonian University in Krakow, Doctoral School of Exact and Natural Sciences, Poland
| | - Natalia Respekta-Długosz
- Jagiellonian University in Krakow, Faculty of Biology, Institute of Zoology and Biomedical Research, Laboratory of Physiology and Toxicology of Reproduction, Poland; Jagiellonian University in Krakow, Doctoral School of Exact and Natural Sciences, Poland
| | - Patrycja Kurowska
- Jagiellonian University in Krakow, Faculty of Biology, Institute of Zoology and Biomedical Research, Laboratory of Physiology and Toxicology of Reproduction, Poland
| | - Małgorzata Opydo
- Jagiellonian University in Krakow, Faculty of Biology, Institute of Zoology and Biomedical Research, Laboratory of Experimental Hematology, Poland
| | - Nina Smolińska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Anatomy and Physiology, Poland
| | - Joëlle Dupont
- INRAE, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Jagiellonian University in Krakow, Faculty of Biology, Institute of Zoology and Biomedical Research, Laboratory of Physiology and Toxicology of Reproduction, Poland.
| |
Collapse
|
2
|
Abo-Kamer AM, Abdelaziz AA, Elkotb ES, Al-Madboly LA. Production and characterization of a promising microbial-derived lipase enzyme targeting BCL-2 gene expression in hepatocellular carcinoma. Microb Cell Fact 2025; 24:58. [PMID: 40057735 PMCID: PMC11890718 DOI: 10.1186/s12934-025-02671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
CONTEXT AND GOAL This study aimed to isolate and optimize a high-yield lipase-producing Pseudomonas aeruginosa strain from biological samples, enhance enzyme production through random mutagenesis, and evaluate its potential anticancer activity. Fifty-one biological samples (blood, urine, sputum, wound pus) were screened, and three isolates demonstrated significant lipase activity. The isolate with the highest activity, identified as P. aeruginosa (GenBank accession number PP436388), was subjected to ethidium bromide-induced mutagenesis, resulting in a two-fold increase in lipase activity (312 U/ml). Lipase production was optimized using submerged fermentation, with critical factors identified statistically as Tween 80, peptone, and substrate concentration. The enzyme was purified via ammonium sulfate precipitation and Sephadex G-100 chromatography, and its molecular weight (53 kDa) was confirmed by SDS-PAGE. FINDINGS Optimal conditions for enzyme production included a pH of 9, temperature of 20 °C, and a 24-h incubation period. The partially purified enzyme exhibited high stability at pH values up to 10 and storage temperatures of 4 °C. Anticancer activity was evaluated using the MTT assay, revealing an IC50 of 78.21 U/ml against human hepatocellular carcinoma using HepG-2 cells, with no cytotoxicity observed against Vero cells. Flow cytometry confirmed that the enzyme's anticancer potential was mediated through apoptosis and necrosis. QRT-PCR data revealed that the expression of the Bcl-2 gene was significantly downregulated by 62% (P < 0.05) following the treatment of HepG-2 cells with the lipase enzyme. These findings suggest that lipase from P. aeruginosa holds promise as a novel therapeutic agent for hepatocellular carcinoma, addressing the limitations of current treatments.
Collapse
Affiliation(s)
- Amal M Abo-Kamer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Esraa S Elkotb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
3
|
Xu J, Li M, Jiang X, Wang Y, Ma H, Zhou Y, Tian M, Liu Y. Omentin-1 and diabetes: more evidence but far from enough. Arch Physiol Biochem 2024; 130:599-605. [PMID: 37395595 DOI: 10.1080/13813455.2023.2230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
AIMS AND BACKGROUND Omentin-1 (oment-1) is a type of adipokines that is mainly expressed in visceral fat tissue. Based on accumulating evidence, oment-1 is closely related to diabetes and its complications. However, so far data about oment-1 and diabetes is fragmented. In this review, we focus on the role of oment-1 on diabetes, including its possible signalling pathways, the correlation of circulating omens-1 levels with diabetes and its complications. METHODS The web of PubMed was searched for articles of relevant studies published until February, 2023. RESULTS AND CONCLUSIONS Oment-1 might exert its effects by inhibiting the NF-κB pathway and activating the Akt and AMPK-dependent pathways. The level of circulating oment-1 is negatively correlated with the occurrence of type 2 diabetes and some complications, including diabetic vascular disease, cardiomyopathy, and retinopathy, which can be affected by anti-diabetic therapies. Oment-1 could be a promising marker for screening and targeted therapy for diabetes and its complications; however, more studies are still needed.
