1
|
Zhang Y, Zhao X, Li S, Bai S, Zhang W. The Retinoic-Acid-Related Orphan Receptor Alpha May Be Highly Involved in the Regulation of Seasonal Hair Molting. Int J Mol Sci 2025; 26:1579. [PMID: 40004044 PMCID: PMC11855665 DOI: 10.3390/ijms26041579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Seasonal molting in mammals is a crucial survival strategy, yet the underlying molecular mechanisms have not been fully characterized. Melatonin, serving as a bridge for the transmission of photoperiod signals, plays a significant regulatory role in animals' seasonal molting, and the physiological regulatory effects of melatonin signaling are highly dependent on the retinoic-acid-related orphan receptor alpha (Rorα). Hair follicle stem cells (HFSCs) are the most essential cell type in the process of hair follicle regeneration and seasonal replacement. Therefore, this study aims to discuss the regulatory effects of melatonin and its nuclear receptor RORA on HFSCs. This research found that RORA can downregulate cellular proliferation levels by inhibiting the cell cycle of HFSCs, while simultaneously promoting apoptosis in HFSCs and affecting the expression of some genes involved in ferroptosis. RORA can directly bind to the promoter regions of the cyclin genes Ccna2 and Ccne1 to regulate their transcription. Melatonin may enhance the viability of HFSCs by downregulating RORA levels. In this study, the impact of melatonin and its nuclear receptor RORA on the viability of HFSCs, along with some of the underlying molecular mechanisms, is characterized. These findings provide a theoretical foundation for research on the regulation of animal hair follicle development.
Collapse
Affiliation(s)
- Yu Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.); (S.L.)
| | - Xuefei Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.); (S.L.)
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Shuqi Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.); (S.L.)
| | - Suying Bai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.); (S.L.)
- Detecting Center of Wildlife, State Forestry and Grassland Administration, Harbin 150040, China
| | - Wei Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (X.Z.); (S.L.)
- Detecting Center of Wildlife, State Forestry and Grassland Administration, Harbin 150040, China
| |
Collapse
|
2
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
4
|
Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of Angiogenesis and Its Biomarkers in Development of Targeted Tumor Therapies. Stem Cells Int 2024; 2024:9077926. [PMID: 38213742 PMCID: PMC10783989 DOI: 10.1155/2024/9077926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Angiogenesis plays a significant role in the human body, from wound healing to tumor progression. "Angiogenic switch" indicates a time-restricted event where the imbalance between pro- and antiangiogenic factors results in the transition from prevascular hyperplasia to outgrowing vascularized tumor, which eventually leads to the malignant cancer progression. In the last decade, molecular players, i.e., angiogenic biomarkers and underlying molecular pathways involved in tumorigenesis, have been intensely investigated. Disrupting the initiation and halting the progression of angiogenesis by targeting these biomarkers and molecular pathways has been considered as a potential treatment approach for tumor angiogenesis. This review discusses the currently known biomarkers and available antiangiogenic therapies in cancer, i.e., monoclonal antibodies, aptamers, small molecular inhibitors, miRNAs, siRNAs, angiostatin, endostatin, and melatonin analogues, either approved by the U.S. Food and Drug Administration or currently under clinical and preclinical investigations.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| |
Collapse
|
5
|
Khan IA, Singh N, Gunjan D, Dash NR, Nayak B, Gupta S, Saraya A. Elevated levels of peripheral Th17 cells and Th17-related cytokines in patients with periampullary adenocarcinoma. Hum Immunol 2024; 85:110748. [PMID: 38177009 DOI: 10.1016/j.humimm.2023.110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
AIM Periampullary adenocarcinoma (PAC) is a malignant tumor originating at the ampulla of Vater, distal common bile duct, head of the pancreas, ampulla and duodenum. The levels of circulating Th17 cells and Th17-related cytokines in patients with PAC remain unreported. Therefore, the aim of this study was to determine the levels of circulating Th17 cells and Th17-related cytokines in patients with PAC. MATERIALS AND METHODS Flow cytometry was used to measure Th17 cell proportions in PBMCs from 60 PAC patients and 30 healthy controls. Enzyme-linked immunosorbent assay (ELISA) was used to quantify IL-17A and IL-23 levels in serum samples, while quantitative reverse transcription polymerase chain reaction (qRT-PCR) assessed IL-17A mRNA expression and Th17-related transcription factors (RORγt and STAT3) in tissue samples. RESULTS The findings showed a substantial increase in Th17 cell percentages, elevated concentrations of IL-17A and IL-23, and higher mRNA expression levels of IL-17A, RORγt, and STAT3 in patients with PAC when compared to healthy controls (HCs). CONCLUSION Th17 cells play an important role in the pathogenesis of PAC and may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Nidhi Singh
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gunjan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Nihar Ranjan Dash
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
6
|
Amirzargar MR, Shahriyary F, Shahidi M, Kooshari A, Vafajoo M, Nekouian R, Faranoush M. Angiogenesis, coagulation, and fibrinolytic markers in acute promyelocytic leukemia (NB4): An evaluation of melatonin effects. J Pineal Res 2023; 75:e12901. [PMID: 37485730 DOI: 10.1111/jpi.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Melatonin is a powerful biological agent that has been shown to inhibit angiogenesis and also exerts anti-inflammatory effects. It is well known that new blood vessel formation (angiogenesis) has become an urgent issue in leukemia as well as solid tumors. Acute promyelocytic leukemia (APL) is a form of liquid cancer that manifests increased angiogenesis in the bone marrow of patients. Despite high-rate curable treatment with all-trans-retinoic acid (ATRA) and recently arsenic-trioxide (ATO), early death because of hemorrhage, coagulopathy, and Disseminated intravascular coagulation (DIC) remains still a concerning issue in these patients. It is, therefore, urgent to seek treatment strategies with antiangiogenic capabilities that also diminish coagulopathy and hyperfibrinolysis in APL patients. In this study, a coculture system with human umbilical vein endothelial cells (HUVECs) and NB4 APL cells was used to investigate the direct effect of melatonin on angiogenesis and its possible action on tissue factor (TF) and tissue-type plasminogen activator-1 (TPA-1) expression. Our experiments revealed that HUVEC-induced angiogenesis by cocultured NB4 cells was suppressed when melatonin alone or in combination with ATRA was added to the incubation medium. Melatonin at concentrations of 1 mM inhibited tube formation of HUVECs and also decreased interleukin-6 secretion and VEGF mRNA expression in HUVEC and NB4 cells. Taken together, the results of this study demonstrate that melatonin inhibits accelerated angiogenesis of HUVECs and ameliorates the coagulation and fibrinolysis indices stimulated by coculturing with NB4 cells.
Collapse
Affiliation(s)
- Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Shahriyary
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Kooshari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Vafajoo
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nekouian
- Department of Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Horodincu L, Solcan C. Influence of Different Light Spectra on Melatonin Synthesis by the Pineal Gland and Influence on the Immune System in Chickens. Animals (Basel) 2023; 13:2095. [PMID: 37443893 DOI: 10.3390/ani13132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
It is well known that the pineal gland in birds influences behavioural and physiological functions, including those of the immune system. The purpose of this research is to examine the endocrine-immune correlations between melatonin and immune system activity. Through a description of the immune-pineal axis, we formulated the objective to determine and describe: the development of the pineal gland; how light influences secretory activity; and how melatonin influences the activity of primary and secondary lymphoid organs. The pineal gland has the ability to turn light information into an endocrine signal suitable for the immune system via the membrane receptors Mel1a, Mel1b, and Mel1c, as well as the nuclear receptors RORα, RORβ, and RORγ. We can state the following findings: green monochromatic light (560 nm) increased serum melatonin levels and promoted a stronger humoral and cellular immune response by proliferating B and T lymphocytes; the combination of green and blue monochromatic light (560-480 nm) ameliorated the inflammatory response and protected lymphoid organs from oxidative stress; and red monochromatic light (660 nm) maintained the inflammatory response and promoted the growth of pathogenic bacteria. Melatonin can be considered a potent antioxidant and immunomodulator and is a critical element in the coordination between external light stimulation and the body's internal response.
Collapse
Affiliation(s)
- Loredana Horodincu
- Preclinics Department, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Carmen Solcan
- Preclinics Department, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| |
Collapse
|
8
|
Antitumor effect of melatonin on breast cancer in experimental models: A systematic review. Biochim Biophys Acta Rev Cancer 2023; 1878:188838. [PMID: 36403922 DOI: 10.1016/j.bbcan.2022.188838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Breast cancer is the most frequent malignant neoplasm in females. While conventional treatments such as chemotherapy and radiotherapy are available, they are highly invasive and toxic to oncological patients. Melatonin is a promising molecule for the treatment of breast cancer with antitumor effects on tumorigenesis and tumor progression. The aim of this systematic review was to synthesize knowledge about the antitumor effect of melatonin on breast cancer in experimental models and propose the main mechanisms of action already described in relation to the processes regulated by melatonin. PubMed, Web of Science, and Embase databases were used. The inclusion criteria were in vitro and in vivo experimental studies that used different formulations of melatonin as a treatment for breast cancer, without year or language restrictions. Risk of bias for studies was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool. Data from selected articles were presented as narrative descriptions and tables. Seventy-five articles on different breast cancer cell lines and experimental models treated with melatonin alone, or in combination with other compounds were included. Melatonin showed antitumor effects on proliferative pathways related to the cell cycle and tumorigenesis, tumor death, angiogenesis, and tumor metastasis, as well as on oxidative stress and immune regulatory pathways. These effects were either dependent or independent of melatonin receptors. Herein, we clarify the antitumor action of melatonin on different tumorigenic processes in breast cancer in experimental models. Systematic review registration: PROSPERO database (CRD42022309822/https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022309822).
