1
|
Chatterjee A, Roy T, Jyothi D, Mishra VK, Singh UP, Swarnakar S. Melatonin Inhibits AGS Cell Proliferation by Binding to the ATP Binding Site of CDK2 Under Hyperglycemic Conditions. Cell Biochem Biophys 2024; 82:895-908. [PMID: 38453745 DOI: 10.1007/s12013-024-01241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Cancer cells utilize glucose as their primary energy source. The aggressive nature of cancer cells is therefore enhanced in hyperglycemic conditions. This study has been adopted to investigate the therapeutic potential of melatonin against such aggressive proliferation of AGS cells-a human gastric cancer cell line, under hyperglycemic conditions. AGS cells were incubated with high glucose-containing media, and the effects of melatonin have been evaluated, therein. Cell proliferation, ROS generation, flow-cytometric analysis for cell cycle and apoptosis, wound healing, immunoblotting, zymography, reverse zymography assays, in-silico analysis, and kinase activity assays were performed to evaluate the effects of melatonin. We observed that melatonin inhibited the hyperglycemia-induced cell proliferation in a dose-dependent manner. It further altered the expression and activity of MMP-9 and TIMP-1. Moreover, melatonin inhibited AGS cell proliferation by arresting AGS cells in the G0/G1 phase after binding in the ATP binding site of CDK-2, thereby inhibiting its kinase activity. In association, a significant decrease in the expression of cyclin D1, cyclin E, CDK-4, and CDK-2 were observed. In conclusion, these findings suggest that melatonin has anti-gastric cancer potential. Melatonin could therefore be included in future drug designs for gastric cancer-hyperglycemia co-morbidity treatment.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Tapasi Roy
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Deeti Jyothi
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Vineet Kumar Mishra
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Umesh Prasad Singh
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
2
|
Lv T, Cao B, Qin J, Wei Y, Pan B, Ye J, Zhou G. Melatonin promotes parthenogenetic development of vitrified-warmed mouse MII oocytes, potentially by reducing oxidative stress through SIRT1. Theriogenology 2023; 208:132-141. [PMID: 37327742 DOI: 10.1016/j.theriogenology.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have demonstrated that melatonin could ameliorate oxidative stress during the cryopreservation of mouse MII oocytes and their in vitro culture after parthenogenetic activation. However, the underlying molecular mechanism remained poorly understood. This study was conducted to investigate whether melatonin could modulate the oxidative stress in the parthenogenetic 2-cell embryos derived from vitrified-warmed oocytes through SIRT1. The results showed that the reactive oxygen species levels increased, the glutathione levels and SIRT1 expression decreased significantly in parthenogenetic 2-cell embryos derived from cryopreserved oocyte, and the parthenogenetic blastocyst formation rates significantly decreased when compared to those derived from control oocytes. These unfavorable phenomena were prevented by the addition of either 10-9 mol/L melatonin or 10-6 mol/L SRT-1720 (SIRT1 agonist), and it was restored by the supplementation of 10-9 mol/L melatonin in combination with 2 × 10-5 mol/L EX527 (SIRT1 inhibitor). Therefore, the findings from the present study concluded that melatonin may reduce oxidative stress via regulating SIRT1, and potentially promote the parthenogenetic development of vitrified-warmed mouse MII oocytes.
Collapse
Affiliation(s)
- Tianyi Lv
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Beijia Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jianpeng Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yaozong Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jiangfeng Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Basirat U, Bin Tariq U, Moeen N, Jawhar ZH, Shoja SJ, Kareem AK, Ramírez-Coronel AA, Romero-Parra RM, Zabibah RS, Gupta J, Mustafa YF, Farhood B. A Systematic Review of the Chemo/Radioprotective Effects of Melatonin against Ototoxic Adverse Effects Induced by Chemotherapy and Radiotherapy. Curr Pharm Des 2023; 29:1218-1229. [PMID: 37138418 DOI: 10.2174/1381612829666230503145707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although chemotherapy and radiotherapy are effective in cancer treatment, different adverse effects induced by these therapeutic modalities (such as ototoxicity) restrict their clinical use. Co-treatment of melatonin may alleviate the chemotherapy/radiotherapy-induced ototoxicity. OBJECTIVE In the present study, the otoprotective potentials of melatonin against the ototoxicity induced by chemotherapy and radiotherapy were reviewed. METHODS According to the PRISMA guideline, a systematic search was carried out to identify all relevant studies on "the role of melatonin against ototoxic damage associated with chemotherapy and radiotherapy" in the different electronic databases up to September 2022. Sixty-seven articles were screened based on a predefined set of inclusion and exclusion criteria. Seven eligible studies were finally included in this review. RESULTS The in vitro findings showed that cisplatin chemotherapy significantly decreased the auditory cell viability compared to the control group; in contrast, the melatonin co-administration increased the cell viability of cisplatin-treated cells. The results obtained from the distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) tests demonstrated a decreased amplitude of DPOAE and increased values of ABR I-IV interval and ABR threshold in mice/rats receiving radiotherapy and cisplatin; nevertheless, melatonin co-treatment indicated an opposite pattern on these evaluated parameters. It was also found that cisplatin and radiotherapy could significantly induce the histological and biochemical changes in the auditory cells/tissue. However, melatonin co-treatment resulted in alleviating the cisplatin/radiotherapy-induced biochemical and histological changes. CONCLUSION According to the findings, it was shown that melatonin co-treatment alleviates the ototoxic damage induced by chemotherapy and radiotherapy. Mechanically, melatonin may exert its otoprotective effects via its anti-oxidant, anti-apoptotic, and anti-inflammatory activities and other mechanisms.
Collapse
Affiliation(s)
| | | | - Nawal Moeen
- Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Sarah Jawad Shoja
- College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Yalcin B, Yay AH, Tan FC, Özdamar S, Yildiz OG. Investigation of the anti-oxidative and anti-inflammatory effects of melatonin on experimental liver damage by radiation. Pathol Res Pract 2023; 246:154477. [PMID: 37148837 DOI: 10.1016/j.prp.2023.154477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/19/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Radiotherapy is one of the inevitable treatment approaches for several types of cancer. We aimed to show the protective and therapeutic effects of daily use of melatonin on liver tissues subjected to a single dose of 10 Gy (gamma-ray) total body radiation. Rats were divided into 6 groups, of which 10 were in each: control, sham, melatonin, radiation, radiation+melatonin, and melatonin+radiation. The rats received 10 Gy of external radiation throughout their entire bodies. The rats were given 10 mg/kg/day of melatonin intraperitoneally before or after radiation treatment, depending on the group. Histological methods, immunohistochemical analysis (Caspase-3, Sirtuin-1, α-SMA, NFΚB-p65), biochemical analysis by ELİSA (SOD, CAT, GSH-PX, MDA, TNF-α, TGF-β, PDGF, PGC-1α) and the Comet assay as a marker of DNA damage were applied to the liver tissues. Histopathological examinations showed structural changes in the liver tissue of the radiation group. Radiation treatment increased the immunoreactivity of Caspase-3, Sirtuin-1 and α-SMA, but these effects were relatively attenuated in the melatonin-treated groups. The melatonin+radiation group had statistically significant results close to those of the control group, in terms of Caspase-3, NFΚB-p65 and Sirtuin-1 immunoreactivity. In melatonin treated groups, hepatic biochemical markers, MDA, SOD, TNF-α, TGF-β levels, and DNA damage parameters were decreased. Administration of melatonin before and after radiation has beneficial effects, but using it before radiation may be more efficient. Accordingly, daily melatonin usage could mitigate ionizing radiation induced damage.
