1
|
Nishida A, Andoh A. The Role of Inflammation in Cancer: Mechanisms of Tumor Initiation, Progression, and Metastasis. Cells 2025; 14:488. [PMID: 40214442 PMCID: PMC11987742 DOI: 10.3390/cells14070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Inflammation is an essential component of the immune response that protects the host against pathogens and facilitates tissue repair. Chronic inflammation is a critical factor in cancer development and progression. It affects every stage of tumor development, from initiation and promotion to invasion and metastasis. Tumors often create an inflammatory microenvironment that induces angiogenesis, immune suppression, and malignant growth. Immune cells within the tumor microenvironment interact actively with cancer cells, which drives progression through complex molecular mechanisms. Chronic inflammation is triggered by factors such as infections, obesity, and environmental toxins and is strongly linked to increased cancer risk. However, acute inflammatory responses can sometimes boost antitumor immunity; thus, inflammation presents both challenges and opportunities for therapeutic intervention. This review examines how inflammation contributes to tumor biology, emphasizing its dual role as a critical factor in tumorigenesis and as a potential therapeutic target.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Shiga, Japan;
| | | |
Collapse
|
2
|
Bae KJ, Bae JH, Oh AC, Cho CH. Comparison of 46 Cytokines in Peripheral Blood Between Patients with Papillary Thyroid Cancer and Healthy Individuals with AI-Driven Analysis to Distinguish Between the Two Groups. Diagnostics (Basel) 2025; 15:791. [PMID: 40150133 PMCID: PMC11940922 DOI: 10.3390/diagnostics15060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Recent studies have analyzed some cytokines in patients with papillary thyroid carcinoma (PTC), but simultaneous analysis of multiple cytokines remains rare. Nonetheless, the simultaneous assessment of multiple cytokines is increasingly recognized as crucial for understanding the cytokine characteristics and developmental mechanisms in PTC. In addition, studies applying artificial intelligence (AI) to discriminate patients with PTC based on serum multiple cytokine data have been performed rarely. Here, we measured and compared 46 cytokines in patients with PTC and healthy individuals, applying AI algorithms to classify the two groups. Methods: Blood serum was isolated from 63 patients with PTC and 63 control individuals. Forty-six cytokines were analyzed simultaneously using Luminex assay Human XL Cytokine Panel. Several laboratory findings were identified from electronic medical records. Student's t-test or the Mann-Whitney U test were performed to analyze the difference between the two groups. As AI classification algorithms to categorize patients with PTC, K-nearest neighbor function, Naïve Bayes classifier, logistic regression, support vector machine, and eXtreme Gradient Boosting (XGBoost) were employed. The SHAP analysis assessed how individual parameters influence the classification of patients with PTC. Results: Cytokine levels, including GM-CSF, IFN-γ, IL-1ra, IL-7, IL-10, IL-12p40, IL-15, CCL20/MIP-α, CCL5/RANTES, and TNF-α, were significantly higher in PTC than in controls. Conversely, CD40 Ligand, EGF, IL-1β, PDGF-AA, and TGF-α exhibited significantly lower concentrations in PTC compared to controls. Among the five classification algorithms evaluated, XGBoost demonstrated superior performance in terms of accuracy, precision, sensitivity (recall), specificity, F1-score, and ROC-AUC score. Notably, EGF and IL-10 were identified as critical cytokines that significantly contributed to the differentiation of patients with PTC. Conclusions: A total of 5 cytokines showed lower levels in the PTC group than in the control, while 10 cytokines showed higher levels. While XGBoost demonstrated the best performance in discriminating between the PTC group and the control group, EGF and IL-10 were considered to be closely associated with PTC.
Collapse
Affiliation(s)
- Kyung-Jin Bae
- Department of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (K.-J.B.); (J.-H.B.)
| | - Jun-Hyung Bae
- Department of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (K.-J.B.); (J.-H.B.)
| | - Ae-Chin Oh
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul 01812, Republic of Korea
| | - Chi-Hyun Cho
- Department of Laboratory Medicine, College of Medicine, Korea University Ansan Hospital, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Li S, Han H, Yang K, Li X, Ma L, Yang Z, Zhao YX. Emerging role of metabolic reprogramming in the immune microenvironment and immunotherapy of thyroid cancer. Int Immunopharmacol 2025; 144:113702. [PMID: 39602959 DOI: 10.1016/j.intimp.2024.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The metabolic reprogramming of cancer cells is a hallmark of many malignancies. To meet the energy acquisition needs of tumor cells for rapid proliferation, tumor cells reprogram their nutrient metabolism, which is caused by the abnormal expression of transcription factors and signaling molecules related to energy metabolic pathways as well as the upregulation and downregulation of abnormal metabolic enzymes, receptors, and mediators. Thyroid cancer (TC) is the most common endocrine tumor, and immunotherapy has become the mainstream choice for clinical benefit after the failure of surgical, endocrine, and radioiodine therapies. TC change the tumor microenvironment (TME) through nutrient competition and metabolites, causing metabolic reprogramming of immune cells, profoundly changing immune cell function, and promoting immune evasion of tumor cells. A deeper understanding of how metabolic reprogramming alters the TME and controls immune cell fate and function will help improve the effectiveness of TC immunotherapy and patient outcomes. This paper aims to elucidate the metabolic communication that occurs between immune cells around TC and discusses how metabolic reprogramming in TC affects the immune microenvironment and the effectiveness of anti-cancer immunotherapy. Finally, targeting key metabolic checkpoints during metabolic reprogramming, combined with immunotherapy, is a promising strategy.
Collapse
Affiliation(s)
- Shouhua Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Hengtong Han
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Kaili Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoxiao Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Libin Ma
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Ze Yang
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xun Zhao
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Wei L, Liang Q, Zhou C, Liu R, Liu Y. PTEN inhibits epithelial mesenchymal transition of thyroid cancer cells by regulating the Wnt/β-Catenin signaling pathway. Discov Oncol 2024; 15:803. [PMID: 39692895 DOI: 10.1007/s12672-024-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE The global incidence of thyroid cancer (THCA) has significantly risen in recent years. This study aims to investigate the role and mechanisms of PTEN in epithelial mesenchymal transition (EMT), invasion and migration of THCA cells. METHODS PTEN expression in THCA was analyzed through bioinformatics databases. RT-qPCR and Western blot analyses were performed to quantify PTEN levels in the Nthy-ori 3-1 cell line and three THCA cell types (TPC-1, B-CPAP, FTC-133). TPC-1 cells were transfected with a PTEN overexpression plasmid and treated with the Wnt activator. Cell viability and apoptosis were assessed via CCK-8 and flow cytometry, respectively. The expression levels of E-Cadherin, N-Cadherin, and Vimentin in TPC-1 cells were evaluated using Western blot. The invasive, migratory, and wound-healing abilities of the cells were examined using Transwell and scratch assays. Activation of the Wnt/β-catenin pathway was assessed through Western blot. RESULTS PTEN expression was significantly lower in THCA cells, particularly in TPC-1 cells compared to other cell lines. PTEN overexpression led to decreased viability in TPC-1 cells, increased apoptosis, and a rise in E-Cadherin levels while reducing N-Cadherin and Vimentin levels, thereby inhibiting EMT. Furthermore, PTEN overexpression diminished the invasive, migratory and wound-healing capabilities of TPC-1 cells and suppressed activation of the Wnt/β-catenin pathway. Treatment with the Wnt activator partially counteracted the effects of PTEN overexpression on TPC-1 cells. CONCLUSION PTEN functions to inhibit EMT and the invasive and migratory characteristics of THCA cells by blocking the activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Li Wei
- Department of Ultrasound, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China.
