1
|
Dalimunthe A, Carensia Gunawan M, Dhiya Utari Z, Dinata MR, Halim P, Estherina S. Pakpahan N, Sitohang AI, Sukarno MA, Yuandani, Harahap Y, Setyowati EP, Park MN, Yusoff SD, Zainalabidin S, Prananda AT, Mahadi MK, Kim B, Harahap U, Syahputra RA. In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front Pharmacol 2024; 15:1461478. [PMID: 39605919 PMCID: PMC11598436 DOI: 10.3389/fphar.2024.1461478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lupeol, a naturally occurring lupane-type pentacyclic triterpenoid, is widely distributed in various edible vegetables, fruits, and medicinal plants. Notably, it is found in high concentrations in plants like Tamarindus indica, Allanblackia monticola, and Emblica officinalis, among others. Quantitative studies have highlighted its presence in Elm bark, Olive fruit, Aloe leaf, Ginseng oil, Mango pulp, and Japanese Pear bark. This compound is synthesized from squalene through the mevalonate pathway and can also be synthetically produced in the lab, addressing challenges in natural product synthesis. Over the past four decades, extensive research has demonstrated lupeol's multifaceted pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and antibacterial effects. Despite its significant therapeutic potential, clinical applications of lupeol have been limited by its poor water solubility and bioavailability. Recent advancements have focused on nano-based delivery systems to enhance its bioavailability, and the development of various lupeol derivatives has further amplified its bioactivity. This review provides a comprehensive overview of the latest advancements in understanding the pharmacological benefits of lupeol. It also discusses innovative strategies to improve its bioavailability, thereby enhancing its clinical efficacy. The aim is to consolidate current knowledge and stimulate further research into the therapeutic potential of lupeol and its derivatives.
Collapse
Affiliation(s)
- Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Zahirah Dhiya Utari
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Alex Insandus Sitohang
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Andriansyah Sukarno
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Syaratul Dalina Yusoff
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arya Tjipta Prananda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
2
|
Liu S, Xiao M, Jin J, Zhan X, Li X, Ren Y, Yu X, Liu T, Yi Y, Liang R, Peng J. Zishen Qingre Lishi Huayu recipe promotes proliferation and inhibits apoptosis of GCs of PCOS via KLF4-C/EBPβ pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118027. [PMID: 38537844 DOI: 10.1016/j.jep.2024.118027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Qingre Lishi Huayu recipe (ZQLHR) is a herbal recipe created on the basis on the theory of traditional Chinese medicine and clinical practice, and is mainly used in the treatment of polycystic ovary syndrome (PCOS). However, the underlying mechanism for this fact has not been clearly elucidated. AIM OF THE STUDY To verify whether ZQLHR regulates granulosa cells (GCs) proliferation and apoptosis through the Krüppel-like factor 4 (KLF4) - CCATT enhancer-binding proteinβ (C/EBPβ) pathway, and to provide in vitro molecular mechanism supporting for the effects of ZQLHR to enhance follicular development and treat patients with PCOS. MATERIALS AND METHODS Based on previous experiments, we performed the following experiments. Firstly, we treated KGN cells (a steroidogenic human granulosa-like tumor cell line) for 48 h using different concentrations of ZQLHR in order to observe apoptosis in each group. Secondly, the mRNA and protein expression levels of KLF4 and C/EBPβ in KGN cells after administrated with ZQLHR were examined by quantitative real-time PCR(q-PCR) and Western blot assay. Thirdly, after knocking down KLF4 and C/EBPβ using siRNAs, the relationship between KLF4 and C/EBPβ in KGN cells was detected. Further, cell counting kit-8 assay, colony formation assay and flow cytometry were used to verify whether ZQLHR promotes proliferation and facilitates apoptosis in KGN cells through the KLF4-C/EBPβ pathway. Finally, q-PCR and Western blot were used to test whether ZQLHR mediated proliferation and apoptosis-related factors such as B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (BAX), proliferating cell nuclear antigen (PCNA) and cleaved caspase-3 to affect the proliferation and apoptosis of KGN cells through the KLF4-C/EBPβ pathway. CONCLUSIONS ZQLHR, containing 0.2% by volume, administered to KGN cells resulted in the lowest rate of apoptosis. The expression levels of KLF4 and C/EBPβ were increased in KGN cells following ZQLHR treatment. Additionally, ZQLHR promoted proliferation and inhibited apoptosis of KGN cells by modulating proliferation and apoptosis-related factors via the KLF4-C/EBPβ pathway. Furthermore, we confirmed that KLF4 and C/EBPβ regulate each other in KGN cells. These findings indicate that ZQLHR enhances the proliferation of GCs and suppresses their apoptosis, which constitutes a therapeutic mechanism for treating patients with PCOS.
Collapse
Affiliation(s)
- Shuzhen Liu
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Min Xiao
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Jing Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Xiaoxuan Zhan
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Xin Li
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Yunying Ren
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Xingxing Yu
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Tingting Liu
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Yao Yi
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Ruining Liang
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Jiahua Peng
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Institute of Obstetrics and Gynecology, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| |
Collapse
|
3
|
Ronaghi M, Hajibeygi R, Ghodsi R, Eidi A, Bakhtiari R. Preparation of UiO-66 loaded Letrozole nano-drug delivery system: enhanced anticancer and apoptosis activity. AMB Express 2024; 14:38. [PMID: 38622436 PMCID: PMC11018590 DOI: 10.1186/s13568-024-01689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
The use of drug delivery systems in targeting and achieving the targeting of drugs in treating diseases, especially cancer, has attracted the attention of researchers. Letrozole is one of the drugs for the treatment of breast cancer. In this study, the organic-metallic pharmaceutical porous nanostructure based on zirconium UiO-66 loaded letrozole was synthesized. Its cytotoxicity and effect on apoptosis and migration against breast cancer cell line were investigated. In this experimental study, the UiO-66 nanoparticle-loaded letrozole was synthesized using zirconium chloride (ZrCl4), dimethylformamide (DMF), and HCl. Its characteristics were determined by scanning electron microscopy, and its average size was determined by the DLS method. Also, the rate of letrozole drug release from the nanoparticle was investigated in 24, 48, and 72 h. In addition, its cytotoxicity effects were investigated using the MTT colorimetric method at concentrations of 3.125-100 µg/ml against the breast cancer cell line (MCF-7) in the periods of 48 and 72 h. Also, the expression level of apoptotic genes Bax and Bcl2 was investigated by the Real-Time PCR method. Also, the amount of cell migration was done by the migration assay method. The results showed that UiO-66 bound to letrozole had a spherical morphology and an average size of 9.2 ± 160.1. Also, the letrozole drug was loaded by 62.21 ± 1.80% in UiO-66 nanoparticles and had a slower release pattern than free letrozole in the drug release test, so within 72 h, 99.99% of free letrozole was released in If in UiO-66 containing letrozole, 57.55% of the drug has been released. Also, the cytotoxicity results showed that UiO-66 bound to letrozole has more significant cytotoxic effects than free letrozole (p < 0.05). Also, the results of Bax and Bcl2 gene expression showed that the treatment of MCF-7 cells with UiO-66 nanoparticles attached to letrozole increased the expression of Bax and Bcl2 genes compared to the reference gene Beta-actin in MCF-7 cell line, respectively. (p < 0.05) increased by 3.71 ± 0.42 and (p < 0.01) decreased by 0.636 ± 0.034 (p < 0.05). Cell migration results showed that the concentration of 50 µg/ml of UiO-66 bound to letrozole decreased the migration of MCF-7 cells. Generally, the results of this study showed that UiO-66 loaded letrozole can be used as a suitable drug carrier for cellular purposes, as it has increased the effects of cytotoxicity and the rate of apoptosis in breast cancer cell line (MCF-7), so it can be used with more studies used nanocarriers as a drug delivery system.
