1
|
Xu Y, Xia D, Deng S, Liang M. Isoimperatorin Inhibits Angiogenesis by Suppressing VEGFR2 Signaling Pathway. Cardiovasc Drugs Ther 2025; 39:275-286. [PMID: 38363479 DOI: 10.1007/s10557-024-07561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Angiogenesis involves in many pathological processes, including tumor metastasis, diabetic retinopathy, and rheumatoid arthritis. Therefore, identifying therapeutic drugs that target angiogenesis may be a promising strategy for disease treatment. Isoimperatorin is a furanocoumarin with anti-inflammatory and anti-microbial effects. However, the impacts of isoimperatorin on angiogenesis and its underlying mechanisms remain unclear. This study aimed to verify its effects on vascular endothelial growth factor (VEGF)-induced endothelial angiogenesis. METHODS We employed various assays including 5-ethynyl-2'-deoxyuridine incorporation assay, transwell migration assay, wound healing assay, tube formation assay, and Western blot to evaluate the effects of isoimperatorin on angiogenesis in vitro. Additionally, we utilized Western blot and immunofluorescence analysis to examine the activation of vascular endothelial growth factor receptor (VEGFR) 2 and its downstream signaling pathways following isoimperatorin treatment. To further validate the anti-angiogenic effects of isoimperatorin in vivo, we conducted a matrigel plug assay and established an orthotopic tumor model. RESULTS We demonstrated that pretreatment with isoimperatorin inhibited VEGF-induced endothelial cell proliferation, migration, and tube formation. Isoimperatorin also suppressed angiogenesis in vivo in a matrigel plug assay and in an orthotopic tumor model. Our results revealed that isoimperatorin exhibited anti-angiogenic effects via inhibiting VEGFR2 and its downstream signaling pathways activation. CONCLUSIONS Our study showed that isoimperatorin suppressed angiogenesis by targeting the VEGFR2 signaling pathway and could be a potential therapeutic agent for targeting angiogenesis.
Collapse
Affiliation(s)
- Yating Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Xia
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Deng
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China.
- Hubei clinical research center for metabolic and cardiovascular disease, Huazhong University of Science and Technology, Wuhan, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China.
- Hubei clinical research center for metabolic and cardiovascular disease, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Peng X, Chen X, Zhang Y, Tian Z, Wang M, Chen Z. Advances in the pathology and treatment of osteoarthritis. J Adv Res 2025:S2090-1232(25)00072-4. [PMID: 39889821 DOI: 10.1016/j.jare.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA), a widespread degenerative joint disease, predominantly affects individuals from middle age onwards, exhibiting non-inflammatory characteristics. OA leads to the gradual deterioration of articular cartilage and subchondral bone, causing pain and reduced mobility. The risk of OA increases with age, making it a critical health concern for seniors. Despite significant research efforts and various therapeutic approaches, the precise causes of OA remain unclear. AIM OF REVIEW This paper provides a thorough examination of OA characteristics, pathogenic mechanisms at various levels, and personalized treatment strategies for different OA stages. The review aims to enhance understanding of disease mechanisms and establish a theoretical framework for developing more effective therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW This review systematically examines OA through multiple perspectives, integrating current knowledge of clinical presentation, pathological mechanisms, and associated signaling pathways. It assesses diagnostic methods and reviews both pharmacological and surgical treatments for OA, as well as emerging tissue engineering approaches to manage the disease. While therapeutic strategies such as exercise, anti-inflammatory drugs, and surgical interventions are employed to manage symptoms and modify joint structure, none have been able to effectively halt OA's advancement or achieve long-lasting symptom relief. Tissue engineering strategies, such as cell-seeded scaffolds, supportive matrices, and growth factor delivery, have emerged as promising approaches for cartilage repair and OA treatment. To combat the debilitating effects of OA, it is crucial to investigate the molecular basis of its pathogenesis and seek out innovative therapeutic targets for more potent preventive and treatment strategies.