| | - Qianhui Liang
- Department of Oncology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Chang Zhou
- Department of Ultrasound, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Rong Liu
- Department of Ultrasound, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Yun Liu
- Department of Ultrasound, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China
| |
Collapse
|
5
|
Martín-Leyva A, Peinado FM, Ocón-Hernández O, Olivas-Martínez A, Luque A, León J, Lendínez I, Cardona J, Lara-Ramos A, Olea N, Fernández MF, Artacho-Cordón F. Environmental Exposure to Persistent Organic Pollutants and Its Association with Endometriosis Risk: Implications in the Epithelial-Mesenchymal Transition Process. Int J Mol Sci 2024; 25:4420. [PMID: 38674005 PMCID: PMC11050161 DOI: 10.3390/ijms25084420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to explore the relationship of adipose tissue concentrations of some persistent organic pollutants (POPs) with the risk of endometriosis and the endometriotic tissue expression profile of genes related to the endometriosis-related epithelial-mesenchymal transition (EMT) process. This case-control study enrolled 109 women (34 cases and 75 controls) between January 2018 and March 2020. Adipose tissue samples and endometriotic tissues were intraoperatively collected to determine concentrations of nine POPs and the gene expression profiles of 36 EMT-related genes, respectively. Associations of POPs with endometriosis risk were explored with multivariate logistic regression, while the relationship between exposure and gene expression profiles was assessed through Spearman correlation or Mann-Whitney U tests. After adjustment, increased endometriosis risk was associated with p,p'-DDT, PCB-180, and ΣPCBs. POP exposure was also associated with reduced gene expression levels of the CLDN7 epithelial marker and increased levels of the ITGB2 mesenchymal marker and a variety of EMT promoters (HMGA1, HOXA10, FOXM1, DKK1, CCR1, TNFRSF1B, RRM2, ANG, ANGPT1, and ESR1). Our findings indicate that exposure to POPs may increase the risk of endometriosis and might have a role in the endometriosis-related EMT development, contributing to the disease onset and progression. Further studies are warranted to corroborate these findings.
Collapse
Affiliation(s)
- Ana Martín-Leyva
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
| | - Francisco M. Peinado
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
| | - Olga Ocón-Hernández
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Gynaecology and Obstetrics Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain;
| | - Alicia Olivas-Martínez
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
| | - Antonio Luque
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
| | - Josefa León
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Digestive Medicine Unit, ‘San Cecilio’ University Hospital, E-18012 Granada, Spain
- CIBER Hepatic and Digestive Diseases (CIBEREHD), E-28029 Madrid, Spain
| | | | - Jesús Cardona
- Gynaecology and Obstetrics Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain;
| | - Ana Lara-Ramos
- Gynaecology and Obstetrics Unit, ‘Virgen de las Nieves’ University Hospital, E-18014 Granada, Spain;
| | - Nicolás Olea
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain
- Nuclear Medicine Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain
| | - Mariana F. Fernández
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain
| | - Francisco Artacho-Cordón
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain
| |
Collapse
|
6
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Mass spectrometry analysis of gut tissue in acute SIV-infection in rhesus macaques identifies early proteome alterations preceding the interferon inflammatory response. Sci Rep 2023; 13:690. [PMID: 36639424 PMCID: PMC9839751 DOI: 10.1038/s41598-022-27112-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
HIV infection damages the gut mucosa leading to chronic immune activation, increased morbidities and mortality, and antiretroviral therapies, do not completely ameliorate mucosal dysfunction. Understanding early molecular changes in acute infection may identify new biomarkers underlying gut dysfunction. Here we utilized a proteomics approach, coupled with flow cytometry, to characterize early molecular and immunological alterations during acute SIV infection in gut tissue of rhesus macaques. Gut tissue biopsies were obtained at 2 times pre-infection and 4 times post-infection from 6 macaques. The tissue proteome was analyzed by mass spectrometry, and immune cell populations in tissue and blood by flow cytometry. Significant proteome changes (p < 0.05) occurred at 3 days post-infection (dpi) (13.0%), 14 dpi (13.7%), 28 dpi (16.9%) and 63 dpi (14.8%). At 3 dpi, proteome changes included cellular structural activity, barrier integrity, and activation of epithelial to mesenchymal transition (EMT) (FDR < 0.0001) prior to the antiviral response at 14 dpi (IFNa/g pathways, p < 0.001). Novel EMT proteomic biomarkers (keratins 2, 6A and 20, collagen 12A1, desmoplakin) and inflammatory biomarkers (PSMB9, FGL2) were associated with early infection and barrier dysfunction. These findings identify new biomarkers preceding inflammation in SIV infection involved with EMT activation. This warrants further investigation of the role of these biomarkers in chronic infection, mucosal inflammation, and disease pathogenesis of HIV.
Collapse
|
8
|
Vimentin inhibits type I interferon production by disrupting the TBK1-IKKε-IRF3 axis. Cell Rep 2022; 41:111469. [DOI: 10.1016/j.celrep.2022.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/20/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
|
9
|
Liu T, Zhu C, Chen X, Wu J, Guan G, Zou C, Shen S, Chen L, Cheng P, Cheng W, Wu A. Dual role of ARPC1B in regulating the network between tumor-associated macrophages and tumor cells in glioblastoma. Oncoimmunology 2022; 11:2031499. [PMID: 35111386 PMCID: PMC8803105 DOI: 10.1080/2162402x.2022.2031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tianqi Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Chen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianqi Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cunyi Zou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuai Shen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Chen
- Department of Neurosurgery, Chinese People’s Liberation Army of China (Pla) General Hospital, Medical School of Chinese Pla, Institute of Neurosurgery of Chinese Pla, Beijing, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Zhu X, Wang X, Gong Y, Deng J. E-cadherin on epithelial-mesenchymal transition in thyroid cancer. Cancer Cell Int 2021; 21:695. [PMID: 34930256 PMCID: PMC8690896 DOI: 10.1186/s12935-021-02344-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid carcinoma is a common malignant tumor of endocrine system and head and neck. Recurrence, metastasis and high malignant expression after routine treatment are serious clinical problems, so it is of great significance to explore its mechanism and find action targets. Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy and invasion. One key change in tumour EMT is low expression of E-cadherin. Therefore, this article reviews the expression of E-cadherin in thyroid cancers (TC), discuss the potential mechanisms involved, and outline opportunities to exploit E-cadherin on regulating the occurrence of EMT as a critical factor in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Xiaoping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China.
| | - Yifei Gong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Junlin Deng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| |
Collapse
|
11
|
Yi J, Tian M, Hu L, Kang N, Ma W, Zhi J, Zheng X, Ruan X, Gao M. The mechanisms of celastrol in treating papillary thyroid carcinoma based on network pharmacology and experiment verification. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:866. [PMID: 34164500 PMCID: PMC8184492 DOI: 10.21037/atm-21-1854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Celastrol, a triterpene present in the traditional Chinese medicine (TCM) Triptergium wilfordii, has been demonstrated to have remarkable anticancer activity. However, its specific mechanism on papillary thyroid carcinoma (PTC) remains to be elucidated. Methods Potential targets of celastrol were screened from public databases. Through the Gene Expression Omnibus (GEO) online database, we obtained the bioinformatics analysis profile of PTC, GSE33630, and analyzed the differentially expressed genes (DEGs). Then, a protein-protein interaction (PPI) network was constructed by utilizing the STRING database. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. Finally, drug interactions between hub genes and celastrol were verified by molecular docking. Results Four core nodes (MMP9, JUN, ICAM1, and VCAM1) were discerned via constructing a PPI network of 47 common targets. Through functional enrichment analysis, it was confirmed that the above target genes were basically enriched in the interleukin-17 (IL-17), nuclear factor kappa-B (NF-κB), and tumor necrosis factor (TNF) signaling pathways, which are involved in the inflammatory microenvironment to inhibit the development and progression of tumors. Molecular docking results demonstrated that celastrol has a strong binding efficiency with the 4 key proteins. Conclusions In this research, it was demonstrated that celastrol can regulate a variety of proteins and signaling pathways against PTC, providing a theoretical basis for future clinical applications.