Collapse
Affiliation(s)
- Maryam Ronaghi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Hajibeygi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Reza Ghodsi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Amiri S, Pashizeh F, Moeinabadi-Bidgoli K, Eyvazi Y, Akbari T, Salehi Moghaddam Z, Eskandarisani M, Farahmand F, Hafezi Y, Nouri Jevinani H, Seif M, Mousavi-Niri N, Chiani M, Tavakkoli Yaraki M. Co-encapsulation of hydrophilic and hydrophobic drugs into niosomal nanocarrier for enhanced breast cancer therapy: In silico and in vitro studies. ENVIRONMENTAL RESEARCH 2023; 239:117292. [PMID: 37806480 DOI: 10.1016/j.envres.2023.117292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Combination therapy has been considered one of the most promising approaches for improving the therapeutic effects of anticancer drugs. This is the first study that uses two different antioxidants in full-characterized niosomal formulation and thoroughly evaluates their synergistic effects on breast cancer cells. In this study, in-silico studies of hydrophilic and hydrophobic drugs (ascorbic acid: Asc and curcumin: Cur) interactions and release were investigated and validated by a set of in vitro experiments to reveal the significant improvement in breast cancer therapy using a co-delivery approach by niosomal nanocarrier. The niosomal nanoparticles containing surfactants (Span 60 and Tween 60) and cholesterol at 2:1 M ratio were prepared through the film hydration method. A systematic evaluation of nanoniosomes was carried out. The release profile demonstrated two phases (initial burst followed by sustained release) and a pH-dependent release schedule over 72 h. The optimized niosomal preparation displayed superior storage stability for up to 2 months at 4 °C, exhibiting extremely minor changes in pharmaceutical encapsulation efficiency and size. Free dual drugs (Asc + Cur) and dual-drug loaded niosomes (Niosomal (Asc + Cur)) enhanced the apoptotic activity and cytotoxicity and inhibited cell migration which confirmed the synergistic effect of co-encapsulated drugs. Also, significant up-regulation of p53 and Bax genes was observed in cells treated with Asc + Cur and Niosomal (Asc + Cur), while the anti-apoptotic Bcl-2 gene was down-regulated. These results were in correlation with the increase in the enzyme activity of SOD, CAT, and caspase, and the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) upon treatment with the mentioned drugs. Furthermore, these anti-cancer effects were higher when using Niosomal (Asc + Cur) than Asc + Cur. Histopathological examination also revealed that Niosomal (Asc + Cur) had a lower mitosis index, invasion, and pleomorphism than Asc + Cur. These findings indicated that niosomal formulation for co-delivery of Asc and Cur would offer a promising delivery system for an effective breast cancer treatment.
Collapse
Affiliation(s)
- Sahar Amiri
- Department of Genetic, Islamic Azad University, Tehran North Branch, Iran
| | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science Yazd, Iran
| | - Kasra Moeinabadi-Bidgoli
- Departments of Medicine and Endocrinology, University of California San Francisco and San Francisco Veterans Affairs Health Center, San Francisco, CA, USA
| | - Yalda Eyvazi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Tanin Akbari
- Department of Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Iran
| | | | - Faranak Farahmand
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Hafezi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hoda Nouri Jevinani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Seif
- Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Chiani
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
5
|
Xu Q, Cui F, Li X, Wang N, Gao Y, Yin S, Hu F. Dangshen Huangjiu prevents gastric mucosal injury and inhibits Akt/NF-κB pathway. Food Funct 2023; 14:7897-7911. [PMID: 37491882 DOI: 10.1039/d3fo00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
One of the top ten tonic herbs, Dangshen is frequently found in Chinese functional foods. With the inclusion of Dangshen in the list of food and medicine substances in 2020, the Dangshen Huangjiu (DHJ) emerged. In the Bencao, it is written that Huangjiu can "open up the curved veins and thicken the stomach and intestines". Furthermore, increasing investigations have verified the protective effect of Dangshen on the gastric mucosa. Therefore, we propose the hypothesis that the stomach mucosa might be protected by the DHJ. To demonstrate that the effect of solids in Dangshen Huangjiu (DHJG) on damaged human gastric mucosal epithelial cells (GES-1) was reversed, the study used ethanol to induce injury to GES-1 and then used protein immunoblotting (western blotting) to determine the expression levels of p-Akt, p-NF-κB-p65, and NF-κB-p65 proteins in the cells. 0.04 mol L-1 MNNG (5 mL kg-1 body weight) mixed with eating disorders(2 d satiety, l d starvation, 3 d cycle) was used to further establish a chronic non-atrophic gastritis (CNAG) model in Wistar rats, at the same time, the experimental rats were given DHJ and DHJG gavage. Cellular assays confirmed that DHJG (25-100 μg mL-1) dose-dependently increased the viability of ethanol-injured GES-1 and lowered p-Akt and p-NF-κB-p65/NF-κB-p65 protein expression. Animal experiments revealed that 10 mL kg-1 and 20 mL kg-1 DHJ had no significant effect on the basic activity and gastric tissues and related biochemical indices of healthy rats; DHJ (10 mL kg-1, 20 mL kg-1) and DHJG (2.8 g kg-1, 11.4 g kg-1) resulted in some improvement in weight loss and significant improvement in gastric mucosal pathology in CNAG rats with damage. Particularly, DHJ and DHJG significantly decreased the expression of p-Akt, p-NF-κB-p65/NF-κB-p65 and Bcl-2/Bax proteins and Akt, IKKβ, IκBα and NF-κB mRNA in the gastric tissues of CNAG rats. These results showed that DHJG ameliorates ethanol-induced GES-1 cell injury; both DHJ and DHJG alleviate CNAG, and the mechanisms by which they do so may be related to DHJ and DHJG increasing the antioxidant capacity (elevating SOD, decreasing MDA), attenuating inflammatory responses (decreasing IL-1β, IL-6, and TNF-α), reversing apoptosis (reducing the Bcl-2/Bax ratio) and down-regulating gastric tissue p-Akt and p-NF-κB-p65/NF-κB-p65 protein expression as well as Akt, IKKβ, IκBα and NF-κB mRNA expression. This study indicates that the interventional effects of DHJ and DHJG in CNAG may act through the Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qiaohong Xu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Fang Cui
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- Codonopsis Radix Research Institute, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodong Li
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Nan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yingrui Gao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Shiping Yin
- Gansu Wushanchi Huangjiu Co. Ltd, Linxia, 731804, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China
- Codonopsis Radix Research Institute, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
6
|
He Z, He J, Xie K. KLF4 transcription factor in tumorigenesis. Cell Death Discov 2023; 9:118. [PMID: 37031197 PMCID: PMC10082813 DOI: 10.1038/s41420-023-01416-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Krüppel-like transcriptional factor is important in maintaining cellular functions. Deletion of Krüppel-like transcriptional factor usually causes abnormal embryonic development and even embryonic death. KLF4 is a prominent member of this family, and embryonic deletion of KLF4 leads to alterations in skin permeability and postnatal death. In addition to its important role in embryo development, it also plays a critical role in inflammation and malignancy. It has been investigated that KLF4 has a regulatory role in a variety of cancers, including lung, breast, prostate, colorectal, pancreatic, hepatocellular, ovarian, esophageal, bladder and brain cancer. However, the role of KLF4 in tumorigenesis is complex, which may link to its unique structure with both transcriptional activation and transcriptional repression domains, and to the regulation of its upstream and downstream signaling molecules. In this review, we will summarize the structural and functional aspects of KLF4, with a focus on KLF4 as a clinical biomarker and therapeutic target in different types of tumors.
Collapse
Affiliation(s)
- Zhihong He
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China.
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China.
| |
Collapse
|
7
|
Hao W, Zhao C, Li G, Wang H, Li T, Yan P, Wei S. Blue LED light induces cytotoxicity via ROS production and mitochondrial damage in bovine subcutaneous preadipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121195. [PMID: 36736558 DOI: 10.1016/j.envpol.2023.121195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate the effect and mechanism of blue light irradiation on bovine subcutaneous preadipocytes. In this study, preadipocytes were divided into dark group (control) and blue light group. Results show that blue light exposure time-dependently reduced the viability of preadipocytes and induced mitochondrial damage, in accompaniment with the accumulation of intracellular reactive oxygen species (ROS). Meanwhile, blue light caused oxidative stress, as evidenced by the increased MDA level, the reduced T-AOC contents, as well as the decreased activities of antioxidant enzymes. Additionally, blue light treatment induced apoptosis and G2/M phase arrest via Bcl-2/Bax/cleaved caspase-3 pathway and P53/GADD45 pathway, respectively. Protein expressions of LC3-II/LC3-I and P62 were up-regulated under blue light exposure, indicating blue light initiated autophagy but impeded autophagic degradation. Moreover, blue light caused an increase in the secretion of pro-inflammatory factors (TNF-α, IL-1β, and IL-6). Pretreatment with N-acetylcysteine (NAC), a potent ROS scavenger, restored the loss of mitochondrial membrane potential (Δψ) and reduced excess ROS. Additionally, the above negative effects of blue light on cells were alleviated after NAC administration. In conclusion, this study demonstrates blue light induces cellular ROS overproduction and Δψ depolarization, resulting in the decrease of cell viability and the activation of apoptosis, autophagy, and inflammation, providing a reference for the application of blue light in the regulation of fat cells in the future.