Collapse
Affiliation(s)
- Jing Xu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuling Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang City, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meimei Tian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Tang X, Huang Y, Fu W, Wang P, Feng L, Yang J, Zhu H, Huang X, Ming Q, Li P. Digirseophene A promotes recovery in injured developing cerebellum via AMPK/AKT/GSK3β pathway-mediated neural stem cell proliferation. Biomed Pharmacother 2024; 177:117046. [PMID: 38981241 DOI: 10.1016/j.biopha.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3β inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Xiangyu Tang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Yuting Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Wenying Fu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Pengbo Wang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Liyuan Feng
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Jie Yang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Hongyan Zhu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Xiuning Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Qianliang Ming
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| | - Peng Li
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| |
Collapse
|
5
|
Li W, Liu J, Zhang Q, Ma X, Duan J, Wang J, Tian Y, Shi W. Bioinformatics analysis identifies the protective targets of omentin in mice with focal cerebral ischemia injury. Prostaglandins Other Lipid Mediat 2023; 169:106780. [PMID: 37704123 DOI: 10.1016/j.prostaglandins.2023.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Omentin is known to play a protective role in ischemic stroke. However, its regulatory networks and downstream targets in the pathogenesis of IS are incompletely revealed now. In this study, the model of photochemical brain ischemia was constructed after omentin over-expression. 8 key differentially expressed genes (DEGs) were obtained and analyzed by transcriptome analysis. These DEGs were mainly related to the negative regulation of hormone secretion, cellular phosphate ion homeostasis, and other pathways. Moreover, the mRNA expression of predicted gene 3435 (Gm3435), ankyrin repeat domain 53 (Ankrd53), fibroblast growth factor 23 (Fgf23) and the Fgf23 protein expression were down-regulated after omentin over-expression in HT22 cells injured by oxygen-glucose deprivation (OGD). In conclusion, our findings identified 8 key DEGs regulated by omentin after IS. In vitro models, the Gm3435, Ankrd53, Fgf23 mRNA expression and the Fgf23 protein expression were further verified to consistent with the transcriptomics results.
Collapse
Affiliation(s)
- Wu Li
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China
| | - Jie Liu
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China
| | - Qi Zhang
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; The College of Life Sciences, Northwest University, Shaanxi, Xi'an 710069, China
| | - Xiaojuan Ma
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China
| | - Jinwei Duan
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China
| | - Jiachen Wang
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; The College of Life Sciences, Northwest University, Shaanxi, Xi'an 710069, China
| | - Ye Tian
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China.
| | - Wenzhen Shi
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China.
| |
Collapse
|
6
|
Respekta N, Pich K, Mlyczyńska E, Dobrzyń K, Ramé C, Kamiński T, Smolińska N, Dupont J, Rak A. Plasma level of omentin-1, its expression, and its regulation by gonadotropin-releasing hormone and gonadotropins in porcine anterior pituitary cells. Sci Rep 2023; 13:19325. [PMID: 37935840 PMCID: PMC10630491 DOI: 10.1038/s41598-023-46742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Omentin-1 (OMNT1) is an adipokine involved in the regulation of energy metabolism, insulin sensitivity, and reproduction. The present study was the first to investigate the plasma levels and expression of OMNT1 in the anterior pituitary (AP) gland on days 2-3, 10-12, 14-16, and 17-19 of the estrous cycle of normal-weight Large White (LW) and fat Meishan (MS) pigs. Next, we determined the effect of GnRH, LH, and FSH on the OMNT1 levels in cultured AP cells. The gene and protein expression of OMNT1 in AP fluctuated during the estrous cycle, with a higher expression in MS than in LW (except on days 10-12). However, plasma levels of OMNT1 were higher in LW than in MS. OMNT1 was localized in somatotrophs, lactotrophs, thyrotrophs, and gonadotrophs. In LW pituitary cells, GnRH and gonadotropins stimulated OMNT1 protein expression (except FSH on days 14-16) and had no effect on OMNT1 levels in the culture medium. In MS pituitary cells, we observed that GnRH and LH increased while FSH decreased OMNT1 protein expression. These findings showed OMNT1 expression and regulation in the porcine AP and suggested that OMNT1 could be a new player modifying the pituitary functions.