Collapse
|
9
|
Leite M, Seruca R, Gonçalves JM. Drug Repurposing in Gastric Cancer: Current Status and Future Perspectives. HEREDITARY GASTRIC AND BREAST CANCER SYNDROME 2023:281-320. [DOI: 10.1007/978-3-031-21317-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Wang S, Yang Y, Li L, Ma P, Jiang Y, Ge M, Yu Y, Huang H, Fang Y, Jiang N, Miao H, Guo H, Yan L, Ren Y, Sun L, Zha Y, Li N. Identification of Tumor Antigens and Immune Subtypes of Malignant Mesothelioma for mRNA Vaccine Development. Vaccines (Basel) 2022; 10:1168. [PMID: 35893817 PMCID: PMC9331978 DOI: 10.3390/vaccines10081168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND mRNA-based cancer vaccines have been considered a promising anticancer therapeutic approach against various cancers, yet their efficacy for malignant mesothelioma (MESO) is still not clear. The present study is designed to identify MESO antigens that have the potential for mRNA vaccine development, and to determine the immune subtypes for the selection of suitable patients. METHODS A total of 87 MESO datasets were used for the retrieval of RNA sequencing and clinical data from The Cancer Genome Atlas (TCGA) databases. The possible antigens were identified by a survival and a genome analysis. The samples were divided into two immune subtypes by the application of a consensus clustering algorithm. The functional annotation was also carried out by using the DAVID program. Furthermore, the characterization of each immune subtype related to the immune microenvironment was integrated by an immunogenomic analysis. A protein-protein interaction network was established to categorize the hub genes. RESULTS The five tumor antigens were identified in MESO. FAM134B, ALDH3A2, SAV1, and RORC were correlated with superior prognoses and the infiltration of antigen-presenting cells (APCs), while FN1 was associated with poor survival and the infiltration of APCs. Two immune subtypes were identified; TM2 exhibited significantly improved survival and was more likely to benefit from vaccination compared with TM1. TM1 was associated with a relatively quiet microenvironment, high tumor mutation burden, and enriched DNA damage repair pathways. The immune checkpoints and immunogenic cell death modulators were also differentially expressed between two subtypes. Finally, FN1 was identified to be the hub gene. CONCLUSIONS FAM134B, ALDH3A2, SAV1, RORC, and FN1 are considered as possible and effective mRNA anti-MESO antigens for the development of an mRNA vaccine, and TM2 patients are the most suitable for vaccination.
Collapse
Affiliation(s)
- Shuhang Wang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (S.W.); (P.M.); (Y.J.); (Y.Y.); (H.H.); (Y.F.); (N.J.); (H.M.)
| | - Yuqi Yang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang 550002, China;
| | - Lu Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210018, China; (L.L.); (M.G.); (H.G.); (L.Y.); (Y.R.)
| | - Peiwen Ma
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (S.W.); (P.M.); (Y.J.); (Y.Y.); (H.H.); (Y.F.); (N.J.); (H.M.)
| | - Yale Jiang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (S.W.); (P.M.); (Y.J.); (Y.Y.); (H.H.); (Y.F.); (N.J.); (H.M.)
| | - Minghui Ge
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210018, China; (L.L.); (M.G.); (H.G.); (L.Y.); (Y.R.)
| | - Yue Yu
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (S.W.); (P.M.); (Y.J.); (Y.Y.); (H.H.); (Y.F.); (N.J.); (H.M.)
| | - Huiyao Huang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (S.W.); (P.M.); (Y.J.); (Y.Y.); (H.H.); (Y.F.); (N.J.); (H.M.)
| | - Yuan Fang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (S.W.); (P.M.); (Y.J.); (Y.Y.); (H.H.); (Y.F.); (N.J.); (H.M.)
| | - Ning Jiang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (S.W.); (P.M.); (Y.J.); (Y.Y.); (H.H.); (Y.F.); (N.J.); (H.M.)
| | - Huilei Miao
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (S.W.); (P.M.); (Y.J.); (Y.Y.); (H.H.); (Y.F.); (N.J.); (H.M.)
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210018, China; (L.L.); (M.G.); (H.G.); (L.Y.); (Y.R.)
| | - Linlin Yan
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210018, China; (L.L.); (M.G.); (H.G.); (L.Y.); (Y.R.)
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210018, China; (L.L.); (M.G.); (H.G.); (L.Y.); (Y.R.)
| | - Lichao Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Zha
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang 550002, China;
| | - Ning Li
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (S.W.); (P.M.); (Y.J.); (Y.Y.); (H.H.); (Y.F.); (N.J.); (H.M.)
| |
Collapse
|
12
|
Effects of Maternal Nutrient Restriction and Melatonin Supplementation on Cardiomyocyte Cell Development Parameters Using Machine Learning Techniques. Animals (Basel) 2022; 12:ani12141818. [PMID: 35883365 PMCID: PMC9311781 DOI: 10.3390/ani12141818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/07/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of the current study was to examine the effects of maternal feed restriction and melatonin supplementation on fetal cardiomyocyte cell development parameters and predict binucleation and hypertrophy using machine learning techniques using pregnant beef heifers. Brangus heifers (n = 29) were assigned to one of four treatment groups in a 2 × 2 factorial design at day 160 of gestation: (1) 100% of nutrient requirements (adequately fed; ADQ) with no dietary melatonin (CON); (2) 100% of nutrient requirements (ADQ) with 20 mg/d of dietary melatonin (MEL); (3) 60% of nutrient requirements (nutrient-restricted; RES) with no dietary melatonin (CON); (4) 60% of nutrient requirements (RES) with 20 mg/d of dietary melatonin (MEL). On day 240 of gestation, fetuses were removed, and fetal heart weight and thickness were determined. The large blood vessel perimeter was increased in fetuses from RES compared with ADQ (p = 0.05). The total number of capillaries per tissue area exhibited a nutrition by treatment interaction (p = 0.01) where RES-MEL increased capillary number compared (p = 0.03) with ADQ-MEL. The binucleated cell number per tissue area showed a nutrition by treatment interaction (p = 0.010), where it was decreased in RES-CON vs. ADQ-CON fetuses. Hypertrophy was estimated by dividing ventricle thickness by heart weight. Based on machine learning results, for the binucleation and hypertrophy target variables, the Bagging model with 5 Decision Tree estimators and 3 Decision Tree estimators produced the best results without overfitting. In the prediction of binucleation, left heart ventricular thickness feature had the highest Gin importance weight followed by fetal body weight. In the case of hypertrophy, heart weight was the most important feature. This study provides evidence that restricted maternal nutrition leads to a reduction in the number of cardiomyocytes while melatonin treatment can mitigate some of these disturbances.
Collapse
|
13
|
Sadoughi F, Dana PM, Homayoonfal M, Sharifi M, Asemi Z. Molecular basis of melatonin protective effects in metastasis: A novel target of melatonin. Biochimie 2022; 202:15-25. [DOI: 10.1016/j.biochi.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
14
|
Hagström A, Kal Omar R, Williams PA, Stålhammar G. The rationale for treating uveal melanoma with adjuvant melatonin: a review of the literature. BMC Cancer 2022; 22:398. [PMID: 35413810 PMCID: PMC9006630 DOI: 10.1186/s12885-022-09464-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Uveal melanoma is a rare form of cancer with high mortality. The incidence of metastases is attributed to early seeding of micrometastases from the eye to distant organs, primarily the liver. Once these seeded clusters of dormant tumor cells grow into larger radiologically detectable macrometastases, median patient survival is about 1 year. Melatonin is an important hormone for synchronizing circadian rhythms. It is also involved in other aspects of human physiology and may offer therapeutic benefits for a variety of diseases including cancer. METHODS Articles involving the physiological effects of melatonin, pharmacokinetics, and previous use in cancer studies were acquired using a comprehensive literature search in the Medline (PubMed) and Web of Science databases. In total, 147 publications were selected and included in the review. RESULTS Melatonin has been observed to suppress the growth of cancer cells, inhibit metastatic spread, enhance immune system functions, and act as an anti-inflammatory in both in vitro and in vivo models. Melatonin may also enhance the efficacy of cancer treatments such as immuno- and chemotherapy. Numerous studies have shown promising results for oral melatonin supplementation in patients with other forms of cancer including cutaneous malignant melanoma. Cell line and animal studies support a hypothesis in which similar benefits may exist for uveal melanoma. CONCLUSIONS Given its low cost, good safety profile, and limited side effects, there may be potential for the use of melatonin as an adjuvant oncostatic treatment. Future avenues of research could include clinical trials to evaluate the effect of melatonin in prevention of macrometastases of uveal melanoma.