Collapse
Affiliation(s)
- Weiguang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chongchong Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Guowen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hongzhuang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Tingting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shengjuan Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
8
|
Shahbazi R, Jafari-Gharabaghlou D, Mirjafary Z, Saeidian H, Zarghami N. Design and optimization various formulations of PEGylated niosomal nanoparticles loaded with phytochemical agents: potential anti-cancer effects against human lung cancer cells. Pharmacol Rep 2023; 75:442-455. [PMID: 36859742 DOI: 10.1007/s43440-023-00462-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Phytochemicals and their derivatives are good options to improve treatment efficiency in cancer patients. Artemisinin (ART) and metformin (MET) are widely used phytochemicals to treat various types of cancers. However, their application because of their dose-dependent side effects, and poor bioavailability brings several challenges. Niosome is a novel nanocarrier that is the best choice to encapsulate both lipophilic and hydrophilic drugs. In this study, we synthesized and characterized various formulations of PEGylated (polyethylene glycol) niosomal nanoparticles co-loaded with ART-MET and evaluated their anticancer effect on A549 lung cancer cells. METHODS Various formulations of PEGylated noisome were prepared by the thin-film hydration method and characterized in size, morphology, release pattern, and physicochemical structure. The cytotoxic effect of the free ART-MET and optimized PEGylated niosomal nanoparticles loaded with ART-MET on A549 cells were evaluated by MTT assay. Furthermore, the Real-time PCR (RT-PCR) technique used to evaluate apoptotic and anti-apoptotic gene expression. RESULTS The size, encapsulation efficiency (EE), and polydispersity index (PDI) of the optimized nanoparticles are 256 nm, 95%, and 0.202, respectively. Additionally, due to the PEGylation hydrophilic character, there is a major consideration of the high impact of PEGylation on reducing niosome size. According to the results of the MTT assay, free ART-MET and ART-MET-loaded niosomal nanoparticles showed dose-dependent toxicity and inhibits the growth of A549 lung cancer cells. Furthermore, the RT-PCR results indicated that ART-MET-loaded niosomal nanoparticles have a higher anti-proliferative effect by inhibiting anti-apoptotic and inducing apoptotic gene expression in A549 lung cancer cells. CONCLUSIONS Our study revealed that the simultaneous use of ART and MET in the optimized PEGylated niosomal nanoparticles delivery system could be an appropriate approach to improve the effectiveness of lung cancer treatment.
Collapse
Affiliation(s)
- Rasoul Shahbazi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Saeidian
- Department of Science, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Diseases Research Center, University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
9
|
Safari Sharafshadeh M, Tafvizi F, Khodarahmi P, Ehtesham S. Preparation and physicochemical properties of cisplatin and doxorubicin encapsulated by niosome alginate nanocarrier for cancer therapy. Int J Biol Macromol 2023; 235:123686. [PMID: 36801304 DOI: 10.1016/j.ijbiomac.2023.123686] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
Alginate (AL), in the form of a hydrogel, is extensively used in drug delivery. In the current study, an optimum formulation of alginate-coated niosome-based nanocarriers for co-delivery of doxorubicin (Dox) and cisplatin (Cis) was obtained for the treatment of breast and ovarian cancers in an attempt to decrease drug doses and overcome multidrug resistance. The physiochemical characteristics of uncoated niosomes containing Cis and Dox (Nio-Cis-Dox) compared to alginate-coated niosomes formulation (Nio-Cis-Dox-AL). The three-level Box-Behnken method was examined to optimize the particle size, polydispersity index, entrapment efficacy (%), and percent drug release of nanocarriers. Nio-Cis-Dox-AL showed appropriate encapsulation efficiencies of 65.54 ± 1.25 % and 80.65 ± 1.80 % for Cis and Dox, respectively. Maximum drug release decreased from niosomes in case coated by alginate. Also, the zeta potential value of Nio-Cis-Dox nanocarriers decreased after coating with alginate. In vitro cellular and molecular experiments were performed to investigate the anticancer activity of Nio-Cis-Dox and Nio-Cis-Dox-AL. MTT assay showed the IC50 of Nio-Cis-Dox-AL was much lower than the Nio-Cis-Dox formulations and free drugs. Cellular and molecular assays demonstrated that Nio-Cis-Dox-AL caused significant increase in apoptosis induction rate and cell cycle arrest in MCF-7 and A2780 cancer cells, as compared to Nio-Cis-Dox and free drugs. Also, the Caspase 3/7 activity increased after treatment with coated niosomes compared to uncoated nisomes and the drug-free case. Synergetic cell proliferation inhibitory impacts of Cis and Dox were demonstrated against MCF-7 and A2780 cancer cells. All anticancer experimental data demonstrated that the co-delivery of Cis and Dox through alginate-coated niosomal nanocarriers was effective for ovarian and breast cancer treatment.
Collapse
Affiliation(s)
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Parvin Khodarahmi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Somayeh Ehtesham
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
10
|
Wang Y, Jiang S, Wang B, Chen X, Lu G. Comparison of developmental toxicity induced by PFOA, HFPO-DA, and HFPO-TA in zebrafish embryos. CHEMOSPHERE 2023; 311:136999. [PMID: 36309054 DOI: 10.1016/j.chemosphere.2022.136999] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Hexafluoropropylene oxide dimer acids (HFPO-DA) and hexafluoropropylene oxide trimer acids (HFPO-TA) are alternatives to perfluorooctanoic acid (PFOA). However, little information on the comparison of their toxicities is available. Here, zebrafish embryos were exposed to PFOA, HFPO-DA, and HFPO-TA with exposure concentrations of 5 and 500 μg/L. Behavioral abnormal, enzyme activities and gene expression profiles in zebrafish embryos were determined. Results showed that exposure to PFOA and its alternatives increased heart rates and inhibited locomotor activity of zebrafish embryos. Further, their exposures changed the enzyme activities (acetylcholinesterase and oxidative stress-related enzymes), ATP content, and expressions of genes related to hypothalamic-pituitary-thyroid (HPT) axis, apoptosis, and lipid metabolism. Comparison analyses found that PFOA, HFPO-TA, and HFPO-DA exposures induced different effects on the embryonic development of zebrafish, which indicates the different modes of action. The HFPO-DA exposure induced specific effects on the disorder of lipid metabolism, HPT axis, and neurodevelopment. The HFPO-TA exposure also induced different effects from the PFOA exposure, which focused on lipid metabolism. The current data shows that the HFPO-DA and HFPO-TA might not be safe alternatives to PFOA. This study provides a new understanding of the biological hazards of PFOA alternatives in aquatic organisms, which can guide their usage.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Shengnan Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Beibei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
11
|
Ahmadi S, Seraj M, Chiani M, Hosseini S, Bazzazan S, Akbarzadeh I, Saffar S, Mostafavi E. In vitro Development of Controlled-Release Nanoniosomes for Improved Delivery and Anticancer Activity of Letrozole for Breast Cancer Treatment. Int J Nanomedicine 2022; 17:6233-6255. [PMID: 36531115 PMCID: PMC9753765 DOI: 10.2147/ijn.s384085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/21/2022] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Breast cancer is among the most prevalent mortal cancers in women worldwide. In the present study, an optimum formulation of letrozole, letrozole-loaded niosome, and empty niosome was developed, and the anticancer effect was assessed in in vitro MCF-7, MCF10A and MDA-MB-231 breast cancer cell lines. MATERIALS AND METHODS Various niosomal formulations of letrozole were fabricated through thin-film hydration method and characterized in terms of size, polydispersity index (PDI), morphology, entrapment efficiency (EE%), release kinetics, and stability. Optimized niosomal formulation of letrozole was achieved by response surface methodology (RSM). Antiproliferative activity and the mechanism were assessed by MTT assay, quantitative real-time PCR, and flow cytometry. Furthermore, cellular uptake of optimum formulation was evaluated by confocal electron microscopy. RESULTS The formulated letrozole had a spherical shape and showed a slow-release profile of the drug after 72 h. The size, PDI, and eEE% of nanoparticles showed higher stability at 4°C compared with 25°C. The drug release from niosomes was in accordance with Korsmeyer-Peppa's kinetic model. Confocal microscopy revealed the localization of drug-loaded niosomes in the cancer cells. MTT assay revealed that all samples exhibited dose-dependent cytotoxicity against breast cancer cells. The IC50 of mixed formulation of letrozole with letrozole-loaded niosome (L + L3) is the lowest value among all prepared formulations. L+L3 influenced the gene expression in the tested breast cancer cell lines by down-regulating the expression of Bcl 2 gene while up-regulating the expression of p53 and Bax genes. The flow cytometry results revealed that L + L3 enhanced the apoptosis rate in both MCF-7 and MDA-MB-231 cell lines compared with the letrozole (L), letrozole-loaded niosome (L3), and control sample. CONCLUSION Results indicated that niosomes could be a promising drug carrier for the delivery of letrozole to breast cancer cells.
Collapse
Affiliation(s)
- Saeedeh Ahmadi
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mahmoud Seraj
- Integrative Research Laboratory, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mohsen Chiani
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedayin Hosseini
- School of Medicine, Sh Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Bazzazan
- Core Facility Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Saffar
- Core Facility Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Folate-Targeted Curcumin-Loaded Niosomes for Site-Specific Delivery in Breast Cancer Treatment: In Silico and In Vitro Study. Molecules 2022; 27:molecules27144634. [PMID: 35889513 PMCID: PMC9322601 DOI: 10.3390/molecules27144634] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
As the most common cancer in women, efforts have been made to develop novel nanomedicine-based therapeutics for breast cancer. In the present study, the in silico curcumin (Cur) properties were investigated, and we found some important drawbacks of Cur. To enhance cancer therapeutics of Cur, three different nonionic surfactants (span 20, 60, and 80) were used to prepare various Cur-loaded niosomes (Nio-Cur). Then, fabricated Nio-Cur were decorated with folic acid (FA) and polyethylene glycol (PEG) for breast cancer suppression. For PEG-FA@Nio-Cur, the gene expression levels of Bax and p53 were higher compared to free drug and Nio-Cur. With PEG-FA-decorated Nio-Cur, levels of Bcl2 were lower than the free drug and Nio-Cur. When MCF7 and 4T1 cell uptake tests of PEG-FA@Nio-Cur and Nio-Cur were investigated, the results showed that the PEG-FA-modified niosomes exhibited the most preponderant endocytosis. In vitro experiments demonstrate that PEG-FA@Nio-Cur is a promising strategy for the delivery of Cur in breast cancer therapy. Breast cancer cells absorbed the prepared nanoformulations and exhibited sustained drug release characteristics.
