1
|
Li J, Wang X, Zhang Y, Wei M, Qi J, Liu D, Wu R, Chen Q, Huang J. Ginsenoside Rg1 alleviates PCPA-induced insomnia by inhibiting NLRP3 inflammasome activation and pyroptosis through the Nrf2/HO-1 pathway in mice. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06828-5. [PMID: 40493075 DOI: 10.1007/s00213-025-06828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 05/27/2025] [Indexed: 06/12/2025]
Abstract
OBJECTIVES This study aims to investigate the neuroprotective effects of Ginsenoside Rg1 in alleviating P-chlorophenylalanine (PCPA)-induced insomnia and explore its underlying mechanisms involving the inhibition of NOD-Like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation and pyroptosis through the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) pathway in mice. METHODS Sprague-Dawley rats were randomly divided into five groups: control, sleep deprivation (SD, PCPA-induced insomnia), and three treatment groups receiving different doses of Ginsenoside Rg1 (low, medium, and high). Behavioral assessments included the Pentobarbital Sodium-Induced Sleep Test (PIST), Sucrose Preference Test (SPT), and Morris Water Maze (MWM). Histopathological and immunofluorescence evaluations of hippocampal tissues were performed. Enzyme-Linked Immunosorbent Assay (ELISA) was used to measure neurotransmitter levels (5-Hydroxytryptamine [5-HT], 5-Hydroxytryptophan [5-HTP], Gamma-aminobutyric acid [GABA], glutamate [GLU]) and pro-inflammatory cytokines (Tumor Necrosis Factor Alpha [TNF-α], Interleukin-6 [IL-6], Interleukin-1 beta [IL-1β], Interleukin-8 [IL-8]). In vitro, corticosterone-induced neurotoxicity in HT22 hippocampal cells was assessed, and the role of the Nrf2/HO-1 pathway was examined through molecular docking, gene silencing, and Western blot. RESULTS Ginsenoside Rg1 treatment significantly improved PCPA-induced insomnia symptoms in a dose-dependent manner, as evidenced by reduced sleep latency, increased sleep duration, restored sucrose preference, and improved spatial memory. Histopathological analysis revealed that Ginsenoside Rg1 mitigated neuronal damage and astrocytic activation. Neurotransmitter imbalances were corrected, and inflammation was alleviated, as reflected by reductions in pro-inflammatory cytokines and increased interleukin-10 (IL-10) levels. Mechanistically, Ginsenoside Rg1 inhibited NLRP3 inflammasome activation, pyroptosis, and reduced IL-1β and IL-8 levels in both in vivo and in vitro models. The activation of the Nrf2/HO-1 pathway was further confirmed by molecular docking, immunofluorescence, and Western blot, demonstrating that Nrf2 activation was critical for the anti-inflammatory effects of Ginsenoside Rg1. CONCLUSION Ginsenoside Rg1 effectively alleviates PCPA-induced insomnia by inhibiting NLRP3 inflammasome activation and pyroptosis, with its neuroprotective effects mediated through the activation of the Nrf2/HO-1 pathway. These findings suggest Ginsenoside Rg1 as a potential therapeutic agent for insomnia and related neuroinflammatory conditions.
Collapse
Affiliation(s)
- Jingyi Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, Fujian Province, 350122, China
| | - Xiufeng Wang
- Fujian Academy of Chinese Medical Sciences, No. 282 Wusi Road, Gulou District, Fuzhou, 350003, China
| | - Yu Zhang
- Fujian Academy of Chinese Medical Sciences, No. 282 Wusi Road, Gulou District, Fuzhou, 350003, China
| | - Min Wei
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, Fujian Province, 350122, China
| | - Jianqiang Qi
- Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, 350122, Fujian Province, China
| | - Dan Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, Fujian Province, 350122, China
| | - Runhua Wu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, Fujian Province, 350122, China
| | - Qin Chen
- Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou Street, Fuzhou, 350122, Fujian Province, China
| | - Junshan Huang
- Fujian Academy of Chinese Medical Sciences, No. 282 Wusi Road, Gulou District, Fuzhou, 350003, China.
| |
Collapse
|
2
|
Zheng Q, Wang T, Wang S, Chen Z, Jia X, Yang H, Chen H, Sun X, Wang K, Zhang L, Fu F. The anti-inflammatory effects of saponins from natural herbs. Pharmacol Ther 2025; 269:108827. [PMID: 40015518 DOI: 10.1016/j.pharmthera.2025.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Inflammation is a protective mechanism that also starts the healing process. However, inflammatory reaction may cause severe tissue damage. The increased influx of phagocytic leukocytes may produce excessive amount of reactive oxygen species, which leads to additional cell injury. Inflammatory response activates the leukocytes and thus induces tissue damage and prolongs inflammation. The inflammation-induced activation of the complement system may also contribute to cell injury. Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are chief agents for treating inflammation associated with the diseases. However, the unwanted side effects of NSAIDs (e.g., gastrointestinal disturbances, skin reactions, adverse renal effects, cardiovascular side effects) and glucocorticoids (e.g., suppression of immune system, Cushing's syndrome, osteoporosis, hyperglycemia) limit their use in patients. Natural herbs are important sources of anti-inflammatory drugs. The ingredients extracted from natural herbs display anti-inflammatory effects to work through multiple pathways with lower risk of adverse reaction. At present, the main anti-inflammatory natural agents include saponins, flavonoids, alkaloids, polysaccharides, and so on. The present article will review the anti-inflammatory effects of saponins including escin, ginsenosides, glycyrrhizin, astragaloside, Panax notoginseng saponins, saikosaponin, platycodin, timosaponin, ophiopogonin D, dioscin, senegenin.
Collapse
Affiliation(s)
- Qinpin Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sensen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhuoxi Chen
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xue Jia
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Hui Yang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huijin Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xin Sun
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Kejun Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Leiming Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China.
| |
Collapse
|
3
|
Wang Q, Wei L, Chen G, Chen Q. Ginsenoside Rg1 in Parkinson's disease: from basic research to clinical applications. Front Pharmacol 2025; 16:1490480. [PMID: 40308780 PMCID: PMC12040930 DOI: 10.3389/fphar.2025.1490480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
This review provides an in-depth exploration of the potential of Ginsenoside Rg1 in the treatment of Parkinson's disease (PD). The emphasis of this article was the therapeutic mechanisms of Rg1, which involved the reduction of inflammation, antioxidant properties, support for neuronal survival and regeneration, regulation of cellular energy processes, and enhancement of autophagic pathways. Rg1 may protect neurons and improve both motor and cognitive impairments associated with PD through multiple mechanisms. However, challenges exist in the clinical application of Rg1, such as low bioavailability as well as a lack of comprehensive long-term safety and efficacy data. This article also reviewed network pharmacology analyses published previously to identify and explore the potential molecular targets of Rg1 in PD treatment, while evaluating strategies such as drug delivery technologies, optimizing administration routes, and combination therapies. Ultimately, this review highlights the necessity for large-scale clinical trials to validate the clinical efficacy of Rg1 and discusses its potential for PD treatment clinically.
Collapse
Affiliation(s)
- Qianyan Wang
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wei
- Department of Pharmacy, Tianmen Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Tianmen, China
| | - Guanghui Chen
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
| | - Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Niu H, Zhang M, Zhang K, Aishan S, Li H, Wu W. In-Depth Investigation on Potential Mechanism of Forest-Grown Ginseng Alleviating Alzheimer's Disease via UHPLC-MS-Based Metabolomics. Metabolites 2025; 15:93. [PMID: 39997718 PMCID: PMC11857256 DOI: 10.3390/metabo15020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Alzheimer's disease is a central nervous system degenerative disease closely related to age with a complex pathogenesis. As a natural medicinal plant, forest-grown ginseng (GSF) contains abundant ginsenosides and offers significant neuroprotective effects. METHODS In this study, we comprehensively investigated the effect of GSF on the cell viability of PC12 cells in an AD model alongside metabolic changes in the serum and brains of mice, combined with an efficacy evaluation of PC12 cells in vitro and UHPLC-MS-based metabolomics in vivo. The goal of this study is to clarify the potential mechanism of GSF in treating AD. RESULTS The PC12 cell results showed that GSF can promote the proliferation of PC12 cells, reduce the content of IL-8, increase the activity of SOD, and alleviate the inflammation and oxidative stress induced by Aβ25~35. The immunohistochemical results for the mouse brain tissue also showed that GSF could reduce the inflammatory response of mouse brain tissue by reducing the overexpression of IBa1. AD was alleviated by reducing Aβ protein deposition in the mouse brain tissue. An untargeted metabolomics analysis was performed using UHPLC-Q-Exactive MS and principal component analysis (PCA) to identify the differentially expressed metabolites in the serum and brain tissue of AD mice after treatment. Twenty and seventeen different metabolites were identified in the serum and brain tissue, respectively. The pathway enrichment analysis of differential metabolites showed that GSF could treat AD by up-regulating succinic acid semialdehyde, carbamoyl phosphate, Sphingosine 1-phosphate, L-cystathionine, 2-ketobutyric acid, Vanillylmandelic acid, and D-Ribose to regulate sphingomyelin metabolism, the synthesis and metabolism of neurotransmitters and precursors, and energy metabolism. CONCLUSIONS GSF can reduce neuroinflammation and alleviate Alzheimer's disease by regulating the metabolic disorders of amino acids, sphingolipids, unsaturated fatty acids, and arachidonic acid in mice serum and brain tissue metabolites. These results suggest a link between metabolite imbalance and AD, and reveal the basis for the mechanism of ginsenosides in AD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
5
|
Jiang M, Chi J, Qiao Y, Wang J, Zhang Z, Liu J, Sheng X, Yuan L. Ginsenosides Rg1, Rb1 and rare ginsenosides: Promising candidate agents for Parkinson's disease and Alzheimer's disease and network pharmacology analysis. Pharmacol Res 2025; 212:107578. [PMID: 39756554 DOI: 10.1016/j.phrs.2025.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Ginseng has been commonly used as a traditional Chinese medicine in Asian countries for thousands of years. Ginsenosides are the main pharmacologically active ingredients isolated from ginseng and have neuroprotective effects in the treatment of neurodegenerative disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). To summarise and investigate the protective roles of ginsenosides and their underlying mechanisms in PD and AD, we used ''Ginsenoside", ''Parkinson's disease", ''Alzheimer's disease", ''anti-inflammatory", ''antioxidant", and ''apoptosis" as keywords to search and extract relevant literature information from scientific databases such as Elsevier, PubMed, and Google Scholar databases. In particular, we used network pharmacology to identify the potential targets of ginsenosides Rg1 and Rb1 in PD and AD. By analysing the existing research advances and network pharmacology results, we found that the neuroprotective effects of ginsenosides, primarily mediated through anti-inflammation, anti-apoptosis and anti-oxidative stress, etc, may be associated with the PI3K/Akt, BDNF/TrkB, MAPKs, NF-κB, Nrf2 and Wnt/β-catenin signalling pathways. This review systematically summarises the different roles and mechanisms of ginsenosides Rg1, Rb1, and rare ginsenosides in PD and AD and provides new strategies for the treatment of neurodegenerative disorders. Network pharmacology provides a new research paradigm for the treatment of PD and AD using Rg1 and Rb1.