Collapse
Affiliation(s)
- Jiaoyu Yi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Mengran Tian
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Linfei Hu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ning Kang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weike Ma
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingtai Zhi
- Department of Otolaryngology-Head and Neck Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
12
|
Tugizov SM. Human immunodeficiency virus interaction with oral and genital mucosal epithelia may lead to epithelial-mesenchymal transition and sequestration of virions in the endosomal compartments. Oral Dis 2020; 26 Suppl 1:40-46. [PMID: 32862547 DOI: 10.1111/odi.13387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oral and genital mucosal epithelia are multistratified epithelial barriers with well-developed tight and adherens junctions. These barriers serve as the first line of defense against many pathogens, including human immunodeficiency virus (HIV). HIV interaction with the surface of mucosal epithelial cells, however, may activate transforming growth factor-beta (TGF-β) and mitogen-activated protein kinase signaling pathways. When activated, these pathways may lead to the disruption of epithelial junctions and epithelial-mesenchymal transition (EMT). HIV-induced impairment of the mucosal barrier may facilitate the spread of pathogenic viral, bacterial, fungal, and other infectious agents. HIV-induced EMT promotes highly motile/migratory cells. In oral and genital mucosa, if EMT occurs within a human papillomavirus (HPV)-infected premalignant or malignant cell environment, the HPV-associated neoplastic process could be accelerated by promoting viral invasion of malignant cells. HIV also internalizes into oral and genital mucosal epithelial cells. The majority (90%) of internalized virions do not cross the epithelium, but are retained in endosomal compartments for several days. These sequestered virions are infectious. Upon interaction with activated peripheral blood mononuclear cells and CD4+ T lymphocytes, epithelial cells containing the virus can be transferred. The induction of HIV-1 release and the cell-to-cell spread of virus from epithelial cells to lymphocytes is mediated by interaction of lymphocyte receptor function-associated antigen-1 with the epithelial cell receptor intercellular adhesion molecule-1. Thus, mucosal epithelial cells may serve as a transient reservoir for HIV, which could play a critical role in viral transmission.
Collapse
Affiliation(s)
- Sharof M Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Chen D, Huang Z, Ning Y, Lou C. Knockdown of LINC02471 Inhibits Papillary Thyroid Carcinoma Cell Invasion and Metastasis by Targeting miR-375. Cancer Manag Res 2020; 12:8757-8771. [PMID: 33061573 PMCID: PMC7519868 DOI: 10.2147/cmar.s243767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/11/2020] [Indexed: 01/01/2023] Open
Abstract
Background LncRNAs play important roles in papillary thyroid carcinoma (PTC). LINC02471 has been reported to be related to PTC prognosis. The current study aimed to investigate the effects of LINC02471 on human PTC cells. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine LINC02471 expression in PTC tissues and cells and miR-375 expression in PTC cells. SiLINC02471, miR-375 mimic and miR-375 inhibitor were used for cell transfection. Cell proliferation, apoptosis, migration, and invasion were detected by performing Cell Counting Kit-8 (CCK-8), clone formation assay, flow cytometry, scratch assay, and transwell assay. Western blot was carried out to detect protein levels of E-cadherin, N-cadherin and Snail. The target gene for LINC02471 was verified by dual-luciferase reporter assay. Results LINC02471 was highly expressed in PTC tissues and cells. After silencing LINC02471, cell proliferation, migration and invasion were reduced, but cell apoptosis was increased. SiLINC02471 increased the expressions of E-cadherin and miR-375, and inhibited the expressions of N-Cadherin and Snail. LINC02471 directly targeted miR-375 in PTC cells. Overexpression of miR-375 inhibited the proliferation, migration, invasion of PTC cells and reduced the expressions of N-Cadherin and Snail but promoted the cell apoptosis and increased E-cadherin expression, while miR-375 inhibitor produced opposite effects to overexpressed miR-375. After inhibiting miR-375 expression, siLINC02471 reversed the effect of miR-375 inhibitor. Conclusion LINC02471 could promote the development of PTC. Knocking down LINC02471 could inhibit invasion and metastasis and promote PTC cell apoptosis through directly targeting miR-375.
Collapse
Affiliation(s)
- Dongfang Chen
- Department of Nuclear Medicine, Xiasha Branch of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Zhongke Huang
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yanli Ning
- Department of Nuclear Medicine, Xiasha Branch of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Cen Lou
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
14
|
Gong Y, Fan Z, Luo G, Huang Q, Qian Y, Cheng H, Jin K, Ni Q, Yu X, Liu C. Absolute Counts of Peripheral Lymphocyte Subsets Correlate with the Progression-Free Survival and Metastatic Status of Pancreatic Neuroendocrine Tumour Patients. Cancer Manag Res 2020; 12:6727-6737. [PMID: 32848455 PMCID: PMC7425098 DOI: 10.2147/cmar.s257492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/21/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Pancreatic neuroendocrine tumours (panNETs) are rare tumours of pancreas. Lymphocyte subsets in the peripheral blood are reported to reflect tumour prognosis and progression. The objective of the study is to investigate the hypotheses that the levels of peripheral lymphocytes may reflect tumour progression and may predict the prognosis of pancreatic neuroendocrine tumours (panNETs). Patients and Methods A retrospective cohort study consisting of 73 patients diagnosed with panNETs was conducted. Kaplan-Meier methods and Log rank tests were used to compare the survival rates, and a Cox regression model was used to perform multivariate analyses. Results panNET patients with distant metastasis were associated with lower peripheral total T cell (p = 0.039) and CD4+ T cell (p = 0.006) counts. Lower peripheral B cells (p = 0.007) and higher peripheral NK cell (p = 0.001) counts indicated worse progression-free survival (PFS) in Log rank tests. In multivariate analyses, low B cell count (hazard ratio (HR): 6.769, 95% confidence interval (CI): 2.158 to 21.228, p = 0.001) and high NK cell count (HR: 3.715, 95% CI: 1.164 to 11.855, p = 0.027) were independent risk factors for progression. NK cells and B cells were also significantly associated with PFS following radical surgical resection. Conclusion Peripheral total T cell and CD4+ T cell counts may reflect the distant metastasis status in panNET patients. The absolute count of peripheral B cells and NK cells may independently predict the progression of panNET patients, making them promising prognostic indicators and potential targets for treatment of panNETs.