Collapse
|
13
|
Fatemizadeh M, Tafvizi F, Shamsi F, Amiri S, Farajzadeh A, Akbarzadeh I. Apoptosis Induction, Cell Cycle Arrest and Anti-Cancer Potential of Tamoxifen-Curcumin Loaded Niosomes Against MCF-7 Cancer Cells. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:183-190. [PMID: 35463725 PMCID: PMC9013861 DOI: 10.30699/ijp.2022.124340.2356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Background & Objective Breast cancer is the most common cancer among women. One of the most effective treatments for breast cancer is chemotherapy, in which specific drugs destroy the mass and its proliferation is inhibited. Chemotherapy is the most effective adjunctive therapy when multiple medications are used concurrently. Also, combining the drugs with nanocarrier has become an important strategy in targeted therapy. This study is designed to assess the apoptosis induction, cell cycle arrest, and anti-cancer potential of Tamoxifen-Curcumin-loaded niosomes against MCF-7 Cancer Cells. Methods A novel niosomal formulation of tamoxifen-curcumin with Span 80 and lipid to drug ratio of 20 was employed. The MCF-7 cells were cultured and then treated with IC50 value of tamoxifen-curcumin-loaded niosomes, the combination of tamoxifen and curcumin, tamoxifen, and curcumin alone. Flow cytometry, Real-Time PCR, and cell cycle analysis tests were conducted to evaluate the induction of apoptosis. Results Drug-loaded niosomes caused up-regulation of bax and p53 genes and down-regulation of bcl2 gene. Flow cytometry studies showed that niosomes containing tamoxifen-curcumin increased apoptosis rate in MCF-7 cells compared to the combination of tamoxifen and curcumin owing to the synergistic effect between the two drugs along with higher cell uptake by formulation niosomal. These results were also confirmed by cell cycle analysis. Conclusion Co-delivery of curcumin and tamoxifen using optimized niosomal formulation revealed that at acidic pH of MCF-7 cancer cells, released drugs from niosomal carriers would be more effective than physiological pH. This feature of niosomal nanoparticles can reduce the side effects of drugs in normal cells. Niosomal nanoparticles might be used as a biological anti-cancer factor in treatment of breast cancer.
Collapse
Affiliation(s)
- Mahdi Fatemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran,Corresponding Information: Farzaneh Tafvizi, Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Shamsi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Amiri
- Department of Genetics, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Afsaneh Farajzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Montecillo-Aguado M, Morales-Martínez M, Huerta-Yepez S, Vega MI. KLF4 inhibition by Kenpaullone induces cytotoxicity and chemo sensitization in B-NHL cell lines via YY1 independent. Leuk Lymphoma 2021; 62:1422-1431. [PMID: 33410342 DOI: 10.1080/10428194.2020.1869960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
Krüppel-like factor 4 (KLF4) is a member of the KLF transcription factor family containing zinc-fingers, and is involved in the regulation of apoptosis, proliferation and differentiation of B cells and B-cell malignancies. KLF4 can act like an oncogene, we shown that KLF4 overexpression correlated with poor prognostic and chemoresistance in B-NHL. In addition, we shown that KLF4 is regulated by YY1. In this study, we demonstrate that chemical inhibition of KLF4 by Kenpaullone, results in suppression of proliferation, cell survival, downregulation of Bcl-2 and increases apoptosis in B-NHL cell lines through YY1 independent pathway. Combination of Kenpaullone and Doxorubicin, increased apoptosis. The co-expressions of KLF4/YY1 or KLF4/Bcl-2 in NHL was analyzed using Oncomine Database, exhibiting a positive correlation of expression. The present findings suggest that the chemical inhibition of KLF4 by Kenpaullone treatment could be a potential therapeutic alternatively in KLF4+ lymphomas.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
- Unidad de Posgrado, Facultad de Medicina Universidad Nacional Autónoma de México, México City, México
| | - Mario Morales-Martínez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
- Unidad de Posgrado, Facultad de Medicina Universidad Nacional Autónoma de México, México City, México
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez S.S.A, México City, México
| | - Mario I Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
Kulyar MFEA, Yao W, Ding Y, Du H, Li K, Zhang L, Li A, Huachun P, Waqas M, Mehmood K, Li J. Cluster of differentiation 147 (CD147) expression is linked with thiram induced chondrocyte's apoptosis via Bcl-2/Bax/Caspase-3 signalling in tibial growth plate under chlorogenic acid repercussion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112059. [PMID: 33647747 DOI: 10.1016/j.ecoenv.2021.112059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Tibial dyschondroplasia (TD) is a metabolic disease of young poultry that affects bone andcartilage's growth. It mostly occurs in broilers due to thiram toxicity in the feed. In this disease, tibial cartilage is not yet ripe for ossification, but it also results in lameness, death, and moral convictions of commercial poultry due to numerous apoptotic changes on cell level. These changes serve a cardinal role in this situation. Many potential problems indicate that chlorogenic acid (CGA) performs an extensive role in controlling apoptosis's perception. However, the actual role of CGA in TD affected chondrocytes in-vitro is still unidentified. The current study investigates the imperceptible insight of CGA on chondrocyte's apoptosis via B-cell lymphoma 2 (Bcl-2), Bcl-2 associated x-protein (Bax), and Caspase-3 with CD147 signalling. The expression of these markers was investigated by Immunofluorescence, western blot analysis, and reverse transcription-quantitative polymerase chain (RT-qPCR). Chondrocytes from the growth plate of tibia were isolated, cultured, and processed. A sub-lethal thiram (2.5 μg/mL) was used to induce cytotoxicity and then treated with an optimum dose (40 μg/ mL) of CGA. According to the results, thiram distorted chondrocyte cells with enhanced apoptotic rate. But, in case of CGA, high expression of CD147 enhanced cell viability of chondrocytes, accompanied by downregulation of Bax/Caspase-3 signalling with the upregulation of Bcl-2. The first possibility has ruled out in the present study by the observation that the cells apoptosis marker, Caspase-3 showed a significant change in CD147 overexpressing cells. Conversely, immunodepletion of CD147 with enhanced cleavage of Caspase-3, indicating the activation of apoptosis in chondrocytes cells. Therefore, these findings suggest a novel insight about CD147 in thiram induced TD about the regulation of Bcl-2/Bax/Caspase-3 apoptosis-signalling axis.
Collapse
Affiliation(s)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pan Huachun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Waqas
- Faculty of Veterinary & Animal Sciences, University of Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, PR China.
| |
Collapse
|
16
|
Akbarzadeh I, Saremi Poor A, Yaghmaei S, Norouzian D, Noorbazargan H, Saffar S, Ahangari Cohan R, Bakhshandeh H. Niosomal delivery of simvastatin to MDA-MB-231 cancer cells. Drug Dev Ind Pharm 2020; 46:1535-1549. [PMID: 32808813 DOI: 10.1080/03639045.2020.1810269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was to use nano-niosomal formulations to deliver simvastatin as a poor-water soluble drug into breast cancer cells. SIGNIFICANCE Our study focused on the problem associated with poor water-soluble drugs which have significant biological activity in vivo. METHODS Different niosomal formulations of simvastatin were prepared and characterized in terms of morphology, size, encapsulation efficiency (EE), and release kinetic. Antiproliferative activity and the mechanism were assessed by quantitative real-time PCR and flow cytometry. Moreover, confocal microscopy was employed to analyze the cell uptake of simvastatin loaded niosomes to the cancerous cells. RESULTS Size, polydispersity index (PDI), and EE of the best formulation were obtained as 164.8 nm, 0.232, and 97%, respectively. The formulated simvastatin had a spherical shape and showed a slow release profile of the drug after 72 h. Stability data elucidated an increase in mean diameter and PDI which was lower for 4 °C than 25 °C. Confocal microscopy showed the localization of drug loaded niosomes in the cancer cells. The MTT assay revealed both free drug and drug loaded niosomes exhibited a dose-dependent cytotoxicity against breast cancer cells (MDA-MB-231 cells). Flow cytometry and qPCR analysis revealed drug loaded niosomes exert their cytotoxicity on cancerous cells via regulation of apoptotic and anti-apoptotic genes. CONCLUSION The prepared niosomal simvastatin showed good physicochemical and biological properties than free drug. Our study suggests that niosomal delivery could be considered as a promising strategy for the delivery of poor water-soluble drugs to cancer cells.