Collapse
Affiliation(s)
- Mingchun Jiang
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Jiaxin Chi
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yifan Qiao
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Jinpeng Wang
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Zhixin Zhang
- School of pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Jia Liu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xinhao Sheng
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Liangjie Yuan
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China.
| |
Collapse
|
6
|
Wang Y, Li N, Chen X, Zhao Y, Qu L, Cai D. Mechanistic insights into sevoflurane-induced hippocampal neuronal damage and cognitive dysfunction through the NEAT1/Nrf2 signaling axis in aged rats. Cell Biol Toxicol 2024; 41:13. [PMID: 39707048 PMCID: PMC11662051 DOI: 10.1007/s10565-024-09964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
The use of anesthetics during surgery can cause severe neurological damage and cognitive dysfunction in elderly patients. However, this health issue currently lacks corresponding therapeutic strategies. This research involved the utilization of single-cell RNA sequencing (scRNA-seq) and transcriptomic assessment to pinpoint crucial cell classifications and molecular pathways, as well as the lncRNA expression profiles, that undergo substantial alterations in aged rats experiencing sevoflurane-induced cognitive impairment. The results of our investigation pointed towards the enrichment of differentially expressed genes in neurons within the Nrf2/ARE signaling pathway, alongside an elevated expression of lncRNA NEAT1. Subsequently, by constructing a rat model to induce neuronal dysfunction with sevoflurane and performing experiments both in vivo and in vitro (including TUNEL staining, H&E staining, immunohistochemistry, immunofluorescence, and flow cytometry to assess apoptosis levels), we confirmed that NEAT1 inhibits the Nrf2/ARE/HO-1 pathway-related factors. Sevoflurane promotes oxidative stress and apoptosis in primary hippocampal neurons through the NEAT1/Nrf2/ARE/HO-1 axis. This study elucidates the molecular mechanism by which sevoflurane induces hippocampal neuronal damage and cognitive decline in elderly rats via the regulation of the lncRNA NEAT1/Nrf2 signaling axis. We discovered that upregulation of NEAT1 suppresses the Nrf2 signaling pathway, further inducing neuronal damage and cognitive dysfunction, furnishing an essential citation to grasp the molecular pathways involved in neuronal harm and devising corresponding treatment methodologies.
Collapse
Affiliation(s)
- Yiliang Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Nu Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Xiaoyu Chen
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yue Zhao
- Department of Anesthesiology, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110001, Liaoning, People's Republic of China
| | - Letian Qu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.
| | - Dasheng Cai
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
7
|
Li X, Ba Z, Huang J, Chen J, Jiang J, Huang N, Luo Y. Comprehensive review on Alzheimer's disease: From the posttranslational modifications of Tau to corresponding treatments. IBRAIN 2024; 10:427-438. [PMID: 39691421 PMCID: PMC11649392 DOI: 10.1002/ibra.12176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 12/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, which is mainly characterized by the abnormal deposition of β-amyloid peptide (Aβ) and Tau. Since Tau aggregation is more closely associated with synaptic loss, neurodegeneration, and cognitive decline than Aβ, the correlation between Tau and cognitive function in AD has gradually gained attention. The posttranslational modifications (PTMs) of Tau are key factors contributing to its pathological changes, which include phosphorylation, acetylation, ubiquitination, glycosylation, glycation, small ubiquitin-like modifier mediated modification (SUMOylation), methylation, succinylation, etc. These modifications change the structure of Tau, regulating Tau microtubule interactions, localization, degradation, and aggregation, thereby affecting its propensity to aggregate and leading to neuronal injury and cognitive impairments. Among numerous PTMs, drug development based on phosphorylation, acetylation, ubiquitination, and SUMOylation primarily involves enzymatic reactions, affecting either the phosphorylation or degradation processes of Tau. Meanwhile, methylation, glycosylation, and succinylation are associated with maintaining the structural stability of Tau. Current research is more extensive on phosphorylation, acetylation, ubiquitination, and methylation, with related drugs already developed, particularly focusing on phosphorylation and ubiquitination. In contrast, there is less research on SUMOylation, glycosylation, and succinylation, requiring further basic research, with the potential to become novel drug targets. In conclusion, this review summarized the latest research on PTMs of Tau and related drugs, highlighting the potential of targeting specific PTMs for developing novel therapeutic strategies in AD.
Collapse
Affiliation(s)
- Xin Li
- Department of NeurologyThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Zhisheng Ba
- National Drug Clinical Trial InstitutionThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Jianhua Chen
- Department of NeurologyThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Jinyu Jiang
- Department of medicineGuizhou Aerospace HospitalZunyiChina
| | - Nanqu Huang
- National Drug Clinical Trial InstitutionThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| | - Yong Luo
- Department of NeurologyThe Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi)ZunyiChina
| |
Collapse
|
8
|
Wei G, Zhang G, Li M, Zheng Y, Zheng W, Wang B, Zhang Z, Zhang X, Huang Z, Wei T, Shi L, Chen S, Dong L. Panax notoginseng: panoramagram of phytochemical and pharmacological properties, biosynthesis, and regulation and production of ginsenosides. HORTICULTURE RESEARCH 2024; 11:uhae170. [PMID: 39135729 PMCID: PMC11317898 DOI: 10.1093/hr/uhae170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
Panax notoginseng is a famous perennial herb widely used as material for medicine and health-care food. Due to its various therapeutic effects, research work on P. notoginseng has rapidly increased in recent years, urging a comprehensive review of research progress on this important medicinal plant. Here, we summarize the latest studies on the representative bioactive constituents of P. notoginseng and their multiple pharmacological effects, like cardiovascular protection, anti-tumor, and immunomodulatory activities. More importantly, we emphasize the biosynthesis and regulation of ginsenosides, which are the main bioactive ingredients of P. notoginseng. Key enzymes and transcription factors (TFs) involved in the biosynthesis of ginsenosides are reviewed, including diverse CYP450s, UGTs, bHLH, and ERF TFs. We also construct a transcriptional regulatory network based on multi-omics data and predicted candidate TFs mediating the biosynthesis of ginsenosides. Finally, the current three major biotechnological approaches for ginsenoside production are highlighted. This review covers advances in the past decades, providing insights into quality evaluation and perspectives for the rational utilization and development of P. notoginseng resources. Modern omics technologies facilitate the exploration of the molecular mechanisms of ginsenoside biosynthesis, which is crucial to the breeding of novel P. notoginseng varieties. The identification of functional enzymes for biosynthesizing ginsenosides will lead to the formulation of potential strategies for the efficient and large-scale production of specific ginsenosides.
Collapse
Affiliation(s)
- Guangfei Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Guozhuang Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Mengzhi Li
- Nanyang Institute of Technology, Nanyang, No.80, Changjiang Road, Wulibao Street, Wancheng District, 473000, China
| | - Yuqing Zheng
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Wenke Zheng
- Tianjin University of Traditional Chinese Medicine, No. 312, Anshan West Road, Nankai District, Tianjin, 301617, China
| | - Bo Wang
- Hubei Institute for Drug Control, No.54, Dingziqiao Road, Zhongnan Road, Wuchang District, Wuhan, 430012, China
| | - Zhaoyu Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Xiao Zhang
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Ziying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Tengyun Wei
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Liping Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, No. 37, 12 Qiao Road, Jinniu District, Chengdu, 611137, China
| | - Linlin Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| |
Collapse
|
9
|
Liu S, Wang M, Xiao H, Ye J, Cao L, Li W, Sun G. Advancements in research on the effects of panax notoginseng saponin constituents in ameliorating learning and memory disorders. Heliyon 2024; 10:e28581. [PMID: 38586351 PMCID: PMC10998096 DOI: 10.1016/j.heliyon.2024.e28581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Learning and memory disorder is a cluster of symptoms caused by neuronal aging and other diseases of the central nervous system (CNS). Panax notoginseng saponins (PNS) are a series of saponins derived from the natural active ingredients of traditional Chinese medicine (TCM) that have neuroprotective effects on the central nervous system. In this paper, we review the ameliorative effects and mechanisms of Panax notoginseng saponin-like components on learning and memory disorders to provide valuable references and insights for the development of new drugs for the treatment of learning and memory disorders. Our summary results suggest that Panax ginseng saponins have significant effects on improving learning and memory disorders, and these effects and potential mechanisms are mediated by their anti-inflammatory, anti-apoptotic, antioxidant, β-amyloid lowering, mitochondrial homeostasis in vivo, neuronal structure and function improving, neurogenesis promoting, neurotransmitter release regulating, and probiotic homeostasis in vivo activities. These findings suggest the potential of Panax notoginseng saponin-like constituents as drug candidates for improving learning and memory disorders.
Collapse
Affiliation(s)
- Shusen Liu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haiyan Xiao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Li Cao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
10
|
Wu JJ, Zhang L, Liu D, Xia J, Yang Y, Tang F, Chen L, Ao H, Peng C. Ginsenoside Rg1, lights up the way for the potential prevention of Alzheimer's disease due to its therapeutic effects on the drug-controllable risk factors of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116955. [PMID: 37536646 DOI: 10.1016/j.jep.2023.116955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, Shen Nong, BenCao Jing, and Compendium of Materia Medica (Bencao Gangmu), Panax ginseng, and its prescriptions have been used for the treatment of dementia, depression, weight loss, Xiaoke disease (similar to diabetes), and vertigo. All these diseases are associated with the drug-controllable risk factors for Alzheimer's disease (AD), including depression, obesity, diabetes, and hypertension. Ginsenoside Rg1, one of the main active ingredients of P. ginseng and its congener Panax notoginseng, possesses therapeutic potentials against AD and associated diseases. This suggests that ginsenoside Rg1 might have the potential for AD prevention and treatment. Although the anti-AD effects of ginsenoside Rg1 have received more attention, a systematic review of its effects on depression, obesity, diabetes, and hypertension is not available. AIM OF THE REVIEW This systematic literature review comprehensively summarized existing literature on the therapeutic potentials of ginsenoside Rg1 in AD prevention for the propose of providing a foundation of future research aimed at enabling the use of such drugs in clinical practice. METHODS Information on ginsenoside Rg1 was collected from relevant published articles identified through a literature search in electronic scientific databases (PubMed, Science Direct, and Google Scholar). The keywords used were "Ginsenoside Rg1," "Panax ginseng," "Source," "Alzheimer's disease," "Brain disorders," "Depression," "Obesity," "Diabetes," and "Hypertension." RESULTS The monomer ginsenoside Rg1 can be relatively easily obtained and has therapeutic potentials against AD. In vitro and in vivo experiments have demonstrated the therapeutic potentials of ginsenoside Rg1 against the drug-controllable risk factors of AD including depression, obesity, diabetes, and hypertension. Thus, ginsenoside Rg1 alleviates diseases resulting from AD risk factors by regulating multiple targets and pathways. CONCLUSIONS Ginsenoside Rg1 has the potentials to prevent AD by alleviating depression, obesity, diabetes, and hypertension.