Collapse
Affiliation(s)
- Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Kortowo, Olsztyn, Poland
| | - Christelle Ramé
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Kortowo, Olsztyn, Poland
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Kortowo, Olsztyn, Poland
| | - Joëlle Dupont
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Kraków, Poland.
| |
Collapse
|
7
|
Huber K, Szerenos E, Lewandowski D, Toczylowski K, Sulik A. The Role of Adipokines in the Pathologies of the Central Nervous System. Int J Mol Sci 2023; 24:14684. [PMID: 37834128 PMCID: PMC10572192 DOI: 10.3390/ijms241914684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Adipokines are protein hormones secreted by adipose tissue in response to disruptions in physiological homeostasis within the body's systems. The regulatory functions of adipokines within the central nervous system (CNS) are multifaceted and intricate, and they have been identified in a number of pathologies. Therefore, specific adipokines have the potential to be used as biomarkers for screening purposes in neurological dysfunctions. The systematic review presented herein focuses on the analysis of the functions of various adipokines in the pathogenesis of CNS diseases. Thirteen proteins were selected for analysis through scientific databases. It was found that these proteins can be identified within the cerebrospinal fluid either by their ability to modify their molecular complex and cross the blood-brain barrier or by being endogenously produced within the CNS itself. As a result, this can correlate with their measurability during pathological processes, including Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, depression, or brain tumors.
Collapse
Affiliation(s)
| | | | | | - Kacper Toczylowski
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland
| | | |
Collapse
|
8
|
Fu X, Wang Y, Zhao F, Cui R, Xie W, Liu Q, Yang W. Shared biological mechanisms of depression and obesity: focus on adipokines and lipokines. Aging (Albany NY) 2023; 15:5917-5950. [PMID: 37387537 PMCID: PMC10333059 DOI: 10.18632/aging.204847] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Depression and obesity are both common disorders currently affecting public health, frequently occurring simultaneously within individuals, and the relationship between these disorders is bidirectional. The association between obesity and depression is highly co-morbid and tends to significantly exacerbate metabolic and related depressive symptoms. However, the neural mechanism under the mutual control of obesity and depression is largely inscrutable. This review focuses particularly on alterations in systems that may mechanistically explain the in vivo homeostatic regulation of the obesity and depression link, such as immune-inflammatory activation, gut microbiota, neuroplasticity, HPA axis dysregulation as well as neuroendocrine regulators of energy metabolism including adipocytokines and lipokines. In addition, the review summarizes potential and future treatments for obesity and depression and raises several questions that need to be answered in future research. This review will provide a comprehensive description and localization of the biological connection between obesity and depression to better understand the co-morbidity of obesity and depression.
Collapse
Affiliation(s)
- Xiying Fu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yicun Wang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
9
|
Yang H, Song S, Li J, Li Y, Feng J, Sun Q, Qiu X, Chen Z, Bai X, Liu X, Lian H, Liu L, Bai Y, Zhang G, Nie Y. Omentin-1 drives cardiomyocyte cell cycle arrest and metabolic maturation by interacting with BMP7. Cell Mol Life Sci 2023; 80:186. [PMID: 37344704 PMCID: PMC11071824 DOI: 10.1007/s00018-023-04829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/05/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
- Department of Cardiovascular Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jiacheng Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yandong Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Quan Sun
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China
| | - Xueting Qiu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China
| | - Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xue Bai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xinchang Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Lihui Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yongping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China.
| | - Guogang Zhang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China.
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, 450046, China.
| |
Collapse
|
10
|
Ge Q, Xie X, Chen X, Huang R, Rui CX, Zhen Q, Hu R, Wu M, Xiao X, Li X. Circulating exosome-like vesicles of humans with nondiabetic obesity impaired islet β-cell proliferation, which was associated with decreased Omentin-1 protein cargo. Genes Dis 2022; 9:1099-1113. [PMID: 35685466 PMCID: PMC9170582 DOI: 10.1016/j.gendis.2020.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 12/05/2022] Open
Abstract
The regulation of β-cell mass in the status of nondiabetic obesity remains not well understood. We aimed to investigate the role of circulating exosome-like vesicles (ELVs) isolated from humans with simple obesity in the regulation of islet β-cell mass. Between June 2017 and July 2019, 81 subjects with simple obesity and 102 healthy volunteers with normal weight were recruited. ELVs were isolated by ultra-centrifugation. The proliferations of β-cells and islets were measured by 5-ethynl-2′-deoxyuridine (EdU). Protein components in ELVs were identified by Quantitative Proteomic Analysis and verified by Western blot and ELISA. The role of specific exosomal protein was analyzed by gain-of-function approach in ELVs released by 3T3-L1 preadipocytes. Circulating ELVs from subjects with simple obesity inhibited β-cell proliferation in vitro without affecting its apoptosis, secretion, and inflammation. The protein levels of Rictor and Omentin-1 were downregulated in circulating ELVs from subjects with simple obesity and associated with the obesity-linked pathologic conditions. The ELV-carried Omentin-1 and Omentin-1 protein per se were validated to increase β-cell proliferation and activate Akt signaling pathway. Moreover, Omentin-1 in ELVs was downregulated by insulin. The circulating ELVs may act as a negative regulator for β-cell mass in nondiabetic obesity through inhibiting β-cell proliferation. This effect was associated with downregulated Omentin-1 protein in ELVs. This newly identified ELV-carried protein could be a mediator linking insulin resistance to impaired β-cell proliferation and a new potential target for increasing β-cell mass in obesity and T2DM.