Collapse
Affiliation(s)
- Xueliang Peng
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Xuanning Chen
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200215, China
| | - Yifan Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhichao Tian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Meihua Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
| |
Collapse
|
3
|
Xu W, Gu S, Zhang G, Wang R, Lv S, Yan J, Qin Y. APOD acts on fibroblast-like synoviocyte and chondrocyte to alleviate the process of osteoarthritis in vitro. J Orthop Res 2024; 42:296-305. [PMID: 37728985 DOI: 10.1002/jor.25690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The pathogenesis of osteoarthritis (OA) is still unclear, leading to the lack of targeted treatment. We aimed to probe into the effect of apolipoprotein D (APOD), the key gene from our previous study through bioinformatics analysis, on fibroblast-like synoviocyte (FLS) and chondrocytes in vitro to confirm its potential roles on the delay of OA progression. Primary FLS and chondrocytes were extracted from synovium and cartilage of OA patients and stimulated with interleukin 1β (IL-1β) in vitro. After APOD intervention, viability and proliferation of FLS and chondrocytes were detected. Subsequently, the inflammatory factors of the two cells were detected by quantitative reverse-transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and western blot, and the apoptosis and autophagy-related substances were determined at the same time. Finally, the oxidation level in FLS and chondrocytes were detected. APOD reversed the change of gene expression stimulated by IL-1β in FLS and chondrocytes. APOD alleviated the proliferation of FLS while promoted proliferation of chondrocytes, and reduced the expression of inflammatory factors. Moreover, APOD promoted apoptosis of FLS and autography of chondrocytes, while reduced apoptosis of chondrocytes. Finally, decrease level of reactive oxygen species (ROS) in both cells were observed after APOD intervention, as well as the increased expression of antioxidant-related genes. APOD had effects on the proliferation of FLS and chondrocytes through apoptosis and autography as well as the reduction of oxidative stress, delaying the progress of OA.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shoubin Gu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ren Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songcen Lv
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Qin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Cheng C, Wu Y, Huang Y, Xue Q, Wang Y, Liao F, Wang X, Miao C. Epigenetic modification and exosome effects on autophagy in osteoarthritis. Biochem Pharmacol 2023; 218:115930. [PMID: 37979704 DOI: 10.1016/j.bcp.2023.115930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease that leads to joint pain and stiffness and is one of the leading causes of disability and pain worldwide. Autophagy is a highly conserved self-degradation process, and its abnormal function is closely related to human diseases, including OA. Abnormal autophagy regulates cell aging, matrix metalloproteinase metabolism, and reactive oxygen metabolism, which are key in the occurrence and development of OA. There is evidence that drugs directly or indirectly targeting autophagy significantly hinder the progress of OA. In addition, the occurrence and development of autophagy in OA are regulated by many factors, including epigenetic modification, exosomes, crucial autophagy molecules, and signaling pathway regulation. Autophagy, as a new therapeutic target for OA, has widely influenced the pathological mechanism of OA. However, determining how autophagy affects OA pathology and its use in the treatment and diagnosis of targets still need further research.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiaomei Wang
- Department of Humanistic Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
5
|
Fan L, Li Z, Gao L, Zhang N, Chang W. Isoimperatorin alleviates lipopolysaccharide-induced periodontitis by downregulating ERK1/2 and NF-κB pathways. Open Life Sci 2023; 18:20220541. [PMID: 36742455 PMCID: PMC9883692 DOI: 10.1515/biol-2022-0541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic periodontitis is an inflammatory disease characterized by inflammation of the soft tissues of the gums. To combat this disease, more effective drugs are still needed to identify and develop. Isoimperatorin is a kind of a natural compound, which has anti-inflammatory, analgesic, antitumor, antivirus, and other pharmacological effects. However, its possible effects on the progression of chronic periodontitis are still unclear. In this study, we used human periodontal membrane fibroblasts (hPDLCs), human bone marrow-derived macrophages, and found that isoimperatorin reduced hPDLCs viability. In addition, isoimperatorin alleviated the oxidative stress of periodontal membrane cells. Isoimperatorin reduced proinflammatory factor secretion and receptor activator for nuclear factor-κB ligand-induced osteoclast differentiation in periodontal membrane cells. Further, isoimperatorin inhibited the activation of ERK1/2 and nuclear factor-κB pathways. We, therefore, thought isoimperatorin could serve as a promising drug for the treatment of this disease.