Collapse
Affiliation(s)
- Anna Hagström
- Department of Medicine, Karolinska Institutet, D1:04, 171 76, Stockholm, Sweden.
| | - Ruba Kal Omar
- Department of Medicine, Karolinska Institutet, D1:04, 171 76, Stockholm, Sweden.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64, Stockholm, Sweden
| | - Gustav Stålhammar
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64, Stockholm, Sweden
- St. Erik Eye Hospital, Box 4078, 171 04, Stockholm, Sweden
| |
Collapse
|
15
|
Zhang Y, Wang Z, Dong Y, Cao J, Chen Y. Melatonin Nuclear Receptors Mediate Green-and-Blue-Monochromatic-Light-Combinations-Inhibited B Lymphocyte Apoptosis in the Bursa of Chickens via Reducing Oxidative Stress and Nfκb Expression. Antioxidants (Basel) 2022; 11:antiox11040748. [PMID: 35453433 PMCID: PMC9029876 DOI: 10.3390/antiox11040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies found that melatonin modulates a combination of green-and-blue-light-induced B-lymphocyte proliferation via its membrane receptors Mel1a and Mel1c. However, in addition to its membrane-bound receptors, melatonin also functions through binding to nuclear receptors RORα/RORβ/RORγ. In this study, we raised 120 chicks under 400–700 nm white (WW), 660 nm red (RR), 560 nm green (GG) and 480 nm blue light (BB) from P0 to P26. From P27 to P42, half of the chickens in green, blue and red were switched to blue (G→B), green (B→G) and red (R→B), respectively. We used immunohistochemistry, Western blotting, qRT-PCR, Elisa and MTT to investigate the influence of various monochromatic light combinations on the bursal B lymphocyte apoptosis and oxidative stress levels as well as estimate whether melatonin and its nuclear receptors were involved in this process. Consistent with the increase in the plasma melatonin concentration and antioxidant enzyme activity, we observed that G→B significantly decreased the RORα, RORγ mRNA level, inhibited Bax, Caspase-3 and p-iκb, p-p65 protein expression, increased the IL-10 level and Nrf2, HO-1 protein expression, down-regulated the MDA and pro-inflammatory IL-6, TNF-α and IFN-γ levels in the bursa compared with WW, RR, GG, BB and R→B, respectively. Our in vitro results showed exogenous melatonin supplementation inhibited B-lymphocyte apoptosis, decreased IL-6, TNF-α, IFN-γ and ROS production, down-regulated RORα, RORγ mRNA level and p-iκb and p-p65 protein expression, whereas it improved the IL-10 level and Nrf2 and the HO-1 protein expression in bursal B lymphocyte. Moreover, these responses were abrogated by RORα agonist SR1078 but were mimicked by RORα antagonist SR3335 or RORγ antagonist GSK2981278. In addition, p65 antagonist BAY reversed RORα/RORγ-mediated G→B-inhibited bursal B lymphocyte apoptosis. Overall, we concluded that melatonin nuclear RORα/RORγ mediates G→B-inhibited bursal B lymphocyte apoptosis via reducing oxidative stress and Nfκb expression.
Collapse
Affiliation(s)
| | | | | | | | - Yaoxing Chen
- Correspondence: ; Tel.: +86-10-6273-3778; Fax: +86-10-6273-3199
| |
Collapse
|
16
|
Chevillard PM, Batailler M, Piégu B, Estienne A, Blache MC, Dubois JP, Pillon D, Vaudin P, Dupont J, Just N, Migaud M. Seasonal vascular plasticity in the mediobasal hypothalamus of the adult ewe. Histochem Cell Biol 2022; 157:581-593. [PMID: 35118552 DOI: 10.1007/s00418-022-02079-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Sheep, like most seasonal mammals, exhibit a cyclic adaptive reproductive physiology that allows ewes to give birth to their progeny during the spring when environmental conditions are favorable to their survival. This process relies on the detection of day length (or photoperiod) and is associated with profound changes in cellular plasticity and gene expression in the hypothalamic-pituitary-gonadal axis, mechanisms that are suggested to participate in the seasonal adaptation of neuroendocrine circuits. Recently, pituitary vascular growth has been proposed as a seasonally regulated process in which the vascular endothelial growth factor A (VEGFA), a well-known angiogenic cytokine, is suspected to play a crucial role. However, whether this mechanism is restricted to the pituitary gland or also occurs in the mediobasal hypothalamus (MBH), a crucial contributor to the control of the reproductive function, remains unexplored. Using newly developed image analysis tools, we showed that the arcuate nucleus (ARH) of the MBH exhibits an enhanced vascular density during the long photoperiod or non-breeding season, associated with higher expression of VEGFA. In the median eminence (ME), a structure connecting the MBH to the pituitary gland, higher VEGFA, kinase insert domain receptor (KDR/VEGFR2) and plasmalemma vesicle-associated protein (PLVAP) gene expressions were detected during the long photoperiod. We also found that VEGFA and its receptor, VEGFR2, are expressed by neurons and tanycytes in both the ARH and ME. Altogether, these data show variations in the MBH vasculature according to seasons potentially through a VEGFA-dependent pathway, paving the way for future studies aiming to decipher the role of these changes in the hypothalamic control of seasonal reproduction.
Collapse
Affiliation(s)
- Pierre-Marie Chevillard
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Martine Batailler
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Benoît Piégu
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Anthony Estienne
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Marie-Claire Blache
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Jean-Philippe Dubois
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Delphine Pillon
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Pascal Vaudin
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Joëlle Dupont
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Nathalie Just
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Martine Migaud
- Physiologie de la Reproduction et des Comportements PRC Centre INRAE Val de Loire, CNRS, IFCE, INRAE, Université de Tours, 37380, Nouzilly, France.
| |
Collapse
|
17
|
Melatonin Administration Prevents Placental and Fetal Changes Induced by Gestational Diabetes. Reprod Sci 2022; 29:1111-1123. [PMID: 35025098 DOI: 10.1007/s43032-022-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Gestational diabetes mellitus (GDM) promotes changes in the placenta and fetuses, due to oxidative stress. Antioxidants can reduce oxidative stress in the placenta. We tested the hypothesis that melatonin (Mel) can prevent these effects in the placenta and fetuses, analyzing their histology, histochemistry, morphometry, and immunohistochemistry. Thirty albino rats were used, divided into groups: CG-pregnant non-diabetic rats; GD-pregnant diabetic rats; GD + Mel-pregnant diabetic rats treated with melatonin. Diabetes was induced by streptozotocin at a dosage of 50 mg/kg i.p. Melatonin was administered in daily injections of 0.8 mg/kg i.p. Melatonin prevented the placental weight and fetal weight and length from increasing, in addition to histomoformetric, histochemical, and immunohistochemical changes in the placentas, compared to the placentas of diabetic females (GD). Thus, we conclude that melatonin has a great potential to prevent placental changes due to GDM.
Collapse
|
18
|
Ammar OA, El-Missiry MA, Othman AI, Amer ME. Melatonin is a potential oncostatic agent to inhibit HepG2 cell proliferation through multiple pathways. Heliyon 2022; 8:e08837. [PMID: 35141433 PMCID: PMC8814902 DOI: 10.1016/j.heliyon.2022.e08837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
CONTEXT Chemotherapy is a cornerstone in the treatment of hepatocellular carcinoma (HCC). Melatonin is a pineal hormone that targets various cancers, however, its antitumor pathways are still not fully elucidated. OBJECTIVE This study investigated melatonin's antitumor molecular mechanisms to inhibit the proliferation of HepG2 cells. MATERIALS AND METHODS HepG2 Cells were classified into cells without treatment as a control group and cells treated with melatonin (5.4 mmol/L) for 48 h. Proliferating cell nuclear antigen (PCNA) and marker of proliferation Ki-67 were estimated using immunohistochemical analysis. Apoptosis and cell cycle were evaluated using flow cytometric analysis. Apoptotic markers were detected using RT-qPCR assay. Antioxidants and oxidative stress biomarkers were performed using a colorimetric assay. RESULTS Melatonin produced a remarkable steady decrease in the viability of HepG2 cells at a concentration range between 5-20 mmol/L. Melatonin suppressed cell proliferation in the G2/M phase of the cell cycle (34.97 ± 0.92%) and induced apoptosis (12.43 ± 0.73%) through up-regulating p21 and p53 that was confirmed by the reduction of PCNA and Ki-67 expressions. Additionally, melatonin repressed angiogenesis evidenced by the down-regulation of angiopoietin-2, vascular endothelial growth factor receptor-2 expressions (0.42-fold change), and the level of CD133. Moreover, melatonin augmented the oxidative stress manifested by a marked increase of 4-hydroxynonenal levels with a reduction of glutathione content and superoxide dismutase activity. DISCUSSION AND CONCLUSION Melatonin inhibits proliferation and angiogenesis and induced apoptosis and oxidative stress in HepG2 cells. These results indicate the oncostatic effectiveness of melatonin on liver cancer.
Collapse
Affiliation(s)
- Omar A. Ammar
- Basic Science Department, Delta University for Science and Technology, Gamasa, Egypt
| | | | - Azza I. Othman
- Zoology Department, Faculty of Science, Mansoura University, Egypt
| | - Maggie E. Amer
- Zoology Department, Faculty of Science, Mansoura University, Egypt
| |
Collapse
|
19
|
Wang R, Liu H, Song J, Wu Q. Activity of Melatonin Against Gastric Cancer Growth in a Chick Embryo Tumor Xenograft Model. Cancer Manag Res 2021; 13:8803-8808. [PMID: 34853535 PMCID: PMC8627858 DOI: 10.2147/cmar.s329728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Previous studies have shown the antitumor activity of melatonin against a wide range of human cancers; however, the impact of melatonin on gastric cancer growth remains to be illustrated. This study aimed to investigate the activity of melatonin against gastric cancer growth in a chick embryo tumor xenograft model and explore the possible mechanisms. Materials and Methods The growth of gastric cancer SGC-7901 cells was measured using MTT assay, and a chick embryo tumor xenograft model was generated to observe the effect of melatonin on gastric cancer growth in vivo. In addition, the VEGF and angiogenin secretion was measured in the supernatant of chick embryo tumor xenograft models with ELISA. Results MLT treatment inhibited the growth of SGC-7901 cells at a concentration-dependent manner, and treatment with MLT at 1 mM was found to markedly reduce the volume and weight of tumors bearing the allantois of chicken embryos. ELISA showed that MLT at concentrations of 0.0041, 0.012, 0.037 and 0.11 had no remarkable impact on VEGF and angiopoietin secretion, while MLT at 1 mM significantly suppressed VEGF and angiopoietin production in chick embryo tumor xenograft models with SGC-7901 cells (P = 0.023). Conclusion Our data demonstrate that MLT inhibits gastric cancer growth in vitro at a concentration-dependent manner, and suppresses angiogenesis of the chick embryo tumor xenograft model with SGC-7901 cells through inhibiting VEGF and angiogenin secretion. Further studies are needed to investigate the therapeutic potential of MLT for gastric cancer as compared to drugs clinically approved.