Collapse
Affiliation(s)
- Betul Yalcin
- Adıyaman University, Faculty of Medicine, Department of Histology and Embryology, Adıyaman, Turkey.
| | - Arzu Hanım Yay
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fazile Cantürk Tan
- Erciyes University, Faculty of Medicine, Department of Biophysics, Kayseri, Turkey
| | - Saim Özdamar
- Pamukkale University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Oğuz Galip Yildiz
- Erciyes University, Faculty of Medicine, Department of Radiation Oncology, Kayseri, Turkey
| |
Collapse
|
5
|
Estaras M, Martinez R, Garcia A, Ortiz-Placin C, Iovanna JL, Santofimia-Castaño P, Gonzalez A. Melatonin modulates metabolic adaptation of pancreatic stellate cells subjected to hypoxia. Biochem Pharmacol 2022; 202:115118. [PMID: 35671789 DOI: 10.1016/j.bcp.2022.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Pancreatic stellate cells (PSCs), the main cell type responsible for the development of fibrosis in pancreatic cancer, proliferate actively under hypoxia. Melatonin has received attention as a potential antifibrotic agent due to its anti-proliferative actions on PSCs. In this work, we investigated the activation of the PI3K/Akt/mTOR pathway and the metabolic adaptations that PSCs undergo under hypoxic conditions, as well as the probable modulation by melatonin. Incubation of cells under hypoxia induced an increase in cell proliferation, and in the expression of alpha-smooth muscle actin and of collagen type 1. In addition, an increase in the phosphorylation of Akt was observed, whereas a decrease in the phosphorylation of PTEN and GSK-3b was noted. The phosphorylation of mTOR and its substrate p70 S6K was decreased under hypoxia. Treatment of PSCs with melatonin under hypoxia diminished cell proliferation, the levels of alpha-smooth muscle actin and of collagen type 1, the phosphorylation of Akt and increased phosphorylation of mTOR. Mitochondrial activity decreased in PSCs under hypoxia. A glycolytic shift was observed. Melatonin further decreased mitochondrial activity. Under hypoxia, no increase in autophagic flux was noted. However, melatonin treatment induced autophagy activation. Nevertheless, inhibition of this process did not induce detectable changes in the viability of cells treated with melatonin. We conclude that PSCs undergo metabolic adaptation under hypoxia that might help them survive and that pharmacological concentrations of melatonin modulate cell responses to hypoxia. Our results contribute to the knowledge of the mechanisms by which melatonin could modulate fibrosis within the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España
| | - Remigio Martinez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, España
| | - Alfredo Garcia
- Departamento de Producción Animal, CICYTEX-La Orden, Guadajira, Badajoz, España
| | - Candido Ortiz-Placin
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Antonio Gonzalez
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, Cáceres, España.
| |
Collapse
|
6
|
Alonso-González C, González-Abalde C, Menéndez-Menéndez J, González-González A, Álvarez-García V, González-Cabeza A, Martínez-Campa C, Cos S. Melatonin Modulation of Radiation-Induced Molecular Changes in MCF-7 Human Breast Cancer Cells. Biomedicines 2022; 10:1088. [PMID: 35625825 PMCID: PMC9138876 DOI: 10.3390/biomedicines10051088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and enhance the effects of radiation therapy, either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer, since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here, we report that melatonin potentiated the anti-proliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in the expression of many genes. Out of a total of 25 genes altered by radiation, melatonin potentiated changes in 13 of them, whereas the effect was reverted in another 10 cases. Among them, melatonin elevated the levels of PTEN and NME1, and decreased the levels of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b and miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiation-mediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimized treatment results. This article highlights the effectiveness of melatonin as both a radiosensitizer and a radioprotector in breast cancer. Melatonin is an effective adjuvant molecule to radiotherapy, promoting anti-cancer therapeutic effects in cancer treatment. Melatonin modulates molecular pathways altered by radiation, and its use in clinic might lead to improved therapeutic outcomes by enhancing the sensitivity of cancerous cells to radiation and, in general, reversing their resistance toward currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Cristina González-Abalde
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria and Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain;
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-Cabeza
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| |
Collapse
|
7
|
Hong J, He Y, Fu R, Si Y, Xu B, Xu J, Li X, Mao F. The relationship between night shift work and breast cancer incidence: A systematic review and meta-analysis of observational studies. Open Med (Wars) 2022; 17:712-731. [PMID: 35702390 PMCID: PMC8995855 DOI: 10.1515/med-2022-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate the relationship between night shift work and breast cancer (BC) incidence. A search was performed in PubMed, EBSCO, Web of Science, and Cochrane Library databases before June 2021. The exposure factor of this study is night shift work, the primary outcome is the risk of BC. A total of 33 observational studies composed of 4,331,782 participants were included. Night shift work increases the risk of BC in the female population (hazard ratio [HR] = 1.20, 95% confidence interval [Cl] = 1.10–1.31, p < 0.001), especially receptor-positive BC, including estrogen receptor (ER)+ BC (HR = 1.35, p < 0.001), progesterone receptor (PR)+ BC (HR = 1.30, p = 0.003), and human epidermal growth factor receptor 2 (HER2)+ BC (HR = 1.42, p < 0.001), but has no effect on HER2− BC (HR = 1.10, p = 0.515) and ER−/PR− BC (HR = 0.98, p = 0.827). The risk of BC was positively correlated with night shift working duration, frequency, and cumulative times. For women who start night work before menopause, night work will increase the incidence of BC (HR = 1.17, p = 0.020), but for women who start night work after menopause, night work does not affect BC (HR = 1.04, p = 0.293). Night work can increase the incidence of BC in the female population. The effect of long working hours, frequency, and the cumulative number of night shifts on BC is influenced by menopausal status.
Collapse
Affiliation(s)
- Jiaze Hong
- The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Rongrong Fu
- The First Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Binbin Xu
- Department of Nutrition, HwaMei Hospital, University of Chinese Academy of Sciences , Ningbo , Zhejiang , China
| | - Jiaxuan Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Xiangyuan Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Feiyan Mao
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences , Northwest Street 41, Haishu District, Ningbo, 315010 , Zhejiang , China
| |
Collapse
|
8
|
Liu H, Wang F, Zhao J, Zhang X, Zeng Z, Wang S, Guan J, Qin H. The effect and mechanisms of melatonin on the proliferation and apoptosis of lung cancer cells. Bioengineered 2022; 13:3462-3469. [PMID: 35068335 PMCID: PMC8974022 DOI: 10.1080/21655979.2021.2023803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to observe the effects and mechianisms of melatonin on the proliferation and apoptosis of lung cancer (LC) cells. A549 cells were treated with a concentration gradient (0–100 μM) of melatonin for 24 hours, and cell viability was detected by XTT ((2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl) −2H-tetrazolium-5-carboxanilide)) colorimetry. Melatonin with a concentration of 50 μM was selected to interact with the LC cells for ten days, and then a colony formation assay was used to detect the proliferation of the LC cells. TUNEL (Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling) staining was used to evaluate the amount of apoptosis in the two groups. Finally, Western blotting was used to detect the expression levels of related proteins in the p38MAP (mitogen-activated protein) signaling pathway. Meanwhile, another experiment, CCK-8 cell proliferation test, was conducted to detect the OD540 absorbance of LC cells at 24, 48, 72, and 96 hours. Melatonin inhibited the proliferation of LC cells in a concentration-dependent (5–100 μM) manner (P < 0.05), and inhibited the proliferation of LC cells in a time-dependent (0–96 hour) manner (P < 0.05). Melatonin (50 μM) could significantly inhibit the colony formation ability of LC cells (P < 0.05). The ratio of LC cells in the G0/G1 phase in the melatonin group increased, while the ratio of cells in the G2/M and S phase was significantly reduced (P < 0.05). Melatonin significantly promoted the apoptosis of LC cells (P < 0.05) and activate the phosphorylation of p38 (P < 0.05).