Collapse
Affiliation(s)
- Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
11
|
Wang L, Wang J, Yang Z, Wang Y, Zhao T, Luo W, Liang T, Yang Z. Traditional herbs: mechanisms to combat cellular senescence. Aging (Albany NY) 2023; 15:14473-14505. [PMID: 38054830 PMCID: PMC10756111 DOI: 10.18632/aging.205269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 12/07/2023]
Abstract
Cellular senescence plays a very important role in the ageing of organisms and age-related diseases that increase with age, a process that involves physiological, structural, biochemical and molecular changes in cells. In recent years, it has been found that the active ingredients of herbs and their natural products can prevent and control cellular senescence by affecting telomerase activity, oxidative stress response, autophagy, mitochondrial disorders, DNA damage, inflammatory response, metabolism, intestinal flora, and other factors. In this paper, we review the research information on the prevention and control of cellular senescence in Chinese herbal medicine through computer searches of PubMed, Web of Science, Science Direct and CNKI databases.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Yue Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Weisheng Luo
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zheng Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| |
Collapse
|
12
|
Paik S, Song GY, Jo EK. Ginsenosides for therapeutically targeting inflammation through modulation of oxidative stress. Int Immunopharmacol 2023; 121:110461. [PMID: 37331298 DOI: 10.1016/j.intimp.2023.110461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Ginsenosides are steroid glycosides derived from ginseng plants such as Panax ginseng, Panax quinquefolium, and Panax notoginseng. Advances in recent studies have identified numerous physiological functions of each type of ginsenoside, i.e., immunomodulatory, antioxidative, and anti-inflammatory functions, in the context of inflammatory diseases. Accumulating evidence has revealed the molecular mechanisms by which the single or combined ginsenoside(s) exhibit anti-inflammatory effects, although it remains largely unclear. It is well known that excessive production of reactive oxygen species (ROS) is associated with pathological inflammation and cell death in a variety of cells, and that inhibition of ROS generation ameliorates the local and systemic inflammatory responses. The mechanisms by which ginsenosides attenuate inflammation are largely unknown; however, targeting ROS is suggested as one of the crucial mechanisms for the ginsenosides to control the pathological inflammation in the immune and non-immune cells. This review will summarize the latest progress in ginsenoside studies, particularly in the context of antioxidant mechanisms for its anti-inflammatory effects. A better understanding of the distinct types and the combined action of ginsenosides will pave the way for developing potential preventive and therapeutic modalities in treating various inflammation-related diseases.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, South Korea.
| | - Gyu Yong Song
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, South Korea.
| |
Collapse
|
13
|
Peng X, Guo H, Zhang X, Yang Z, Ruganzu JB, Yang Z, Wu X, Bi W, Ji S, Yang W. TREM2 Inhibits Tau Hyperphosphorylation and Neuronal Apoptosis via the PI3K/Akt/GSK-3β Signaling Pathway In vivo and In vitro. Mol Neurobiol 2023; 60:2470-2485. [PMID: 36662361 DOI: 10.1007/s12035-023-03217-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2), a cell surface receptor mainly expressed on microglia, has been shown to play a critical role in Alzheimer's disease (AD) pathogenesis and progression. Our recent results showed that overexpression of TREM2 inhibited inflammatory response in APP/PS1 mice and BV2 cells. Several studies indicated that TREM2 ameliorated tau hyperphosphorylation might be ascribed to the inhibition of neuroinflammation. However, the precise signaling pathways underlying the effect of TREM2 on tau pathology and neuronal apoptosis have not been fully elucidated. In the present study, upregulation of TREM2 significantly inhibited tau hyperphosphorylation at Ser199, Ser396, and Thr205, respectively, as well as prevented neuronal loss and apoptosis. We also found that upregulation of TREM2 alleviated behavioral deficits and improved the spatial cognitive ability of APP/PS1 mice. Further study revealed that TREM2 could activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, resulting in an inhibitory effect on glycogen synthase kinase-3β (GSK-3β), which is a major kinase responsible for tau hyperphosphorylation in AD. In line with in vivo findings, TREM2-overexpressing BV2 microglia following β-amyloid (Aβ) stimulation led to a significant increase in the phosphorylation of PI3K, Akt, and GSK-3β, accompanied by a decrease in tau hyperphosphorylation and apoptosis in co-cultured SH-SY5Y cells. Furthermore, LY294002, a specific PI3K inhibitor, was observed to abolish the beneficial effects of TREM2 on tau hyperphosphorylation, neuronal apoptosis, and spatial cognitive impairments in vivo and in vitro. Thus, our findings indicated that TREM2 inhibits tau hyperphosphorylation and neuronal apoptosis, at least in part, by the activation of the PI3K/Akt/GSK-3β signaling pathway. Taken together, the above results allow us to better understand how TREM2 protects against tau pathology and suggest that upregulation of TREM2 may provide new ideas and therapeutic targets for AD.
Collapse
Affiliation(s)
- Xiaoqian Peng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hongsong Guo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiao Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Zikang Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Qide College, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - John Bosco Ruganzu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Zhuoyuan Yang
- Medical Undergraduates of the Second Clinical Medical School of Xi'an Medical University, Xi'an, 710038, Shaanxi, China
| | - Xiangyuan Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Wei Bi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Shengfeng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Weina Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
14
|
Malik J, Mandal SC, Choudhary S, Parihar S, Rahamathulla M. Herbal Medicines for Management of Alzheimer’s Disease. ROLE OF HERBAL MEDICINES 2023:231-250. [DOI: 10.1007/978-981-99-7703-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Liu X, Xiao X, Han X, Yao L, Lan W. A New Therapeutic Trend: Natural Medicine for Ameliorating Ischemic Stroke via PI3K/Akt Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227963. [PMID: 36432062 PMCID: PMC9694461 DOI: 10.3390/molecules27227963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Ischemic stroke (IS) is an acute cerebrovascular disease caused by sudden arterial occlusion, which is characterized by a high morbidity, mortality, and disability rate. It is one of the most important causes of nervous system morbidity and mortality in the world. In recent years, the search for new medicine for the treatment of IS has become an attractive research focus. Due to the extremely limited time window of traditional medicine treatment, some side effects may occur, and accompanied by the occurrence of adverse reactions, the frequency of exploration with natural medicine is significantly increased. Phosphatidylinositol-3-kinase/Protein kinase B (PI3K/Akt) signaling pathway is a classical pathway for cell metabolism, growth, apoptosis, and other physiological activities. There is considerable research on medicine that treats various diseases through this pathway. This review focuses on how natural medicines (including herbs and insects) regulate important pathophysiological processes such as inflammation, oxidative stress, apoptosis, and autophagy through the PI3K/Akt signaling pathway, and the role it plays in improving IS. We found that many kinds of herbal medicine and insect medicine can alleviate the damage caused by IS through the PI3K/Akt signaling pathway. Moreover, the prescription after their combination can also achieve certain results. Therefore, this review provides a new candidate category for medicine development in the treatment of IS.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
- Correspondence:
| |
Collapse
|
16
|
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12:1310. [PMID: 36139149 PMCID: PMC9496100 DOI: 10.3390/biom12091310] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment (CI) is one of the major clinical features of many neurodegenerative diseases. It can be aging-related or even appear in non-central nerve system (CNS) diseases. CI has a wide spectrum that ranges from the cognitive complaint with normal screening tests to mild CI and, at its end, dementia. Ginsenosides, agents extracted from a key Chinese herbal medicine (ginseng), show great promise as a new therapeutic option for treating CI. This review covered both clinical trials and preclinical studies to summarize the possible mechanisms of how ginsenosides affect CI in different diseases. It shows that ginsenosides can modulate signaling pathways associated with oxidative stress, apoptosis, inflammation, synaptic plasticity, and neurogenesis. The involved signaling pathways mainly include the PI3K/Akt, CREB/BDNF, Keap1/Nrf2 signaling, and NF-κB/NLRP3 inflammasome pathways. We hope to provide a theoretical basis for the treatment of CI for related diseases by ginsenosides.
Collapse
Affiliation(s)
- Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Mei Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300073, China
| | - Shiqi Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Yue Hu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Chunxiang Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| |
Collapse
|
17
|
New insights into the role and mechanisms of ginsenoside Rg1 in the management of Alzheimer's disease. Biomed Pharmacother 2022; 152:113207. [PMID: 35667236 DOI: 10.1016/j.biopha.2022.113207] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder in the elderly characterized by memory loss and cognitive dysfunction. The pathogenesis of AD is complex. One-targeted anti-AD drugs usually fail to delay AD progression. Traditional Chinese medicine records have documented the use of the roots of Panax ginseng (ginseng roots) and its prescriptions to treat dementia. Ginsenoside Rg1, the main ginsenoside component of ginseng roots, exhibits a certain therapeutic effect in the abovementioned diseases, suggesting its potential in the management of AD. Therefore, we combed the pathogenesis of AD and currently used anti-AD drugs, and reviewed the availability, pharmacokinetics, and pharmaceutic studies of ginsenoside Rg1. This review summarizes the therapeutic effects and mechanisms of ginsenoside Rg1 and its deglycosylated derivatives in AD in vivo and in vitro. The main mechanisms include improvement in Aβ and Tau pathologies, regulation of synaptic function and intestinal microflora, and reduction of inflammation, oxidative stress, and apoptosis. The underlying mechanisms mainly involve the regulation of PKC, MAPK, PI3K/Akt, CDK5, GSK-3β, BDNF/TrkB, PKA/CREB, FGF2/Akt, p21WAF1/CIP1, NF-κB, NLRP1, TLR3, and TLR4 signaling pathways. As the effects and underlying mechanisms of ginsenoside Rg1 on AD have not been systematically reviewed, we have provided a comprehensive review and shed light on the future directions in the utilization of ginsenoside Rg1 and ginseng roots as well as the development of anti-AD drugs.