Collapse
Affiliation(s)
- Rixiong Wang
- Department of Oncology, the First Affiliated Hospital of Fujian Medical University, Fuzhou City, People's Republic of China.,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital of Fujian Medical University, Fuzhou City, People's Republic of China
| | - Hui Liu
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou City, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou City, People's Republic of China
| | - Jun Song
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou City, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou City, People's Republic of China
| | - Qing Wu
- Department of Oncology, the First Affiliated Hospital of Fujian Medical University, Fuzhou City, People's Republic of China.,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital of Fujian Medical University, Fuzhou City, People's Republic of China
| |
Collapse
|
20
|
Mu Q, Najafi M. Modulation of the tumor microenvironment (TME) by melatonin. Eur J Pharmacol 2021; 907:174365. [PMID: 34302814 DOI: 10.1016/j.ejphar.2021.174365] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment (TME) includes a number of non-cancerous cells that affect cancer cell survival. Although CD8+ T lymphocytes and natural killer (NK) cells suppress tumor growth through induction of cell death in cancer cells, there are various immunosuppressive cells such as regulatory T cells (Tregs), tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), etc., which drive cancer cell proliferation. These cells may also support tumor growth and metastasis by stimulating angiogenesis, epithelial-mesenchymal transition (EMT), and resistance to apoptosis. Interactions between cancer cells and other cells, as well as molecules released into EMT, play a key role in tumor growth and suppression of antitumoral immunity. Melatonin is a natural hormone that may be found in certain foods and is also available as a drug. Melatonin has been demonstrated to modulate cell activity and the release of cytokines and growth factors in TME. The purpose of this review is to explain the cellular and molecular mechanisms of cancer cell resistance as a result of interactions with TME. Next, we explain how melatonin affects cells and interactions within the TME.
Collapse
Affiliation(s)
- Qi Mu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
21
|
González A, Alonso-González C, González-González A, Menéndez-Menéndez J, Cos S, Martínez-Campa C. Melatonin as an Adjuvant to Antiangiogenic Cancer Treatments. Cancers (Basel) 2021; 13:3263. [PMID: 34209857 PMCID: PMC8268559 DOI: 10.3390/cancers13133263] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a hormone with different functions, antitumor actions being one of the most studied. Among its antitumor mechanisms is its ability to inhibit angiogenesis. Melatonin shows antiangiogenic effects in several types of tumors. Combination of melatonin and chemotherapeutic agents have a synergistic effect inhibiting angiogenesis. One of the undesirable effects of chemotherapy is the induction of pro-angiogenic factors, whilst the addition of melatonin is able to overcome these undesirable effects. This protective effect of the pineal hormone against angiogenesis might be one of the mechanisms underlying its anticancer effect, explaining, at least in part, why melatonin administration increases the sensitivity of tumors to the inhibitory effects exerted by ordinary chemotherapeutic agents. Melatonin has the ability to turn cancer totally resistant to chemotherapeutic agents into a more sensitive chemotherapy state. Definitely, melatonin regulates the expression and/or activity of many factors involved in angiogenesis which levels are affected (either positively or negatively) by chemotherapeutic agents. In addition, the pineal hormone has been proposed as a radiosensitizer, increasing the oncostatic effects of radiation on tumor cells. This review serves as a synopsis of the interaction between melatonin and angiogenesis, and we will outline some antiangiogenic mechanisms through which melatonin sensitizes cancer cells to treatments, such as radiotherapy or chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain; (A.G.); (A.G.-G.); (J.M.-M.); (C.M.-C.)
| | | |
Collapse
|
22
|
Pan X, Li B, Zhang G, Gong Y, Liu R, Chen B, Li Y. Identification of RORγ as a favorable biomarker for colon cancer. J Int Med Res 2021; 49:3000605211008338. [PMID: 33947261 PMCID: PMC8113924 DOI: 10.1177/03000605211008338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To evaluate the expression of retinoid-related orphan receptor gamma (RORγ)
and its potential role in the prognosis of colon cancer. Methods The Cancer Genome Atlas and GSE117606 were used to evaluate to RORγ levels in
colon cancer, and real-time quantitative polymerase chain reaction was
applied for validation. UALCAN and MEXPRESS were used to analyze the
associations of RORγ expression with clinical parameters. The survival
analysis was conducted in GEPIA. Results RORγ expression was significantly lower in colon tumors than in adjacent
normal mucosa tissues. RORγ expression was significantly associated with
tumor stage, lymph node metastasis, and liver metastasis. The area under the
curve for diagnosis was 0.71. Decreased RORγ expression was positively
correlated with the incidence of lymphatic invasion, microsatellite
instability, the presence of residual tumor, venous invasion, and copy
number variation. Overall survival was longer in patients with higher RORγ
expression, especially those with microsatellite instability-high features.
Methylation analysis revealed that hypermethylation of the RORγ promoter was
associated with the colon cancer stage. Conclusions RORγ downregulation could be a potential biomarker for colon cancer,
especially for predicting prognosis. Decreased RORγ expression in colon
tumor may be associated with promoter hypermethylation.
Collapse
Affiliation(s)
- Xiaofei Pan
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Bao Li
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Gan Zhang
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Yuyong Gong
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Rui Liu
- Department of Burns and Orthopedic Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Benxin Chen
- Department of Minimally Invasive Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Yang Li
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| |
Collapse
|
23
|
Ma H, Kang J, Fan W, He H, Huang F. ROR: Nuclear Receptor for Melatonin or Not? Molecules 2021; 26:molecules26092693. [PMID: 34064466 PMCID: PMC8124216 DOI: 10.3390/molecules26092693] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Whether the retinoic acid-related orphan receptor (ROR) is a nuclear receptor of melatonin remains controversial. ROR is inextricably linked to melatonin in terms of its expression, function, and mechanism of action. Additionally, studies have illustrated that melatonin functions analogous to ROR ligands, thereby modulating the transcriptional activity of ROR. However, studies supporting these interactions have since been withdrawn. Furthermore, recent crystallographic evidence does not support the view that ROR is a nuclear receptor of melatonin. Some other studies have proposed that melatonin indirectly regulates ROR activity rather than directly binding to ROR. This review aims to delve into the complex relationship of the ROR receptor with melatonin in terms of its structure, expression, function, and mechanism. Thus, we provide the latest evidence and views on direct binding as well as indirect regulation of ROR by melatonin, dissecting both viewpoints in-depth to provide a more comprehensive perspective on this issue.
Collapse
Affiliation(s)
- Haozhen Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Jun Kang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (H.M.); (J.K.); (W.F.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Correspondence: (H.H.); (F.H.); Tel.: +86-20-8733-0570 (H.H. & F.H.)
| |
Collapse
|
24
|
Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26:molecules26092506. [PMID: 33923028 PMCID: PMC8123278 DOI: 10.3390/molecules26092506] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.
Collapse
|
25
|
Mehrzadi S, Pourhanifeh MH, Mirzaei A, Moradian F, Hosseinzadeh A. An updated review of mechanistic potentials of melatonin against cancer: pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Cancer Cell Int 2021; 21:188. [PMID: 33789681 PMCID: PMC8011077 DOI: 10.1186/s12935-021-01892-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cancers are serious life-threatening diseases which annually are responsible for millions of deaths across the world. Despite many developments in therapeutic approaches for affected individuals, the rate of morbidity and mortality is high. The survival rate and life quality of cancer patients is still low. In addition, the poor prognosis of patients and side effects of the present treatments underscores that finding novel and effective complementary and alternative therapies is a critical issue. Melatonin is a powerful anticancer agent and its efficiency has been widely documented up to now. Melatonin applies its anticancer abilities through affecting various mechanisms including angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Regarding the implication of mentioned cellular processes in cancer pathogenesis, we aimed to further evaluate the anticancer effects of melatonin via these mechanisms.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Zou Y, Sun H, Guo Y, Shi Y, Jiang Z, Huang J, Li L, Jiang F, Lin Z, Wu J, Zhou R, Liu Y, Ao L. Integrative Pan-Cancer Analysis Reveals Decreased Melatonergic Gene Expression in Carcinogenesis and RORA as a Prognostic Marker for Hepatocellular Carcinoma. Front Oncol 2021; 11:643983. [PMID: 33842355 PMCID: PMC8029983 DOI: 10.3389/fonc.2021.643983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Melatonin has been shown to play a protective role in the development and progression of cancer. However, the relationship between alterations in the melatonergic microenvironment and cancer development has remained unclear. Methods We performed a comprehensive investigation on 12 melatonergic genes and their relevance to cancer occurrence, progression and survival by integrating multi-omics data from microarray analysis and RNA sequencing across 11 cancer types. Specifically, the 12 melatonergic genes that we investigated, which reflect the melatonergic microenvironment, included three membrane receptor genes, three nuclear receptor genes, two intracellular receptor genes, one synthetic gene, and three metabolic genes. Results Widely coherent underexpression of nuclear receptor genes, intracellular receptor genes, and metabolic genes was observed in cancerous samples from multiple cancer types compared to that in normal samples. Furthermore, genomic and/or epigenetic alterations partially contributed to these abnormal expression patterns in cancerous samples. Moreover, the majority of melatonergic genes had significant prognostic effects in predicting overall survival. Nevertheless, few corresponding alterations in expression were observed during cancer progression, and alterations in expression patterns varied greatly across cancer types. However, the association of melatonergic genes with one specific cancer type, hepatocellular carcinoma, identified RORA as a tumor suppressor and a prognostic marker for patients with hepatocellular carcinoma. Conclusions Overall, our study revealed decreased melatonergic gene expression in various cancers, which may help to better elucidate the relationship between melatonin and cancer development. Taken together, our findings highlight the potential prognostic significance of melatonergic genes in various cancers.