Collapse
Affiliation(s)
- Iman Akbarzadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.,Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Anita Saremi Poor
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Soheila Yaghmaei
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Saffar
- Core Facility Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Choi H, Roh J. Role of Klf4 in the Regulation of Apoptosis and Cell Cycle in Rat Granulosa Cells during the Periovulatory Period. Int J Mol Sci 2018; 20:E87. [PMID: 30587813 PMCID: PMC6337711 DOI: 10.3390/ijms20010087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/30/2022] Open
Abstract
In the ovary, the luteinizing hormone (LH) surge suppresses the proliferation and induces the luteinization of preovulatory granulosa cells (GCs), which is crucial for the survival of terminally-differentiated GCs. Krüppel-like factor 4 (Klf4) has been shown to play a role in regulating the cell cycle and apoptosis in various cell types. The rapid induction of Klf4 expressions by LH was observed in preovulatory GCs. To evaluate whether Klf4 affects GC proliferation and survival, primary rat GCs were isolated from pregnant mare serum gonadotropin-primed Sprague⁻Dawley rat ovaries and transfected with a Klf4 expression vector or Klf4-specific siRNA, followed by determination of the transcript levels of apoptosis-related and cell cycle-related genes. Cell proliferation, viability, and apoptosis were analyzed by BrdU incorporation, a Cell Counting Kit-8 assay, a bioluminescence caspase 3/7 assay, and flow cytometry. LH treatment increased Klf4 mRNA expression in preovulatory GCs. Transcripts of B-cell lymphoma 2 (Bcl-2) and cell cycle promoters (Cyclin D1 and Cyclin D2) decreased, whereas those of the cell cycle inhibitor, p21, increased. Altering the expression of Klf4 by overexpression or knockdown consistently affected the expression of Bcl-2 and Cyclin D1. In agreement with this, Klf4 overexpression reduced cell viability, increased the fraction of apoptotic cells, and arrested cell cycle progression in G1 phase. We conclude that Klf4 increases the susceptibility of preovulatory GCs to apoptosis by down-regulating Bcl-2, and promotes LH-induced cell cycle exit. It appears to be a key regulator induced by the LH surge that determines the fate of GCs in preovulatory follicles during the luteal transition.
Collapse
Affiliation(s)
- Hyeonhae Choi
- Laboratory of Reproductive Endocrinology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea.
| | - Jaesook Roh
- Laboratory of Reproductive Endocrinology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea.
| |
Collapse
|
18
|
Hu PF, Chen WP, Bao JP, Wu LD. Paeoniflorin inhibits IL-1β-induced chondrocyte apoptosis by regulating the Bax/Bcl-2/caspase-3 signaling pathway. Mol Med Rep 2018; 17:6194-6200. [PMID: 29484390 DOI: 10.3892/mmr.2018.8631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/06/2018] [Indexed: 11/05/2022] Open
Abstract
Apoptosis serves a pivotal role in the pathogenesis of osteoarthritis (OA). Increasing evidence has demonstrated that paeoniflorin exerts key properties (including anticancer, anti-inflammation and neuroprotective) for clinical applications. However, the precise role of paeoniflorin in articular cartilage apoptosis remains unknown. The present study explored the effects and potential molecular mechanism of paeoniflorin on rat chondrocyte apoptosis. Rat articular chondrocytes were cultured in monolayers. The lactate dehydrogenase (LDH) release rate of cells was determined by an LDH release assay. Annexin V-fluorescein isothiocyanate and propidium iodide staining were performed to detect early and advanced apoptotic cells by flow cytometry. The activity of caspase-3 in chondrocytes was determined using a caspase-3 activity assay. The expression of B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) was examined by reverse transcription‑quantitative polymerase chain and western blotting. The present study also examined the protein kinase B (Akt) signaling pathway by western blotting. Treatment with 25 or 50 µM paeoniflorin markedly decreased the release of LDH and the ratio of apoptotic cells in interleukin (IL)-1β-induced rat chondrocytes. Paeoniflorin treatment decreased the mRNA and protein levels of Bax, and increased the level of Bcl-2. Paeoniflorin also reduced the activity of caspase-3 in chondrocytes. Furthermore, paeoniflorin was determined to regulate the Akt signaling pathway by increasing Akt phosphorylation. Therefore, paeoniflorin may exert its protective effect by inhibiting apoptosis in IL-1β-induced rat chondrocytes and thus, may be an effective agent in the prevention and treatment of OA.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei-Ping Chen
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jia-Peng Bao
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Dong Wu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
19
|
Ferralli J, Chiquet-Ehrismann R, Degen M. KLF4α stimulates breast cancer cell proliferation by acting as a KLF4 antagonist. Oncotarget 2018; 7:45608-45621. [PMID: 27323810 PMCID: PMC5216746 DOI: 10.18632/oncotarget.10058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/03/2016] [Indexed: 01/13/2023] Open
Abstract
Krüppel-like factor 4 (KLF4), a transcription factor involved in both tumor suppression and oncogenesis in various human tumors, is subject to alternative splicing that produces KLF4α. KLF4α is primarily expressed in the cytoplasm because it lacks exon 3 of KLF4, which contains the nuclear localization signal. The role of KLF4 in breast cancer remains unclear and nothing is known yet about the expression and function of the isoform KLF4α. Here, we show that KLF4α is expressed in normal and tumoral tissue of the breast and provide evidence that the KLF4α/KLF4(full-length) (FL) ratio is increased in tumors compared to corresponding normal tissue. Forced increase of the KLF4α/KLF4(FL) ratio in the metastatic breast cancer cell line MDA-MB-231 decreases the levels of E-Cadherin, p21Cip1, and p27Kip1, three known KLF4(FL) target genes, and stimulates cell proliferation. We suggest that cytoplasmic KLF4α binds to KLF4(FL) and retains it in the cytoplasm thereby antagonizing the gene regulatory activities of KLF4(FL) in the nucleus. Our results establish KLF4α as a KLF4 isoform that opposes the function of KLF4(FL) and as an important factor in the complex and unresolved role of KLF4(FL) in breast carcinogenesis.
Collapse
Affiliation(s)
- Jacqueline Ferralli
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Martin Degen
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.,Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Liu HX, Li N, Wei L, Zhou FX, Ma R, Xiao F, Zhang W, Zhang Y, Hui YP, Song H, Chen BL. High expression of Kruppel-like factor 4 as a predictor of poor prognosis for cervical cancer patient response to radiotherapy. Tumour Biol 2017. [PMID: 28639905 DOI: 10.1177/1010428317710225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hai-Xia Liu
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Na Li
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Li Wei
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Fu-Xing Zhou
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Rui Ma
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Feng Xiao
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Wei Zhang
- The State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Ying Zhang
- Department of Gynecology and Obstetrics, The People’s Liberation Army 323 Hospital, Xi’an, China
| | - Yan-ping Hui
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Hui Song
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Bi-Liang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
21
|
Yu R, Han L, Ni X, Wang M, Xue P, Zhang L, Yuan M. Kruppel-like factor 4 inhibits non–small cell lung cancer cell growth and aggressiveness by stimulating transforming growth factor-β1-meidated ERK/JNK/NF-κB signaling pathways. Tumour Biol 2017. [PMID: 28631556 DOI: 10.1177/1010428317705574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Renzhi Yu
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Lei Han
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Xin Ni
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Minghuan Wang
- Community Health Service Center, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Ping Xue
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Li Zhang
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Mei Yuan
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| |
Collapse
|
22
|
Jelena Ž, Lela K, Otilija K, Danijela T, Cirrone Giuseppe AP, Francesco R, Giacomo C, Ivan P, Aleksandra RF. Carbon ions of different linear energy transfer (LET) values induce apoptosis & G2 cell cycle arrest in radio-resistant melanoma cells. Indian J Med Res 2017; 143:S120-S128. [PMID: 27748286 PMCID: PMC5080921 DOI: 10.4103/0971-5916.191811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background & objectives: The main goal when treating malignancies with radiation is to deprive tumour cells of their reproductive potential. One approach is to induce tumour cell apoptosis. This study was conducted to evaluate the ability of carbon ions (12C) to induce apoptosis and cell cycle arrest in human HTB140 melanoma cells. Methods: In this in vitro study, human melanoma HTB140 cells were irradiated with the 62 MeV/n carbon (12C) ion beam, having two different linear energy transfer (LET) values: 197 and 382 keV/μm. The dose range was 2 to 16 Gy. Cell viability was estimated by the sulforhodamine B assay seven days after irradiation. The cell cycle and apoptosis were evaluated 48 h after irradiation using flow cytometry. At the same time point, protein and gene expression of apoptotic regulators were estimated using the Western blot and q-PCR methods, respectively. Results: Cell viability experiments indicated strong anti-tumour effects of 12C ions. The analysis of cell cycle showed that 12C ions blocked HTB140 cells in G2 phase and induced the dose dependent increase of apoptosis. The maximum value of 21.8 per cent was attained after irradiation with LET of 197 keV/μm at the dose level of 16 Gy. Pro-apoptotic effects of 12C ions were confirmed by changes of key apoptotic molecules: the p53, Bax, Bcl-2, poly ADP ribose polymerase (PARP) as well as nuclear factor kappa B (NFκB). At the level of protein expression, the results indicated significant increases of p53, NFκB and Bax/Bcl-2 ratio and PARP cleavage. The Bax/Bcl-2 mRNA ratio was also increased, while no change was detected in the level of NFκB mRNA. Interpretation & conclusions: The present results indicated that anti-tumour effects of 12C ions in human melanoma HTB140 cells were accomplished through induction of the mitochondrial apoptotic pathway as well as G2 arrest.