Collapse
Affiliation(s)
- Hui Liu
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Fang Wang
- Department of Internal Medicine, OASIS International Hospital, Beijing, China
| | - Jun Zhao
- Department of Oncology, Changzhi People’s Hospital, Changzhi, Shanxi, China
| | | | - Zhen Zeng
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Shasha Wang
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Jingzhi Guan
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Haifeng Qin
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Aboelwafa H, Ramadan R, El-Kott A, Abdelhamid F. The protective effect of melatonin supplementation against taxol-induced testicular cytotoxicity in adult rats. Braz J Med Biol Res 2022; 55:e11614. [PMID: 35137851 PMCID: PMC8851920 DOI: 10.1590/1414-431x2021e11614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
| | | | - A.F. El-Kott
- King Khalid University, Saudi Arabia; College of Science, Damanhour University, Egypt
| | | |
Collapse
|
10
|
Bastani S, Akbarzadeh M, Rastgar Rezaei Y, Farzane A, Nouri M, Mollapour Sisakht M, Fattahi A, Akbarzadeh M, Reiter RJ. Melatonin as a Therapeutic Agent for the Inhibition of Hypoxia-Induced Tumor Progression: A Description of Possible Mechanisms Involved. Int J Mol Sci 2021; 22:10874. [PMID: 34639215 PMCID: PMC8509383 DOI: 10.3390/ijms221910874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Hypoxia has an important role in tumor progression via the up-regulation of growth factors and cellular adaptation genes. These changes promote cell survival, proliferation, invasion, metastasis, angiogenesis, and energy metabolism in favor of cancer development. Hypoxia also plays a central role in determining the resistance of tumors to chemotherapy. Hypoxia of the tumor microenvironment provides an opportunity to develop new therapeutic strategies that may selectively induce apoptosis of the hypoxic cancer cells. Melatonin is well known for its role in the regulation of circadian rhythms and seasonal reproduction. Numerous studies have also documented the anti-cancer properties of melatonin, including anti-proliferation, anti-angiogenesis, and apoptosis promotion. In this paper, we hypothesized that melatonin exerts anti-cancer effects by inhibiting hypoxia-induced pathways. Considering this action, co-administration of melatonin in combination with other therapeutic medications might increase the effectiveness of anti-cancer drugs. In this review, we discussed the possible signaling pathways by which melatonin inhibits hypoxia-induced cancer cell survival, invasion, migration, and metabolism, as well as tumor angiogenesis.
Collapse
Affiliation(s)
- Sepideh Bastani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz 51368, Iran;
- Stem Cell And Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Moloud Akbarzadeh
- Stem Cell And Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz 51368, Iran;
- Department of Cellular and Molecular Biology, Faculty of Biological Science, Azarbaijan Shahid Madani University, Tabriz 51368, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Ali Farzane
- Department of Health Information Management, School of Allied Medical Science, Tehran University of Medical Sciences, Tehran 11369, Iran;
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Mahsa Mollapour Sisakht
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran 11369, Iran;
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Comprehensive Cancer Center ER-EMN, 91054 Erlangen, Germany
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| |
Collapse
|
11
|
Maleki M, Khelghati N, Alemi F, Younesi S, Asemi Z, Abolhasan R, Bazdar M, Samadi-Kafil H, Yousefi B. Multiple interactions between melatonin and non-coding RNAs in cancer biology. Chem Biol Drug Des 2021; 98:323-340. [PMID: 33905613 DOI: 10.1111/cbdd.13849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
The melatonin hormone secreted by the pineal gland is involved in physiological functions such as growth and maturation, circadian cycles, and biological activities including antioxidants, anti-tumor, and anti-ischemia. Melatonin not only interacts with proteins but also has functional effects on regulatory RNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). In this study, we overview various physiological and pathological conditions affecting melatonin through lncRNA and miRNA. The information compiled herein will serve as a solid foundation to formulate ideas for future mechanistic studies on melatonin. It will also provide a chance to more clarify the emerging functions of the non-coding transcriptome.
Collapse
Affiliation(s)
- Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Zatollah Asemi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia.,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rozita Abolhasan
- Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahtab Bazdar
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
González A, Alonso-González C, González-González A, Menéndez-Menéndez J, Cos S, Martínez-Campa C. Melatonin as an Adjuvant to Antiangiogenic Cancer Treatments. Cancers (Basel) 2021; 13:3263. [PMID: 34209857 PMCID: PMC8268559 DOI: 10.3390/cancers13133263] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a hormone with different functions, antitumor actions being one of the most studied. Among its antitumor mechanisms is its ability to inhibit angiogenesis. Melatonin shows antiangiogenic effects in several types of tumors. Combination of melatonin and chemotherapeutic agents have a synergistic effect inhibiting angiogenesis. One of the undesirable effects of chemotherapy is the induction of pro-angiogenic factors, whilst the addition of melatonin is able to overcome these undesirable effects. This protective effect of the pineal hormone against angiogenesis might be one of the mechanisms underlying its anticancer effect, explaining, at least in part, why melatonin administration increases the sensitivity of tumors to the inhibitory effects exerted by ordinary chemotherapeutic agents. Melatonin has the ability to turn cancer totally resistant to chemotherapeutic agents into a more sensitive chemotherapy state. Definitely, melatonin regulates the expression and/or activity of many factors involved in angiogenesis which levels are affected (either positively or negatively) by chemotherapeutic agents. In addition, the pineal hormone has been proposed as a radiosensitizer, increasing the oncostatic effects of radiation on tumor cells. This review serves as a synopsis of the interaction between melatonin and angiogenesis, and we will outline some antiangiogenic mechanisms through which melatonin sensitizes cancer cells to treatments, such as radiotherapy or chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain; (A.G.); (A.G.-G.); (J.M.-M.); (C.M.-C.)
| | | |
Collapse
|
13
|
Molecular targets for the management of gastrointestinal cancer using melatonin, a natural endogenous body hormone. Biomed Pharmacother 2021; 140:111782. [PMID: 34087693 DOI: 10.1016/j.biopha.2021.111782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal cancer is one of the most common cancers globally. Melatonin, a natural endogenous body hormone, has been of interest for years, due to its anti-cancer characteristics, such as antiproliferative, antimetastatic, and cytotoxic as well as apoptotic induction. Through regulating several proteins such as melatonin upregulated mRNAs and proteins of downregulated Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2), as well as cytoplasmic protein such as calcium-binding proteins calmodulin or tubulin, and nuclear receptors, including RORα/RZR, and acts by non-receptor-regulated mechanisms, melatonin can exert anti-cancer efficacy. Moreover, melatonin modulates angiogenesis by targeting mRNA and protein expression of endothelin-converting enzyme (ECE-1) protein. In the present review, we address in vivo, in vitro and clinical reports on its anti-cancer efficacies, and the molecular mechanisms of action responsible for these effects. We advance the possibility of therapeutic melatonin administration for cancer therapy.
Collapse
|
14
|
Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26:molecules26092506. [PMID: 33923028 PMCID: PMC8123278 DOI: 10.3390/molecules26092506] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.