Collapse
Affiliation(s)
- Yi Zou
- Department of Automation and Key Laboratory of China MOE for System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huaqin Sun
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yating Guo
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yidan Shi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhiyu Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jingxuan Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Li Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fengle Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeman Lin
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junling Wu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ruixiang Zhou
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuncai Liu
- Department of Automation and Key Laboratory of China MOE for System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
27
|
Astone M, Santoro MM. Time to fight: targeting the circadian clock molecular machinery in cancer therapy. Drug Discov Today 2021; 26:1164-1184. [PMID: 33549826 DOI: 10.1016/j.drudis.2021.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The circadian clock regulates a wide range of molecular pathways and biological processes. The expression of clock genes is often altered in cancer, fostering tumor initiation and progression. Inhibition and activation of core circadian clock genes, as well as treatments that restore circadian rhythmicity, have been successful in counteracting tumor growth in different experimental models. Here, we provide an up-to-date overview of studies that show the therapeutic effects of targeting the clock molecular machinery in cancer, both genetically and pharmacologically. We also highlight future areas for progress that offer a promising path towards innovative anticancer strategies. Substantial limitations in the current understanding of the complex interplay between the circadian clock and cancer in vivo need to be addressed in order to allow clock-targeting therapies in cancer.
Collapse
Affiliation(s)
- Matteo Astone
- Department of Biology, University of Padova, I-35131, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padova, I-35131, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy.
| |
Collapse
|
28
|
Rahbarghazi A, Siahkouhian M, Rahbarghazi R, Ahmadi M, Bolboli L, Keyhanmanesh R, Mahdipour M, Rajabi H. Role of melatonin in the angiogenesis potential; highlights on the cardiovascular disease. J Inflamm (Lond) 2021; 18:4. [PMID: 33531055 PMCID: PMC7852194 DOI: 10.1186/s12950-021-00269-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/21/2021] [Indexed: 01/18/2023] Open
Abstract
Melatonin possesses multi-organ and pleiotropic effects with potency to control angiogenesis at both molecular and cellular levels. To date, many efforts have been made to control and regulate the dynamic of angiogenesis modulators in a different milieu. The term angiogenesis or neovascularization refers to the development of de novo vascular buds from the pre-existing blood vessels. This phenomenon is tightly dependent on the balance between the pro- and anti-angiogenesis factors which alters the functional behavior of vascular cells. The promotion of angiogenesis is thought to be an effective strategy to accelerate the healing process of ischemic changes such as infarcted myocardium. Of note, most of the previous studies have focused on the anti-angiogenesis capacity of melatonin in the tumor niche. To the best of our knowledge, few experiments highlighted the melatonin angiogenesis potential and specific regulatory mechanisms in the cardiovascular system. Here, we aimed to summarize some previous experiments related to the application of melatonin in cardiovascular diseases such as ischemic injury and hypertension by focusing on the regulatory mechanisms.
Collapse
Affiliation(s)
- Afshin Rahbarghazi
- Department of Physical Education and Sports Sciences, Faculty of Educational Science & Psychology, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, Iran
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marefat Siahkouhian
- Department of Physical Education and Sports Sciences, Faculty of Educational Science & Psychology, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, Iran.
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Ahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lotfali Bolboli
- Department of Physical Education and Sports Sciences, Faculty of Educational Science & Psychology, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH, Reiter RJ. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci 2020; 267:118934. [PMID: 33385405 DOI: 10.1016/j.lfs.2020.118934] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The biological functions of melatonin range beyond the regulation of the circadian rhythm. With regard to cancer, melatonin's potential to suppress cancer initiation, progression, angiogenesis and metastasis as well as sensitizing malignant cells to conventional chemo- and radiotherapy are among its most interesting effects. The targets at which melatonin initiates its anti-cancer effects are in common with those of a majority of existing anti-cancer agents, giving rise to the notion that this molecule is a pleiotropic agent sharing many features with other antineoplastic drugs in terms of their mechanisms of action. Among these common mechanisms of action are the regulation of several major intracellular pathways including mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and protein kinase B (AKT/PKB) signaling. The important mediators affected by melatonin include cyclins, nuclear factor-κB (NF-κB), heat shock proteins (HSPs) and c-Myc, all of which can serve as potential targets for cancer drugs. Melatonin also exerts some of its anti-cancer effects via inducing epigenetic modifications, DNA damage and mitochondrial disruption in malignant cells. The regulation of these mediators by melatonin mitigates tumor growth and invasiveness via modulating their downstream responsive genes, housekeeping enzymes, telomerase reverse transcriptase, apoptotic gene expression, angiogenic factors and structural proteins involved in metastasis. Increasing our knowledge on how melatonin affects its target sites will help find ways of exploiting the beneficial effects of this ubiquitously-acting molecule in cancer therapy. Acknowledging this, here we reviewed the most studied target pathways attributed to the anti-cancer effects of melatonin, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marjan Fallah
- Medicinal Plant Research Centre, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA.
| |
Collapse
|
30
|
Li Y, Fang L, Zhang R, Wang S, Li Y, Yan Y, Yu Y, Cheng JC, Sun YP. Melatonin stimulates VEGF expression in human granulosa-lutein cells: A potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome. Mol Cell Endocrinol 2020; 518:110981. [PMID: 32791190 DOI: 10.1016/j.mce.2020.110981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/18/2020] [Accepted: 08/07/2020] [Indexed: 12/29/2022]
Abstract
Melatonin can be synthesized and secreted not only by the pineal gland but also by many extra-pineal tissues. It has been shown that many ovarian functions are regulated by melatonin locally. Ovarian hyperstimulation syndrome (OHSS) is a serious complication during ovulation induction of the in vitro fertilization treatment. To date, the etiology of OHSS is not fully understood. However, vascular endothelial growth factor (VEGF) is recognized as a critical mediator for the pathogenesis of OHSS. High expression of melatonin has been detected in the follicular fluid of OHSS patients. However, whether VEGF expression can be regulated by melatonin in human granulosa cells and further contributes to the pathogenesis of OHSS remain unknown. In this study, we show that melatonin stimulates VEGF expression in human granulosa-lutein (hGL) cells. Our results reveal that the MT2 receptor and activation of AKT are involved in melatonin-induced VEGF expression. Using a rat OHSS model, we report that the VEGF levels are up-regulated in the ovaries of OHSS rats. Blocking the melatonin system by administrating MT2 receptor antagonist, 4-P-PDOT, alleviates OHSS symptoms by decreasing the expression of VEGF. In addition, the expression levels of melatonin and VEGF in the follicular fluid of OHSS patients are up-regulated and positively correlated. This study demonstrates an important role for melatonin in regulating the pathogenesis of OHSS.
Collapse
Affiliation(s)
- Yiran Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruizhe Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Sijia Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuxi Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Yan
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiping Yu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Pourhanifeh MH, Mehrzadi S, Kamali M, Hosseinzadeh A. Melatonin and gastrointestinal cancers: Current evidence based on underlying signaling pathways. Eur J Pharmacol 2020; 886:173471. [PMID: 32877658 DOI: 10.1016/j.ejphar.2020.173471] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal (GI) cancers, leading causes of cancer-related deaths, have been serious challenging human diseases up to now. Because of high rates of mortality, late-stage diagnosis, metastasis to distant locations, and low effectiveness and adverse events of routine standard therapies, the quality of life and survival time are low in patients with GI cancers. Hence, many efforts need to be done to explore and find novel efficient treatments. Beneficial effects of melatonin have been reported in a wide variety of human diseases. Melatonin has antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. Various studies have showed the regulatory effects of melatonin on apoptotsis, autophagy and angiogenesis; these properties result in the inhibition of invasion, migration, and proliferation of GI cancer cells in vivo and in vitro. Together, this review suggests that melatonin in combination with anticancer agents may improve the efficacy of routine medicine and survival rate of patients with cancer.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Melatonin mediates monochromatic light-induced proliferation of T/B lymphocytes in the spleen via the membrane receptor or nuclear receptor. Poult Sci 2020; 99:4294-4302. [PMID: 32867973 PMCID: PMC7598018 DOI: 10.1016/j.psj.2020.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Our studies found that melatonin mediates the monochromatic light–induced lymphocyte proliferation in chickens. However, melatonin receptor subtypes contain membrane receptor (Mel1a/Mel1b/Mel1c) and nuclear receptor (Retinoic acid receptor–related orphan receptor [ROR] α/RORβ/RORγ) and are characteristic with cell specificity. This study compared receptor pathway of melatonin, which mediated the monochromatic light–induced T/B lymphocyte proliferations in chickens. Newly hatched chicks were randomly divided into white light, red light, green light (GL), and blue light groups. Green light promoted the membrane receptor expression in the spleen but decreased the nuclear receptor level compared with that of red light. These changes were accompanied by increase of T/B lymphocyte proliferation and plasma melatonin level under GL. Pinealectomy reversed aforementioned changes and resulted in no differences among the light-treated groups. Supplementation of exogenous melatonin enhanced GL-induced T/B lymphocyte proliferation in the spleen but was reversed by Mel1c antagonist prazosin and RORα agonist SR1078 and enhanced by RORα antagonist SR3335. However, Mel1b antagonist 4P-PDOT and RORγ antagonist GSK increased the stimulation effect of melatonin on GL-induced T lymphocyte proliferation but no effect on the B-lymphocyte proliferation. These results indicate that melatonin promotes the GL-induced T lymphocyte proliferation through Mel1b, Mel1c, and RORα/RORγ; however, the Mel1a, Mel1c, and RORα may be involved in the B lymphocyte proliferation.