Collapse
Affiliation(s)
- Qian Ge
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xinxin Xie
- The Biology Science Institutes, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiangjun Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Rongfeng Huang
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Cheng-Xue Rui
- The Biology Science Institutes, Chongqing Medical University, Chongqing 400016, PR China.,de Duve Institute, Catholic University of Louvain, Brussels 1200, Belgium
| | - Qianna Zhen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Renzhi Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Min Wu
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoqiu Xiao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xi Li
- The Biology Science Institutes, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
11
|
Omentin-1 promoted proliferation and ameliorated inflammation, apoptosis, and degeneration in human nucleus pulposus cells. Arch Gerontol Geriatr 2022; 102:104748. [PMID: 35704952 DOI: 10.1016/j.archger.2022.104748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Intervertebral disc degeneration is an abnormal, cell-mediated process of tissue remodeling, recognized as the principal cause of low back pain affecting 80% of the population worldwide. Inflammatory cytokine, Interleukin-1beta (IL-1β) is involved in the intervertebral disc degeneration (IDD) process, and it is upregulated in degenerated discs. Omentin-1, also known as intelectin-1, is an adipokine with anti-inflammatory, anti-apoptosis, pro-proliferation, and proangiogenic properties in various types of cells. However, little is known about the effects of omentin-1 on human nucleus pulposus cells (HNPCs). This study aims to investigate the effects of omentin-1 on healthy HNPCs regarding proliferation and further investigate the effects of omentin-1 on IL-1β-induced inflammation, apoptosis, and degeneration in HNPCs. METHODS Genes and proteins of interest were measured by qRT-PCR, immunoblotting, and immunofluorescence to conduct related experiments. Cell viability (CCK-8), EdU, and mitochondrial membrane potential (JC-1), flow cytometry assays were used to assess proliferation and apoptosis, respectively. RESULTS Our study showed that omentin-1 promoted proliferation in normal HNPCs. Furthermore, omentin-1 expression was decreased in IL-1β-treated HNPCs. Omentin-1 protected against IL-1β-induced inflammation, apoptosis, and degeneration in HNPCs in vitro via the activation of the PI3K/Akt signaling pathway. CONCLUSION These findings may contribute to understanding the role of omentin-1 in HNPCs and may be a potential therapeutic candidate for intervertebral disc degeneration.
Collapse
|
12
|
Nasif E, Ragab OA, Elhassanien ME, Al-Malt AM. Omentin-1: a biomarker in large artery ischaemic stroke patients. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Omentin-1 is a novel adipocytokine that is related to atherosclerosis-based ischaemic cardiovascular disease and stroke. Previous studies have linked its lower levels with poor stroke outcomes. We aimed to assess the level of serum omentin-1 as a prognostic marker in patients with large artery ischaemic stroke.
Methods
Fifty ischaemic stroke patients suffering large artery ischaemic stroke and another 50 subjects without a prior history of strokes were recruited. All participants were subjected to neurological examinations, echocardiography and laboratory investigations including a lipid profile and HBA1c. Carotid intima-media thickness (IMT) was measured for all participants. Stroke patients were evaluated by the National Institute of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRS). Infarction volume was measured by magnetic resonance image (MRI) and serum level of omentin-1 was gauged for all participants.