Collapse
Affiliation(s)
- Lili Fan
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi Province, 030032, China
| | - Zhenqiang Li
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi Province, 030032, China
| | - Linlin Gao
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi Province, 030032, China
| | - Nan Zhang
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi Province, 030032, China
| | - Wenxiao Chang
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi Province, 030032, China
| |
Collapse
|
6
|
Lamichhane G, Pandey J, Devkota HP. Bioactive Chemical Constituents and Pharmacological Activities of Ponciri Fructus. Molecules 2022; 28:255. [PMID: 36615447 PMCID: PMC9821892 DOI: 10.3390/molecules28010255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Ponciri Fructus is a crude drug obtained from the dried immature fruits of Poncirus trifoliata (L). Raf. (Syn. Citrus trifoliata L.). This study aims to compile and analyze the ethnomedicinal uses, bioactive constituents, and pharmacological activities of Ponciri Fructus. Various online bibliographic databases namely, SciFinder, PubMed, Google Scholar, and Web of Science were used for collecting information on traditional uses, biological activities, and bioactive constituents. Concerning ethnomedicinal uses, Ponciri Fructus is extensively used in traditional Korean, Chinese, and Kampo medicines to mitigate allergic reactions, inflammation, edema, digestive complications, respiratory problems, spleen-related problems, liver complications, neuronal pain, hyperlipidemia, rheumatoid arthritis, cardiovascular problems, hernia, sinusitis, and insomnia. Several studies have shown that Ponciri Fructus is a major source of diverse classes of bioactive compounds namely flavonoids, terpenoids, coumarins, phytosterols, and alkaloids. Several in vivo and in vitro pharmacological activity evaluations such as antidiabetic, anti-obesity, anti-inflammatory, antiallergic, antimelanogenic, gastroprotective, anticancer, and neuroprotective effects have been conducted from Ponciri Fructus. However, scientific investigations focusing on bioassay-guided isolation and identification of specific bioactive constituents are limited. Therefore, an in-depth scientific investigation of Ponciri Fructus focusing on bioassay-guided isolation, mechanism based pharmacological studies, pharmacokinetic studies, and evaluation of possible toxicities is necessary in the future.
Collapse
Affiliation(s)
- Gopal Lamichhane
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 570-749, Republic of Korea
| | - Jitendra Pandey
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| |
Collapse
|
7
|
Lv X, Zhao T, Dai Y, Shi M, Huang X, Wei Y, Shen J, Zhang X, Xie Z, Wang Q, Li Z, Qin D. New insights into the interplay between autophagy and cartilage degeneration in osteoarthritis. Front Cell Dev Biol 2022; 10:1089668. [PMID: 36544901 PMCID: PMC9760856 DOI: 10.3389/fcell.2022.1089668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an intracellular degradation system that maintains the stable state of cell energy metabolism. Some recent findings have indicated that autophagy dysfunction is an important driving factor for the occurrence and development of osteoarthritis (OA). The decrease of autophagy leads to the accumulation of damaged organelles and macromolecules in chondrocytes, which affects the survival of chondrocytes and ultimately leads to OA. An appropriate level of autophagic activation may be a new method to prevent articular cartilage degeneration in OA. This minireview discussed the mechanism of autophagy and OA, key autophagy targets regulating OA progression, and evaluated therapeutic applications of drugs targeting autophagy in preclinical and clinical research. Some critical issues worth paying attention to were also raised to guide future research efforts.
Collapse
Affiliation(s)
- Xiaoman Lv
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Zhao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qi Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Zhang Y, Hou M, Yu Y, Xie W, Chang R, Zhang G, Zhang H, Yu H, Chen A. Simultaneous separation and determination of six furanocoumarins in Radix Angelicae dahuricae by CZE with dual CDs system. Anal Biochem 2022; 655:114869. [PMID: 35988798 DOI: 10.1016/j.ab.2022.114869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
A novel, simple and efficient capillary electrophoresis method was developed to simultaneous determination of six furanocoumarins (psoralen, isopsoralen, imperatorin, isoimperatorin, phellopterin, and cnidilin). The separation buffer consisted of 30 mM boric acid, 12 mM sulfobutylether-β-cyclodextrin and 1.5 mM 2-hydroxypropyl-β-cyclodextrin (pH 7.8); the voltage was 20 kV, the temperature was 25 °C and the detection wavelength was at 246 nm with a diode array detector (DAD). Under the above conditions, the analytes could be separated with high resolution in less than 7 min. This method was used to simultaneously determine the content of psoralen, imperatorin, isoimperatorin and phellopterin in Angelica Dahurica Radix. And good linearities were obtained with correlation coefficients from 0.9992 to 0.9999. The limits of detection (LOD, S/N = 3) and the limits of quantitation (LOQ, S/N = 10) ranged from 0.6 to 3.0 μg/mL and from 2.1 to 9.9 μg/mL, respectively. The recoveries ranged between 98.8% and 101.8%. The results indicated the method can achieve baseline separation and quantitative analysis of furanocoumarins in Chinese herbal medicines and formulations.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Meijuan Hou
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Yanping Yu
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Wenyu Xie
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Ruimiao Chang
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Guangbin Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Hongfen Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Haixia Yu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, PR China.