Collapse
|
33
|
Samanta S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 2020; 146:1893-1922. [PMID: 32583237 DOI: 10.1007/s00432-020-03292-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc. METHODS: For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention. RESULTS The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity. CONCLUSION The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
34
|
Vimalraj S, Saravanan S, Raghunandhakumar S, Anuradha D. Melatonin regulates tumor angiogenesis via miR-424-5p/VEGFA signaling pathway in osteosarcoma. Life Sci 2020; 256:118011. [PMID: 32592723 DOI: 10.1016/j.lfs.2020.118011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
Melatonin is recognized as an anti-angiogenic agent, but its function in the tumor microenvironment especially in osteosarcoma remains uncertain. Among the selected miRNAs, miR-205, miR-424, miR-140, miR-106, and miR-519 were upregulated by melatonin in osteosarcoma cells. The functional role of miR-424-5p in osteosarcoma was further analyzed using miR-424-5p mimic/inhibitor. VEGFA mRNA and protein expression were altered by miR-424-5p mimic/inhibitor transfection with and without melatonin treatment and it was further identified that the VEGFA 3'UTR is directly targeted by miR-424-5p using the luciferase reporter gene system. The conditioned medium from SaOS2 and MG63 cells treated with melatonin and/or transfected with miR-424-5p mimic/inhibitor was exposed to endothelial cells, and cell proliferation and migration was analyzed. MG-63 and SaOS2 cells are also transfected with miR-424-5p inhibitors and positioned on CAM vascular bed to study the angiogenic activity at both morphological and molecular level under melatonin treatment. Our observations demonstrate for the first time that, melatonin upregulated the expression of miR-424-5p in osteosarcoma inhibiting VEGFA. Furthermore, it suppresses tumor angiogenesis, modulating surrounding endothelial cell proliferation and migration as well as the morphology of blood vessels, and angiogenic growth factors. These findings suggest that melatonin could play a pivotal role in tumor suppression via miR-424-5p/VEGFA axis.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Subramanian Raghunandhakumar
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | | |
Collapse
|
35
|
Mirza-Aghazadeh-Attari M, Reiter RJ, Rikhtegar R, Jalili J, Hajalioghli P, Mihanfar A, Majidinia M, Yousefi B. Melatonin: An atypical hormone with major functions in the regulation of angiogenesis. IUBMB Life 2020; 72:1560-1584. [PMID: 32329956 DOI: 10.1002/iub.2287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a pleotropic molecule with a wide distribution, has received considerable attention in recent years, mostly because of its various major effects on tissues or cells since it has both receptor-dependent and receptor-independent actions over a wide range of concentrations. These biological and physiological functions of melatonin include regulation of circadian rhythms by modulating the expression of core oscillator genes, scavenging the reactive oxygen species and reactive nitrogen species, modulating the immune system and inflammatory response, and exerting cytoprotective and antiapoptotic effects. Given the multiple critical roles of melatonin, dysregulation of its production or any disruption in signaling through its receptors may have contributed in the development of a wide range of disorders including type 2 diabetes, aging, immune-mediated diseases, hypertension, and cancer. Herein, we focus on the modulatory effects of melatonin on angiogenesis and its implications as a therapeutic strategy in cancer and related diseases.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Jalili
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hajalioghli
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
González-González A, González A, Rueda N, Alonso-González C, Menéndez JM, Martínez-Campa C, Mitola S, Cos S. Usefulness of melatonin as complementary to chemotherapeutic agents at different stages of the angiogenic process. Sci Rep 2020; 10:4790. [PMID: 32179814 PMCID: PMC7076026 DOI: 10.1038/s41598-020-61622-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chemotherapeutics are sometimes administered with drugs, like antiangiogenic compounds, to increase their effectiveness. Melatonin exerts antitumoral actions through antiangiogenic actions. We studied if melatonin regulates the response of HUVECs to chemotherapeutics (docetaxel and vinorelbine). The inhibition that these agents exert on some of the processes involved in angiogenesis, such as, cell proliferation, migratory capacity or vessel formation, was enhanced by melatonin. Regarding to estrogen biosynthesis, melatonin impeded the negative effect of vinorelbine, by decreasing the activity and expression of aromatase and sulfatase. Docetaxel and vinorelbine increased the expression of VEGF-A, VEGF-B, VEGF-C, VEGFR-1, VEGFR-3, ANG1 and/or ANG-2 and melatonin inhibited these actions. Besides, melatonin prevented the positive actions that docetaxel exerts on the expression of other factors related to angiogenesis like JAG1, ANPEP, IGF-1, CXCL6, AKT1, ERK1, ERK2, MMP14 and NOS3 and neutralized the stimulating actions of vinorelbine on the expression of FIGF, FGFR3, CXCL6, CCL2, ERK1, ERK2, AKT1, NOS3 and MMP14. In CAM assay melatonin inhibited new vascularization in combination with chemotherapeutics. Melatonin further enhanced the chemotherapeutics-induced inhibition of p-AKT and p-ERK and neutralized the chemotherapeutics-caused stimulatory effect on HUVECs permeability by modifying the distribution of VE cadherin. Our results confirm that melatonin blocks proangiogenic and potentiates antiangiogenic effects induced by docetaxel and vinorelbine enhancing their antitumor effectiveness.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain.
| | - Noemi Rueda
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Javier Menéndez Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain.
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, Laboratory for Preventive and Personalized Medicine, University of Brescia, 25123, Brescia, Italy
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011, Santander, Spain
| |
Collapse
|
37
|
Mirza-Aghazadeh-Attari M, Ekrami EM, Aghdas SAM, Mihanfar A, Hallaj S, Yousefi B, Safa A, Majidinia M. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci 2020; 255:117481. [PMID: 32135183 DOI: 10.1016/j.lfs.2020.117481] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the biggest challenges facing medicine and its cure is regarded to be the Holy Grail of medicine. Therapy in cancer is consisted as various artificial cytotoxic agents and radiotherapy, and recently immunotherapy. Recently much attention has been directed to the use of natural occurring agents in cancer therapy. One of the main group of agents utilized in this regard is polyphenols which are found abundantly in berries, fruits and vegetables. Polyphenols show to exert direct and indirect effects in progression of cancer, angiogenesis, proliferation and enhancing resistance to treatment. One of the cellular pathways commonly affected by polyphenols is PI3K/Akt/mTOR pathway, which has far ranging effects on multiple key aspects of cellular growth, metabolism and death. In this review article, evidence regarding the biology of polyphenols in cancer via PI3K/Akt/mTOR pathway is discussed and their application on cancer pathophysiology in various types of human malignancies is shown.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elyad Mohammadi Ekrami
- Department of Anesthesiology & Critical Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Ali Mousavi Aghdas
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Hallaj
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
38
|
Ma Q, Reiter RJ, Chen Y. Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis 2019; 23:91-104. [PMID: 31650428 DOI: 10.1007/s10456-019-09689-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Angiogenesis depends on proangiogenic and anti-angiogenic molecules that regulate endothelial cell proliferation and migration. Well-regulated angiogenesis plays a pivotal role in many physiological conditions such as reproduction and embryonic development, while abnormal angiogenesis is also the basis of a variety of pathological processes including tumor metastasis and atherosclerotic plaque formation. Melatonin has a variety of biological effects, including inhibition of tumor metastasis, stabilizing atherosclerotic plaques, and the regulation of seasonal reproductive rhythms, etc. During certain pathophysiological processes, melatonin exerts different functions depending on its ability to regulate angiogenesis. This review reveals that melatonin has different effects on neovascularization under different physiological and pathological conditions. In tumors, in age-related ocular diseases, and in a hypoxic environment, melatonin inhibits neovascularization in tissues, while in gastric ulcers, skin lesions, and some physiologic processes, it promotes angiogenesis. We also speculate that melatonin may inhibit the neovascularization in atherosclerotic plaques, thus preventing the initiation and development of atherosclerosis. Most studies suggest that these effects are related to the role of melatonin in regulating of vascular endothelial growth factor and its receptors, but the specific regulatory mechanisms remain disparate, which may lead to the differential effects of melatonin on angiogenesis under different conditions. In this review, we thus summarize some seemingly contradictory mechanisms by which melatonin controls angiogenesis under different pathological and physiological conditions, and urge that the regulatory mechanisms be further studied.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, 78229, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, 78229, USA.