Results
Carotid IMT significantly increased in stroke patients compared to control subjects. While serum omentin-1 levels were higher in control non-diabetic subjects, they were lower in diabetic patients with ischaemic stroke. Serum omentin-1 levels were inversely correlated with NIHSS, carotid IMT, infarction volume and mRS scores in all stroke patients. Serum omentin-1 level less than 24.5 ng/ml showed 93.7%sensitivity and 44.4% specificity in prediction of poor stroke outcome while values less than 27.8 ng/ml in non-diabetic stroke patients had sensitivity and specificity with 87.5% and 55.6% respectively.
Conclusion
Lower levels of serum omentin-1 are associated with increased ischaemic stroke severity and poor functional outcome.
Collapse
|
13
|
Seifert C, Balz E, Herzog S, Korolev A, Gaßmann S, Paland H, Fink MA, Grube M, Marx S, Jedlitschky G, Tzvetkov MV, Rauch BH, Schroeder HWS, Bien-Möller S. PIM1 Inhibition Affects Glioblastoma Stem Cell Behavior and Kills Glioblastoma Stem-like Cells. Int J Mol Sci 2021; 22:ijms222011126. [PMID: 34681783 PMCID: PMC8541331 DOI: 10.3390/ijms222011126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Despite comprehensive therapy and extensive research, glioblastoma (GBM) still represents the most aggressive brain tumor in adults. Glioma stem cells (GSCs) are thought to play a major role in tumor progression and resistance of GBM cells to radiochemotherapy. The PIM1 kinase has become a focus in cancer research. We have previously demonstrated that PIM1 is involved in survival of GBM cells and in GBM growth in a mouse model. However, little is known about the importance of PIM1 in cancer stem cells. Here, we report on the role of PIM1 in GBM stem cell behavior and killing. PIM1 inhibition negatively regulates the protein expression of the stem cell markers CD133 and Nestin in GBM cells (LN-18, U-87 MG). In contrast, CD44 and the astrocytic differentiation marker GFAP were up-regulated. Furthermore, PIM1 expression was increased in neurospheres as a model of GBM stem-like cells. Treatment of neurospheres with PIM1 inhibitors (TCS PIM1-1, Quercetagetin, and LY294002) diminished the cell viability associated with reduced DNA synthesis rate, increased caspase 3 activity, decreased PCNA protein expression, and reduced neurosphere formation. Our results indicate that PIM1 affects the glioblastoma stem cell behavior, and its inhibition kills glioblastoma stem-like cells, pointing to PIM1 targeting as a potential anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Carolin Seifert
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Ellen Balz
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Susann Herzog
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Anna Korolev
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Sebastian Gaßmann
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Heiko Paland
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Matthias A. Fink
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Markus Grube
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Gabriele Jedlitschky
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Mladen V. Tzvetkov
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Bernhard H. Rauch
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Pharmacology and Toxicology, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Henry W. S. Schroeder
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Sandra Bien-Möller
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
- Correspondence: ; Tel.: +49-03834-865646
| |
Collapse
|
14
|
Mohammadi C, Sameri S, Najafi R. Insight into adipokines to optimize therapeutic effects of stem cell for tissue regeneration. Cytokine 2020; 128:155003. [PMID: 32000014 DOI: 10.1016/j.cyto.2020.155003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
Stem cell therapy is considered as a promising regenerative medicine for repairing and treating damaged tissues and/or preventing various diseases. But there are still some obstacles such as low cell migration, poor stem cell engraftment and decreased cell survival that need to be overcome before transplantation. Therefore, a large body of studies has focused on improving the efficiency of stem cell therapy. For instance, preconditioning of stem cells has emerged as an effective strategy to reinforce therapeutic efficacy. Adipokines are signaling molecules, secreted by adipose tissue, which regulate a variety of biological processes in adipose tissue and other organs including the brain, liver, and muscle. In this review article, we shed light on the biological effects of some adipokines including apelin, oncostatin M, omentin-1 and vaspin on stem cell therapy and the most recent preclinical advances in our understanding of how these functions ameliorate stem cell therapy outcome.