Collapse
Affiliation(s)
- Žakula Jelena
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Korićanac Lela
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Keta Otilija
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | | - A P Cirrone Giuseppe
- National Institute for Nuclear Physics, Southern National Laboratory, via S. Sofia 62, Catania, Italy
| | - Romano Francesco
- National Institute for Nuclear Physics, Southern National Laboratory, via S. Sofia 62, Catania, Italy
| | - Cuttone Giacomo
- National Institute for Nuclear Physics, Southern National Laboratory, via S. Sofia 62, Catania, Italy
| | - Petrović Ivan
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
23
|
Lund RJ, Huhtinen K, Salmi J, Rantala J, Nguyen EV, Moulder R, Goodlett DR, Lahesmaa R, Carpén O. DNA methylation and Transcriptome Changes Associated with Cisplatin Resistance in Ovarian Cancer. Sci Rep 2017; 7:1469. [PMID: 28473707 PMCID: PMC5431431 DOI: 10.1038/s41598-017-01624-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
High-grade serous ovarian cancer is the most common ovarian cancer type. Although the combination of surgery and platinum-taxane chemotherapy provide an effective treatment, drug resistance frequently occurs leading to poor outcome. In order to clarify the molecular mechanisms of drug resistance, the DNA methylation and transcriptomic changes, associated with the development of drug resistance in high-grade serous ovarian cancer, were examined from patient derived malignant ascites cells. In parallel with large-scale transcriptome changes, cisplatin resistance was associated with loss of hypermethylation at several CpG sites primarily localized in the intergenic regions of the genome. The transcriptome and CpG methylome changes in response to cisplatin treatment of both sensitive and resistant cells were minimal, indicating the importance of post-translational mechanisms in regulating death or survival of the cells. The response of resistant cells to high concentrations of cisplatin revealed transcriptomic changes in potential key drivers of drug resistance, such as KLF4. Among the strongest changes was also induction of IL6 in resistant cells and the expression was further increased in response to cisplatin. Also, several other components of IL6 signaling were affected, further supporting previous observations on its importance in malignant transformation and development of drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Riikka J Lund
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Kaisa Huhtinen
- Department of Pathology, Medicity Research Unit, University of Turku and Turku University Hospital, Turku, Finland
| | - Jussi Salmi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Juha Rantala
- Department of Pathology, Medicity Research Unit, University of Turku and Turku University Hospital, Turku, Finland
| | - Elizabeth V Nguyen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - David R Goodlett
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Olli Carpén
- Department of Pathology, Medicity Research Unit, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
24
|
Vascular protective effects of KLF2 on Aβ-induced toxicity: Implications for Alzheimer’s disease. Brain Res 2017; 1663:174-183. [DOI: 10.1016/j.brainres.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 11/19/2022]
|
25
|
Yang Z, Li D, Liu Z, Miao X, Yang L, Zou Q, Yuan Y. BIRC7 and KLF4 expression in benign and malignant lesions of pancreas and their clinicopathological significance. Cancer Biomark 2017; 17:437-444. [PMID: 27802195 DOI: 10.3233/cbm-160660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study investigated the KLF4 and BIRC7 protein expression in malignant and benign pancreatic tissues by immunohistochemical staining and the clinical and pathological significance of KLF4 and BIRC7 expression in PDAC. KLF4 expression was significantly lower, whereas BIRC7 expression was significantly higher in PDAC than that in peritumoral tissue, benign pancreatic lesions, and normal pancreatic tissue (P < 0.01). The percentage of positive BIRC7 and negative KLF4 expression was significantly lower in PDAC patients with well differentiated tumors, maximum tumor size < 3 cm, no lymph node metastasis, no invasion to the surrounding tissues and organs, and TNM stage I/II stage disease than in patients with poorly differentiated tumor, maximum tumor size > 5 cm, lymph node metastasis, invasion to surrounding tissues and organs, and TNM stage III/IV disease (P < 0.05 or P < 0.01). Kaplan-Meier survival analysis showed that the differentiation, maximum tumor size, TNM stage, lymph node metastasis, invasion, negative KLF4 expression, and positive BIRC7 expression were significantly associated with the short survival of patients with PDAC (P < 0.05 or P < 0.01). Cox multivariate analysis revealed that positive BIRC7 expression and negative KLF4 expression were independent poor prognosis factors in PDAC patients. In conclusions, positive BIRC7 expression and negative KLF4 expression are associated with the progression of PDAC and poor prognosis in patients with PDAC.
Collapse
Affiliation(s)
- Zhulin Yang
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daiqiang Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziru Liu
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongying Miao
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leping Yang
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
KLF4 expression enhances the efficacy of chemotherapy drugs in ovarian cancer cells. Biochem Biophys Res Commun 2017; 484:486-492. [PMID: 28108288 DOI: 10.1016/j.bbrc.2017.01.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
|
27
|
Manaharan T, Thirugnanasampandan R, Jayakumar R, Kanthimathi MS, Ramya G, Ramnath MG. Purified Essential Oil from Ocimum sanctum Linn. Triggers the Apoptotic Mechanism in Human Breast Cancer Cells. Pharmacogn Mag 2016; 12:S327-31. [PMID: 27563220 PMCID: PMC4971952 DOI: 10.4103/0973-1296.185738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Essential oil of Ocimum sanctum Linn. exhibited various pharmacological activities including antifungal and antimicrobial activities. In this study, we analyzed the anticancer and apoptosis mechanisms of Ocimum sanctum essential oil (OSEO). Objective: To trigger the apoptosis mechanism in human breast cancer cells using OSEO. Materials and Methods: OSEO was extracted using hydrodistillation of the leaves. Cell proliferation was determined using different concentrations of OSEO. Apoptosis studies were carried out in human breast cancer cells using propidium iodide (PI) and Hoechst staining. Results: We found that OSEO inhibited proliferation (IC50 = 170 μg/ml) of Michigan cancer foundation-7 (MCF-7) cells in a dose-dependent manner. The OSEO also induced apoptosis as evidenced by the increasing number of PI-stained apoptotic nucleic of MCF-7 cells. Flow cytometry analysis revealed that treatment with OSEO (50–500 μg/ml) increased the apoptotic cells population (16–84%) dose dependently compared to the control. OSEO has the ability to up-regulate the apoptotic genes p53 and Bid and as well as elevates the ratio of Bax/Bcl-2. Conclusion: Our findings indicate that OSEO has the ability as proapoptotic inducer and it could be developed as an anticancer agent. SUMMARY OSEO inhibited proliferation of MCF-7 cells with an IC50 of 170 μg/mL OSEO at 500 μg/mL increased the population of apoptotic cells by 84% OSEO up-regulated the expression of apoptotic genes and as well increased the Bax/Bcl2 ratio.
Abbreviations used: BAX: BAX BCL2-associated X protein; BCL2: B-cell CLL/lymphoma 2; BID: BH3 Interacting domain death agonist; OSEO: Ocimum sanctum essential oil; DMSO: Dimethyl sulfoxide; DMEM: Dulbecco's modified Eagle medium; MCF-7: Michigan cancer foundation-7; RT-PCR: Real Time Polymerase Chain Reaction.
Collapse
Affiliation(s)
- Thamilvaani Manaharan
- Centre of Research for Computational Sciences and Informatics in Biology, Bio-industry, Environment, Agriculture and Healthcare (CRYSTAL), 50603 Kuala Lumpur, Malaysia; Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Rajarajeswaran Jayakumar
- Centre of Research for Computational Sciences and Informatics in Biology, Bio-industry, Environment, Agriculture and Healthcare (CRYSTAL), 50603 Kuala Lumpur, Malaysia
| | - M S Kanthimathi
- Centre of Research for Computational Sciences and Informatics in Biology, Bio-industry, Environment, Agriculture and Healthcare (CRYSTAL), 50603 Kuala Lumpur, Malaysia
| | - Gunasekar Ramya
- Department of Biotechnology, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
28
|
MiR-367 negatively regulates apoptosis induced by adriamycin in osteosarcoma cells by targeting KLF4. J Bone Oncol 2016; 5:51-6. [PMID: 27335771 PMCID: PMC4908187 DOI: 10.1016/j.jbo.2016.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/09/2016] [Indexed: 12/16/2022] Open
Abstract
Diverse functions of microRNAs have been investigated in tumorigenesis in osteosarcoma (OS), involving the regulation of proliferation, invasion, migration, apoptosis and drug resistance. MiR-367 was found to be an oncogene and increased in OS. However, the function of miR-367 in drug resistance in OS cells is still unknown. In this study, we found that miR-367 was up-regulated in OS tissues and OS cell cultures. Meanwhile, treatment with adriamycin (ADR) induced apoptosis of OS cells with upregulation of miR-367. Notably, KLF4 was demonstrated to be a direct target of miR-367 by gene reporter assay, and miR-367 significantly blocked both mRNA and protein level of KLF4. In addition, overexpression of miR-367 markedly suppressed the increase of KLF4 induced by ADR in OS cells, as well as Bax and cleaved caspase-3, which were significantly reversed by anti-miR-367 transfection. Taken together, our data demonstrates that miR-367 and KLF4 play important roles in OS treatment and ADR resistance, suggesting that miR-367 is a potential biomarker of chemotherapy resistance in OS and also probably a novel therapeutic target against OS. miR-367 functions as an oncogene in OS targeting the tumor suppressor KLF4. ADR induces apoptosis in OS via miR-367/KLF4/Bax signaling pathway. miR-367 enhances the resistance of ADR to OS cells through suppressing KLF4. miR-367 could be a potential biomarker of chemotherapy resistance against OS.