Collapse
|
18
|
Jingxuan L, Litian M, Yanyang T, Jianfang F. Knockdown of CLC-3 may improve cognitive impairment caused by diabetic encephalopathy. Diabetes Res Clin Pract 2022; 190:109970. [PMID: 35792204 DOI: 10.1016/j.diabres.2022.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Diabetic encephalopathy(DE) is a neurological complication of diabetes, and its pathogenesis is unclear. Current studies indicate that insulin receptors and downstream signaling pathways play a key role in the occurrence and development of DE. Additionally, CLC-3, a member of the CLC family of anion channels and transporters, is closely related to the secretion and processing of insulin. Here, we investigated the changes and putative roles of CLC-3 in diabetic encephalopathy. RESULTS To this aim, we combined lentivirus and adeno-associated virus gene transfer to change the expression level of CLC-3 in the HT-22 hippocampal cell line and hippocampal CA1. We studied the role of CLC-3 in DE through the Morris water maze test.CLC-3 expression increased significantly in HT-22 cells cultured with high glucose and STZ-induced DE model hippocampus. Moreover, Insulin receptor(IR) and downstream PI3K/AKT/GSK3β signaling pathways were also dysfunctional. After knocking down CLC-3, impaired cell proliferation, apoptosis, IR and the downstream PI3K/AKT/GSK3β signaling pathways were significantly improved. However, when CLC-3 was overexpressed, the neurotoxicity induced by high glucose was further aggravated. Rescue experiments found that through the use of inhibitors such as GSK3β, the PI3K/AKT/GSK3β signaling pathways pathway changes with the use of inhibition, and the expression of related downstream signaling molecules such as Tau and p-Tau also changes accordingly. Using adeno-associated virus gene transfer to knock down CLC-3 in the hippocampal CA1 of the DE model, the IR caused by DE and the dysfunction of the downstream PI3K/AKT/GSK3β signaling pathway were significantly improved. In addition, the impaired spatial recognition of DE was partially restored. CONCLUSION Our study proposes that CLC-3, as a key molecule, may regulate insulin receptor signaling and downstream PI3K/AKT/GSK3β signaling pathways and affect the pathogenesis of diabetic encephalopathy.
Collapse
Affiliation(s)
- Lian Jingxuan
- Department of Endocrinology, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China
| | - Ma Litian
- Department of Gastroenterology, Tangdu Hospital, The Air Force Medical University, Xi'an 710038, China
| | - Tu Yanyang
- The Air Force Medical University, Xi'an 710032, China.
| | - Fu Jianfang
- Department of Endocrinology, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
19
|
Yu W, Yin H, Sun Y, Shi S, Li J, Wang X. The attenuation effect of potassium 2-(1-hydroxypentyl)-benzoate in a mouse model of diabetes-associated cognitive decline: The protein expression in the brain. CNS Neurosci Ther 2022; 28:1108-1123. [PMID: 35445545 PMCID: PMC9160457 DOI: 10.1111/cns.13847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Aims dl‐PHPB (potassium 2‐(1‐hydroxypentyl)‐benzoate) has been shown to have neuroprotective effects against acute cerebral ischemia, vascular dementia, and Alzheimer's disease. The aim of this study was to investigate the effects of dl‐PHPB on memory deficits and preliminarily explore the underlying molecular mechanism. Methods Blood glucose and behavioral performance were evaluated in the KK‐Ay diabetic mouse model before and after dl‐PHPB administration. Two‐dimensional difference gel electrophoresis (2D‐DIGE)‐based proteomics was used to identify differentially expressed proteins in brain tissue. Western blotting was used to study the molecular mechanism of the related signaling pathways. Results Three‐month‐old KK‐Ay mice were given 150 mg/kg dl‐PHPB by oral gavage for 2 months, which produced no effect on the level of serum glucose. In the Morris water maze test, KK‐Ay mice treated with dl‐PHPB showed significant improvements in spatial learning and memory deficits compared with vehicle‐treated KK‐Ay mice. Additionally, we performed 2D‐DIGE to compare brain proteomes of 5‐month KK‐Ay mice treated with and without dl‐PHPB. We found 14 altered proteins in the cortex and 11 in the hippocampus; two of the 25 altered proteins and another four proteins that were identified in a previous study on KK‐Ay mice were then validated by western blot to further confirm whether dl‐PHPB can reverse the expression levels of these proteins. The phosphoinositide 3‐kinase/protein kinase B/glycogen synthase kinase‐3β (PI3K/Akt/GSK‐3β) signaling pathway was also changed in KK‐Ay mice and dl‐PHPB treatment could reverse it. Conclusions These results indicate that dl‐PHPB may play a potential role in diabetes‐associated cognitive impairment through PI3K/Akt/GSK‐3β signaling pathway and the differentially expressed proteins may become putative therapeutic targets.
Collapse
Affiliation(s)
- Wenwen Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huajing Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingni Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Si Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Guo X, Wang H, Zheng W, Guo C, Song Q. Chemoprotective Effect of Ginsenoside Against the 1,2-Dimethylhydrazine (DMH) Induced Colorectal Cancer in Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1004.1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Li Q, Wang L, Fang X, Zhao L. Highly Efficient Biotransformation of Notoginsenoside R1 into Ginsenoside Rg1 by Dictyoglomus thermophilum β-xylosidase Xln-DT. J Microbiol Biotechnol 2022; 32:447-457. [PMID: 35131955 PMCID: PMC9628812 DOI: 10.4014/jmb.2111.11020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
Notoginsenoside R1 and ginsenoside Rg1 are the main active ingredients of Panax notoginseng, exhibiting anti-fatigue, anti-tumor, anti-inflammatory, and other activities. In a previous study, a GH39 β-xylosidase Xln-DT was responsible for the bioconversion of saponin, a natural active substance with a xylose group, with high selectivity for cleaving the outer xylose moiety of notoginsenoside R1 at the C-6 position, producing ginsenoside Rg1 with potent anti-fatigue activity. The optimal bioconversion temperature, pH, and enzyme dosage were obtained by optimizing the transformation conditions. Under optimal conditions (pH 6.0, 75°C, enzyme dosage 1.0 U/ml), 1.0 g/l of notoginsenoside R1 was converted into 0.86 g/l of ginsenoside Rg1 within 30 min, with a molar conversion rate of approximately 100%. Furthermore, the in vivo anti-fatigue activity of notoginsenoside R1 and ginsenoside Rg1 were compared using a suitable rat model. Compared with the control group, the forced swimming time to exhaustion was prolonged in mice by 17.3% in the Rg1 high group (20 mg/kg·d). Additionally, the levels of hepatic glycogen (69.9-83.3% increase) and muscle glycogen (36.9-93.6% increase) were increased. In the Rg1 group, hemoglobin levels were also distinctly increased by treatment concentrations. Our findings indicate that treatment with ginsenoside Rg1 enhances the anti-fatigue effects. In this study, we reveal a GH39 β-xylosidase displaying excellent hydrolytic activity to produce ginsenoside Rg1 in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Qi Li
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China
| | - Lei Wang
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China
| | - Xianying Fang
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P.R. China,Corresponding authors X. Fang Phone : +86-025-85427962 Fax : +86-025-85418873 E-mail :
| | - Linguo Zhao
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, P.R. China,
L. Zhao Phone : +86-025-85427962 Fax : +86-025-85418873 E-mail :
| |
Collapse
|
22
|
Rg1 Protects Hematopoietic Stem Cells from LiCl-Induced Oxidative Stress via Wnt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2875583. [PMID: 35388306 PMCID: PMC8977299 DOI: 10.1155/2022/2875583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/09/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Background Ginsenoside Rg1 is a major component of ginseng with antioxidative and antiaging effects, which is a traditional Chinese medicine. In this study, we investigated the potential spillover and mechanism of action of Rg1 on LiCl-driven hematopoietic stem cell aging. Results Collect the purified Sca-1+ hematopoietic cells for differentiation ability detection and biochemical and molecular labeling. The experiment found that Rg1 plays an antiaging role in reversing the SA-β-gal staining associated with LiCl-induced hematopoietic stem cell senescence, the increase in p53 and p21 proteins, and sustained DNA damage. At the same time, Rg1 protects hematopoietic cells from the reduced differentiation ability caused by LiCl. In addition, Rg1 increased the excessive inhibition of intracellular GSK-3β protein, resulting in the maintenance of β-catenin protein levels in hematopoietic cells after LiCl treatment. Then, the target gene level of β-catenin can be maintained. Conclusions Rg1 exerts the pharmacological effect of maintaining the activity of GSK-3β in Sca-1+ hematopoietic cells, enhances the antioxidant potential of cells, improves the redox homeostasis, and thus protects cells from the decline in differentiation ability caused by aging. This study provides a potential therapeutic strategy to reduce stem cell pool failure caused by chronic oxidative damage to hematopoietic stem cells.
Collapse
|
23
|
Ikeuchi S, Minamida M, Nakamura T, Konishi M, Kamioka H. Exploratory Systematic Review and Meta-Analysis of Panax Genus Plant Ingestion Evaluation in Exercise Endurance. Nutrients 2022; 14:nu14061185. [PMID: 35334841 PMCID: PMC8950061 DOI: 10.3390/nu14061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Many studies that use food containing Panax genus plants (PGPs) have been conducted but most of them have not mentioned the effective compounds ginsenosides and their composition. Therefore, we conducted a systematic review and meta-analysis of time to exhaustion as an index of exercise endurance with ingestion of PGPs or ginsenosides to reveal their effects. Methods: We performed a systematic review with a comprehensive and structured literature search using seven literature databases, four clinical trial databases, and three general web search engines during 15–22 March 2021. A random-effects model was applied to calculate the standardized mean difference (SMD) and 95% confidence interval (CI) as the difference between the mean in the treatment and placebo groups. We evaluated the risk of bias of individual studies along with the risk of bias tool in the Cochrane handbook. This study was funded by Maruzen Pharmaceuticals Co., Ltd. (Hiroshima, Japan). The protocol for this study was registered with the UMIN-CTR (No. UMIN000043341). Results: Five studies met the inclusion criteria. The number of total participants was 90, with 59 in the ingestion-PGPs group and 64 in the control group, because three studies were crossover-design trials. We found that ingestion of PGPs or ginsenosides significantly improved exercise endurance (SMD [95% CI]: 0.58 [0.22–0.95], I2 = 0%). It was suggested that ginsenoside Rg1 (Rg1) and PGPs extract containing Rg1 were significantly effective in improving exercise endurance (SMD [95% CI]: 0.70 [0.14–1.27], I2 = 30%) by additional analysis. Conclusions: This systematic review suggests that the ingestion of PGPs or ginsenosides, especially Rg1, is effective in improving exercise endurance in healthy adults. However, further high-quality randomized controlled trials are required because imprecision and publication bias cannot be ignored in this systematic review.