Collapse
Affiliation(s)
- Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People's Republic of China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People's Republic of China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People's Republic of China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People's Republic of China
| | - Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People's Republic of China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People's Republic of China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People's Republic of China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People's Republic of China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
15
|
Ramos I, Stamatakis K, Oeste CL, Pérez-Sala D. Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. Int J Mol Sci 2020; 21:E4675. [PMID: 32630064 PMCID: PMC7370124 DOI: 10.3390/ijms21134675] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Clara L. Oeste
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
16
|
Yu Y, Ke L, Xia WX, Xiang Y, Lv X, Bu J. Elevated Levels of TNF-α and Decreased Levels of CD68-Positive Macrophages in Primary Tumor Tissues Are Unfavorable for the Survival of Patients With Nasopharyngeal Carcinoma. Technol Cancer Res Treat 2020; 18:1533033819874807. [PMID: 31522611 PMCID: PMC6747870 DOI: 10.1177/1533033819874807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Due to the critical role of inflammation in nasopharyngeal carcinoma, we aim to investigate the correlation between nasopharyngeal carcinoma prognosis and the levels of tumor necrosis factor α and macrophages for the development of new prognostic models. The levels of tumor necrosis factor-α and CD68-positive macrophages were measured in 111 primary nasopharyngeal carcinoma specimens by immunohistochemistry. Kaplan-Meier analysis showed that, compared with nonelevated tumor necrosis factor-α levels, elevated tumor necrosis factor α levels were correlated with poorer 10-year distant metastasis-free survival (24.5% vs 5.2%, P = .004) and bone metastasis-free survival (17.0% vs 0.0%, P = .001). Multivariate analysis revealed that tumor necrosis factor α level was an independent prognostic factor for distant metastasis-free survival (hazard ratio = 16.765, P = .001), while the level of CD68-positive macrophages was a favorable independent prognostic factor for cancer-specific survival (hazard ratio = 0.481, P = .023) and disease-free survival (hazard ratio = 0.403, P = .010). Additionally, several prognostic models that considered tumor-node-metastasis stage alone or in combination with tumor necrosis factor α and/or CD68-positive macrophage levels were compared by receiver operating characteristic curve analysis. Interestingly, the T_score model, which considered the tumor necrosis factor α level alone, could better predict the distant metastasis-free survival and bone metastasis-free survival, whereas the MT model, which considered the combination of T stage and CD68-positive macrophage level, could better predict the cancer-specific survival and disease-free survival of patients with nasopharyngeal carcinoma. Elevated tumor necrosis factor-α levels and decreased CD68-positive macrophage levels in primary nasopharyngeal carcinoma tissues are unfavorable prognostic indicators in nasopharyngeal carcinoma. The T_score model or the MT model could be better prognostic models than those currently available for nasopharyngeal carcinoma and could be used to select high-risk patients and aid in the design of individualized immunotherapy.
Collapse
Affiliation(s)
- Yahui Yu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital, Southern Medical University, Zhujiang Hospital, Guangzhou, China.,Yahui Yu, Liangru Ke, Weixiong Xia contributed equally to this work
| | - Liangru Ke
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.,Yahui Yu, Liangru Ke, Weixiong Xia contributed equally to this work
| | - Wei-Xiong Xia
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.,Yahui Yu, Liangru Ke, Weixiong Xia contributed equally to this work
| | - Yanqun Xiang
- Department of Diagnostic Radiology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xing Lv
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Junguo Bu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital, Southern Medical University, Zhujiang Hospital, Guangzhou, China
| |
Collapse
|
17
|
Epithelial to Mesenchymal Transition: A Mechanism that Fuels Cancer Radio/Chemoresistance. Cells 2020; 9:cells9020428. [PMID: 32059478 PMCID: PMC7072371 DOI: 10.3390/cells9020428] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) contributes to tumor progression, cancer cell invasion, and therapy resistance. EMT is regulated by transcription factors such as the protein products of the SNAI gene family, which inhibits the expression of epithelial genes. Several signaling pathways, such as TGF-beta1, IL-6, Akt, and Erk1/2, trigger EMT responses. Besides regulatory transcription factors, RNA molecules without protein translation, micro RNAs, and long non-coding RNAs also assist in the initialization of the EMT gene cluster. A challenging novel aspect of EMT research is the investigation of the interplay between tumor microenvironments and EMT. Several microenvironmental factors, including fibroblasts and myofibroblasts, as well as inflammatory, immune, and endothelial cells, induce EMT in tumor cells. EMT tumor cells change their adverse microenvironment into a tumor friendly neighborhood, loaded with stromal regulatory T cells, exhausted CD8+ T cells, and M2 (protumor) macrophages. Several EMT inhibitory mechanisms are instrumental in reversing EMT or targeting EMT cells. Currently, these mechanisms are also significant for clinical use.
Collapse
|
18
|
Park JL, Jeon S, Seo EH, Bae DH, Jeong YM, Kim Y, Bae JS, Kim SK, Jung CK, Kim YS. Comprehensive DNA Methylation Profiling Identifies Novel Diagnostic Biomarkers for Thyroid Cancer. Thyroid 2020; 30:192-203. [PMID: 31797753 DOI: 10.1089/thy.2019.0011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: There are no reliable biomarkers to accurately differentiate indolent thyroid tumors from more aggressive thyroid cancers. This study aimed to develop new DNA methylation markers for diagnosis and recurrence risk stratification of papillary thyroid carcinoma (PTC). Methods: Thyroid tumor-specific DNA methylation profiling was investigated in 34 fresh frozen tissues, which included nontumor (n = 7), noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP, n = 6) and PTC (n = 21), using the Illumina HumanMethylation EPIC array. We performed a genome-wide assessment of thyroid tumor-specific differentially methylated CpG sites in the discovery set, then validated the top candidate markers in an independent set of 293 paraffin tissue samples comprised of follicular adenoma (FA, n = 61), Hürthle cell adenoma (HA, n = 24), NIFTP (n = 56), PTC (n = 120), follicular thyroid carcinoma (n = 27), and Hürthle cell carcinoma (n = 5), by pyrosequencing. Results: Three selected markers (cg10705422, cg17707274, and cg26849382) differentiated nonmalignant (FA, HA, and NIFTP) tumors from differentiated thyroid cancers with area under the receiver operating characteristic curve of 0.83, 0.83, and 0.80, respectively. Low DNA methylation levels for three markers were significantly associated with recurrent or persistent disease (odds ratio (OR) = 3.860 [95% confidence interval (CI) 1.194-12.475]) and distant metastasis (OR = 4.009 [CI 1.098-14.632]) in patients with differentiated thyroid cancer. A subgroup analysis for the validation set showed that PTC patients with low DNA methylation levels more frequently had aggressive histology, extrathyroidal extension, lymph node metastasis, BRAFV600E mutations, and recurrent or persistent disease than those with high levels of methylation markers. All PTC patients who developed disease recurrence had low DNA methylation levels for three markers. Conclusions: DNA methylation levels of three markers can be useful for differentiating differentiated thyroid cancer from nonmalignant follicular thyroid lesions, and may serve as prognostic biomarkers for predicting recurrent or persistent disease after surgery for differentiated thyroid cancer.