Collapse
|
15
|
Kong X, Gao R, Wang Z, Wang X, Fang Y, Gao J, Reiter RJ, Wang J. Melatonin: A Potential Therapeutic Option for Breast Cancer. Trends Endocrinol Metab 2020; 31:859-871. [PMID: 32893084 DOI: 10.1016/j.tem.2020.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Melatonin has significant inhibitory effects in numerous cancers, especially breast cancer. In estrogen receptor (ER)-positive human breast cancer, the oncostatic actions of melatonin are mainly achieved by suppressing ER mRNA expression and ER transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of nuclear receptors, estrogen-metabolizing enzymes, and the expression of related genes. Furthermore, melatonin suppresses tumor aerobic glycolysis, critical cell-signaling pathways relevant to cell proliferation, survival, metastasis, and overcomes drug resistance. Studies in animal and human models indicate that disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer, resulting in resistance to hormone therapy and chemotherapy, which may be reversed by melatonin.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
16
|
Panchenko AV, Tyndyk ML, Maydin MA, Baldueva IA, Artemyeva AS, Kruglov SS, Kireeva GS, Golubev AG, Belyaev AM, Anisimov VN. Melatonin Administered before or after a Cytotoxic Drug Increases Mammary Cancer Stabilization Rates in HER2/Neu Mice. Chemotherapy 2020; 65:42-50. [PMID: 32772021 DOI: 10.1159/000509238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The effects of chemotherapy are known to depend on the time of administration. Circadian rhythms are disturbed in tumors and in tumor bearers. Agents involved in controlling the circadian rhythms (chronobiotics) potentially can modify the outcomes of chemotherapeutics administered at different times of the day. Pineal hormone melatonin (MT) is a prototypic chronobiotic. OBJECTIVE The aim of the study was to investigate if MT can affect efficacy or toxicity of chemotherapy drugs administered at the extreme time points of the working day of hospital personnel. METHODS Cyclophosphamide, adriamycin, and 5-fluorouracil (CAF) and adriamycin and docetaxel (AT) cytotoxic drug combinations were administered on day 0 at 11:00 a.m. or at 5:00 p.m. (UTC+03:00) to 6-month-old female HER2/neu transgenic FVB/N mice bearing mammary adenocarcinomas. Some mice were additionally provided with MT in drinking water (20 mg/L) at night 1 week before or 3 weeks after treatment or during both periods. Tumor node sizes, body weight, and blood cell counts were determined right before treatment and on days 2, 7, 14, and 21. RESULTS Significant decrease in the mean tumor node volume was found by days 14 and 21 upon all CAF and AT treatment schedules, except in animals treated with AT at 5:00 p.m. without supplementation with MT. In the latter case, mean tumor node volume on day 21 was the same as in the control. Supplementation of AT administered at 5:00 p.m. with MT improved the tumor response. CAF and AT regimens supplemented with MT also augmented the number of tumor nodes that did not increase by more than 20% by day 21 as compared to CAF or AT alone, respectively. This effect was significant in groups treated with AT at 5:00 p.m. and consistent upon other schedules. On day 7, leukopenia and anemia were registered in groups treated with CAF regimen; however, blood cell counts normalized by day 14. Both CAF and AT were associated with drop in the body weight registered on day 7. Supplementation with MT did not affect changes of the body weight and blood counts. CONCLUSIONS MT supplementation to cytotoxic drugs can improve antitumor response, especially if it is blunted because of an inappropriate time of administration.
Collapse
Affiliation(s)
- Andrey V Panchenko
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russian Federation,
| | - Margarita L Tyndyk
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russian Federation
| | - Mikhail A Maydin
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russian Federation
| | - Irina A Baldueva
- Department of Oncoimmunology, N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russian Federation
| | - Anna S Artemyeva
- Department of Pathomorphology, N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russian Federation
| | - Stepan S Kruglov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russian Federation
| | - Galina S Kireeva
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russian Federation
| | - Alexey G Golubev
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russian Federation
| | - Alexey M Belyaev
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russian Federation
| | - Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology of the Russian Ministry of Health, St. Petersburg, Russian Federation
| |
Collapse
|
17
|
Kvietkauskas M, Zitkute V, Leber B, Strupas K, Stiegler P, Schemmer P. The role of melatonin in colorectal cancer treatment: a comprehensive review. Ther Adv Med Oncol 2020; 12:1758835920931714. [PMID: 32733605 PMCID: PMC7370547 DOI: 10.1177/1758835920931714] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer worldwide, known as the second leading cause of cancer-related deaths annually. Currently, multimodal treatment strategies, including surgical resection, combined with chemotherapy and radiotherapy, have been used as conventional treatments in patients with CRC. However, clinical outcome of advanced stage disease remains relatively discouraging, due mainly to appearance of CRC chemoresistance, toxicity, and other detrimental side effects. New strategies to overcome these limitations are essential. During the last decades, melatonin (MLT) has been shown to be a potent antiproliferative, anti-metastatic agent with cytotoxic effects on different types of human malignancies, including CRC. Hence, this comprehensive review compiles the available experimental and clinical data analyzing the effects of MLT treatment in CRC patients and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Viktorija Zitkute
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Transplant Center Graz, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Gurunathan S, Jeyaraj M, Kang MH, Kim JH. Melatonin Enhances Palladium-Nanoparticle-Induced Cytotoxicity and Apoptosis in Human Lung Epithelial Adenocarcinoma Cells A549 and H1229. Antioxidants (Basel) 2020; 9:E357. [PMID: 32344592 PMCID: PMC7222421 DOI: 10.3390/antiox9040357] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Palladium nanoparticles (PdNPs) are increasingly being used in medical and biological applications due to their unique physical and chemical properties. Recent evidence suggests that these nanoparticles can act as both a pro-oxidant and as an antioxidant. Melatonin (MLT), which also shows pro- and antioxidant properties, can enhance the efficacy of chemotherapeutic agents when combined with anticancer drugs. Nevertheless, studies regarding the molecular mechanisms underlying the anticancer effects of PdNPs and MLT in cancer cells are still lacking. Therefore, we aimed to investigate the potential toxicological and molecular mechanisms of PdNPs, MLT, and the combination of PdNPs with MLT in A549 lung epithelial adenocarcinoma cells. We evaluated cell viability, cell proliferation, cytotoxicity, oxidative stress, mitochondrial dysfunction, and apoptosis in cells treated with different concentrations of PdNPs and MLT. PdNPs and MLT induced cytotoxicity, which was confirmed by leakage of lactate dehydrogenase, increased intracellular protease, and reduced membrane integrity. Oxidative stress increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), protein carbonyl content (PCC), lipid hydroperoxide (LHP), and 8-isoprostane. Combining PdNPs with MLT elevated the levels of mitochondrial dysfunction by decreasing mitochondrial membrane potential (MMP), ATP content, mitochondrial number, and expression levels of the main regulators of mitochondrial biogenesis. Additionally, PdNPs and MLT induced apoptosis and oxidative DNA damage due to accumulation of 4-hydroxynonenal (HNE), 8-oxo-2'-deoxyguanosine (8-OhdG), and 8-hydroxyguanosine (8-OHG). Finally, PdNPs and MLT increased mitochondrially mediated stress and apoptosis, which was confirmed by the increased expression levels of apoptotic genes. To our knowledge, this is the first study demonstrating the effects of combining PdNPs and MLT in human lung cancer cells. These findings provide valuable insights into the molecular mechanisms involved in PdNP- and MLT-induced toxicity, and it may be that this combination therapy could be a potential effective therapeutic approach. This combination effect provides information to support the clinical evaluation of PdNPs and MLT as a suitable agents for lung cancer treatment, and the combined effect provides therapeutic value, as non-toxic concentrations of PdNPs and MLT are more effective, better tolerated, and show less adverse effects. Finally, this study suggests that MLT could be used as a supplement in nano-mediated combination therapies used to treat lung cancer.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.J.); (M.-H.K.)
| | | | | | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.J.); (M.-H.K.)
| |
Collapse
|
19
|
Shabeeb D, Musa AE, Keshavarz M, Hassanzadeh G, Hadian MR, Nowrouzi A, Shirazi A, Najafi M. Melatonin Ameliorates Radiation-induced Sciatic Nerve Injury. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666190617160434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Radiotherapy is a treatment method for cancer mostly utilized for about
60% of cancer patients. Peripheral neuropathy is one of the severe complications of radiotherapy.