Collapse
Affiliation(s)
- Shingo Ikeuchi
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
- Faculty of Regional Environment Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
- Correspondence: ; Tel.: +81-847-52-6262
| | - Mika Minamida
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Touma Nakamura
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Masatoshi Konishi
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Hiroharu Kamioka
- Faculty of Regional Environment Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
| |
Collapse
|
24
|
Kim WJ, Hyun JH, Lee NK, Paik HD. Protective Effects of a Novel Lactobacillus brevis Strain with Probiotic Characteristics against Staphylococcus aureus Lipoteichoic Acid-Induced Intestinal Inflammatory Response. J Microbiol Biotechnol 2022; 32:205-211. [PMID: 34750285 PMCID: PMC9628842 DOI: 10.4014/jmb.2110.10034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
Probiotics can effectively modulate host immune responses and prevent gastrointestinal diseases. The objective of this study was to investigate the probiotic characteristics of Lactobacillus brevis KU15152 isolated from kimchi and its protective potential against intestinal inflammation induced by Staphylococcus aureus lipoteichoic acid (aLTA). L. brevis KU15152 exhibited a high survival rate in artificial gastric and bile environments. Additionally, the adhesion capability of the strain to HT-29 cells was higher than that of L. rhamnosus GG. L. brevis KU15152 did not produce harmful enzymes, such as β-glucuronidase, indicating that it could be used as a potential probiotic. The anti-inflammatory potential of L. brevis KU15152 was determined in HT-29 cells. Treatment with L. brevis KU15152 suppressed the production of interleukin-8 without inducing significant cytotoxicity. The downregulatory effects of L. brevis KU15152 were involved in the suppression of nuclear factor-kappa B activation mediated by the extracellular signal-regulated kinase and Akt signaling pathways. Collectively, these data suggest that L. brevis KU15152 can be used in developing therapeutic and prophylactic products to manage and treat aLTA-induced intestinal damage.
Collapse
Affiliation(s)
- Won-Ju Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jun-Hyun Hyun
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-2049-6011 E-mail:
| |
Collapse
|
25
|
Lu J, Wang X, Wu A, Cao Y, Dai X, Liang Y, Li X. Ginsenosides in central nervous system diseases: Pharmacological actions, mechanisms, and therapeutics. Phytother Res 2022; 36:1523-1544. [PMID: 35084783 DOI: 10.1002/ptr.7395] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
The nervous system is one of the most complex physiological systems, and central nervous system diseases (CNSDs) are serious diseases that affect human health. Ginseng (Panax L.), the root of Panax species, are famous Chinese herbs that have been used for various diseases in China, Japan, and Korea since ancient times, and remain a popular natural medicine used worldwide in modern times. Ginsenosides are the main active components of ginseng, and increasing evidence has demonstrated that ginsenosides can prevent CNSDs, including neurodegenerative diseases, memory and cognitive impairment, cerebral ischemia injury, depression, brain glioma, multiple sclerosis, which has been confirmed in numerous studies. Therefore, this review summarizes the potential pathways by which ginsenosides affect the pathogenesis of CNSDs mainly including antioxidant effects, anti-inflammatory effects, anti-apoptotic effects, and nerve protection, which provides novel ideas for the treatment of CNSDs.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res 2022; 177:106099. [DOI: 10.1016/j.phrs.2022.106099] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/15/2022]
|
27
|
Li T, Chen Z, Zhou Y, Li H, Xie J, Li L. Resveratrol Pretreatment Inhibits Myocardial Apoptosis in Rats Following Coronary Microembolization via Inducing the PI3K/Akt/GSK-3β Signaling Cascade. Drug Des Devel Ther 2021; 15:3821-3834. [PMID: 34522086 PMCID: PMC8434837 DOI: 10.2147/dddt.s323555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose Coronary microembolization (CME) is associated with progressive cardiac dysfunction, myocardial inflammation, and apoptosis. Resveratrol (RES) has a considerable role in cardioprotection. However, the contribution and possible mechanisms of RES in CME have not been clearly understood. Methods In the current study, 40 SD rats were randomly selected and categorized into various groups including CME, CME + resveratrol (CME + RES), CME + resveratrol+ LY294002 (CME + RES + LY), and sham groups (10 animals in each group). The inert plastic microspheres (42 μm) were injected into the rats’ left ventricle for developing the CME model. Then resveratrol (25 mg/kg/d) was given to the rats in the CME + RES and CME + RES + LY groups for one week before CME induction. Furthermore, LY294002 (10 mg/kg) was intraperitoneally injected into the rats of the CME + RES + LY group 0.5 hours before CME modeling. The cardiac functions, serum levels of myocardial injury biomarkers, myocardial histopathology, and mRNA and proteins associated with myocardial apoptosis were all assessed 12 hours after surgery. Results The results revealed that resveratrol pretreatment alleviated the CME-induced myocardial damage by improving cardiac dysfunction, and lowering the serum level of myocardial injury biomarkers, myocardial microinfarct size, and cardiomyocyte apoptotic index. Pretreatment with resveratrol reduced the level of proteins and mRNAs associated with the pro-apoptosis in myocardial tissues and increased the levels of proteins and mRNAs associated with the anti-apoptosis. Moreover, the combined treatment of resveratrol and LY294002 reversed the observed protective effects. Conclusion Resveratrol can inhibit cardiomyocyte apoptosis, thus attenuating the CME-induced myocardial injury by triggering the PI3K/Akt/GSK-3β cascade.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Zhiqing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Haoliang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| |
Collapse
|
28
|
Protective Effect of Total Panax Notoginseng Saponins on Retinal Ganglion Cells of an Optic Nerve Crush Injury Rat Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4356949. [PMID: 34395614 PMCID: PMC8360732 DOI: 10.1155/2021/4356949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
Irreversible loss of retinal ganglion cells (RGCs) is a common pathological feature of various optic nerve degenerative diseases such as glaucoma and ischemic optic neuropathy. Effective protection of RGCs is the key to successful treatment of these diseases. Total Panax notoginseng saponins (TPNS) are the main active component of Panax notoginseng, which has an inhibitory effect on the apoptosis pathway. This study is aimed at assessing the protective effect of TPNS on RGCs of the optic nerve crush (ONC) model of rats and exploring the underlying mechanisms. The intraperitoneal or intravitreal injection of TPNS was used based on the establishment of the rat ONC model. Fifteen days after the injury, the cell membrane fluorescent probe (Fluoro-Gold) was applied to retrograde RGCs through the superior colliculus and obtain the number of surviving RGCs. TUNEL assay was also used to detect the number and density of RGC apoptosis after the ONC model. The expression and distribution of Bcl-2/Bax, c-Jun/P-c-Jun, and P-JNK in the retina were demonstrated by Western blot analysis. After the intervention of TPNS, the rate of cell survival increased in different retinal regions (p < 0.05) and the number of apoptosis cells decreased. Regarding the expression of Bcl-2/Bax, c-Jun/P-c-Jun, and P-JNK-related apoptotic proteins, TPNS can reduce the level of apoptosis and play a role in protecting RGCs (p < 0.05). These findings indicate that topical administration of TPNS can inhibit cell apoptosis and promote RGC survival in the crushed optic nerve.
Collapse
|
29
|
J. Hashim F, Vichitphan S, Boonsiri P, Vichitphan K. Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative-Stress-Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells. PLANTS 2021; 10:plants10050889. [PMID: 33925070 PMCID: PMC8146478 DOI: 10.3390/plants10050889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 01/20/2023]
Abstract
The current trend worldwide is searching plant extracts towards prevention of neurodegenerative disorders. This study aimed to investigate the neuroprotective effect of Alpinia galanga leaves (ALE), Alpinia galanga rhizomes (ARE), Vitis vinifera seeds (VSE), Moringa oleifera leaves (MLE), Panax ginseng leaves (PLE) and Panax ginseng rhizomes (PRE) ethanolic extracts on human neuroblastoma (SHSY5Y) cells. The 1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging of VSE and MLE were 81% and 58%, respectively. Ferric-reducing antioxidant power (FRAP) of ALE and MLE (33.57 ± 0.20 and 26.76 ± 0.30 μmol Fe(ΙΙ)/g dry wt., respectively) were higher than for the other extracts. Liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) revealed MLE active compounds. Intracellular study by nitro-blue tetrazolium (NBT) test showed that MLE and VSE had high O2− scavenging (0.83 ± 0.09 vs. 0.98 ± 0.08 mg/mL, respectively). MLE had the highest ROS scavenging followed by PRE (0.71 ± 0.08 vs. 0.83 ± 0.08 mg/mL, respectively), by 2,7-dichlorodihydrofluorescein diacetate (DCFHDA) assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity and neuroprotection tests on SHSY5Y showed that PRE had a better neuroprotective effect but higher cytotoxicity compared to MLE (viable cells 51% vs. 44%, IC50 1.92 ± 0.04 vs. 2.7 ± 0.2 mg/mL, respectively). In conclusion, among the studied plants, MLE has potential for developing as a neuroprotective agent.
Collapse
Affiliation(s)
- Farah J. Hashim
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad 10071, Iraq
| | - Sukanda Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Kanit Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +668-685-22929
| |
Collapse
|
30
|
Chen ZQ, Zhou Y, Chen F, Huang JW, Zheng J, Li HL, Li T, Li L. Breviscapine Pretreatment Inhibits Myocardial Inflammation and Apoptosis in Rats After Coronary Microembolization by Activating the PI3K/Akt/GSK-3β Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:843-855. [PMID: 33658766 PMCID: PMC7920514 DOI: 10.2147/dddt.s293382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023]
Abstract
Purpose Coronary microembolization (CME) can cause myocardial inflammation, apoptosis and progressive cardiac dysfunction. On the other hand, breviscapine exerts a significant cardioprotective effect in many cardiac diseases although its role and the potential mechanisms in CME remain unclear. Therefore, the present study aimed to ascertain whether pretreatment with breviscapine could improve CME-induced myocardial injury by alleviating myocardial inflammation and apoptosis. The possible underlying mechanisms were also explored. Methods In this study, 48 Sprague-Dawley (SD) rats were randomly assigned to the CME, CME + breviscapine (CME + BE), CME + breviscapine + LY294002 (CME + BE + LY) and sham groups (12 rats per group). In addition, the CME model was successfully established by injecting 42 μm inert plastic microspheres into the left ventricle of rats. Rats in the CME + BE and CME + BE + LY groups received 40 mg/kg/d of breviscapine for 7 days before inducing CME. Moreover, rats in the CME + BE + LY group were intraperitoneally injected with the phosphoinositide 3-kinase (PI3K) specific inhibitor, LY294002 (10 mg/kg) 30 minutes before CME modeling. 12 h after surgery, the study measured cardiac function, the serum levels of markers of myocardial injury, myocardial inflammation-associated mRNAs and proteins, myocardial apoptosis-associated mRNAs and proteins and conducted myocardial histopathology. Results The findings demonstrated that pretreatment with breviscapine alleviated myocardial injury following CME by improving cardiac dysfunction, decreasing the serum levels of markers of myocardial injury, reducing the size of myocardial microinfarct and lowering the cardiomyocyte apoptotic index. More importantly, pretreatment with breviscapine resulted to a decrease in the levels of inflammatory and pro-apoptotic mRNAs and proteins in myocardial tissues and there was an increase in the levels of anti-apoptotic mRNAs and proteins. However, these protective effects were eliminated when breviscapine was combined with LY294002. Conclusion The findings from this study indicated that breviscapine may inhibit myocardial inflammation and apoptosis by regulating the PI3K/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway, thereby ameliorating CME-induced cardiac dysfunction and reducing myocardial injury.