Collapse
|
29
|
Szczerba A, Śliwa A, Kubiczak M, Nowak-Markwitz E, Jankowska A. Human chorionic gonadotropin β subunit affects the expression of apoptosis-regulating factors in ovarian cancer. Oncol Rep 2015; 35:538-45. [PMID: 26530886 DOI: 10.3892/or.2015.4386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/22/2015] [Indexed: 11/06/2022] Open
Abstract
Expression of human chorionic gonadotropin, especially its free β subunit (hCGβ) were shown to play an important role in cancer growth, invasion and metastasis. It is postulated that hCGβ is one of the factors determining cancer cell survival. To test this hypothesis, we applied two models: an in vitro model of ovarian cancer using OVCAR-3 and SKOV-3 cell lines transfected with the CGB5 gene and an in vivo model of ovarian cancer tissues. The material was tested against changes in expression level of genes encoding factors involved in apoptosis: BCL2, BAX and BIRC5. Overexpression of hCGβ was found to cause a decrease in expression of the analyzed genes in the transfected cells compared with the control cells. In ovarian cancer tissues, high expression of CGB was related to significantly lower BCL2 but higher BAX and BIRC5 transcript levels. Moreover, a low BCL2/BAX ratio, characteristic of advanced stages of ovarian cancer, was revealed. Since tumors were discriminated by a significantly lower LHCGR level than the level noted in healthy fallopian tubes and ovaries, it may be stated that the effect of hCGβ on changes in the expression of apoptosis-regulating agents observed in ovarian cancer is LHCGR-independent. The results of the study suggest that the biological effects evoked by hCGβ are related to apoptosis suppression.
Collapse
Affiliation(s)
- Anna Szczerba
- Department of Cell Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Aleksandra Śliwa
- Department of Cell Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Marta Kubiczak
- Department of Cell Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Department of Gynecologic Oncology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Anna Jankowska
- Department of Cell Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
30
|
Thao NP, Luyen BTT, Kim EJ, Kang JI, Kang HK, Cuong NX, Nam NH, Kiem PV, Minh CV, Kim YH. Steroidal constituents from the edible sea urchin Diadema savignyi Michelin induce apoptosis in human cancer cells. J Med Food 2015; 18:45-53. [PMID: 25211186 DOI: 10.1089/jmf.2013.3105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bioassay-directed fractionation and purification were used to isolate 12 steroids (1-12) from a CH(2)Cl(2) extract of the edible Vietnamese sea urchin Diadema savignyi Michelin. The cytotoxic activity of the CH(2)Cl(2) extract and 12 steroids was evaluated in three human cancer cell lines (HL-60, PC-3, and SNU-C5). Relative to the effects of the positive control, mitoxantrone, the CH(2)Cl(2) extract (with an inhibitory concentration of 50% [IC(50)] values ranging from 1.37±0.15 to 3.11±0.15 μg/mL) and compounds 2 (with IC(50) values ranging from 5.29±0.11 to 6.80±0.67 μM) and 11 (with IC(50) values ranging from 4.95±0.07 to 6.99±0.28 μM) exhibited potent cytotoxic effects against all three tested human cancer cell lines. In addition, the CH(2)Cl(2) extract and compounds 2 and 11 were found to induce apoptosis. The induction of apoptosis was accompanied by alterations of the apoptosis-related protein expression, inactivation of ERK1/2 mitogen-activated protein kinase signaling, and decreased c-Myc expression. These data suggest that compounds 2 and 11 from the edible sea urchin D. savignyi may have potential for the treatment of colon cancer, leukemia, and prostate cancer as complementary cancer remedies.
Collapse
|
31
|
BAOLERI XILIN, DONG CHAO, ZHOU YANG, ZHANG ZHAOJUN, LU XUELIANG, XIE PENGMING, LI YONGQI. Combination of L-gossypol and low-concentration doxorubicin induces apoptosis in human synovial sarcoma cells. Mol Med Rep 2015; 12:5924-32. [DOI: 10.3892/mmr.2015.4127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 11/20/2014] [Indexed: 11/06/2022] Open
|
32
|
Simmen RCM, Heard ME, Simmen AM, Montales MTM, Marji M, Scanlon S, Pabona JMP. The Krüppel-like factors in female reproductive system pathologies. J Mol Endocrinol 2015; 54:R89-R101. [PMID: 25654975 PMCID: PMC4369192 DOI: 10.1530/jme-14-0310] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Female reproductive tract pathologies arise largely from dysregulation of estrogen and progesterone receptor signaling, leading to aberrant cell proliferation, survival, and differentiation. The signaling pathways orchestrated by these nuclear receptors are complex, require the participation of many nuclear proteins serving as key binding partners or targets, and involve a range of paracrine and autocrine regulatory circuits. The members of the Krüppel-like factor (KLF) family of transcription factors are ubiquitously expressed in reproductive tissues and have been increasingly implicated as critical co-regulators and integrators of steroid hormone actions. Herein, we explore the involvement of KLF family members in uterine pathology, describe their currently known molecular mechanisms, and discuss their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rosalia C M Simmen
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Melissa E Heard
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Angela M Simmen
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Maria Theresa M Montales
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Meera Marji
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Samantha Scanlon
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - John Mark P Pabona
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| |
Collapse
|
33
|
Wang S, Tie J, Wang R, Hu F, Gao L, Wang W, Wang L, Li Z, Hu S, Tang S, Li M, Wang X, Nie Y, Wu K, Fan D. SOX2, a predictor of survival in gastric cancer, inhibits cell proliferation and metastasis by regulating PTEN. Cancer Lett 2015; 358:210-219. [PMID: 25543086 DOI: 10.1016/j.canlet.2014.12.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/08/2014] [Accepted: 12/19/2014] [Indexed: 01/02/2023]
Abstract
Inconsistent results of SOX2 expression have been reported in gastric cancer (GC). Here, we demonstrated that SOX2 was progressively downregulated during GC development via immunochemistry in 755 human gastric specimens. Low SOX2 levels were associated with pathological stage and clinical outcome. Multivariate analysis indicated that SOX2 protein expression served as an independent prognostic marker for GC. Gain-and loss-of function studies showed the anti-proliferative, anti-metastatic, and pro-apoptotic effects of SOX2 in GC. PTEN was selected as SOX2 targets by cDNA microarray and ChIP-DSL, further identified by luciferase assays, EMSA and ChIP-PCR. PTEN upregulation in response to SOX2-enforced expression suppressed GC malignancy via regulating Akt dephosphorylation. PTEN inhibition reversed SOX2-induced anticancer effects. Moreover, concordant positivity of SOX2 and PTEN proteins in nontumorous tissues but lost in matched GC specimens predicted a worse patient prognosis. Thus, SOX2 proved to be a new marker for evaluating GC outcome.
Collapse
Affiliation(s)
- Simeng Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun Tie
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Rui Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fengrong Hu
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liucun Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenlan Wang
- Department of Aerospace Hygiene and Health Service, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lifeng Wang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zengshan Li
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sijun Hu
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shanhong Tang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mengbin Li
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
34
|
Xu L, Yang F, Wang J, Huang H, Huang Y. Anti-diabetic effect mediated by Ramulus mori polysaccharides. Carbohydr Polym 2015; 117:63-69. [DOI: 10.1016/j.carbpol.2014.09.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 11/28/2022]
|
35
|
Veskimäe K, Staff S, Tabaro F, Nykter M, Isola J, Mäenpää J. Microarray analysis of differentially expressed genes in ovarian and fallopian tube epithelium from risk-reducing salpingo-oophorectomies. Genes Chromosomes Cancer 2015; 54:276-87. [PMID: 25706666 DOI: 10.1002/gcc.22241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/02/2015] [Indexed: 11/11/2022] Open
Abstract
Mutations in the BRCA1 and BRCA2 genes confer an increased lifetime risk for breast and ovarian cancer. Ovarian cancer risk can be decreased by risk-reducing salpingo-oophorectomy (RRSO). Studies on RRSO material have altered the paradigm of serous ovarian cancer pathogenesis. The purpose of this study was to identify candidate genes possibly involved in the pathogenesis of serous ovarian cancer by carrying out a microarray analysis of differentially expressed genes in BRCA1/2- mutation positive ovarian and fallopian tube epithelium derived from RRSO surgery. Freshly frozen ovarian and fallopian tube samples from nine BRCA1/2 mutation carriers scheduled for RRSO were prospectively collected together with five mutation-negative control patients undergoing salpingo-oophorectomy for benign indications. Microarray analysis of genome-wide gene expression was performed on ovarian and fallopian tube samples from the BRCA1/2 and control patients. The validation of microarray data was performed by quantitative real-time polymerase chain reaction (qRT-PCR) in selected cases of RRSO samples and also in high grade serous carcinoma samples collected from patients with a BRCA phenotype. From 22,733 genes, 454 transcripts were identified that were differentially expressed in BRCA1/2 mutation carriers when compared with controls, pooling all ovarian and fallopian tube samples together. Of these, 299 genes were statistically significantly downregulated and 155 genes upregulated. Differentially expressed genes in BRCA1/2 samples reported here might be involved in serous ovarian carcinogenesis and provide interesting targets for further studies.