Collapse
Affiliation(s)
- Jong-Lyul Park
- Genome Editing Research Center; Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Personalized Genomic Medicine Research Center; Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Sora Jeon
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Cancer Research Institute; College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Hye Seo
- Genome Editing Research Center; Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Hyuck Bae
- Genome Editing Research Center; Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Young Mun Jeong
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yourha Kim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Cancer Research Institute; College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ja Seong Bae
- Department of Cancer Research Institute; College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Surgery, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Kyu Kim
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Chan Kwon Jung
- Department of Cancer Research Institute; College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hospital Pathology; The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Sung Kim
- Genome Editing Research Center; Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Personalized Genomic Medicine Research Center; Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Lien K, Mayer W, Herrera R, Rosbe K, Tugizov SM. HIV-1 proteins gp120 and tat induce the epithelial-mesenchymal transition in oral and genital mucosal epithelial cells. PLoS One 2019; 14:e0226343. [PMID: 31869348 PMCID: PMC6927651 DOI: 10.1371/journal.pone.0226343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
The oral, cervical, and genital mucosa, covered by stratified squamous epithelia with polarized organization and strong tight and adherens junctions, play a critical role in preventing transmission of viral pathogens, including human immunodeficiency virus (HIV). HIV-1 interaction with mucosal epithelial cells may depolarize epithelia and disrupt their tight and adherens junctions; however, the molecular mechanism of HIV-induced epithelial disruption has not been completely understood. We showed that prolonged interaction of cell-free HIV-1 virions, and viral envelope and transactivator proteins gp120 and tat, respectively, with tonsil, cervical, and foreskin epithelial cells induces an epithelial-mesenchymal transition (EMT). EMT is an epigenetic process leading to the disruption of mucosal epithelia and allowing the paracellular spread of viral and other pathogens. Interaction of cell-free virions and gp120 and tat proteins with epithelial cells substantially reduced E-cadherin expression and activated vimentin and N-cadherin expression, which are well-known mesenchymal markers. HIV gp120- and tat-induced EMT was mediated by SMAD2 phosphorylation and activation of transcription factors Slug, Snail, Twist1 and ZEB1. Activation of TGF-β and MAPK signaling by gp120, tat, and cell-free HIV virions revealed the critical roles of these signaling pathways in EMT induction. gp120- and tat-induced EMT cells were highly migratory via collagen-coated membranes, which is one of the main features of mesenchymal cells. Inhibitors of TGF-β1 and MAPK signaling reduced HIV-induced EMT, suggesting that inactivation of these signaling pathways may restore the normal barrier function of mucosal epithelia.
Collapse
Affiliation(s)
- Kathy Lien
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Wasima Mayer
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Rossana Herrera
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, CA, United States of America
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California–San Francisco, San Francisco, CA, United States of America
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
20
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Varricchi G, Loffredo S, Marone G, Modestino L, Fallahi P, Ferrari SM, de Paulis A, Antonelli A, Galdiero MR. The Immune Landscape of Thyroid Cancer in the Context of Immune Checkpoint Inhibition. Int J Mol Sci 2019; 20:E3934. [PMID: 31412566 PMCID: PMC6720642 DOI: 10.3390/ijms20163934] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Immune cells play critical roles in tumor prevention as well as initiation and progression. However, immune-resistant cancer cells can evade the immune system and proceed to form tumors. The normal microenvironment (immune cells, fibroblasts, blood and lymphatic vessels, and interstitial extracellular matrix (ECM)) maintains tissue homeostasis and prevents tumor initiation. Inflammatory mediators, reactive oxygen species, cytokines, and chemokines from an altered microenvironment promote tumor growth. During the last decade, thyroid cancer, the most frequent cancer of the endocrine system, has emerged as the fifth most incident cancer in the United States (USA), and its incidence is steadily growing. Inflammation has long been associated with thyroid cancer, raising critical questions about the role of immune cells in its pathogenesis. A plethora of immune cells and their mediators are present in the thyroid cancer ecosystem. Monoclonal antibodies (mAbs) targeting immune checkpoints, such as mAbs anti-cytotoxic T lymphocyte antigen 4 (anti-CTLA-4) and anti-programmed cell death protein-1/programmed cell death ligand-1 (anti-PD-1/PD-L1), have revolutionized the treatment of many malignancies, but they induce thyroid dysfunction in up to 10% of patients, presumably by enhancing autoimmunity. Combination strategies involving immune checkpoint inhibitors (ICIs) with tyrosine kinase (TK) or serine/threonine protein kinase B-raf (BRAF) inhibitors are showing considerable promise in the treatment of advanced thyroid cancer. This review illustrates how different immune cells contribute to thyroid cancer development and the rationale for the antitumor effects of ICIs in combination with BRAF/TK inhibitors.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
- WAO Center of Excellence, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
- WAO Center of Excellence, 80131 Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, 56126 Pisa, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, 56126 Pisa, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
- WAO Center of Excellence, 80131 Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, 56126 Pisa, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| |
Collapse
|
22
|
Revilla G, Corcoy R, Moral A, Escolà-Gil JC, Mato E. Cross-Talk between Inflammatory Mediators and the Epithelial Mesenchymal Transition Process in the Development of Thyroid Carcinoma. Int J Mol Sci 2019; 20:ijms20102466. [PMID: 31109060 PMCID: PMC6566886 DOI: 10.3390/ijms20102466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
There is strong association between inflammatory processes and their main metabolic mediators, such as leptin, adiponectin secretion, and low/high-density lipoproteins, with the cancer risk and aggressive behavior of solid tumors. In this scenario, cancer cells (CCs) and cancer stem cells (CSCs) have important roles. These cellular populations, which come from differentiated cells and progenitor stem cells, have increased metabolic requirements when it comes to maintaining or expanding the tumors, and they serve as links to some inflammatory mediators. Although the molecular mechanisms that are involved in these associations remain unclear, the two following cellular pathways have been suggested: 1) the mesenchymal-epithelial transition (MET) process, which permits the differentiation of adult stem cells throughout the acquisition of cell polarity and the adhesion to epithelia, as well to new cellular lineages (CSCs); and, 2) a reverse process, termed the epithelial-mesenchymal transition (EMT), where, in pathophysiological conditions (tissue injury, inflammatory process, and oxidative stress), the differentiated cells can acquire a multipotent stem cell-like phenotype. The molecular mechanisms that regulate both EMT and MET are complex and poorly understood. Especially, in the thyroid gland, little is known regarding MET/EMT and the role of CCs or CSCs, providing an exciting, new area of knowledge to be investigated. This article reviews the progress to date in research on the role of inflammatory mediators and metabolic reprogramming during the carcinogenesis process of the thyroid gland and the EMT pathways.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), 08041 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Rosa Corcoy
- Department of Endocrinology, Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Antonio Moral
- Department of General Surgery-Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Departament de Cirugia, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), 08041 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Eugenia Mato
- Department of Endocrinology, Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
23
|
The Vicious Cross-Talk between Tumor Cells with an EMT Phenotype and Cells of the Immune System. Cells 2019; 8:cells8050460. [PMID: 31096701 PMCID: PMC6562673 DOI: 10.3390/cells8050460] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Carcinoma cells that undergo an epithelial-mesenchymal transition (EMT) and display a predominantly mesenchymal phenotype (hereafter EMT tumor cells) are associated with immune exclusion and immune deviation in the tumor microenvironment (TME). A large body of evidence has shown that EMT tumor cells and immune cells can reciprocally influence each other, with EMT cells promoting immune exclusion and deviation and immune cells promoting, under certain circumstances, the induction of EMT in tumor cells. This cross-talk between EMT tumor cells and immune cells can occur both between EMT tumor cells and cells of either the native or adaptive immune system. In this article, we review this evidence and the functional consequences of it. We also discuss some recent evidence showing that tumor cells and cells of the immune system respond to similar stimuli, activate the expression of partially overlapping gene sets, and acquire, at least in part, identical functionalities such as migration and invasion. The possible significance of these symmetrical changes in the cross-talk between EMT tumor cells and immune cells is addressed. Eventually, we also discuss possible therapeutic opportunities that may derive from disrupting this cross-talk.