| | - Anjia Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
9
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
10
|
Yue S, Su X, Teng J, Wang J, Guo M. Cryptotanshinone interferes with chondrocyte apoptosis in osteoarthritis by inhibiting the expression of miR‑574‑5p. Mol Med Rep 2021; 23:424. [PMID: 33878859 PMCID: PMC8047883 DOI: 10.3892/mmr.2021.12063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chondrocyte apoptosis is an important factor in the development and progression of osteoarthritis (OA). Cryptotanshinone (CTS) can inhibit chondrocyte apoptosis, but the specific mechanism remains unknown. The aim of the present study was to explore how CTS may affect chondrocyte apoptosis. Reverse transcription-quantitative PCR and western blotting were used to validate microRNA (miR)-574-5p, YY1-associated factor 2 (YAF2), Bcl-2 and Bax expression levels. H&E, Safranin O and TUNEL staining assays were used to evaluate the apoptosis of arthritic chondrocytes in vivo. A Cell Counting Kit-8 assay and flow cytometry were performed to detect cell proliferation and apoptosis of chondrocytes in vitro. The methylation level of the miR-574-5p promoter was measured via methylation specific PCR. The degree of chondrocyte apoptosis and the expression levels of YAF2 and Bcl-2 were decreased in the mice with OA, and were increased in the OA + CTS mice, while the expression levels of miR-574-5p and Bax showed opposite changes. Furthermore, the degree of chondrocyte apoptosis and the expression levels of the aforementioned key factors in chondrocytes were consistent with those observed in vivo. The methylation degree of the miR-574-5p promoter was increased by the addition of CTS, and was reduced after the addition of a methylation inhibitor, 5-aza-CdR, indicating that CTS could regulate the methylation of miR-574-5p promoter. The present study suggested that CTS could downregulate the expression of miR-574-5p by regulating its methylation, and thus, could improve YAF2 expression and affect chondrocyte apoptosis.
Collapse
Affiliation(s)
- Songtao Yue
- Department of Osteoarthrosis, Luoyang Orthopedic‑Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan 450000, P.R. China
| | - Xiaochuan Su
- Health Management Center, Luoyang Orthopedic‑Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan 450000, P.R. China
| | - Junyan Teng
- Health Management Center, Luoyang Orthopedic‑Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan 450000, P.R. China
| | - Jiangyi Wang
- Department of Osteoarthrosis, Luoyang Orthopedic‑Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan 450000, P.R. China
| | - Malong Guo
- Department of Osteoarthrosis, Luoyang Orthopedic‑Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
11
|
Control of the Autophagy Pathway in Osteoarthritis: Key Regulators, Therapeutic Targets and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms22052700. [PMID: 33800062 PMCID: PMC7962119 DOI: 10.3390/ijms22052700] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Autophagy is involved in different degenerative diseases and it may control epigenetic modifications, metabolic processes, stem cells differentiation as well as apoptosis. Autophagy plays a key role in maintaining the homeostasis of cartilage, the tissue produced by chondrocytes; its impairment has been associated to cartilage dysfunctions such as osteoarthritis (OA). Due to their location in a reduced oxygen context, both differentiating and mature chondrocytes are at risk of premature apoptosis, which can be prevented by autophagy. AutophagomiRNAs, which regulate the autophagic process, have been found differentially expressed in OA. AutophagomiRNAs, as well as other regulatory molecules, may also be useful as therapeutic targets. In this review, we describe and discuss the role of autophagy in OA, focusing mainly on the control of autophagomiRNAs in OA pathogenesis and their potential therapeutic applications.
Collapse
|
12
|
Duan R, Xie H, Liu ZZ. The Role of Autophagy in Osteoarthritis. Front Cell Dev Biol 2020; 8:608388. [PMID: 33324654 PMCID: PMC7723985 DOI: 10.3389/fcell.2020.608388] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Chondrocytes are the only cell type in normal cartilage. The pathological changes of osteoarthritis (OA) mostly revolve around the apoptosis and dysfunction of chondrocytes. Autophagy, as an intracellular degradation system that maintains the steady state of energy metabolism in cells, has been shown to restore the function of damaged chondrocytes, alleviating the occurrence and progression of OA. In this review, we explored the relationship between autophagy and OA and the key molecules of autophagy pathway that regulate the progression of OA, providing new ideas for OA treatment by targeting autophagy.