Collapse
Affiliation(s)
- Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Sameri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
15
|
Abstract
Objective: Omentin is a recently identified novel adipocytokine mainly expressed in the epicardial adipose tissue. Although it has favorable effects on cardiovascular disease, the impact of omentin on the hearts is still an understudied issue. The aim of the present study was to investigate the possible effects of omentin on isolated rat heart. Methods: Using the Langendorff method, 28 adult male Sprague–Dawley rat hearts were isolated and perfused with modified Krebs–Henseleit solution (mK–Hs). Concentrations of 100, 200, and 400 ng/mL omentin were given to the hearts for 30 min. The control group (n=7) was perfused with mK–Hs alone. Gene expressions in the left ventricle tissue were determined by real-time polymerase chain reaction. Left ventricular cyclic adenosine monophosphate and cyclic guanosine monophosphate (cGMP) concentrations were determined by using enzyme-linked immunosorbent assay. Results: All concentrations of omentin significantly decreased left ventricular developed pressure and maximal rate of pressure development that are the indexes of cardiac contractility. At the same time, omentin decreased both phosphoinositide 3-kinase γ (PI3Kγ) and sarcolemmal L-type Ca2+ channel (CaV1.2) mRNA levels. Moreover, this peptide at concentrations of 200 and 400 ng/mL increased endothelial nitric oxide synthase (eNOS) mRNA. Furthermore, concentrations of 200 and 400 ng/mL omentin increased the amount of cGMP. Conclusion: We conclude that acute omentin treatment decreases cardiac contractility. Elevated eNOS mRNA and cGMP levels with reduced CaV1.2 mRNA are likely to lead to negative inotropy.
Collapse
|
16
|
Zhang J, Zhao J, Chen Y, Shi H, Huang X, Wang Y, Wang Y, Wei Y, Xue W, Han J. Effect of mGluR7 on proliferation of human embryonic neural stem cells. Medicine (Baltimore) 2019; 98:e14683. [PMID: 30817600 PMCID: PMC6831331 DOI: 10.1097/md.0000000000014683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study is to investigate the effect of metabotropic glutamate receptor 7 (mGluR7) on the proliferation of human embryonic neural stem cells (NSCs) and its molecular mechanism.Human embryonic NSCs were isolated. The pCMV2-GV146-GFP-mGluR7 plasmid was transfected to over-express mGluR7 while mGluR7 siRNA was transfected to knockdown mGluR7. MTT assay was used to analyze cell proliferation. Flow cytometry was used to detect cell cycle and apoptosis. Protein and mRNA levels were analyzed by Western blot and RT-qPCR, respectively.The viability of human NSCs and the diameter of neurospheres after 24 hours, 48 hours, and 72 hours of transfection significantly increased by mGluR7 overexpression whereas significantly decreased by mGluR7 knockdown. Ki-67 expression was up-regulated by mGluR7 overexpression whereas down-regulated by mGluR7 siRNA, indicating a promotive effect of mGluR7 on NSC proliferation. After mGluR7 overexpression, G1/G0 phase cell ratio dropped significantly compared with control group, while the S phase cell ratio increased. mGluR7 silencing arrested human NSCs at G1/G0 phase. After 48 hours of transfection, there was a decrease of apoptosis by mGluR7 overexpression, while mGluR7 silencing induced apoptosis of human NSCs. Additionally, overexpression of mGluR7 up-regulated the expression of p-serine/threonine kinase (AKT), cyclin D1, and cyclin-dependent kinase 2 (CDK2). The mGluR7 knockdown had opposite effects. Similarly, mGluR7 down-regulated the expression of Caspase-3/9, while the mGluR7 knockdown promoted this.mGluR7 can promote the proliferation of human embryonic cortical NSCs in vitro. This effect may be mediated by promoting cell cycle progression, inhibiting cell apoptosis, activating the AKT signaling pathway, and inhibiting the Caspase-3/9 signaling pathway.
Collapse
|
17
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
18
|
Song J, Zhang H, Sun Y, Guo R, Zhong D, Xu R, Song M. Omentin-1 protects renal function of mice with type 2 diabetic nephropathy via regulating miR-27a-Nrf2/Keap1 axis. Biomed Pharmacother 2018; 107:440-446. [PMID: 30103116 DOI: 10.1016/j.biopha.2018.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
Omentin-1, a novel identified adipokine, always significantly decreases in patients with metabolic syndrome. However, the functional roles of omentin-1 in diabetic nephropathy (DN) remains largely unknown. In the present study, we found that omentin-1 treatment could improve renal function of type 2 diabetic db/db mice. ELISA assay and immunohistochemistry staining showed that omentin-1 reduced the productions of proinflammatory cytokines (IFN-γ, TNF-α, MCP-1 and IL-8), and improved oxidative stress level (CAT, MDA and SOD) in the kidney tissue, indicating omentin-1 could relieved the inflammatory response and suppressed oxidative stress. Mechanistic analysis demonstrated that omentin-1 down-regulated miR-27a expression, and subsequently inhibited oxidative stress and inflammation. Luciferase reporter assay and western blot further revealed that miR-27a directly targeted the 3' untranslated region (UTR) of nuclear factor erythroid 2-like 2 (Nrf2) and reduced its expression in type 2 DN. Taken together, these findings provide a new function of omentin-1 in renal protection and also delineate multiple potential targets for therapeutic intervention for type 2 DN.