Collapse
|
24
|
Zhu Y, Liu L, Hu L, Dong W, Zhang M, Liu Y, Li P. Effect of Celastrus orbiculatus in inhibiting Helicobacter pylori induced inflammatory response by regulating epithelial mesenchymal transition and targeting miR-21/PDCD4 signaling pathway in gastric epithelial cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:91. [PMID: 31035975 PMCID: PMC6489279 DOI: 10.1186/s12906-019-2504-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The extract of Celastrus orbiculatus (COE) have been studied for anti-Helicobacter pylori (H. pylori) activity and anti-cancer effects in vitro and in vivo. However, the molecular mechanism by which COE inhibits H. pylori-induced inflammatory response has not been fully elucidated so far. METHODS The effects of COE on viability, morphological changes, inflammatory cytokine secretion, protein and mRNA expression were analyzed by MTT assay, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, western blot and real-time PCR (RT-PCR), respectively. The methylation level of programmed cell death 4 (PDCD4) promoter was investigated by methylation-specific PCR. (MSP) . RESULTS COE effectively inhibited the H.pylori-induced inflammatory response by regulating epithelial-mesenchymal transition (EMT). The methylation level of PDCD4 promoter was suppressed by COE, which increased the expression ofPDCD4. Moreover, COE could inhibit microRNA-21 (miR-21) expression, as shown by an enhancement of its target gene PDCD4. Furthermore, both miR-21 over-expression and PDCD4 silencing attenuated the anti-inflammatory effect. of COE. CONCLUSIONS COE inhibits H. pylori induced inflammatory response through regulating EMT, correlating with inhibition of miR-21/PDCD4 signal pathways in gastric epithelial cells.
Collapse
Affiliation(s)
- Yaodong Zhu
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Lei Liu
- General Surgery Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Lei Hu
- Emergency Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Wenqing Dong
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Mei Zhang
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| | - Yanqing Liu
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Ping Li
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Medical University of Anhui, Hefei, 230000 Anhui China
| |
Collapse
|
25
|
Orlandella FM, Mariniello RM, Iervolino PLC, Auletta L, De Stefano AE, Ugolini C, Greco A, Mirabelli P, Pane K, Franzese M, Denaro M, Basolo F, Salvatore G. Junctional adhesion molecule-A is down-regulated in anaplastic thyroid carcinomas and reduces cancer cell aggressiveness by modulating p53 and GSK3 α/β pathways. Mol Carcinog 2019; 58:1181-1193. [PMID: 30834573 DOI: 10.1002/mc.23001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/23/2019] [Accepted: 02/18/2019] [Indexed: 01/27/2023]
Abstract
Junctional adhesion molecule A (JAM-A) is a transmembrane protein that contributes to different biological process, including the epithelial to mesenchymal transition (EMT). Through an EMT profiler array, we explored the molecular players associated with human thyroid cancer progression and identified JAM-A as one of the genes mostly deregulated. The quantitative real-time polymerase chain reaction and immunohistochemistry analyses showed that downregulation of JAM-A occurred in anaplastic thyroid carcinoma (ATC) compared with normal thyroid (NT) and papillary thyroid carcinoma (PTC) tissues and correlated with extrathyroid infiltration, tumor size, and ATC histotype. In ATC cell lines, JAM-A restoration suppressed malignant hallmarks of transformation including cell proliferation, motility, and transendothelial migration. Accordingly, knockdown of JAM-A enhanced thyroid cancer cell proliferation and motility in PTC cells. Through the proteome profiler human phospho-kinase array, we demonstrated that higher expression of JAM-A was associated with a significant increased level of phosphorylation of p53 and GSK3 α/β proteins. In conclusion, our findings highlight a novel role of JAM-A in thyroid cancer progression and suggest that JAM-A restoration could have potential clinical relevance in thyroid cancer treatment.
Collapse
Affiliation(s)
| | - Raffaela Mariarosaria Mariniello
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Napoli, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., Napoli, Italy
| | | | | | | | - Clara Ugolini
- Dipartimento di Area Medica, Azienda Ospedaliero Universitaria pisana, Pisa, Italy
| | - Adelaide Greco
- Dipartimento di Scienze Biomediche Avanzate, Università Federico II, Napoli, Italy.,Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | | | | | | | - Maria Denaro
- Dipartimento di Patologia Chirugica, Medica, Molecolare e dell'Area Critica dell' Università di Pisa, Pisa, Italy
| | - Fulvio Basolo
- Dipartimento di Patologia Chirugica, Medica, Molecolare e dell'Area Critica dell' Università di Pisa, Pisa, Italy
| | - Giuliana Salvatore
- IRCCS SDN, Napoli, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Napoli, Italy
| |
Collapse
|
26
|
Loss of MADD expression inhibits cellular growth and metastasis in anaplastic thyroid cancer. Cell Death Dis 2019; 10:145. [PMID: 30760700 PMCID: PMC6374448 DOI: 10.1038/s41419-019-1351-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
Anaplastic Thyroid Cancer (ATC) is an aggressive malignancy with limited therapeutic options and dismal patient survival. We have previously shown MADD to be differentially overexpressed in multiple cancer histologies and to contribute to tumor cell growth and survival. Therefore, we targeted MADD by gene silencing, explored its effect on cellular proliferation and metastases and examined its therapeutic potential in an orthotopic ATC model in athymic nude mice. When compared to untreated control and scramble siRNA, MADD siRNA treatment inhibited the proliferative capacity of 8505C, C643 and HTH7 cells in vitro and 8505C-derived-orthotopic tumor growth in vivo. MADD ablation caused a significant reduction in cellular migration and invasion potential; clonogenic capacity; as well as, mitochondrial length and potential in vitro. This MADD siRNA-induced anti-migratory/invasive effect corresponded with inhibition of epithelial–mesenchymal transition (EMT) and Wnt signaling. Mechanistically, MADD siRNA inhibited TNFα induced activation of pERK, pGSK3β and β-catenin, suggesting that MADD knockdown might exert its anti-migratory/invasive effects, by blocking TNFα/ERK/GSK3β axis. MADD siRNA can inhibit β-catenin nuclear translocation and consequently, the expression of its target genes in ATC cells. In in vivo experiments, along with tumor regression, MADD siRNA treatment also decreased evidence of lung metastases. Immunohistochemically, MADD siRNA-treated tumor tissues exhibited a reduction in Ki67 and N-Cadherin expression, and an increase in E-Cadherin expression. In conclusion, we show the crucial role of MADD in ATC tumorigenesis and metastasis and its potential implications as a molecular target for ATC therapy.
Collapse
|
27
|
Liu J, Tang X, Shi F, Li C, Zhang K, Liu J, Wang G, Yin J, Li Z. Genetic polymorphism contributes to 131I radiotherapy-induced toxicities in patients with differentiated thyroid cancer. Pharmacogenomics 2018; 19:1335-1344. [PMID: 30430914 DOI: 10.2217/pgs-2018-0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To investigate the association between SNPs in DNA damage response pathways and toxicities following 131I radiotherapy of differentiated thyroid cancer (DTC). Materials & methods: We identified 22 functional SNPs of genes in DNA damage response pathways. MassArray was used to sequence SNP genotypes in 203 DTC patients. Hardy-Weinberg equilibrium and the associations between the two alleles of each SNP and toxicity reactions were evaluated using χ2 analysis. RESULTS Ataxia-telangiectasia mutated (ATM) rs620815 T-allele carriers were at increased risk of 131I radiation-induced gastrointestinal reaction compared with C allele carriers. TNFα rs1800629 GA genotype may increase the incidence of neck pain compared with GG genotype. Furthermore, TNFα rs1800629, ATM rs11212570, NF-κβ rs230493, and TGF-β rs1800469, rs2241716 were associated with throat pain following 131I radiotherapy. CONCLUSION The identified SNPs might serve as novel biomarkers for DTC treated with 131I radiotherapy.