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
39
|
Effect of the melatonin nuclear receptor RORα on monochromatic light-induced T-lymphocyte proliferation in chicken thymus. Immunol Lett 2019; 213:21-29. [DOI: 10.1016/j.imlet.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
|
40
|
González-González A, González A, Rueda N, Alonso-González C, Menéndez-Menéndez J, Gómez-Arozamena J, Martínez-Campa C, Cos S. Melatonin Enhances the Usefulness of Ionizing Radiation: Involving the Regulation of Different Steps of the Angiogenic Process. Front Physiol 2019; 10:879. [PMID: 31354524 PMCID: PMC6637960 DOI: 10.3389/fphys.2019.00879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy is a part of cancer treatment. To improve its efficacy has been combined with radiosensitizers such as antiangiogenic agents. Among the mechanisms of the antitumor action of melatonin are antiangiogenic effects. Our goal was to investigate whether melatonin may modulate the sensitivity of endothelial cells (HUVECs) to ionizing radiation. Melatonin (1 mM) enhanced the inhibition induced by radiation on different steps of the angiogenic process, cell proliferation, migration, and tubular network formation. In relation with the activity and expression of enzymes implicated in estrogen synthesis, in co-cultures HUVECs/MCF-7, radiation down-regulated aromatase mRNA expression, aromatase endothelial-specific promoter I.7, sulfatase activity and expression and 17β-HSD1 activity and expression and melatonin enhanced these effects. Radiation and melatonin induced a significant decrease in VEGF, ANG-1, and ANG-2 mRNA expression. In ANG-2 and VEGF mRNA expression melatonin potentiated the inhibitory effect induced by radiation. In addition, melatonin counteracted the stimulatory effect of radiation on FGFR3, TGFα, JAG1, IGF-1, and KDR mRNA expression and reduced ANPEP expression. In relation with extracellular matrix molecules, radiation increased MMP14 mRNA expression and melatonin counteracted the stimulatory effect of radiation on MMP14 mRNA expression and increased TIMP1 expression, an angiogenesis inhibitor. Melatonin also counteracted the stimulatory effect of radiation on CXCL6, CCL2, ERK1, ERK2, and AKT1 mRNA expression and increased the inhibitory effect of radiation on NOS3 expression. In CAM assay, melatonin enhanced the reduction of the vascular area induced by radiation. Melatonin potentiated the inhibitory effect on the activation of p-AKT and p-ERK exerted by radiation. Antiangiogenic effect of melatonin could be mediated through AKT and ERK pathways, proteins involved in vascular endothelial (VE) cell growth, cell proliferation, survival, migration, and angiogenesis. In addition, radiation increased endothelial cell permeability and melatonin counteracted it by regulating the internalization of VE-cadherin. Radiation has some side effects on angiogenesis that may reduce its effectiveness against tumor growth and melatonin is able to neutralize these negative actions of radiation. Additionally, melatonin potentiated radiation-induced antiangiogenic actions on several steps of the angiogenic process and enhanced its antitumor action. Our findings point to melatonin as a useful molecule as adjuvant to radiotherapy in cancer treatment.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - José Gómez-Arozamena
- Department of Medical Physics, School of Medicine, University of Cantabria, Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
41
|
Song J, Ma SJ, Luo JH, Liu H, Li L, Zhang ZG, Chen LS, Zhou RX. Downregulation of AKT and MDM2, Melatonin Induces Apoptosis in AGS and MGC803 Cells. Anat Rec (Hoboken) 2019; 302:1544-1551. [PMID: 30809951 DOI: 10.1002/ar.24101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
Abstract
Melatonin, a neurohormone secreted by the pineal gland, has a variety of biological functions, such as circadian rhythms regulation, anti-oxidative activity, immunomodulatory effects, and anittumor, etc. At present, its antitumor effect has attracted people's attention due to its extensive tissue distribution, good tissue compatibility, and low toxic and side effects. In the gastrointestinal tract, there is high level of melatonin and many studies showed melatonin has effects of anti-gastric cancer. In this experiment, human gastric cancer cell lines AGS and MGC803 were used to investigate the intracellular molecular mechanism of melatonin against gastric cancer. After AGS and MGC803 have been treated with melatonin, the changes of cell morphology and cellular structure were observed under electron microscope. Flow cytometer and apoptosis detection kits were used to analyze the effect of apoptosis on AGS and MGC803. The alterations of apoptosis-related proteins Caspase 9, Caspase 3, and upstream regulators AKT, MDM2 including expression, phosphorylation, and activation were detected to analyze the intracellular molecular mechanism of melatonin inhibiting gastric cancer. In AGS and MGC803 cells with melatonin exposure, cleaved Caspase 9 was upregulated and Caspase 3 was activated; moreover, MDM2 and AKT expression and phosphorylation were downregulated. Melatonin promoted apoptosis of AGS and MGC803 cells by the downregulation of AKT and MDM2. Anat Rec, 302:1544-1551, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Jun Song
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Sai-Jun Ma
- Clinical Laboratory, Second Inpatient Department, Fuzhou General Hospital, Fuzhou, Fujian, 350108, People's Republic of China
| | - Jian-Hua Luo
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Hui Liu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Li Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Zhi-Guang Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Lu-Shan Chen
- Pathology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China
| | - Rui-Xiang Zhou
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| |
Collapse
|
42
|
Cao D, Qi Z, Pang Y, Li H, Xie H, Wu J, Huang Y, Zhu Y, Shen Y, Zhu Y, Dai B, Hu X, Ye D, Wang Z. Retinoic Acid-Related Orphan Receptor C Regulates Proliferation, Glycolysis, and Chemoresistance via the PD-L1/ITGB6/STAT3 Signaling Axis in Bladder Cancer. Cancer Res 2019; 79:2604-2618. [PMID: 30808674 DOI: 10.1158/0008-5472.can-18-3842] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
Retinoic acid-related orphan receptor C (RORC) is a member of the nuclear orphan receptor family and performs critical regulatory functions in cell proliferation, metastasis, and chemoresistance in various types of malignant tumors. Here we showed that expression of RORC is lost in tumor tissues of bladder cancer patients. Enhanced expression of RORC suppressed cell proliferation and glucose metabolism and increased cisplatin-induced apoptosis in vitro and in vivo. RORC bound the promoter region of programmed death ligand-1 (PD-L1) and negatively regulated PD-L1 expression. PD-L1 directly interacted with integrin β6 (ITGB6) and activated the ITGB6/FAK signaling pathway. RORC prevented the nuclear translocation of STAT3 via suppression of the PD-L1/ITGB6 signaling pathway, which further inhibited bladder cell proliferation and glucose metabolism and increased cisplatin-induced apoptosis. These findings reveal that RORC regulates bladder cancer cell proliferation, glucose metabolism, and chemoresistance by participating in the PD-L1/ITGB6/STAT3 signaling axis. Moreover, this new understanding of PD-L1 signaling may guide the selection of therapeutic targets to prevent tumor recurrence. SIGNIFICANCE: These findings suggest that RORC-mediated regulation of a PD-L1/ITGB6/FAK/STAT3 signaling axis in bladder cancer provides several potential therapeutic targets to prevent tumor progression.
Collapse
Affiliation(s)
- Dalong Cao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zihao Qi
- Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yangyang Pang
- Department of Urology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Haoran Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Huyang Xie
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongqiang Huang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziliang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
43
|
Cheng J, Yang HL, Gu CJ, Liu YK, Shao J, Zhu R, He YY, Zhu XY, Li MQ. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med 2018; 43:945-955. [PMID: 30569127 PMCID: PMC6317691 DOI: 10.3892/ijmm.2018.4021] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is an essential process involved in various physiological, including placentation, and pathological, including cancer and endometriosis, processes. Melatonin (MLT), a well-known natural hormone secreted primarily in the pineal gland, is involved in regulating neoangiogenesis and inhibiting the development of a variety of cancer types, including lung and breast cancer. However, the specific mechanism of its anti-angiogenesis activity has not been systematically elucidated. In the present study, the effect of MLT on viability and angiogenesis of human umbilical vein endothelial cells (HUVECs), and the production of vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS), under normoxia or hypoxia was analyzed using Cell Counting kit 8, tube formation, flow cytometry, ELISA and western blot assays. It was determined that the secretion of VEGF by HUVECs was significantly increased under hypoxia, while MLT selectively obstructed VEGF release as well as the production of ROS under hypoxia. Furthermore, MLT inhibited the viability of HUVECs in a dose-dependent manner and reversed the increase in cell viability and tube formation that was induced by hypoxia/VEGF/H2O2. Additionally, treatment with an inhibitor of hypoxia inducible factor (HIF)-1α (KC7F2) and MLT synergistically reduced the release of ROS and VEGF, and inhibited cell viability and tube formation of HUVECs. These observations demonstrate that MLT may serve dual roles in the inhibition of angiogenesis, as an antioxidant and a free radical scavenging agent. MLT suppresses the viability and angiogenesis of HUVECs through the downregulation of HIF-1α/ROS/VEGF. In summary, the present data indicate that MLT may be a potential anticancer agent in solid tumors with abundant blood vessels, particularly combined with KC7F2.