Collapse
Affiliation(s)
- Juan Song
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Hongxia Zhang
- Department of Endocrinology, Shanxi Province People's Hospital, Taiyuan 030012, China
| | - Yanni Sun
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Ruimin Guo
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Dongxiang Zhong
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Runxi Xu
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Meng Song
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
19
|
Yin L, Huang D, Liu X, Wang Y, Liu J, Liu F, Yu B. Omentin-1 effects on mesenchymal stem cells: proliferation, apoptosis, and angiogenesis in vitro. Stem Cell Res Ther 2017; 8:224. [PMID: 29017592 PMCID: PMC5633887 DOI: 10.1186/s13287-017-0676-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/01/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are emerging as an extremely promising therapeutic agent for tissue repair. However, limitations exist such as the low numbers of MSCs obtained from donors, and the poor survival and function of donor cells. Omentin-1, a new fat depot-specific secretory adipokine, exerts proproliferation, prosurvival, and proangiogenic functions in certain cells via an Akt-dependent mechanism; however, little is known about the influence of omentin-1 on MSCs. Methods MSCs were isolated from 60–80 g donor rats. Cell proliferation was assessed with CCK-8 and EdU assay. Cell cycle, apoptosis ratio, reactive oxygen species concentration, and mitochondrial membrane potential were detected by flow cytometry. Hoechst 33342 dye was used to assess morphological changes of apoptosis. Expression levels of Akt, FoxO3a, GSK-3β, and apoptosis- and cell cycle-associated proteins were detected by Western blotting. Tube formation assay was used to test the angiogenesis role of conditioned medium from MSCs in vitro. The cytokine secretion was assessed by ELISA. Results After treatment with omentin-1 (100–800 ng/ml), MSCs displayed a higher proliferative capacity with an increasing number of cells in the S and G2 phase of the cell cycle. Moreover, omentin-1 preconditioning for 1 h could protect MSCs against H2O2-induced apoptosis in a concentration-dependent manner. Furthermore, omentin-1 pretreatment reduced the excessive reactive oxygen species. Western blots revealed that increased Bcl-2 and decreased Bax appeared in MSCs after omentin-1 incubation, which inhibited the mitochondrial apoptosis pathways with evidence showing inhibition of caspase-3 cleavage and preservation of mitochondrial membrane potential. Omentin-1 could enhance angiogenic growth factor secretion and elevate the ability of MSCs to stimulate tube formation by human umbilical vein endothelial cells (HUVECs). Furthermore, omentin-1 enhanced Akt phosphorylation; however, blockade of the PI3K/Akt pathway with an inhibitor, LY294002 (20 μM), suppressed the above beneficial effects of omentin-1. Conclusion Omentin-1 can exert beneficial effects on MSCs by promoting proliferation, inhibiting apoptosis, increasing secretion of angiogenic cytokines, and enhancing the ability for stimulating tube formation by HUVECs via the PI3K/Akt signaling pathway. Thus, omentin-1 may be considered a candidate for optimizing MSC-based cell therapy.
Collapse
Affiliation(s)
- Li Yin
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Dan Huang
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Xinxin Liu
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Yongshun Wang
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Jingjin Liu
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Fang Liu
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China
| | - Bo Yu
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China. .,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150086, People's Republic of China.