Collapse
Affiliation(s)
- Jianqiu Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University & Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Xinyue Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University & Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China.,Department of Center for ADR Monitoring of Hubei, Wuhan 430071, PR China
| | - Feng Shi
- Department of Thyroid internal medicine, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Cuilin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University & Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Ke Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University & Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Jie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University & Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University & Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University & Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China.,Institute of Clinical Pharmacology, Central South University & Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| |
Collapse
|
28
|
Impaired intracellular pathogen clearance and inflammatory joint disease: Is Whipple's disease a guiding light? Joint Bone Spine 2018; 85:531-536. [PMID: 28965939 DOI: 10.1016/j.jbspin.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2017] [Indexed: 01/29/2023]
|
29
|
Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med 2018; 7:4509-4516. [PMID: 30039553 PMCID: PMC6143921 DOI: 10.1002/cam4.1700] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
Immune system can recognize self vs transformed self. That is why cancer immunotherapy achieves notable benefits in a wide variety of cancers. Recently, several papers reported that immune checkpoint blockade therapy led to upregulation of IFNγ and in turn clearance of tumor cells. In this review, we conducted an extensive literature search of recent 5-year studies about the roles of IFNγ signaling in both tumor immune surveillance and immune evasion. In addition to well-known functions, IFNγ signaling also induces tumor ischemia and homeostasis program, resulting in tumor clearance and tumor escape, respectively. The yin and the yang of IFNγ signaling are summarized. Thus, this review helps us to comprehensively understand the roles of IFNγ in tumor immunity, which contributes to better design and management of clinical immunotherapy approaches.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of MedicineTsinghua UniversityBeijingChina
| | - Jian Lu
- Department of UrologyPeking University Third HospitalBeijingChina
| |
Collapse
|
30
|
Yan L, Xu F, Dai CL. Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:203. [PMID: 30157906 PMCID: PMC6114477 DOI: 10.1186/s13046-018-0887-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a complex process involving multiple genes, steps and stages. It refers to the disruption of tight intercellular junctions among epithelial cells under specific conditions, resulting in loss of the original polarity, order and consistency of the cells. Following EMT, the cells show interstitial cell characteristics with the capacity for adhesion and migration, while apoptosis is inhibited. This process is critically involved in embryogenesis, wound-healing, tumor invasion and metastasis. The tumor microenvironment is composed of infiltrating inflammatory cells, stromal cells and the active medium secreted by interstitial cells. Most patients with hepatocellular carcinoma (HCC) have a history of hepatitis virus infection. In such cases, major components of the tumor microenvironment include inflammatory cells, inflammatory factors and virus-encoded protein are major components. Here, we review the relationship between EMT and the inflammatory tumor microenvironment in the context of HCC. We also further elaborate the significant influence of infiltrating inflammatory cells and inflammatory mediators as well as the products expressed by the infecting virus in the tumor microenvironment on the EMT process.
Collapse
Affiliation(s)
- Long Yan
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Feng Xu
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Chao-Liu Dai
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China.
| |
Collapse
|
31
|
Zhang S, Yang X, Wang L, Zhang C. Interplay between inflammatory tumor microenvironment and cancer stem cells. Oncol Lett 2018; 16:679-686. [PMID: 29963133 DOI: 10.3892/ol.2018.8716] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 05/10/2018] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cells (CSCs), which have a close connection with tumor microenvironment, play a pivotal role in tumorigenesis, tumor progression, and metastasis. The inflammatory microenvironment is an essential component of tumor microenvironment. In the recent years, many studies have demonstrated that the inflammatory microenvironment induces the initiation of tumors, and contributes to the process of the progression of tumors, as well as metastasis. In this review, we summarize the relationship between CSCs and inflammatory components, such as inflammatory cytokines (IFNs, TNF, IL-6, IL-17) and inflammatory cells (myeloid-derived suppressor cells, tumor-associated macrophages). To illuminate the key factors that exert important actions in the tumor process would be important to improve the clinical outcome of the treatment for different types of cancer.
Collapse
Affiliation(s)
- Shijian Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Xi Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Lei Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Chenping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
32
|
Berthelot JM, Puéchal X. Défauts d’élimination intracellulaire d’agents infectieux et rhumatismes inflammatoires : la maladie de Whipple comme fil d’Ariane ? REVUE DU RHUMATISME 2018; 85:237-242. [DOI: 10.1016/j.rhum.2017.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Xie H, Liao N, Lan F, Cai Z, Liu X, Liu J. 3D-cultured adipose tissue-derived stem cells inhibit liver cancer cell migration and invasion through suppressing epithelial-mesenchymal transition. Int J Mol Med 2017; 41:1385-1396. [PMID: 29286072 PMCID: PMC5819936 DOI: 10.3892/ijmm.2017.3336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are considered promising candidates for stem cell therapy; however, the tumorigenicity of ADSCs remains controversial. The present study aimed to investigate the association between ADSCs and liver cancer cells, and to determine whether culture methods could influence the effects of ADSCs on liver cancer cell growth in vitro. Liver cancer cells were treated with ADSCs-conditioned medium (CM) that was collected using the two-dimensional (2D) culture method, sphere culture method, or three-dimensional (3D) culture method. After that, cell viability and apoptosis were measured using CCK-8 and Annexin V-FITC assay, respectively; the cell motility and adhesive capacity were analyzed by scratch wound healing and cell adhesion assay, respectively; the cell migration and invasion were examined by Transwell units; and the molecular mechanisms of ADSCs on effecting epithelial mesenchymal transition signaling pathway were further analyzed. The results demonstrated that ADSCs-CM was able to inhibit the growth of liver cancer cells by inhibiting cell proliferation and promoting cell apoptosis, as well as by suppressing cell motility, adhesive capacity, migration and invasion. In addition, ADSCs-CM was able to suppress cell growth via the downregulation of epithelial-mesenchymal transition signaling. Notably, the enhanced inhibitory effects of ADSCs on liver cancer cell growth could be achieved after cultu ring using a 3D approach. These findings suggested that ADSCs may provide a novel promising therapeutic approach for the treatment of patients with liver cancer, and the 3D culture method may provide a novel approach to explore the association between ADSCs and cancer.
Collapse
Affiliation(s)
- Haihua Xie
- Department of Clinical Genetics and Experimental Medicine, Fuzong Clinical College, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Fenghua Lan
- Department of Clinical Genetics and Experimental Medicine, Fuzong Clinical College, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
34
|
Mesenchymal traits at the convergence of tumor-intrinsic and -extrinsic mechanisms of resistance to immune checkpoint blockers. Emerg Top Life Sci 2017; 1:471-486. [PMID: 33525801 PMCID: PMC7289012 DOI: 10.1042/etls20170068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/01/2023]
Abstract
Targeting of immune checkpoint blockers (ICBs), such as cytotoxic T-lymphocyte antigen-4 and programmed-death 1/programmed-death ligand 1, has dramatically changed the landscape of cancer treatment. Seeing patients who were refractory to conventional therapy recover after immunotherapy, with high rates of objective durable responses and increased overall survival, has raised great enthusiasm in cancer care and research. However, to date, only a restricted portion of patients benefit from these therapies, due to natural and acquired resistance relying on the ever-evolving cross-talk between tumor and stromal cells. Here, we review the convergence of tumor-intrinsic and -extrinsic cues, both affecting tumor plasticity and tumor stroma leading to an immunosuppressive tumor microenvironment, which may account for the heterogeneous responses and resistance to ICB therapies. A deeper knowledge of the mechanisms and fingerprints involved in natural and acquired resistance is likely to bring clinical benefit to the majority of patients, offering important clues for overcoming drug resistance and boosting the effectiveness of treatment. We discuss the need to define tumor subtypes based on the tumor, immune and stromal gene signature and propose that the better we understand tumor mesenchymal traits, the more we will be able to identify predictive biomarkers of response to ICB treatments.