Collapse
Affiliation(s)
- Kristina Veskimäe
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
36
|
Zohre S, Kazem NK, Abolfazl A, Mohammad RY, Aliakbar M, Effat A, Zahra D, Hassan D, Nosratollah Z. Trichostatin A-induced Apoptosis is Mediated by Krüppel-like Factor 4 in Ovarian and Lung Cancer. Asian Pac J Cancer Prev 2014; 15:6581-6. [DOI: 10.7314/apjcp.2014.15.16.6581] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Chen Z, Wang Y, Liu W, Zhao G, Lee S, Balogh A, Zou Y, Guo Y, Zhang Z, Gu W, Li C, Tigyi G, Yue J. Doxycycline inducible Krüppel-like factor 4 lentiviral vector mediates mesenchymal to epithelial transition in ovarian cancer cells. PLoS One 2014; 9:e105331. [PMID: 25137052 PMCID: PMC4138168 DOI: 10.1371/journal.pone.0105331] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/20/2014] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer presents therapeutic challenges due to its typically late detection, aggressive metastasis, and therapeutic resistance. The transcription factor Krüppel-like factor 4 (KLF4) has been implicated in human cancers as a tumor suppressor or oncogene, although its role depends greatly on the cellular context. The role of KLF4 in ovarian cancer has not been elucidated in mechanistic detail. In this study, we investigated the role of KLF4 in ovarian cancer cells by transducing the ovarian cancer cell lines SKOV3 and OVCAR3 with a doxycycline-inducible KLF4 lentiviral vector. Overexpression of KLF4 reduced cell proliferation, migration, and invasion. The epithelial cell marker gene E-cadherin was significantly upregulated, whereas the mesenchymal cell marker genes vimentin, twist1and snail2 (slug) were downregulated in both KLF4-expressing SKOV3 and OVCAR3 cells. KLF4 inhibited the transforming growth factor β (TGFβ)-induced epithelial to mesenchymal transition (EMT) in ovarian cancer cells. Taken together, our data demonstrate that KLF4 functions as a tumor suppressor gene in ovarian cancer cells by inhibiting TGFβ-induced EMT.
Collapse
Affiliation(s)
- Zixuan Chen
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Southern Medical University, Guangzhou, P. R. China
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Wen Liu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, P. R. China
| | - Suechin Lee
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Yanan Zou
- The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Yuqi Guo
- The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, P. R. China
| | - Zhan Zhang
- The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, P. R. China
| | - Weiwang Gu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Chengyao Li
- Southern Medical University, Guangzhou, P. R. China
- * E-mail: (JY); (CL)
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail: (JY); (CL)
| |
Collapse
|
38
|
High cytoplasmic expression of Krüppel-like factor 4 is an independent prognostic factor of better survival in hepatocellular carcinoma. Int J Mol Sci 2014; 15:9894-906. [PMID: 24897024 PMCID: PMC4100128 DOI: 10.3390/ijms15069894] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality in the world. Hepatocarcinogenesis is complex, with an extraordinary molecular heterogeneity. Krüppel-like factor 4 (KLF4) plays an important role in cell proliferation and differentiation, and it can function as a tumor suppressor or an oncoprotein, depending on tissue type. The role of KLF4 in HCC remains controversial. The aim of this study was to explore the clinical significance of KLF4 expression in HCC. The study included 205 patients with surgical resection. We performed immunostaining for KLF4 and Ki-67 to investigate the correlations of the clinicopathological parameters of HCC and to examine the proliferative index. KLF4 staining was observed in the cytoplasm of non-tumorous hepatocytes and tumor cells. We subdivided the immunohistological staining results for KLF4 into low expression (Staining 0 and 1+) and high expression (Staining 2+ and 3+) subgroups. The expression of KLF4 was significantly correlated with tumor differentiation (p = 0.001). The Ki-67 proliferative index was significantly lower in well-differentiated HCCs (0.781% ± 1.02% vs. 2.16% ± 3.14%, p = 0.012), but not significantly different between low-KLF4 expression and high-KLF4 expression (1.87% ± 2.93% vs. 2.51% ± 3.28%, p = 0.32). Kaplan-Meier analysis showed that a high expression of KLF4 was significantly correlated with a longer disease-specific survival (p = 0.019). Univariate and multivariate analyses showed that high KLF4 expression was an independent predictor of a better disease-specific survival (p = 0.017; hazard ratio = 0.398; 95% confidence interval: 0.19-0.85). High cytoplasmic expression of KLF4 was associated with better disease-specific survival and was an independently favorable prognostic factor in hepatocellular carcinoma. These promising results suggest that KLF4 may play an anti-oncogenic role in hepatocarcinogenesis.
Collapse
|
39
|
Zhang X, Bi L, Ye Y, Chen J. Formononetin Induces Apoptosis in PC-3 Prostate Cancer Cells Through Enhancing the Bax/Bcl-2 Ratios and Regulating the p38/Akt Pathway. Nutr Cancer 2014; 66:656-61. [DOI: 10.1080/01635581.2014.894098] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells. PLoS One 2014; 9:e92007. [PMID: 24646936 PMCID: PMC3960135 DOI: 10.1371/journal.pone.0092007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/19/2014] [Indexed: 02/06/2023] Open
Abstract
Apigenin is a naturally occurring plant flavonoid that possesses antioxidant, anti-cancer and anti-inflammatory properties. However, there are few reports has been done on the ability of apigenin to induce apoptosis in macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of apigenin. The cell viability was determined by an MTT assay. The cell apoptosis were analyzed by flow cytometric analysis. Apoptosis were also analyzed using a TUNEL assay and a DNA ladder. The level of intracellular ROS was detected using a dichlorofluorescein -diacetate probe. The expression levels of apoptosis-related proteins were detected by western blot analysis. The results showed that apigenin decreased the viability of ANA-1 cells and induced apoptosis in a dose- and time-dependent manner. Apigenin increased the level of intracellular ROS, downregulated the expression of Bcl-2 and upregulated the expression of caspase-3 and caspase-8 in ANA-1 cells. Furthermore, apigenin downregulated the expression of phospho-ERK and phospho-JNK, upregulated the expression of phospho-p38 and had no significant effect on the expression of Bax, ERK, JNK and p38. The results suggested that apigenin induced cell apoptosis in mouse macrophage ANA-1 cells may via increasing intracellular ROS, regulating the MAPK pathway, and then inhibiting Bcl-2 expression.
Collapse
|
41
|
Wang DF, Lou N, Qiu MZ, Lin YB, Liang Y. Effects of CXCR4 gene silencing by lentivirus shRNA on proliferation of the EC9706 human esophageal carcinoma cell line. Tumour Biol 2013; 34:2951-9. [PMID: 23744460 DOI: 10.1007/s13277-013-0858-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/10/2013] [Indexed: 02/06/2023] Open
Abstract
CXCL12/CXCR4 has been studied as an important biomarker for many human malignancies, but studies are limited for esophageal squamous cell carcinoma (ESCC). In this study, an effective RNAi sequence targeting the CXCR4 gene was selected, a lentiviral shRNA vector was constructed to specifically silence CXCR4 expression in the EC9706 ESCC cell line, and the effects of CXCR4 silencing on cell growth in vitro and tumour growth in nude mice were then evaluated. The expression of CXCR4 in EC9706 was significantly downregulated after transfection with a lentiviral shRNA vector. The expression of the apoptosis-related gene Bcl-2 was decreased. In addition, after CXCR4 inhibition, cell growth was considerably inhibited, increased apoptosis in the EC9706 cells was found, the G0/G1 percentage was significantly increased, and the number of cells in S phase was reduced. Moreover, tumour growth in nude mice was inhibited. In conclusion, the downregulation of CXCR4 expression by transfection with a lentiviral shRNA vector in ESCC cells could inhibit tumour proliferation. Our data may provide an avenue for finding new ESCC treatments.
Collapse
Affiliation(s)
- Dao-feng Wang
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China,
| | | | | | | | | |
Collapse
|