Collapse
Affiliation(s)
- Zhi-Qing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Feng Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jun-Wen Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Jing Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Hao-Liang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| |
Collapse
|
31
|
Chen J, Luo X, Liu M, Peng L, Zhao Z, He C, He Y. Silencing long non-coding RNA NEAT1 attenuates rheumatoid arthritis via the MAPK/ERK signalling pathway by downregulating microRNA-129 and microRNA-204. RNA Biol 2021; 18:657-668. [PMID: 33258403 DOI: 10.1080/15476286.2020.1857941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The participation of long noncoding RNAs (lncRNAs) and microRNAs (miRs) in the progression of rheumatoid arthritis (RA) is a key area of investigation. The current study aimed to investigate the action of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in fibroblast-like synoviocyte (FLS) proliferation and synovitis in RA. A rat model of RA was established. LncRNA NEAT1 expression in the synovial tissues of patients with RA and FLSs from the RA rat model was determined using RT-qPCR. Next, dual luciferase reporter gene assay was applied to investigate the relationship between miR-129/204 and mitogen-activated protein kinase (MAPK)/extracellular regulated protein kinase (ERK). A putative binding relationship between miR-204 and lncRNA NEAT1 was evaluated by RIP assay, and miR-129 promoter methylation was determined using MSP. After the expression of lncRNA NEAT1, miR-129 or miR-204 was altered in FLSs, the extent of ERK1/2 phosphorylation was assessed. In addition, FLS synovitis and proliferation were determined by ELISA and EdU assay, respectively. In RA rats, lncRNA NEAT1 was silenced and miR-129/miR-204 was overexpressed to explore their roles in vivo. LncRNA NEAT1 was upregulated, while miR-129 and miR-204 were downregulated in RA synovial tissues and FLSs. MAPK1 was target gene of both miR-129 and miR-204. LncRNA NEAT1 bound to miR-204 and promoted miR-129 promoter methylation. Silencing lncRNA NEAT1 or overexpressing miR-129/miR-204 enhanced miR-129/miR-204 expression, but reduced the extent of ERK1/2 phosphorylation, proliferation of FLSs, and synovitis in RA. Collectively, silencing lncRNA NEAT1 promoted miR-129 and miR-204 to inhibit the MAPK/ERK signalling pathway, reducing FLS synovitis in RA.Abbreviations: ACR: American College of Rheumatology; ELISA: Enzyme-linked immunosorbent assay; ERK: extracellular signal-regulated kinase; FLS: fibroblast-like synoviocyte; GADPH: glyceraldehyde-3-phosphate dehydrogenase; HRP: horseradish peroxidase; IFA: Incomplete Freund's Adjuvant; lncRNAs: long noncoding RNAs; MSP: Methylation-specific PCR; NC: negative control; NEAT1: nuclear paraspeckle assembly transcript 1; OD: optical density; RA: rheumatoid arthritis; RIPA: Radio Immunoprecipitation Assay; RLU: relative light units; RT-qPCR: reverse transcription quantitative polymerase chain reaction; UTR: untranslated region.
Collapse
Affiliation(s)
- Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Xiao Luo
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Mao Liu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Lihui Peng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Zixia Zhao
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Chengsong He
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| |
Collapse
|
32
|
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161:105263. [PMID: 33127555 DOI: 10.1016/j.phrs.2020.105263] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Panax ginseng (Meyer) and Panax notoginseng (Burkill), belonging to the family Araliaceae, are used worldwide as medicinal and functional herbs. Numerous publications over the past decades have revealed that both P. notoginseng and P. ginseng contain important bioactive ingredients such as ginsenosides and exert multiple pharmacological effects on nervous system and immune diseases. However, based on traditional Chinese medicine (TCM) theory, their applications clearly differ as ginseng reinforces vital energy and notoginseng promotes blood circulation. In this article, we review the similarities and differences between ginseng and notoginseng in terms of their chemical composition and pharmacological effects. Their chemical comparisons indicate that ginseng contains more polysaccharides and amino acids, while notoginseng has more saponins, volatile oil, and polyacetylenes. Regarding pharmacological effects, ginseng exhibits better protective effects on cardiovascular disease, nerve disease, cancer, and diabetes mellitus, whereas notoginseng displays a superior protective effect on cerebrovascular disease. The evidence presented in this review facilitates further research and clinical applications of these two herbs, and exploration of the relationship between the chemical components and disease efficacy may be the critical next step.
Collapse
Affiliation(s)
- Hanbing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
33
|
Zhou F, He K, Guan Y, Yang X, Chen Y, Sun M, Qiu X, Yan F, Huang H, Yao L, Liu B, Huang L. Network pharmacology-based strategy to investigate pharmacological mechanisms of Tinospora sinensis for treatment of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112940. [PMID: 32389853 DOI: 10.1016/j.jep.2020.112940] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora sinensis (Lour.) Merr. belongs to the family Menispermaceae. It is called LeZhe and is widely used as a kind of folk medicine especially in the Tibetan Plateau of China. T. sinensis has the functions of clearing away heat and detoxification, dispelling wind and dredging collaterals, calming and soothing the nerves. T. sinensis is an effective medicine for the prevention and treatment of aging diseases such as Alzheimer's disease (AD) in the Tibetan Plateau of China, whereas its material basis and underlying mechanisms are not clear. The aim of this study was to investigate the material basis and potential mechanisms of T. sinensis in the treatment of AD by using network pharmacology and molecular docking. MATERIALS AND METHODS In this study, targets were collected from DrugBank database, Therapeutic Target Database (TTD) and literatures reports for the treatment of AD. Compounds were searched by literatures and systematic separation from T. sinensis. The molecular docking experiment was carried out by using Autodock Vina software to screen the bioactive compounds in T. sinensis and target proteins for AD. Then, the "compound-target network" was constructed by Cytoscape software. The drug-like properties of the active compounds were analyzed by pKCSM performs, and the protein-protein interaction (PPI) network was constructed by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). The Kyoto Encyclopedia of Genes and Genomes (KEGG) target pathway enrichment analysis was carried out by Database for Annotation, Visualization and Integrated Discovery (DAVID). Furthermore, the protective effect of neurons of two active compounds were verified with the injury cell model of PC12 and primary hippocampus neurons induced by Aβ25-35. Finally, the key proteins of related pathways were quantitatively analyzed with Western blot method. RESULTS In total, 105 compounds and 38 targets have been screened. The main active compounds contained berberine, which belongs to alkaloids, Aurantiamide acetate, N-P-coumaroyltyramine, which belongs to amides, Trans-syringin and 3-demethyl-phillyrin, which belongs to phenylpropanoids. The targets covered inflammation-related proteins, including Protein kinase B (AKT), Phosphoinositide 3-kinase (PI3K), Tyrosine-protein kinase JAK1 (JAK1), mammalian target of rapamycin (mTOR), tumor necrosis factor alpha (TNF-α), Neuronal NOS (NOS1), and cholinergic function-related proteins, including α4-Nicotinic acetylcholine receptor (α4 nAChR), Muscarinic acetylcholine receptor M1 (Muscarnic M1). Inflammation and cholinergic dysfunction were the center of the network and occupy a dominant position. And the results of enrichment analysis shown the pathways mainly contained phosphoinositide-3-kinase/Akt (PI3K/Akt) signal pathway, neurotrophic factors (NTFs) signal pathway, Hypoxia-inducible factor 1 (HIF-1) signal pathway, mechanistic Target of Rapamycin (mTOR) signal pathway, Tumor necrosis factor (TNF) signal pathway, insulin resistance (IR). The results of in vitro assays showed that the tested compounds could significantly improve the survival rate and inhibit the apoptosis of PC12 cells and primary hippocampal neurons injured by Aβ25-35. Western blot results showed that T. sinensis had a significant effect on the expression of protein PI3K and Akt. CONCLUSION Our results revealed that T. sinensis could prevent and treat AD through a multi-compound-multi-target-multi-pathway regulatory network. Our work also expected to provide new ideas and theoretical bases for searching for the active compounds in T. sinensis and potential mechanism in the prevention and treatment of AD by the network pharmacology and molecular docking. The results of in vitro assay and in vivo assay supported the results of molecular docking.
Collapse
Affiliation(s)
- Feng Zhou
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Kun He
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Yang Guan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Xiyang Yang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Yaohui Chen
- Jiang Xi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Mengsheng Sun
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Xiaopeng Qiu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Feixia Yan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Huilian Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Lihua Yao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Bo Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| |
Collapse
|
34
|
Ginsenoside Rg1 attenuates isoflurane/surgery-induced cognitive disorders and sirtuin 3 dysfunction. Biosci Rep 2020; 39:220750. [PMID: 31652451 PMCID: PMC6822512 DOI: 10.1042/bsr20190069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Isoflurane/surgery (I/S) may induce neurocognitive disorders, but detailed mechanisms and appropriate treatment remain largely unknown. This experiment was designed to determine whether ginsenoside Rg1 could attenuate I/S-induced neurocognitive disorders and Sirtuin3 (Sirt3) dysfunction. C57BL/6J male mice received 1.4% isoflurane plus abdominal surgery for 2 h. Ginsenoside Rg1 10 mg/kg was intraperitoneally given for 8 days before surgery. Neurocognitive function was assessed by the Barnes Maze test. Levels of reactive oxygen species (ROS), oxygen consumption rate (OCR), mitochondrial membrane potential (MMP), expression and deacetylation activity of Sirt3 in the hippocampus tissues were measured. Results showed that I/S induced hippocampus-dependent learning and memory impairments, with increased ROS levels, and reduced OCR, MMP, and expression and deacetylation activity of Sirt3 in hippocampus tissues. Ginsenoside Rg1 treatment before I/S intervention significantly ameliorated learning and memory performance, reduced ROS levels and improved the OCR, MMP, expression and deacetylation activity of Sirt3. In conclusion, this experiment demonstrates that ginsenoside Rg1 treatment can attenuate I/S-induced neurocognitive disorders and Sirt3 dysfunction.