Collapse
|
35
|
Tesselaar MH, Smit JW, Nagarajah J, Netea-Maier RT, Plantinga TS. Pathological processes and therapeutic advances in radioiodide refractory thyroid cancer. J Mol Endocrinol 2017; 59:R141-R154. [PMID: 28931558 DOI: 10.1530/jme-17-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Abstract
While in most patients with non-medullary thyroid cancer (TC), disease remission is achieved by thyroidectomy and ablation of tumor remnants by radioactive iodide (RAI), a substantial subgroup of patients with metastatic disease present tumor lesions that have acquired RAI resistance as a result of dedifferentiation. Although oncogenic mutations in BRAF, TERT promoter and TP53 are associated with an increased propensity for induction of dedifferentiation, the role of genetic and epigenetic aberrations and their effects on important intracellular signaling pathways is not yet fully elucidated. Also immune, metabolic, stemness and microRNA pathways have emerged as important determinants of TC dedifferentiation and RAI resistance. These signaling pathways have major clinical implications since their targeting could inhibit TC progression and could enable redifferentiation to restore RAI sensitivity. In this review, we discuss the current insights into the pathological processes conferring dedifferentiation and RAI resistance in TC and elaborate on novel advances in diagnostics and therapy to improve the clinical outcome of RAI-refractory TC patients.
Collapse
Affiliation(s)
- Marika H Tesselaar
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W Smit
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Nagarajah
- Radiology & Nuclear MedicineRadboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that recognize tumor cells or stressed cells through 'missing-self' signals, such as altered or absent expression of MHC class I molecules. The function of NK cells is regulated by the activation or inhibition of receptors present on their surface. The activation of NK cells results in cytotoxic activity on target cells through release of toxic granules and inflammatory cytokines. However, NK cells infiltrating tumors have been frequently shown to exhibit a skewed phenotype that includes decreased antitumor activity and enhanced protumor activities, such as angiogenesis and metastasis. In fact, many studies have reported that tumor microenvironments induce a protumor phenotype in NK cells. Here, we review the biological properties of NK cells in the context of tumorigenesis and tumor progression, with a specific focus on the interactions between NK cells and critical tumor microenvironments, such as epithelial-to-mesenchymal transition, matrix metalloproteinases, and tumor-associated chronic inflammation in tumor metastasis.
Collapse
|
37
|
Suarez‐Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol 2017; 11:805-823. [PMID: 28599100 PMCID: PMC5496491 DOI: 10.1002/1878-0261.12095] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Tumors can be depicted as wounds that never heal, and are infiltrated by a large array of inflammatory and immune cells. Tumor-associated chronic inflammation is a hallmark of cancer that fosters progression to a metastatic stage, as has been extensively reviewed lately. Indeed, inflammatory cells persisting in the tumor establish a cross-talk with tumor cells that may result in a phenotype switch into tumor-supporting cells. This has been particularly well described for macrophages and is referred to as tumor-associated 'M2' polarization. Epithelial-to-mesenchymal transition (EMT), the embryonic program that loosens cell-cell adherence complexes and endows cells with enhanced migratory and invasive properties, can be co-opted by cancer cells during metastatic progression. Cancer cells that have undergone EMT are more aggressive, displaying increased invasiveness, stem-like features, and resistance to apoptosis. EMT programs can also stimulate the production of proinflammatory factors by cancer cells. Conversely, inflammation is a potent inducer of EMT in tumors. Therefore, the two phenomena may sustain each other, in an alliance for metastasis. This is the focus of this review, where the interconnections between EMT programs and cellular and molecular actors of inflammation are described. We also recapitulate data linking the EMT/inflammation axis to metastasis.
Collapse
Affiliation(s)
- Meggy Suarez‐Carmona
- National Center for Tumor Diseases (NCT) – University Hospital HeidelbergGermany
| | - Julien Lesage
- Laboratory of Tumor and Development BiologyGIGA‐Cancer University of LiègeBelgium
| | - Didier Cataldo
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| | - Christine Gilles
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| |
Collapse
|
38
|
Sistigu A, Di Modugno F, Manic G, Nisticò P. Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting. Cytokine Growth Factor Rev 2017; 36:67-77. [PMID: 28595838 DOI: 10.1016/j.cytogfr.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Tumorigenesis and tumor progression relies on the dialectics between tumor cells, the extracellular matrix and its remodelling enzymes, neighbouring cells and soluble cues. The host immune response is crucial in eliminating or promoting tumor growth and the reciprocal coevolution of tumor and immune cells, during disease progression and in response to therapy, shapes tumor fate by activating innate and adaptive mechanisms. The phenotypic plasticity is a common feature of epithelial and immune cells and epithelial-mesenchymal transition (EMT) is a dynamic process, governed by microenvironmental stimuli, critical in tumor cell shaping, increased tumor cell heterogeneity and stemness. In this review we will outline how the dysregulation of microenvironmental signaling is crucial in determining tumor plasticity and EMT, arguing how therapy resistance hinges on these dynamics.
Collapse
Affiliation(s)
- Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy; Department of General Pathology and Physiopathology, Università Cattolica del Sacro Cuore, largo Francesco Vito 1, 00168, Rome, Italy.
| | - Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00173, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
39
|
Small Interfering RNA Targeted to ASPP2 Promotes Progression of Experimental Proliferative Vitreoretinopathy. Mediators Inflamm 2016; 2016:7920631. [PMID: 27378826 PMCID: PMC4917715 DOI: 10.1155/2016/7920631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background. Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) is vital in proliferative vitreoretinopathy (PVR) development. Apoptosis-stimulating proteins of p53 (ASPP2) have recently been reported to participate in EMT. However, the role of ASPP2 in PVR pathogenesis has not been identified. Methods. Immunohistochemistry was used to investigate the expression of ASPP2 in epiretinal membranes of PVR patients. ARPE-19 cells were transfected with ASPP2-siRNA, followed with measurement of cell cytotoxicity, proliferation, and migration ability. EMT markers and related inflammatory and fibrosis cytokines were measured by western blot or flow cytometry. Additionally, PVR rat models were induced by intravitreal injection of ARPE-19 cells transfected with ASPP2-siRNA and evaluated accordingly. Results. Immunofluorescence analysis revealed less intense expression of ASPP2 in PVR membranes. ASPP2 knockdown facilitated the proliferation and migration of RPE cells and enhanced the expression of mesenchymal markers such as alpha smooth muscle actin, fibronectin, and ZEB1. Meanwhile, ASPP2-siRNA increased EMT-related and inflammatory cytokines, including TGF-β, CTGF, VEGF, TNF-α, and interleukins. PVR severities were more pronounced in the rat models with ASPP2-siRNA treatment. Conclusions. ASPP2 knockdown promoted EMT of ARPE-19 cells in vitro and exacerbated the progression of experimental PVR in vivo, possibly via inflammatory and fibrosis cytokines.
Collapse
|