Collapse
Affiliation(s)
- Ran Duan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xie
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Zheng-Zhao Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
13
|
Neidlin M, Chantzi E, Macheras G, Gustafsson MG, Alexopoulos LG. A Novel Multiplex Based Platform for Osteoarthritis Drug Candidate Evaluation. Ann Biomed Eng 2020; 48:2438-2448. [PMID: 32472364 DOI: 10.1007/s10439-020-02539-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023]
Abstract
Osteoarthritis (OA) is characterized by irreversible cartilage degradation with very limited therapeutic interventions. Drug candidates targeted at prototypic players had limited success until now and systems based approaches might be necessary. Consequently, drug evaluation platforms should consider the biological complexity looking beyond well-known contributors of OA. In this study an ex vivo model of cartilage degradation, combined with measuring releases of 27 proteins, was utilized to study 9 drug candidates. After an initial single drug evaluation step the 3 most promising compounds were selected and employed in an exhaustive combinatorial experiment. The resulting most and least promising treatment candidates were selected and validated in an independent study. This included estimation of mechanical properties via finite element modelling (FEM) and quantification of cartilage degradation as glycosaminoglycan (GAG) release. The most promising candidate showed increase of Young's modulus, decrease of hydraulic permeability and decrease of GAG release. The least promising candidate exhibited the opposite behaviour. The study shows the potential of a novel drug evaluation platform in identifying treatments that might reduce cartilage degradation. It also demonstrates the promise of exhaustive combination experiments and a connection between chondrocyte responses at the molecular level with changes of biomechanical properties at the tissue level.
Collapse
Affiliation(s)
- Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 15780, Zografou, Greece
| | - Efthymia Chantzi
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | - Leonidas G Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, Heroon Polytechniou 9, 15780, Zografou, Greece.
| |
Collapse
|
14
|
Wang J, Zhang Y, Zeng Y, Ge S, Sun X, Jia M, Wu Y, Wang N. Isoimperatorin reduces the effective dose of dexamethasone in a murine model of asthma by inhibiting mast cell activation. Phytother Res 2020; 34:2985-2997. [PMID: 32491281 DOI: 10.1002/ptr.6726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/03/2020] [Accepted: 04/25/2020] [Indexed: 01/18/2023]
Abstract
Adverse effects that result from dexamethasone (DEX) use are common and serious in patients with asthma. Therefore, alternative anti-inflammatory treatments are being investigated. Isoimperatorin (ISO), an active natural furocoumarin, possesses multiple pharmacological properties, including an anti-inflammation effect. In this study, investigations were conducted on the effect of ISO on mast cell (MC) activation in vitro and whether ISO could reduce the effective dose of DEX in a mast cell-dependent murine model of asthma in vivo. Calcium imaging was used to assess intracellular Ca2+ mobilization. Enzyme-linked immunosorbent assay was used to measure the chemokines release. Western blot analysis was conducted to investigate the underlying pathway. Airway inflammation and hyperresponsiveness (AHR) were examined in an asthma model. ISO inhibited Ca2+ flux and MC degranulation via Lyn/PLCγ1/PKC, ERK, and P38 MAPK pathways. In the asthma model, ISO, in combination with DEX, showed an additive inhibitory effect on AHR, inflammation, and the number of activated MCs in the lungs and decreased the levels of interleukin (IL)-4, IL-5, IL-6, IL-13, tumor necrosis factor (TNF)-a, and C-C motif chemokine ligand (CCL)-2 in bronchoalveolar lavage fluid. A combination of DEX and ISO may be appropriate if a decrease in the steroid dose is desired owing to dose-dependent adverse effects.