Collapse
|
35
|
Cui H, Xu Z, Qu C. Tetramethylpyrazine ameliorates isoflurane-induced cognitive dysfunction by inhibiting neuroinflammation via miR-150 in rats. Exp Ther Med 2020; 20:3878-3887. [PMID: 32855738 DOI: 10.3892/etm.2020.9110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Tetramethylpyrazine (TMP) has neuroprotective effects in the pathogenesis of some human diseases, such as Parkinson's disease. The present study aimed to investigate the role of TMP in isoflurane-induced cognitive dysfunction in rats, and further identify the mechanisms involved in the protective effects of TMP. The Morris water maze test was used to evaluate the cognitive function of rats exposed to isoflurane or treated with TMP. ELISA was conducted to evaluate the effects of isoflurane or TMP on neuroinflammation. The expression of microRNA-150 (miR-150) was measured using reverse transcription-quantitative PCR, and the potential target genes of miR-150 were predicted and verified. The impaired cognitive function induced by isoflurane in the rats was significantly ameliorated by treatment with TMP. In addition, TMP treatment in rats attenuated neuroinflammation caused by isoflurane. The expression of miR-150 was inhibited by isoflurane exposure, but was enhanced by TMP treatment in rats. Furthermore, the overexpression of miR-150 alleviated the isoflurane-induced cognitive dysfunction and neuroinflammation, while the neuroprotective effects of TMP were significantly abrogated by the knockdown of miR-150. AKT3 was a direct target of miR-150, and its mRNA expression was significantly decreased by the overexpression of miR-150 in isoflurane- and TMP-treated rats. These results demonstrated the protective effects of TMP against isoflurane-induced cognitive dysfunction, which were achieved by attenuating neuroinflammation via the regulation of the miR-150/AKT3 pathway. In addition, miR-150 may serve as a novel therapeutic target for the alleviation of cognitive dysfunction induced by anesthetics.
Collapse
Affiliation(s)
- Huaqing Cui
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| | - Zhonghui Xu
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| | - Chunshan Qu
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong 257055, P.R. China
| |
Collapse
|
36
|
Qian G, Wang Y. Serum Metabolomics of Early Postoperative Cognitive Dysfunction in Elderly Patients Using Liquid Chromatography and Q-TOF Mass Spectrometry. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8957541. [PMID: 32082482 PMCID: PMC7007934 DOI: 10.1155/2020/8957541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 01/10/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative complication observed in elderly patients. However, the diagnosis of POCD is not very satisfactory as no specific biomarkers have been classified. It is necessary to identify new diagnostic markers to better understand the pathogenesis of POCD. We performed liquid chromatography with a time-of-flight mass spectrometer- (LC/Q-TOF-MS-) based metabolomics study to investigate POCD. A total of 40 metabolites were differentially expressed between POCD and non-POCD patients. In this study, we investigated whether phosphatidylserine (PS) (17:2/0:0), with an area under the curve value of 0.966, was a potential sensitive and specific biomarker for the diagnosis and prognosis of POCD. Pathway analysis showed that fatty acid metabolism, lipid metabolism, and carnitine metabolism were significantly altered in POCD. Network analysis indicated that nitric oxide signaling, PI3K-AKT signaling, mTOR signaling, and mitochondrial dysfunction were related to the pathogenesis of POCD. This study showed that metabolic profiling was meaningful when studying the diagnosis and pathogenesis of POCD.
Collapse
Affiliation(s)
- Gang Qian
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200336, China
| | - YueLan Wang
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| |
Collapse
|
37
|
Abstract
As the worldwide population ages, the prevalence of Alzheimer's disease (AD) increases. However, the results of promising medications have been unsatisfactory. Chinese acupuncture has a long history of treating dementia, but lack of evidence from well-designed randomized controlled trials that validate its efficacy and safety, as well as its lack of clear underlying mechanisms, contribute to its limited application in clinical practice. In recent years, brain imaging technologies, such as functional magnetic resonance imaging and positron emission tomography, have been used to assess brain responses to acupuncture in a dynamic, visual, and objective way. These techniques are frequently used to explore neurological mechanisms of responses to acupuncture in AD and provide neuroimaging evidence as well as starting points to elucidate the possible mechanisms. This review summarizes the existing brain imaging evidence that explains the effects of acupuncture for AD and analyzes brain responses to acupuncture at cognitive-related acupoints [Baihui (GV 20), Shenmen (HT 7), Zusanli (ST 36), Neiguan (PC 6), and Taixi (KI 3)] from perspectives of acupoint specificity and acupoint combinations. Key issues and directions to consider in future studies are also put forward. This review should deepen our understanding of how brain imaging studies can be used to explore the underlying mechanisms of acupuncture in AD.
Collapse
|
38
|
Wang S, Xue F, Li W, Shan Y, Gu X, Shen J, Ke K. Increased expression of Triad1 is associated with neuronal apoptosis after intracerebral hemorrhage in adult rats. Int J Neurosci 2020; 130:759-769. [PMID: 31842638 DOI: 10.1080/00207454.2019.1705807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective: It has been demonstrated that Triad1 (2 RING fingers and double RING finger linked 1) negatively regulates myeloid cell growth and induces cell apoptosis. However, its functions in intracerebral hemorrhage (ICH) disease have not been conducted. In this study, the role of Triad1 in rat model of ICH was explored.Methods: We observe an increasing expression of Triad1 in areas adjacent to hematoma after ICH. Immunofluorescence shows that Triad1 is colocalized with neurons, while not microglia or astrocyte, indicates its correlation with neuronal activities following ICH.Results: As neuronal apoptosis is the most crucial event in ICH disease, the expression of active caspase-3 and p53 is also enhanced around the hematoma, which is consistent with Triad1 in expression tendency. In turn, Triad1 depletion in primary cortical neurons decreased the apoptosis of neurons after using Triad1 shRNA.Conclusion: We conclude that inhibition of Triad1 expression might protect the brain from secondary damage following ICH.
Collapse
Affiliation(s)
- Shuyao Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Feng Xue
- Department of Neurology, Qidong Second People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Wanyan Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yisi Shan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xingxing Gu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
39
|
Nguyen T, Chen X, Chai J, Li R, Han X, Chen X, Liu S, Chen M, Xu X. Antipyretic, anti-inflammatory and analgesic activities of Periplaneta americana extract and underlying mechanisms. Biomed Pharmacother 2019; 123:109753. [PMID: 31865148 DOI: 10.1016/j.biopha.2019.109753] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Periplaneta americana is a common traditional Chinese medicinal material which has been used to treat arthritis, fever, aches, pains, and inflammation of the extremities for several hundred years. However, little scientific data exists in literature to support its use. The purpose of this study was to evaluate the antipyretic, anti-inflammatory and analgesic activities of Periplaneta americana extract (PAE) and explore its underlying mechanism. The antipyretic, anti-inflammatory and analgesic activities were evaluated by LPS-induced fever, carrageenan-induced paw edema, abdominal writhing, hot plate and formalin tests, respectively. The mechanism of action was explored by antioxidant activity analysis, inflammatory cytokines expression and febrile mediator measurement, and pathway activation analysis. The results from UHPLC-HRMS indicated that the extract was found to contain dopamine, coumarin, dipeptide, vitamin, organic acid, amino acid and its metabolites, and other organic compounds. PAE showed in a dose-dependent manner antioxidant activity and reduced the protein production and mRNA expression of NO, IL-1β, IL-6, and TNF-α in RAW 264.7 cells in vitro. Moreover, PAE significantly and dose-dependently inhibited the writhing responses and licking time in formalin tests, increased response latency in the hot plate test, reduced carrageenan-induced paw edema and inflammation in mice, decreased LPS-induced rT increase in rats. Furthermore, PAE treatment markedly inhibited the increase in the levels of NO, IL-6, IL-1β, TNF-α, PGE2 and cAMP in plasma of fevered rat, greatly suppressed the activation of inflammatory response pathway and the change of MDA and GSH concentration, MPO and SOD activity as well as FRAP capacity in paw induced by carrageenan injection. In conclusion, the findings suggested that PAE produced potential antinociceptive, anti-inflammatory and antipyretic effects by reducing production of endogenous inflammatory mediators and blocking the MAPK/NF-κB signaling pathway which support the claim for its traditional use in the treatment of various diseases.
Collapse
Affiliation(s)
- Tienthanh Nguyen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | - Xiaoyan Han
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaoxin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Ming Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, PR China.
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
40
|
Biswas T, Dwivedi UN. Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance. PROTOPLASMA 2019; 256:1463-1486. [PMID: 31297656 DOI: 10.1007/s00709-019-01411-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/01/2019] [Indexed: 05/26/2023]
Abstract
The saponins are a diverse class of natural products, with a broad scale distribution across different plant species. Chemically characterized as triterpenoid glycosides, they posses a 30C oxidosqualene precursor-based aglycone moiety (sapogenin), to which glycosyl residues are subsequently attached to yield the corresponding saponin. Based on the chemically distinct aglycone moieties, broadly, they are divided into triterpenoid saponins (dammaranes, ursanes, oleananes, lupanes, hopanes, etc.) and the sterol glycosides. This review aims to present in detail the biosynthesis patterns of the different aglycones from a common precursor and their glycosylation patterns to yield the functionally active glycoside. The review also presents recent advances in the pharmacological activities of these saponins, particularly as potent anti-neoplastic pharmacophores, antioxidants, or anti-viral/antibacterial agents. Since alternate production pedestals for these pharmacologically important triterpenes via cell and tissue cultures are an attractive option for their sustainable production, recent trends in the variety and scale of in vitro production of plant triterpenoids have also been discussed.
Collapse
Affiliation(s)
- Tanya Biswas
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Upendra N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
- Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
41
|
General anesthetic neurotoxicity in the young: Mechanism and prevention. Neurosci Biobehav Rev 2019; 107:883-896. [PMID: 31606415 DOI: 10.1016/j.neubiorev.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022]
Abstract
General anesthesia (GA) is usually considered to safely induce a reversible unconscious state allowing surgery to be performed without pain. A growing number of studies, in particular pre-clinical studies, however, demonstrate that general anesthetics can cause neuronal death and even long-term neurological deficits. Herein, we report our literature review and meta-analysis data of the neurological outcomes after anesthesia in the young. We also review available mechanistic and epigenetic data of GA exposure related to cognitive impairment per se and the potential preventive strategies including natural herbal compounds to attenuate those side effects. In summary, anesthetic-induced neurotoxicity may be treatable and natural herbal compounds and other medications may have great potential for such use but warrants further study before clinical applications can be initiated.
Collapse
|
42
|
Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism. J Ginseng Res 2019; 44:664-671. [PMID: 32617047 PMCID: PMC7322759 DOI: 10.1016/j.jgr.2019.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)–induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress–related cardiac diseases.