Collapse
Affiliation(s)
- Jiao Cheng
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Chun-Jie Gu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Yu-Kai Liu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Jun Shao
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu 215008, P.R. China
| | - Yin-Yan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiao-Yong Zhu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, P.R. China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| |
Collapse
|
44
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Najafi M, Sahebkar A. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J Cell Physiol 2018; 234:5613-5627. [PMID: 30238978 DOI: 10.1002/jcp.27391] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Cancer remains among the most challenging human diseases. Several lines of evidence suggest that carcinogenesis is a complex process that is initiated by DNA damage. Exposure to clastogenic agents such as heavy metals, ionizing radiation (IR), and chemotherapy drugs may cause chronic mutations in the genomic material, leading to a phenomenon named genomic instability. Evidence suggests that genomic instability is responsible for cancer incidence after exposure to carcinogenic agents, and increases the risk of secondary cancers following treatment with radiotherapy or chemotherapy. Melatonin as the main product of the pineal gland is a promising hormone for preventing cancer and improving cancer treatment. Melatonin can directly neutralize toxic free radicals more efficiently compared with other classical antioxidants. In addition, melatonin is able to regulate the reduction/oxidation (redox) system in stress conditions. Through regulation of mitochondrial nction and inhibition of pro-oxidant enzymes, melatonin suppresses chronic oxidative stress. Moreover, melatonin potently stimulates DNA damage responses that increase the tolerance of normal tissues to toxic effect of IR and may reduce the risk of genomic instability in patients who undergo radiotherapy. Through these mechanisms, melatonin attenuates several side effects of radiotherapy and chemotherapy. Interestingly, melatonin has shown some synergistic properties with IR and chemotherapy, which is distinct from classical antioxidants that are mainly used for the alleviation of adverse events of radiotherapy and chemotherapy. In this review, we describe the anticarcinogenic effects of melatonin and also its possible application in clinical oncology.
Collapse
Affiliation(s)
- Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Departments of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Bondy SC, Campbell A. Mechanisms Underlying Tumor Suppressive Properties of Melatonin. Int J Mol Sci 2018; 19:ijms19082205. [PMID: 30060531 PMCID: PMC6121612 DOI: 10.3390/ijms19082205] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
There is considerable evidence that melatonin may be of use in the prevention and treatment of cancer. This manuscript will review some of the human, animal and cellular studies that provide evidence that melatonin has oncostatic properties. Confirmation that melatonin mitigates pathogenesis of cancer will be described from both direct study of its effects on carcinogenesis, and from indirect findings implicating disruption of the circadian cycle. A distinction is made between the role of melatonin in preventing the initiation of the tumorigenic pathway and the ability of melatonin to retard the progression of cancer. Melatonin appears to slow down the rate of advancement of established tumors and there is evidence that it constitutes a valuable complement to standard pharmacological and radiation treatment modalities. There are instances of the beneficial outcomes in cancer treatment which utilize a range of hormones and vitamins, melatonin being among the constituents of the mix. While these complex blends are empirically promising, they are only briefly mentioned here in view of the confounding influence of a multiplicity of agents studied simultaneously. The last section of this review examines the molecular mechanisms that potentially underlie the oncostatic effects of melatonin. Alterations in gene expression following activation of various transcription factors, are likely to be an important mediating event. These changes in gene activity not only relate to cancer but also to the aging process which underlies the onset of most tumors. In addition, epigenetic events such as modulation of histone acetylation and DNA methylation patterns throughout the lifespan of organisms need to be considered. The antioxidant and immunoregulatory roles of melatonin may also contribute to its cancer modulatory properties. Naturally, these mechanisms overlap and interact extensively. Nevertheless, in the interest of clarity and ease of reading, each is discussed as a separate topic section. The report ends with some general conclusions concerning the clinical value of melatonin which has been rather overlooked and understudied.
Collapse
Affiliation(s)
- Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697, USA.
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
46
|
Zhang Y, Zhang WX, Zhang YJ, Liu YD, Liu ZJ, Wu QC, Guan Y, Chen XM. Melatonin for the treatment of spinal cord injury. Neural Regen Res 2018; 13:1685-1692. [PMID: 30136678 PMCID: PMC6128058 DOI: 10.4103/1673-5374.238603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) from trauma or disease severely impairs sensory and motor function. Neurorehabilitation after SCI is a complex medical process that focuses on improving neurologic function and repairing damaged connections in the central nervous system. An increasing number of preclinical studies suggest that melatonin may be useful for the treatment of SCI. Melatonin is an indolamine that is primarily secreted by the pineal gland and known to be regulated by photoperiodicity. However, it is also a versatile hormone with antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. Here, we review the neuroprotective properties of melatonin and the potential mechanisms by which it might be beneficial in the treatment of SCI. We also describe therapies that combine melatonin with exercise, oxytetracycline, and dexamethasone to attenuate the secondary injury after SCI and limit potential side effects. Finally, we discuss how injury at different spinal levels may differentially affect the secretion of melatonin.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wen-Xiu Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan-Jun Zhang
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ya-Dong Liu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zong-Jian Liu
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qi-Chao Wu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology and Critical Care Medicine; Department of Neurological Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Xue-Ming Chen
- Central Laboratory; Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Terraneo L, Bianciardi P, Virgili E, Finati E, Samaja M, Paroni R. Transdermal administration of melatonin coupled to cryopass laser treatment as noninvasive therapy for prostate cancer. Drug Deliv 2017. [PMID: 28644090 PMCID: PMC8241126 DOI: 10.1080/10717544.2017.1338793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Melatonin, a pineal gland hormone, exerts oncostatic activity in several types of human cancer, including prostate, the most common neoplasia and the third most frequent cause of male cancer death in the developed world. The growth of androgen-sensitive LNCaP prostate cancer cells in mice is inhibited by 3 mg/kg/week melatonin (0.09 mg/mouse/week) delivered by i.p. injections, which is equivalent to a dose of 210 mg/week in humans. The aim of this study is to test an alternative noninvasive delivery route based on transdermal administration of melatonin onto the tumor area followed by cryopass-laser treatment. Two groups of immunodepressed mice were studied, one (n = 10) subjected to 18 cryopass-laser therapy sessions and one (n = 10) subjected to the same treatment without melatonin. These groups were compared with mice treated with i.p.-administered melatonin or vehicle with the same time schedule. We found that cryopass-laser treatment is as efficient as i.p. injections in reducing the growth of LNCaP tumor cells, affecting plasma melatonin and redox balance. Furthermore, both delivery routes share the same effects on the involved biochemical pathway driven by hypoxia-inducible factor 1α. However, cryopass-laser, as used in the present experimental setup, is less efficient than i.p delivery route in increasing the melatonin content and Nrf2 expression in the tumor mass. We conclude that cryopass-laser treatment may have impact for melatonin-based therapy of prostate cancer, by delivering drugs transdermally without causing pain and targeting directly on the site of interest, thereby potentially making long-term treatments more sustainable.
Collapse
Affiliation(s)
- Laura Terraneo
- a Department of Health Science , University of Milan , Milano , Italy
| | - Paola Bianciardi
- a Department of Health Science , University of Milan , Milano , Italy
| | - Eleonora Virgili
- a Department of Health Science , University of Milan , Milano , Italy
| | - Elena Finati
- a Department of Health Science , University of Milan , Milano , Italy
| | - Michele Samaja
- a Department of Health Science , University of Milan , Milano , Italy
| | - Rita Paroni
- a Department of Health Science , University of Milan , Milano , Italy
| |
Collapse
|
48
|
Goradel NH, Asghari MH, Moloudizargari M, Negahdari B, Haghi-Aminjan H, Abdollahi M. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence. Toxicol Appl Pharmacol 2017; 335:56-63. [DOI: 10.1016/j.taap.2017.09.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
|
49
|
Chuffa LGDA, Reiter RJ, Lupi LA. Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms. Carcinogenesis 2017; 38:945-952. [PMID: 28575150 DOI: 10.1093/carcin/bgx054] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate of all gynecological cancers, and most patients develop chemoresistance after first-line treatments. Despite recent advances, the 5-year relative survival is ~45% for all OC subtypes, and invasive epithelial OC has only a 17% survival rate when diagnosed at a late stage. Identification of new efficacious molecules or biomarkers represents important opportunities in the treatment of OC. The pharmacological and physiological properties of melatonin indicate this agent could be useful against OC progression and metastasis. In normal cells, melatonin has potent antioxidant and anti-apoptotic actions. Conversely, melatonin has pro-oxidant as well as anti-proliferative, anti-angiogenic and immunomodulatory properties in many cancer types including hormone-dependent cancers. Although melatonin receptors have been identified in OC cells, the exact mechanism by which melatonin induces anticancer activities remains incompletely understood. Clinical studies have reported negative correlation between aggressiveness of OC and serum levels of melatonin, reinforcing the idea that melatonin may be a critical factor determining OC development. In vitro and in vivo studies suggest melatonin differentially regulates multiple signaling pathways in OC cells. This focused review explores the potential mechanisms of action of melatonin on cultured OC cells and in experimental models of OC in an attempt to clarify how melatonin modulates the signaling pathways involved in cancer cell apoptosis, survival, inflammation, proliferation and metabolic processes. Based on the evidence presented, we feel that melatonin, as an agent that controls cellular signals associated with malignancy, may be beneficial in combination with other therapeutics for OC treatment.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu-SP, Brazil and Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA
| | - Russel J Reiter
- Department of Anatomy, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu-SP, Brazil and Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA
| | - Luiz Antonio Lupi
- Department of Anatomy, Institute of Biosciences, UNESP - Universidade Estadual Paulista, Botucatu-SP, Brazil and Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX 78229, USA
| |
Collapse
|
50
|
Lo Sardo F, Muti P, Blandino G, Strano S. Melatonin and Hippo Pathway: Is There Existing Cross-Talk? Int J Mol Sci 2017; 18:ijms18091913. [PMID: 28878191 PMCID: PMC5618562 DOI: 10.3390/ijms18091913] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy.
Collapse
Affiliation(s)
- Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Sabrina Strano
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|