Two stages of neuropathy will occur following irradiation; electrophysiological and biochemical
variations as the first stage, while the second stage involves fibrosis of soft tissues surrounding the
exposed nerve. This novel study aimed to investigate the radioprotective effects of melatonin against
ionizing radiation-induced sciatic nerve damage.
Methods:
60 rats were randomly assigned to four groups; C (Control), M (Melatonin), R (Radiation),
MR (Radiation + Melatonin). Their right legs were exposed to 30 Gy single dose gamma rays. Melatonin
(100 mg/kg) was administered 30 min before irradiation and once daily (5 mg/kg) till the day
of rats’ sacrifice. Their exposed nerve tissues were evaluated for biochemical changes in addition to
Electromyography (EMG) and Nerve Conduction Study (NCS).
Results:
4, 12 and 20 weeks post-irradiation, EMG and NCS examinations in R group showed reduced
Compound Muscle Action Potential (CMAP) representing axonal degeneration when compared
with C and M groups. Prolonged latency and a decrease in Conduction Velocity (CV) gave an
indication of demyelinating neuropathy at 12 and 20 weeks. EMG and NCS results of R group
showed partial nerve lesion. Biochemical assessments showed that irradiation of sciatic nerve led to
increased MDA level, as well as decreased CAT and SOD activities. However, in all cases, treatment
with melatonin can reverse these effects.
Conclusion:
We conclude that melatonin can improve electrophysiological, oxidative stress and
antioxidant defense features of irradiated rats’ sciatic nerves. We would also recommend the use of
melatonin in an optimal and safe dose. It should be administered over a long period of time for effective
protection of the peripheral nerve tissues, as well as improving the therapeutic ratio of radiotherapy.
Collapse
Affiliation(s)
- Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Mansoor Keshavarz
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammed Reza Hadian
- Brain and Spinal Cord Injury, Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Nowrouzi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
Ghani MU, Alam TM, Jaskani FH. Comparison of Classification Models for Early Prediction of Breast Cancer. 2019 INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING (ICIC) 2019. [DOI: 10.1109/icic48496.2019.8966691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
21
|
González-González A, García Nieto E, González A, Sánchez-Fernández C, Alonso-González C, Menéndez-Menéndez J, Gómez-Arozamena J, Cos S, Martínez-Campa C. Melatonin Modulation of Radiation and Chemotherapeutics-induced Changes on Differentiation of Breast Fibroblasts. Int J Mol Sci 2019; 20:3935. [PMID: 31412584 PMCID: PMC6719206 DOI: 10.3390/ijms20163935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Melatonin exerts oncostatic actions and sensitizes tumor cells to chemotherapeutics or radiation. In our study, we investigated the effects of docetaxel, vinorelbine, and radiation on human breast fibroblasts and its modulation by melatonin. Docetaxel or vinorelbine inhibits proliferation and stimulates the differentiation of breast preadipocytes, by increasing C/EBPα and PPARγ expression and by downregulating tumor necrosis factor α (TNFα), interleukin 6 (IL-6), and IL-11 expression. Radiation inhibits both proliferation and differentiation through the downregulation of C/EBPα and PPARγ and by stimulating TNFα expression. In addition, docetaxel and radiation decrease aromatase activity and expression by decreasing aromatase promoter II and cyclooxygenases 1 and 2 (COX-1 and COX-2) expression. Melatonin potentiates the stimulatory effect of docetaxel and vinorelbine on differentiation and their inhibitory effects on aromatase activity and expression, by increasing the stimulatory effect on C/EBPα and PPARγ expression and the downregulation of antiadipogenic cytokines and COX expression. Melatonin also counteracts the inhibitory effect of radiation on differentiation of preadipocytes, by increasing C/EBPα and PPARγ expression and by decreasing TNFα expression. Melatonin also potentiates the inhibitory effect exerted by radiation on aromatase activity and expression by increasing the downregulation of promoter II, and COX-1 and COX-2 expression. Our findings suggest that melatonin modulates regulatory effects induced by chemotherapeutic drugs or radiation on preadipocytes, which makes it a promising adjuvant for chemotherapy and radiotherapy sensibilization.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Enrique García Nieto
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain.
| | - Cristina Sánchez-Fernández
- Department of Anatomy and Cellular Biology, School of Medicine, University of Cantabria, 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain.
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - José Gómez-Arozamena
- Department of Medical Physics, School of Medicine, University of Cantabria, 39011 Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
22
|
Menéndez-Menéndez J, Hermida-Prado F, Granda-Díaz R, González A, García-Pedrero JM, Del-Río-Ibisate N, González-González A, Cos S, Alonso-González C, Martínez-Campa C. Deciphering the Molecular Basis of Melatonin Protective Effects on Breast Cells Treated with Doxorubicin: TWIST1 a Transcription Factor Involved in EMT and Metastasis, a Novel Target of Melatonin. Cancers (Basel) 2019; 11:1011. [PMID: 31331001 PMCID: PMC6679136 DOI: 10.3390/cancers11071011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Melatonin mitigates cancer initiation, progression and metastasis through inhibition of both the synthesis of estrogens and the transcriptional activity of the estradiol-ER (Estrogen receptor) complex in the estrogen-dependent breast cancer cell line MCF-7. Moreover, melatonin improves the sensitivity of MCF-7 to chemotherapeutic agents and protects against their side effects. It has been described that melatonin potentiates the anti-proliferative effects of doxorubicin; however, the molecular changes involving gene expression and the activation/inhibition of intracellular signaling pathways remain largely unknown. Here we found that melatonin enhanced the anti-proliferative effect of doxorubicin in MCF-7 but not in MDA-MB-231 cells. Strikingly, doxorubicin treatment induced cell migration and invasion, and melatonin effectively counteracted these effects in MCF-7 but not in estrogen-independent MDA-MB-231 cells. Importantly, we describe for the first time the ability of melatonin to downregulate TWIST1 (Twist-related protein 1) in estrogen-dependent but not in estrogen-independent breast cancer cells. Combined with doxorubicin, melatonin inhibited the activation of p70S6K and modulated the expression of breast cancer, angiogenesis and clock genes. Moreover, melatonin regulates the levels of TWIST1-related microRNAs, such as miR-10a, miR-10b and miR-34a. Since TWIST1 plays a pivotal role in the epithelial to mesenchymal transition, acquisition of metastatic phenotype and angiogenesis, our results suggest that inhibition of TWIST1 by melatonin might be a crucial mechanism of overcoming resistance and improving the oncostatic potential of doxorubicin in estrogen-dependent breast cancer cells.
Collapse
Affiliation(s)
- Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | - Rocío Granda-Díaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Juana María García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | - Nagore Del-Río-Ibisate
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, 33011 Oviedo, Spain
| | - Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain.