Collapse
|
43
|
Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol 2019; 93:2491-2513. [DOI: 10.1007/s00204-019-02538-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
|
44
|
Wang R, Zhang Z, Kumar M, Xu G, Zhang M. Neuroprotective potential of ketamine prevents developing brain structure impairment and alteration of neurocognitive function induced via isoflurane through the PI3K/AKT/GSK-3β pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:501-512. [PMID: 30787593 PMCID: PMC6366353 DOI: 10.2147/dddt.s188636] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background The aim of the current experimental study was to scrutinize the neuroprotective effect of ketamine on the isoflurane (iso)-induced cognitive dysfunction in rats via phosphoinositide 3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase 3β (GSK-3β) pathway. Materials and methods Sprague-Dawley rats were used for the current experimental study. The rats were divided into six groups and rats were treated with ketamine and memantine. For the estimation of cognitive function study, we used the Morris water test. Pro-inflammatory cytokines such as IL-1β, IL-6, tumor necrosis factor-α (TNF-α), and caspase-6; the antioxidant parameters malondialdehyde, glutathione, superoxide dismutase, catalase, and protein carbonyl; acetylcholinesterase, amyloid β, and brain-derived neurotrophic factor were estimated, respectively. The protein expression of AKT, GSK-3β, p21WAF1/CIP1, and p53 was also estimated, respectively. Results Ketamine significantly enhanced cognitive function and showed anti-inflammatory and antioxidant effects, and exhibited the neuroprotective effect of ketamine against the isoflurane-induced cognitive impairment. Additionally, ketamine significantly (P<0.005) suppressed IL-1β, TNF-α, IL-6, caspase-6 and p21WAF1/CIP1, p53 expression and up-regulated the PI3K/AKT/GSK-3β expression in the group of iso-induced rats. Conclusion We can conclude that ketamine prevented the cognitive impairment induced by isoflurane anesthesia through anti-apoptotic, anti-inflammatory, and antioxidant effects via the PI3K/AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Ruiwei Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, People's Republic of China,
| | - Zihao Zhang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province 330031, People's Republic of China
| | | | - Guangming Xu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, People's Republic of China,
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, People's Republic of China,
| |
Collapse
|
45
|
Aborehab NM, Waly NE. IL-6 and NFE2L2: A putative role for the hepatoprotective effect of N. Sativa, P. Ginseng and C. Sempervirens in AFB-1 induced hepatocellular carcinoma in rats. Toxicol Rep 2019; 6:457-464. [PMID: 31193706 PMCID: PMC6541739 DOI: 10.1016/j.toxrep.2019.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/07/2023] Open
Abstract
P. Ginseng showed a prominent prophylactic effect in AFB-1 induced rat model. Hepatoprotective effects of extracts possibly mediated via IL-6, hs-CRP, SOD, NFE2L2. NFE2L2 play a pivotal role in this hepatoprotective effect of herbal extracts.
In this study, we investigated possible hepato-protective effects of N. Sativa, P. Ginseng, and C. Sempervirens in Aflatoxin B1 (AFB-1) induced hepatocellular carcinoma rat model. Fifty-four male albino rats were randomly assigned to experimental groups. Alcoholic extracts of aforementioned herbs were administered orally for 28 days at different doses. IL-6, hs-CRP, MDA, SOD and NFE2L2 were determined using ELISA. Histopathological changes in treated groups were examined. Herbal treatment significantly reduced IL-6, hs-CRP, and MDA (P < 0.001) whereas it significantly increased SOD (p < 0.001). C. Sempervirens 600 and N. Sativa 1000 increased NFE2L2 level compared to P. Ginseng 500 group (P value<0.01). Histopathological evaluation of treated groups showed different grades of healing of the liver. This study confirms a beneficial hepatoprotective effect for aforementioned herbal extracts orally administered in rat model of AFB1 induced HCC. This effect is putatively mediated via modulation of inflammatory cytokines as well as amelioration of oxidative stress.
Collapse
|
46
|
Ji Q, Sun Z, Yang Z, Zhang W, Ren Y, Chen W, Yao M, Nie S. Protective effect of ginsenoside Rg1 on LPS-induced apoptosis of lung epithelial cells. Mol Immunol 2018; 136:168-174. [PMID: 30471963 DOI: 10.1016/j.molimm.2018.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening medical condition with high mortality and morbidity in the critical care units. Though, it was commonly accepted that inflammation and apoptosis of lung epithelial cells played an essential role in the pathogenesis of ALI, the underlying mechanism remain unknown. In our study, we found that LPS-induced cell apoptosis could be counteracted by elevated cell autophagy. In LPS-treated MLE-12 cells, suppression of autophagy via 3-MA could aggravate LPS-induced apoptosis, while activation of autophagy via Rapamycin could effectively impair the apoptosis of MLE-12 cells induced by LPS. In order to further discover the molecular regulation mechanism between apoptosis and autophagy in LPS-treated MLE-12 cells, we demonstrated that autophagy could induced the expression of Nrf2, followed with the decrease of p-p65. Targeted inhibition of Nrf2 could induce enlarged cell apoptosis via increasing the level of p-p65. In addition, we demonstrated that ginsenoside Rg1 protected MLE-12 cells from LPS-induced apoptosis via augmenting autophagy and inducing the expression of Nrf2. Our data implicates that activation of autophagy and Nrf2 by ginsenoside Rg1 may provide a preventive and therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Qijian Ji
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China; Department of Critical Care Medicine, Xuyi People's hospital, xuyi, 211700, Jiangsu, PR China.
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Weijun Chen
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Mengya Yao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| |
Collapse
|
47
|
Zhang Y, Liu YX, Xiao QX, Liu Q, Deng R, Bian J, Deng IB, Al-Hawwas M, Yu FX. Microarray Expression Profiles of lncRNAs and mRNAs in Postoperative Cognitive Dysfunction. Front Neurosci 2018; 12:694. [PMID: 30349449 PMCID: PMC6187303 DOI: 10.3389/fnins.2018.00694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is serious disorder in the central nervous system common in aged patients after anesthesia. Although its clinical symptoms are well recognized, however, the molecular etiology of the POCD remains unrevealed. Similarly, neither gold standard molecular diagnosis nor effective treatment is available for POCD until the present. Therefore, we aimed to explore the molecular mechanism of this disorder through investigating lncRNAs and mRNAs associated with POCD human patients and investigate their underlying regulatory pathways. In this study, we recruited 200 patients requiring hip or knee replacement surgery. Their neurological functions were assessed at two time points, 1 day before the surgery and 30 days post-surgery. In parallel, serum samples were collected from the participants to analyze lncRNAs and mRNAs differential expression profile between POCD and non-POCD patients using microarray analysis. To further investigate the role differentially expressed mRNA and lncRNAs, Gene Ontology (GO), pathway analyses on mRNAs and lncRNA-mRNA interaction network were performed. As a result, 68 lncRNAs and 115 mRNAs were dysregulated in the POCD group compared to non-POCD group. Among them, the top 10 upregulated lncRNAs and 10 downregulated lncRNAs were listed for enrichment analysis. Interestingly, we found that these lncRNA and mRNA are involved in biological process, molecular function, and cellular component in addition to various signaling pathways, suggesting that the pathogenesis of POCD involves lncRNAs and mRNAs differential expression. Consequently, the genetic dysregulation between the non-POCD and POCD patients participates in the occurrence and development of POCD, and could be served as diagnostic biomarkers and drug targets for POCD treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yue-Xin Liu
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Qing Liu
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rui Deng
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jiang Bian
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Isaac Bul Deng
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Feng-Xu Yu
- Department of Cardiothoracic Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
Jakaria M, Haque ME, Kim J, Cho DY, Kim IS, Choi DK. Active ginseng components in cognitive impairment: Therapeutic potential and prospects for delivery and clinical study. Oncotarget 2018; 9:33601-33620. [PMID: 30323902 PMCID: PMC6173364 DOI: 10.18632/oncotarget.26035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cognitive impairment is a state that affects thinking, communication, understanding, and memory, and is very common in various neurological disorders. Among many factors, age-related cognitive decline is an important area in mental health research. Research to find therapeutic medications or supplements to treat cognitive deficits and maintain cognitive health has been ongoing. Ginseng and its active components may have played a role in treating chronic disorders. Numerous preclinical studies have confirmed that ginseng and its active components such as ginsenosides, gintonin, and compound K are pharmacologically efficacious in different models of and are linked to cognitive impairment. Among their several roles, they act as an anti-neuroinflammatory and help fight against oxidative stress and modulate the cholinergic signal. These roles may be involved in enhancing cognition and attenuating impairment. There have been some clinical studies on the activity of ginseng in cognitive impairment, but many ginseng species and active compounds remain to be investigated. In addition, new formulations of active ginseng components such as nanoparticles and liposomes could be used for preclinical and clinical models of cognitive impairment. Here, we discuss the therapeutic potential of active ginseng components in cognitive impairment and their chemistry and pharmacokinetics and consider prospects for their delivery and clinical study with respect to cognitive impairment.
Collapse
Affiliation(s)
- Md. Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Md. Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Joonsoo Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - In-Su Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
- Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
49
|
Abdelazim A, Khater S, Ali H, Shalaby S, Afifi M, Saddick S, Alkaladi A, Almaghrabi OA. Panax ginseng improves glucose metabolism in streptozotocin-induced diabetic rats through 5' adenosine monophosphate kinase up-regulation. Saudi J Biol Sci 2018; 26:1436-1441. [PMID: 31762606 PMCID: PMC6864146 DOI: 10.1016/j.sjbs.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
5′ AMP-activated protein kinase (AMPK), insulin receptors and transporters are distorted in diabetes mellitus. In this study, the effect of Panax ginseng was assessed on glucose manipulating enzymes activities and gene expression of AMPK, IRA and GLUT2 in streptozotocin-induced diabetic male rats. Forty male albino rats were randomly divided to four groups 10 rats of each, group I, normal control group (received saline orally); group II, normal rats received 200 mg/kg of Panax ginseng orally; group III, Streptozotocin (STZ) –induced diabetic rats and group IV, STZ-induced diabetic rats received 200 mg/kg of Panax ginseng orally. The duration of experiment was 30 days. Results showed the ability of Panax ginseng to induce a significant decrease in the blood glucose and increase in the serum insulin levels, hepatic glucokinase (GK), and glycogen synthase (GS) activities with a modulation of lipid profile besides high expression levels of AMPK, insulin receptor A (IRA), glucose transporting protein-2 (GLUT-2) in liver of diabetic rats. In conclusion, the obtained results point to the ability of Panax ginseng to improve the glucose metabolism in diabetic models.
Collapse
Affiliation(s)
- Aaser Abdelazim
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Safaa Khater
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham Ali
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Shimaa Shalaby
- Department of Physiology, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia.,University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Saudi Arabia
| | - Salina Saddick
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ali Alkaladi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Omar A Almaghrabi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res 2018; 339:57-65. [DOI: 10.1016/j.bbr.2017.11.015] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/08/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|