| |
Collapse
|
20
|
Watanabe T, Watanabe-Kominato K, Takahashi Y, Kojima M, Watanabe R. Adipose Tissue-Derived Omentin-1 Function and Regulation. Compr Physiol 2017. [PMID: 28640441 DOI: 10.1002/cphy.c160043] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Omentin-1, also known as intelectin-1, is a recently identified novel adipocytokine of 313 amino acids, which is expressed in visceral (omental and epicardial) fat as well as mesothelial cells, vascular cells, airway goblet cells, small intestine, colon, ovary, and plasma. The level of omentin-1 expression in (pre)adipocytes is decreased by glucose/insulin and stimulated by fibroblast growth factor-21 and dexamethasone. Several lines of experimental evidence have shown that omentin-1 plays crucial roles in the maintenance of body metabolism and insulin sensitivity, and has anti-inflammatory, anti-atherosclerotic, and cardiovascular protective effects via AMP-activated protein kinase/Akt/nuclear factor-κB/mitogen-activated protein kinase (ERK, JNK, and p38) signaling. Clinical studies have indicated the usage of circulating omentin-1 as a biomarker of obesity, metabolic disorders including insulin resistance, diabetes, and metabolic syndrome, and atherosclerotic cardiovascular diseases. It is also possible to use circulating omentin-1 as a biomarker of bone metabolism, inflammatory diseases, cancers, sleep apnea syndrome, preeclampsia, and polycystic ovary syndrome. Decreased omentin-1 levels are generally associated with these diseases. However, omentin-1 increases to counteract the acute phase after onset of these diseases. These findings indicate that omentin-1 may be a negative risk factor for these diseases, and also act as an acute-phase reactant by its anti-inflammatory and atheroprotective effects. Therapeutic strategies to restore omentin-1 levels may be valuable for the prevention or treatment of these diseases. Weight loss, olive oil-rich diet, aerobic training, and treatment with atorvastatin and antidiabetic drugs (metformin, pioglitazone, and exenatide) are effective means of increasing circulating omentin-1 levels. This review provides insights into the potential use of omentin-1 as a biomarker and therapeutic target for these diseases. © 2017 American Physiological Society. Compr Physiol 7:765-781, 2017.
Collapse
Affiliation(s)
- Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Kaho Watanabe-Kominato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Yui Takahashi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Miho Kojima
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| | - Rena Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji-City, Tokyo, Japan
| |
Collapse
|
21
|
Fernández-Trasancos Á, Agra RM, García-Acuña JM, Fernández ÁL, González-Juanatey JR, Eiras S. Omentin treatment of epicardial fat improves its anti-inflammatory activity and paracrine benefit on smooth muscle cells. Obesity (Silver Spring) 2017; 25:1042-1049. [PMID: 28429889 DOI: 10.1002/oby.21832] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/08/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Epicardial adipose tissue (EAT) in coronary artery disease is insulin resistant and has a proinflammatory profile. This study examined the regulation of EAT by exogenous omentin and its consequence on vascular cells. METHODS Stromal vascular cells (SC) of EAT and subcutaneous adipose tissue (SAT) from patients who underwent heart surgery were cultured and exposed to adipogenic factors with or without omentin. Proinflammatory cytokine regulation by omentin was analyzed in SC and mature adipocytes. Glucose uptake by EAT and SAT explants was determined after insulin, omentin, or combined treatment. Human vascular cells were exposed to secretomes of SC, with and without omentin treatment. Migration of smooth muscle cells and expression of adhesion molecules were determined by wound healing or real-time polymerase chain reaction, respectively. RESULTS Omentin treatment raised adipogenesis-induced adiponectin levels on SC of EAT and reduced TNF-α expression levels (0.58 ± 0.14-fold change; P = 0.034) in mature adipocytes. Omentin improved the insulin activity of EAT and SAT explants from cardiovascular disease patients. Finally, secretomes of SC under omentin treatment reduced the migration of smooth muscle cells. CONCLUSIONS Exogenous omentin might support a cardioprotective role through its effect on EAT regarding glucose uptake, anti-inflammatory response, and its paracrine role on smooth muscle cells.
Collapse
Affiliation(s)
- Ángel Fernández-Trasancos
- Cardiology Group, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rosa María Agra
- Cardiology Group, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CiberCV Madrid, Spain
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose María García-Acuña
- Cardiology Group, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CiberCV Madrid, Spain
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Luis Fernández
- CiberCV Madrid, Spain
- Department of Heart Surgery, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cardiology Group, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CiberCV Madrid, Spain
- Department of Cardiology and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sonia Eiras
- Cardiology Group, Health Research Institute, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- CiberCV Madrid, Spain
| |
Collapse
|
22
|
Qi D, Tang X, He J, Wang D, Zhao Y, Deng W, Deng X, Zhou G, Xia J, Zhong X, Pu S. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism. Cell Death Dis 2016; 7:e2360. [PMID: 27607575 PMCID: PMC5059868 DOI: 10.1038/cddis.2016.265] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS.
Collapse
Affiliation(s)
- Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing He
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoqi Zhou
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xia
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Zhong
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenglan Pu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|