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain.
| |
Collapse
|
23
|
González-González A, González A, Rueda N, Alonso-González C, Menéndez-Menéndez J, Gómez-Arozamena J, Martínez-Campa C, Cos S. Melatonin Enhances the Usefulness of Ionizing Radiation: Involving the Regulation of Different Steps of the Angiogenic Process. Front Physiol 2019; 10:879. [PMID: 31354524 PMCID: PMC6637960 DOI: 10.3389/fphys.2019.00879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy is a part of cancer treatment. To improve its efficacy has been combined with radiosensitizers such as antiangiogenic agents. Among the mechanisms of the antitumor action of melatonin are antiangiogenic effects. Our goal was to investigate whether melatonin may modulate the sensitivity of endothelial cells (HUVECs) to ionizing radiation. Melatonin (1 mM) enhanced the inhibition induced by radiation on different steps of the angiogenic process, cell proliferation, migration, and tubular network formation. In relation with the activity and expression of enzymes implicated in estrogen synthesis, in co-cultures HUVECs/MCF-7, radiation down-regulated aromatase mRNA expression, aromatase endothelial-specific promoter I.7, sulfatase activity and expression and 17β-HSD1 activity and expression and melatonin enhanced these effects. Radiation and melatonin induced a significant decrease in VEGF, ANG-1, and ANG-2 mRNA expression. In ANG-2 and VEGF mRNA expression melatonin potentiated the inhibitory effect induced by radiation. In addition, melatonin counteracted the stimulatory effect of radiation on FGFR3, TGFα, JAG1, IGF-1, and KDR mRNA expression and reduced ANPEP expression. In relation with extracellular matrix molecules, radiation increased MMP14 mRNA expression and melatonin counteracted the stimulatory effect of radiation on MMP14 mRNA expression and increased TIMP1 expression, an angiogenesis inhibitor. Melatonin also counteracted the stimulatory effect of radiation on CXCL6, CCL2, ERK1, ERK2, and AKT1 mRNA expression and increased the inhibitory effect of radiation on NOS3 expression. In CAM assay, melatonin enhanced the reduction of the vascular area induced by radiation. Melatonin potentiated the inhibitory effect on the activation of p-AKT and p-ERK exerted by radiation. Antiangiogenic effect of melatonin could be mediated through AKT and ERK pathways, proteins involved in vascular endothelial (VE) cell growth, cell proliferation, survival, migration, and angiogenesis. In addition, radiation increased endothelial cell permeability and melatonin counteracted it by regulating the internalization of VE-cadherin. Radiation has some side effects on angiogenesis that may reduce its effectiveness against tumor growth and melatonin is able to neutralize these negative actions of radiation. Additionally, melatonin potentiated radiation-induced antiangiogenic actions on several steps of the angiogenic process and enhanced its antitumor action. Our findings point to melatonin as a useful molecule as adjuvant to radiotherapy in cancer treatment.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - José Gómez-Arozamena
- Department of Medical Physics, School of Medicine, University of Cantabria, Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
24
|
Zare H, Shafabakhsh R, Reiter RJ, Asemi Z. Melatonin is a potential inhibitor of ovarian cancer: molecular aspects. J Ovarian Res 2019; 12:26. [PMID: 30914056 PMCID: PMC6434863 DOI: 10.1186/s13048-019-0502-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is one of the most common causes of morbidity related to gynecologic malignancies. Possible risk factors are including hereditary ovarian cancer, obesity, diabetes mellitus, alcohol consumption, aging, and smoking. Various molecular signaling pathways including inflammation, oxidative stress, apoptosis and angiogenesis are involved in this progression of ovarian cancer. Standard treatments for recently diagnosed patients are Surgery and chemotherapy such as co-treatment with other drugs such that the exploitation of neoadjuvant chemotherapy is expanding. Melatonin (N-acetyl-5-methoxy-tryptamine), an endogenous agent secreted from the pineal gland, has anti-carcinogenic features, such as regulation of estradiol production, cell cycle modulation, stimulation of apoptosis as well as anti-angiogenetic properties, anti-inflammatory activities, significant antioxidant effects and modulation of various immune system cells and cytokines. Multiple studies have shown the significant beneficial roles of melatonin in various types of cancers including ovarian cancer. This paper aims to shed light on the roles of melatonin in ovarian cancer treatment from the standpoint of the molecular aspects.
Collapse
Affiliation(s)
- Hadis Zare
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, TX, USA
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| |
Collapse
|
25
|
|
26
|
Bojková B, Kajo K, Kubatka P, Solár P, Péč M, Adamkov M. Metformin and melatonin improve histopathological outcome of NMU-induced mammary tumors in rats. Pathol Res Pract 2019; 215:722-729. [PMID: 30642742 DOI: 10.1016/j.prp.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Numerous reports showed inhibition of carcinogenesis after metformin (MF) and melatonin (MEL) administration. However, most in vivo studies used standard diet type, with relatively low fat content. As increase in fat intake may have a considerable impact on malignant transformation, we evaluated the effects of these two substances in a model of mammary carcinogenesis in rats fed a high-fat diet (10%). METHODS Mammary tumors were induced by N-methyl-N-nitrosourea (NMU) in female rats of sensitive Sprague-Dawley strain. MF was administered in a diet (0.2%), MEL was administered in drinking water (20 mg/L). The chemoprevention was initiated 12 days prior to tumor initiation, both substances were administered through the termination of the experiment on 16th week after carcinogen application. Analysis of basic parameters of tumor growth, histopathological profile, and serum IGF-1 level were performed together with immunohistochemical detection of Ki67 (proliferation marker) and caspase-3 and BCL-2 (apoptosis markers) in mammary cancer cells. RESULTS Although neither tumor incidence nor frequency were changed after MF and/or MEL administration, MF and MEL decreased high-grade/low-grade (HG/LG) tumor ratio. MEL decreased proliferation in mammary cancer cells; positive correlations between histological grade and Ki67 expressions were found after single administration of both MF and MEL. Serum IGF-1 levels were reduced to the level of intact rats in all groups receiving chemoprevention. CONCLUSIONS MF and MEL administration did not inhibit growth of NMU-induced mammary tumors in rats in a significant manner but both substances ameliorated tumor histopathological profile. Surprisingly, combined treatment had no such effect.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárová 2, 041 54, Košice, Slovak Republic.
| | - Karol Kajo
- St. Elisabeth Oncology Institute, Heydukova 10, 811 08, Bratislava, Slovak Republic; Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic; Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01, Martin, Slovak Republic
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 01, Košice, Slovak Republic
| | - Martin Péč
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic
| | - Marián Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic
| |
Collapse
|
27
|
Bojková B, Kubatka P, Qaradakhi T, Zulli A, Kajo K. Melatonin May Increase Anticancer Potential of Pleiotropic Drugs. Int J Mol Sci 2018; 19:E3910. [PMID: 30563247 PMCID: PMC6320927 DOI: 10.3390/ijms19123910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is not only a pineal hormone, but also an ubiquitary molecule present in plants and part of our diet. Numerous preclinical and some clinical reports pointed to its multiple beneficial effects including oncostatic properties, and as such, it has become one of the most aspiring goals in cancer prevention/therapy. A link between cancer and inflammation and/or metabolic disorders has been well established and the therapy of these conditions with so-called pleiotropic drugs, which include non-steroidal anti-inflammatory drugs, statins and peroral antidiabetics, modulates a cancer risk too. Adjuvant therapy with melatonin may improve the oncostatic potential of these drugs. Results from preclinical studies are limited though support this hypothesis, which, however, remains to be verified by further research.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárová 2, 041 54 Košice, Slovak Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic.
- Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic.
| | - Tawar Qaradakhi
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Karol Kajo
- St. Elisabeth Oncology Institute, Heydukova 10, 811 08 Bratislava, Slovak Republic.
- Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic.
| |
Collapse
|
28
|
Menéndez-Menéndez J, Martínez-Campa C. Melatonin: An Anti-Tumor Agent in Hormone-Dependent Cancers. Int J Endocrinol 2018; 2018:3271948. [PMID: 30386380 PMCID: PMC6189685 DOI: 10.1155/2018/3271948] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone synthesized and secreted by the pineal gland mainly during the night, since light exposure suppresses its production. Initially, an implication of this indoleamine in malignant disease was described in endocrine-responsive breast cancer. Data from several clinical trials and multiple experimental studies performed both in vivo and in vitro have documented that the pineal hormone inhibits endocrine-dependent mammary tumors by interfering with the estrogen signaling-mediated transcription, therefore behaving as a selective estrogen receptor modulator (SERM). Additionally, melatonin regulates the production of estradiol through the control of the enzymes involved in its synthesis, acting as a selective estrogen enzyme modulator (SEEM). Many more mechanisms have been proposed during the past few years, including signaling triggered after activation of the membrane melatonin receptors MT-1 and MT-2, or else intracellular actions targeting molecules such as calmodulin, or binding intranuclear receptors. Similar results have been obtained in prostate (regulation of enzymes involved in androgen synthesis and modulation of androgen receptor levels and activity) and ovary cancer. Thus, tumor metabolism, gene expression, or epigenetic modifications are modulated, cell growth is impaired and angiogenesis and metastasis are inhibited. In the last decade, many more reports have demonstrated that melatonin is a promising adjuvant molecule with many potential beneficial consequences when included in chemotherapy or radiotherapy protocols designed to treat endocrine-responsive tumors. Therefore, in this state-of-the-art review, we aim to compile the knowledge about the oncostatic actions of the indoleamine in hormone-dependent tumors, and the latest findings concerning melatonin actions when administered in combination with radio- or chemotherapy in breast, prostate, and ovary cancers. As melatonin has no toxicity, it may be well deserve to be considered as an endogenously generated agent helpful in cancer prevention and treatment.
Collapse
Affiliation(s)
- Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
29
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol 2018; 21:268-279. [PMID: 30136132 DOI: 10.1007/s12094-018-1934-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
It is estimated that more than half of cancer patients undergo radiotherapy during the course of their treatment. Despite its beneficial therapeutic effects on tumor cells, exposure to high doses of ionizing radiation (IR) is associated with several side effects. Although improvements in radiotherapy techniques and instruments could reduce these side effects, there are still important concerns for cancer patients. For several years, scientists have been trying to modulate tumor and normal tissue responses to IR, leading to an increase in therapeutic ratio. So far, several types of radioprotectors and radiosensitizers have been investigated in experimental studies. However, high toxicity of chemical sensitizers or possible tumor protection by radioprotectors creates a doubt for their clinical applications. On the other hand, the protective effects of these radioprotectors or sensitizer effects of radiosensitizers may limit some type of cancers. Hence, the development of some radioprotectors without any protective effect on tumor cells or low toxic radiosensitizers can help improve therapeutic ratio with less side effects. Melatonin as a natural body hormone is a potent antioxidant and anti-inflammatory agent that shows some anti-cancer properties. It is able to neutralize different types of free radicals produced by IR or pro-oxidant enzymes which are activated following exposure to IR and plays a key role in the protection of normal tissues. In addition, melatonin has shown the ability to inhibit long-term changes in inflammatory responses at different levels, thereby ameliorating late side effects of radiotherapy. Fortunately, in contrast to classic antioxidants, some in vitro studies have revealed that melatonin has a potent anti-tumor activity when used alongside irradiation. However, the mechanisms of its radiosensitive effect remain to be elucidated. Studies suggested that the activation of pro-apoptosis gene, such as p53, changes in the metabolism of tumor cells, suppression of DNA repair responses as well as changes in biosynthesis of estrogen in breast cancer cells are involved in this process. In this review, we describe the molecular mechanisms for radioprotection and radiosensitizer effects of melatonin. Furthermore, some other proposed mechanisms that may be involved are presented.
Collapse
Affiliation(s)
- B Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - N H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - K Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - N Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M S Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - H Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - D Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Amarah, Iraq
| | - A E Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - M Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
30
|
Zhang H, Liu X, Chen T, Ji Y, Shi K, Wang L, Zheng X, Kong J. Melatonin in Apples and Juice: Inhibition of Browning and Microorganism Growth in Apple Juice. Molecules 2018; 23:E521. [PMID: 29495435 PMCID: PMC6017754 DOI: 10.3390/molecules23030521] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/08/2023] Open
Abstract
Synthetic melatonin (N-acetyl-5-methoxytryptamine, MT) is popular in the US and Asian markets as a health supplement. Here, we identified a naturally occurring melatonin source in apple juice. Melatonin was present in all 18 apple cultivars tested. The highest melatonin level of the edible part of apple was detected in the apple peel. The melatonin content in 'Fuji' apple juice is comparable to the level of its flesh. Melatonin was consumed during the process of juicing due to its interaction with the oxidants. Melatonin addition significantly reduced the juice color change to brown (browning). The mechanism is that melatonin scavenges the free radicals, which was indicated by the ASBT analysis; therefore, inhibiting the conversion of o-diphenolic compounds into quinones. Most importantly, melatonin exhibited powerful anti-microorganism activity in juice. The exact mechanisms of this action are currently unknown. These effects of melatonin can preserve the quality and prolong the shelf life of apple juice. The results provide valuable information regarding commerciall apple juice processing and storage.
Collapse
Affiliation(s)
- Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xuan Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ting Chen
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Yazhen Ji
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Alonso-González C, Menéndez-Menéndez J, González-González A, González A, Cos S, Martínez-Campa C. Melatonin enhances the apoptotic effects and modulates the changes in gene expression induced by docetaxel in MCF‑7 human breast cancer cells. Int J Oncol 2018; 52:560-570. [PMID: 29207126 DOI: 10.3892/ijo.2017.4213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Results from clinical trials and multiple in vivo and in vitro studies point to melatonin as a promising adjuvant molecule with many beneficial effects when concomitantly administered with chemotherapy. Melatonin palliates side‑effects and enhances the efficacy of chemotherapeutic agents. However, the mechanisms through which melatonin regulates molecular changes induced by chemotherapeutic agents remain largely unknown. In this study, we demonstrated that melatonin enhanced the anti-proliferative and apoptotic responses to low doses of docetaxel in breast cancer cells. Importantly, these effects were more potent when melatonin was added prior to docetaxel. Treatment with 1 µM docetaxel (equivalent to the therapeutic dosage) induced changes in gene expression profiles and melatonin modulated these changes. Specifically, docetaxel downregulated TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and cadherin 13 (CDH13), and upregulated mucin 1 (MUC1), GATA binding protein 3 (GATA3) and c-MYC, whereas melatonin counteracted these effects. Melatonin further stimulated the expression of the pro-apoptotic BAD and BAX genes, and enhanced the inhibition of the anti-apoptotic gene BCL-2 induced by docetaxel. The findings of this study suggest that melatonin is a molecule with potential for use as an adjuvant in cancer chemotherapy, which may have implications for designing clinical trials using chemotherapeutic drugs in combination with melatonin.