Collapse
Affiliation(s)
- Jue Wang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yongjing Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Yingnan Zeng
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Ge
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Ahmad N, Ansari MY, Bano S, Haqqi TM. Imperatorin suppresses IL-1β-induced iNOS expression via inhibiting ERK-MAPK/AP1 signaling in primary human OA chondrocytes. Int Immunopharmacol 2020; 85:106612. [PMID: 32450530 DOI: 10.1016/j.intimp.2020.106612] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
Abstract
Joint inflammation is a key player in the pathogenesis of osteoarthritis (OA). Imperatorin, a plant-derived small molecule has been reported to have anti-inflammatory properties; however, its effect on chondrocytes is not known. Here, we investigated the effects of Imperatorin on interleukin-1β (IL-1β) induced expression of inducible nitric oxide synthase (iNOS) and nitric oxide production in primary human OA chondrocytes and cartilage explants culture under pathological conditions and explored the associated signaling pathways. We pretreated chondrocytes or explants with Imperatorin (50 μM) followed by IL-1β (1 ng/ml), and the culture supernatant was used to determine the levels of nitrite production by Griess assay and chondrocytes were harvested to prepare cell lysate or RNA for gene expression analysis of iNOS by Western blot or qPCR and in explants by immunohistochemistry (IHC). Pretreatment of primary chondrocytes and cartilage explants with Imperatorin suppressed IL-1β induced expression of iNOS and NO production. Imperatorin blocked the IL-1β-induced phosphorylation of ERK-MAPK/AP1 signaling pathway to suppress iNOS expression. The role of ERK in the regulation of iNOS expression was verified by using ERK inhibitor. Interestingly, we also found that Imperatorin binds to iNOS protein and inhibits its activity in vitro. Our data demonstrated that Imperatorin possess strong anti-inflammatory activity and may be developed as a therapeutic agent for the management of OA.
Collapse
Affiliation(s)
- Nashrah Ahmad
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Mohammad Y Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | | | - Tariq M Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
16
|
Tissue distribution study of Angelica dahurica cv. Yubaizhi in rat by ultra–performance liquid chromatography with tandem mass spectrometry. J Pharm Biomed Anal 2019; 174:43-49. [DOI: 10.1016/j.jpba.2019.05.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/27/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
|
17
|
Zhang R, Wang CM, Jiang HJ, Tian XG, Li W, Liang W, Yang J, Zhong C, Chen Y, Li T. Protective Effects of Sweroside on IL-1β-Induced Inflammation in Rat Articular Chondrocytes Through Suppression of NF-κB and mTORC1 Signaling Pathway. Inflammation 2019; 42:496-505. [PMID: 30315524 DOI: 10.1007/s10753-018-0906-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sweroside (SW), as a bioactive herbal ingredient, has anti-inflammatory effects. Protective effects of SW on IL-1β-stimulated articular chondrocytes, however, has not been fully understood. This study was to explore the anti-inflammatory effects and further to investigate the possible mechanism underlying SW effect on IL-1β-stimulated rat articular chondrocytes. Rat articular chondrocytes were cultured with or without SW for 1 h, and then stimulated with IL-1β for 24 h. ELISA analysis was used to measure the production of NO and PGE2. Western blot was to detect the expression of iNOS and COX-2. Furthermore, the mRNA expression of MMP-1, MMP3, MMP13, and ADAMTS-5 were measured by q-PCR. These results demonstrated that SW significantly inhibited IL-1β-induced NO and PGE2 production, as well as MMP-1, MMP3, MMP13, and ADAMTS-5 mRNA expression. Moreover, SW also suppressed IL-1β-induced NF-κB activation and iκ-B degradation, S6K1 and S6 phosphorylation. In conclusion, these results strongly demonstrated that the anti-inflammatory activity of SW is in part mediated by suppressing NF-κB and mTORC1 signaling, which was expected to be a promising drug target of osteoarthritis therapy.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Cardiology (Cardiac Rehabilitation), The Third Affiliated Hospital of Southern Medical University, Tianhe District, Guangzhou, China
| | - Chao-Min Wang
- Department of Trauma Treatment Center, The Third Affiliated Hospital of Southern Medical University, Tianhe District, Guangzhou, China
| | - Hua-Ji Jiang
- Department of Pain, Yue Bei People's Hospital, No. 133 South Huimin Road,, Shaoguan, Guangdong, China
| | - Xing-Gui Tian
- Department of Orthopedics, The Affiliated Hospital of Southwestern Medical University, LuZhou, China
| | - WenJun Li
- Department of Pain, Yue Bei People's Hospital, No. 133 South Huimin Road,, Shaoguan, Guangdong, China
| | - Wei Liang
- Department of Pain, Yue Bei People's Hospital, No. 133 South Huimin Road,, Shaoguan, Guangdong, China
| | - Jianhua Yang
- Department of Pain, Yue Bei People's Hospital, No. 133 South Huimin Road,, Shaoguan, Guangdong, China
| | - Chunlan Zhong
- Department of Pain, Yue Bei People's Hospital, No. 133 South Huimin Road,, Shaoguan, Guangdong, China
| | - Yuhui Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, China.
| | - Tao Li
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|