Collapse
Affiliation(s)
- Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), ES-39011 Santander, Spain
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), ES-39011 Santander, Spain
| | - Alicia González-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), ES-39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), ES-39011 Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), ES-39011 Santander, Spain
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), ES-39011 Santander, Spain
| |
Collapse
|
32
|
Fernando S, Biggs SN, Horne RSC, Vollenhoven B, Lolatgis N, Hope N, Wong M, Lawrence M, Lawrence A, Russell C, Leong K, Thomas P, Rombauts L, Wallace EM. The impact of melatonin on the sleep patterns of women undergoing IVF: a double blind RCT. Hum Reprod Open 2018; 2017:hox027. [PMID: 30895239 PMCID: PMC6276665 DOI: 10.1093/hropen/hox027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Does melatonin result in a dose–response effect on sleep quality and daytime sleepiness in women undergoing IVF? SUMMARY ANSWER Melatonin, even when given at high doses twice per day, does not cause significant daytime sleepiness or change night time sleep quantity or quality. WHAT IS KNOWN ALREADY Melatonin is being increasingly used as an adjuvant therapy for women undergoing IVF owing to its antioxidative effects. It is widely considered to be sedative but there are scant objective data on the effects of melatonin on sleep in the setting of IVF. STUDY DESIGN SIZE, DURATION The study was a double-blind placebo-controlled randomized trial of 116 women recruited between September 2014 and September 2016. PARTICIPANTS/MATERIALS, SETTING, METHOD Women who were undergoing their first cycle of IVF at private IVF centers were recruited into the RCT and randomized to receive either placebo, 2 mg, 4 mg or 8 mg of melatonin, twice per day (BD) from Day 2 of their cycle until the day before oocyte retrieval. Each participant wore an accelerometer that provides an estimate of sleep and wake activity for up to 1 week of baseline and throughout treatment (up to 2 weeks). They also kept sleep diaries and completed a Karolinska sleepiness score detailing their night time sleep activity and daytime sleepiness, respectively. MAIN RESULTS AND THE ROLE OF CHANCE In total, 116 women were included in the intention-to-treat analysis (placebo BD (n = 32), melatonin 2 mg BD (n = 29), melatonin 4 mg BD (n = 26), melatonin 8 mg BD (n = 29)). There were no significant differences in daytime Karolinska sleepiness score between groups (P = 0.4), nor was there a significant dose–response trend (β=0.05, 95% CI −0.22–0.31, P = 0.7). There were no differences in objective measures of sleep quantity or quality, including wake after sleep onset time, sleep onset latency, and sleep efficiency before and after treatment or between groups. There was an improvement in subjective sleep quality scores from baseline to during treatment in all groups, except 8 mg BD melatonin: placebo (percentage change −13.3%, P = 0.01), 2 mg (−14.1%, P = 0.03), 4 mg (−8.6%, P = 0.01) and 8 mg (−7.8%, P = 0.07). LIMITATIONS, REASONS FOR CAUTION As this was a subset of a larger trial, the melatonin in ART (MIART) trial, it is possible that the sample size was too small to detect statistically significant differences between the groups. WIDER IMPLICATIONS OF THE FINDINGS While this study suggests that melatonin can be used twice per day at high doses to achieve sustained antioxidation effects, with the reassurance that this will not negatively impact daytime sleepiness or night time sleep habits, the sample size is small and may have missed a clinically significant difference. Nevertheless, our findings may have implications not only for future studies of fertility treatments (including meta-analyses), but also in other medical fields where sustained antioxidation is desired. STUDY FUNDING/COMPETING INTERESTS This study was funded by the Monash IVF Research and Education Foundation (PY12_15). S.F. is supported by the National Health and Medical Research Council (Postgraduate Scholarship APP1074342) and the Royal Australian and New Zealand College of Obstetricians and Gynaecologists Ella Macknight Memorial Scholarship. E.W. is supported by an National Health and Medical Research Council Program Grant (APP1113902). S.F., E.W., R.H., B.V., N.L., N.H., M.W., M.L., A.L., P.T., K.L. have nothing to declare. L.R. is a Minority shareholder in Monash IVF Group, has unrestricted grants from MSD®, Merck-Serono® and Ferring® and receives consulting fees from Ferring®. S.N.B. reports consulting fees from Johnson & Johnson Consumer Inc®, outside the submitted work. TRIAL REGISTRATION NUMBER This trial was prospectively registered with the Australian New Zealand Clinical Trials Registry (Project ID: ACTRN12613001317785). TRIAL REGISTRATION DATE 27/11/2013 DATE OF FIRST PATIENT’S ENROLMENT 1/9/2014
Collapse
Affiliation(s)
- Shavi Fernando
- Departments of Obstetrics and Gynaecology.,Hudson Institute of Medical Research, 27-31 Wright st, Clayton, Victoria3168, Australia.,Monash Women's, Monash Health, 246 Clayton Rd, Clayton 3168, Victoria, Australia
| | - Sarah Nichole Biggs
- Paediatrics, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia.,Hudson Institute of Medical Research, 27-31 Wright st, Clayton, Victoria3168, Australia
| | - Rosemary Sylvia Claire Horne
- Paediatrics, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia.,Hudson Institute of Medical Research, 27-31 Wright st, Clayton, Victoria3168, Australia
| | - Beverley Vollenhoven
- Departments of Obstetrics and Gynaecology.,Monash IVF, 7/89 Bridge rd, Richmond, Victoria 3121, Australia.,Monash Women's, Monash Health, 246 Clayton Rd, Clayton 3168, Victoria, Australia
| | | | - Nicole Hope
- Monash IVF, 7/89 Bridge rd, Richmond, Victoria 3121, Australia
| | - Melissa Wong
- Monash IVF, 7/89 Bridge rd, Richmond, Victoria 3121, Australia
| | - Mark Lawrence
- Monash IVF, 7/89 Bridge rd, Richmond, Victoria 3121, Australia
| | | | - Chris Russell
- Monash IVF, 7/89 Bridge rd, Richmond, Victoria 3121, Australia
| | - Kenneth Leong
- Monash IVF, 7/89 Bridge rd, Richmond, Victoria 3121, Australia
| | - Philip Thomas
- Monash IVF, 7/89 Bridge rd, Richmond, Victoria 3121, Australia.,Monash Women's, Monash Health, 246 Clayton Rd, Clayton 3168, Victoria, Australia
| | - Luk Rombauts
- Departments of Obstetrics and Gynaecology.,Monash IVF, 7/89 Bridge rd, Richmond, Victoria 3121, Australia.,Monash Women's, Monash Health, 246 Clayton Rd, Clayton 3168, Victoria, Australia
| | | |
Collapse
|
33
|
Kast RE, Skuli N, Cos S, Karpel-Massler G, Shiozawa Y, Goshen R, Halatsch ME. The ABC7 regimen: a new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy. BREAST CANCER-TARGETS AND THERAPY 2017; 9:495-514. [PMID: 28744157 PMCID: PMC5513700 DOI: 10.2147/bctt.s139963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer metastatic to bone has a poor prognosis despite recent advances in our understanding of the biology of both bone and breast cancer. This article presents a new approach, the ABC7 regimen (Adjuvant for Breast Cancer treatment using seven repurposed drugs), to metastatic breast cancer. ABC7 aims to defeat aspects of epithelial-to-mesenchymal transition (EMT) that lead to dissemination of breast cancer to bone. As add-on to current standard treatment with capecitabine, ABC7 uses ancillary attributes of seven already-marketed noncancer treatment drugs to stop both the natural EMT process inherent to breast cancer and the added EMT occurring as a response to current treatment modalities. Chemotherapy, radiation, and surgery provoke EMT in cancer generally and in breast cancer specifically. ABC7 uses standard doses of capecitabine as used in treating breast cancer today. In addition, ABC7 uses 1) an older psychiatric drug, quetiapine, to block RANK signaling; 2) pirfenidone, an anti-fibrosis drug to block TGF-beta signaling; 3) rifabutin, an antibiotic to block beta-catenin signaling; 4) metformin, a first-line antidiabetic drug to stimulate AMPK and inhibit mammalian target of rapamycin, (mTOR); 5) propranolol, a beta-blocker to block beta-adrenergic signaling; 6) agomelatine, a melatonergic antidepressant to stimulate M1 and M2 melatonergic receptors; and 7) ribavirin, an antiviral drug to prevent eIF4E phosphorylation. All these block the signaling pathways - RANK, TGF-beta, mTOR, beta-adrenergic receptors, and phosphorylated eIF4E - that have been shown to trigger EMT and enhance breast cancer growth and so are worthwhile targets to inhibit. Agonism at MT1 and MT2 melatonergic receptors has been shown to inhibit both breast cancer EMT and growth. This ensemble was designed to be safe and augment capecitabine efficacy. Given the expected outcome of metastatic breast cancer as it stands today, ABC7 warrants a cautious trial.
Collapse
Affiliation(s)
| | - Nicolas Skuli
- INSERM, Centre de Recherches en Cancérologie de Toulouse - CRCT, UMR1037 Inserm/Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), Santander, Spain
| | | | - Yusuke Shiozawa
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ran Goshen
- Eliaso Consulting Ltd., Tel Aviv-Yafo, Israel
| | | |
Collapse
|