1
|
Gomaa S, Nassef M, Abu-Shafey A, Elwan M, Adwey A. Impacts of loading thymoquinone to gold or silver nanoparticles on the efficacy of anti-tumor treatments in breast cancer with or without chemotherapeutic cisplatin. BMC Biotechnol 2025; 25:26. [PMID: 40211258 PMCID: PMC11987408 DOI: 10.1186/s12896-025-00958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/17/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Nanotechnology has been greatly examined for tumor medication, as nanoparticles (NPs) serve a crucial role in drug delivery mechanisms for cancer therapy. In contrast to traditional cancer therapies, NPs-based drug delivery offers several benefits, including increased stability and biocompatibility, improved retention capabilities and permeability, as well as precise targeting. AIM The objective of this study was to examine the tumor-targeting efficacy of Thymoquinone (TQ)-loaded gold NPs (AuNPs/TQ conjugate) or TQ-loaded silver NPs (AgNPs/TQ conjugate) in conjunction with the conventional chemotherapy agent cisplatin (CP) in Ehrlich ascites carcinoma (EAC)-bearing mice. METHODS The loading capacity of synthesized conjugates was characterized by UV-Vis spectra and transmission electron microscope (TEM). We used CD-1 mice with a peritoneal EAC tumor xenograft model that received oral administration of TQ, AuNPs, AgNPs, AuNPs/TQ conjugate, and AgNPs/TQ conjugate. METHODS EAC-bearing mice received daily oral administration of one of the following treatments for six consecutive days: TQ, AuNPs, AgNPs, AuNPs/TQ, AgNPs/TQ, AuNPs/TQ + CP, or AgNPs/TQ + CP conjugates. Eleven days after EAC inoculations, assessments were conducted to evaluate the total number of tumor cells, splenocytes, white blood cells (WBCs), C-reactive protein (CRP) levels, flow cytometric analysis of apoptosis in EAC cells, as well as the functionality of the kidney and liver. RESULTS EAC-bearing mice that received treatment with TQ, AuNPs, AgNPs, AuNPs/TQ, and AgNPs/TQ exhibited significantly enhanced anti-tumor activity and improved therapeutic efficacy. Our results further revealed that the combined synergistic approach of TQ's anti-tumor properties, along with the efficient penetration abilities of AuNPs or AgNPs, led to a significant inhibition of the growth of tumor cells in EAC tumor-bearing mice. Moreover, the incorporation of CP into the AuNPs/TQ or AgNPs/TQ conjugates substantially augmented the anti-proliferative effects against EAC tumor cells, effectively overcoming resistance to chemotherapeutic agents. Furthermore, our data revealed that this combination resulted in an elevation of leukocyte counts, along with an increase in the absolute quantities of lymphocytes, neutrophils, and monocytes, thereby activating the immune system and reducing the inflammatory marker CRP. However, the restoration of splenocyte levels, which had been reduced due to EAC cell inoculation, required an extended period to return to baseline. Furthermore, the results indicated moderate alterations in the functionality of both the liver and kidney. CONCLUSION To conclude, AuNPs, AgNPs, AuNPs/TQ, and AgNPs/TQ may hold great promise as potential nanoparticle-based therapies for cancer treatment. Additionally, provides numerous benefits compared to conventional cancer therapies, such as selectivity and minimal side effects. Additionally, AuNPs, AuNPs/TQ, AuNPs/TQ + CP, AgNPs, AgNPs/TQ, or AgNPs/TQ + CP can specifically target tumor tissues, suppress tumor growth, extend the lifespan of tumor-bearing mice, and minimize cytotoxic effects on normal tissues, relative to the administration of free CP alone. More research is needed to understand the mechanisms of these nanoparticle-based therapies in clinical and optimize their use as cancer therapies.
Collapse
Affiliation(s)
- Soha Gomaa
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt.
| | - Mohamed Nassef
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| | - Ahlam Abu-Shafey
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| | - Mona Elwan
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| | - Asmaa Adwey
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| |
Collapse
|
2
|
Ozdemir N, Tan G, Tevlek A, Arslan G, Zengin G, Sargin I. Dead Cell Discrimination with Red Emissive Carbon Quantum Dots from the Medicinal and Edible Herb Echinophora tenuifolia. J Fluoresc 2025:10.1007/s10895-025-04286-y. [PMID: 40186814 DOI: 10.1007/s10895-025-04286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Accurately determining the viability of cells is crucial for in vitro cell research. Fluorescence-based live/dead cell staining is a highly desirable method to assess cell viability and survival in in vitro studies. We describe a green synthesis method to create red-emissive CQDs from the medicinal and edible herb Echinophora tenuifolia using microwave irradiation. We observed that the biocompatibility and photostability of the CQDs are superior. The antioxidant capacity of the CQDs and the plant extract were also investigated using different chemical methods (DPPH, ABTS, CUPRAC, FRAP, PBD, and MCA). The antioxidant capacity of the CQDs was similar to that of the extract of E. tenuifolia. Cytotoxicity studies indicate that while the CQDs are not toxic to L929, they exhibit significant toxicity towards HepG2 cells. The CQDs exhibited a strong negative zeta potential (-44.0 mV), which contributed to their selective interaction with dead cells while being repelled by viable cells with intact membrane potentials. The optimal concentration for effective, non-toxic imaging was determined to be 25 µg/mL, as lower concentrations did not produce detectable fluorescence. Differential staining experiments confirmed that CQDs selectively stained dead cells, with red fluorescence observed under the Texas Red filter. Moreover, CQDs exhibited favorable fluorescence intensity and stability, which may offer advantages for long-term and reliable bioimaging applications. In vitro studies on HepG2 and L929 cell lines revealed that the red-emissive CQDs from E. tenuifolia can be potentially used in bioimaging.
Collapse
Affiliation(s)
- Naciye Ozdemir
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, 42075, Turkey
| | - Gamze Tan
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, 68100, Turkey
| | - Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06830, Turkey
| | - Gulsin Arslan
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, 42075, Turkey
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selçuk University, Konya, 42075, Turkey
| | - Idris Sargin
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, 42075, Turkey.
| |
Collapse
|
3
|
Suyanto E, Gorantla JN, Santi M, Fatchiyah F, Ketudat-Cairns M, Talabnin C, Ketudat Cairns JR. Enzymatic synthesis of phenolic acid glucosyl esters to test activities on cholangiocarcinoma cells. Appl Microbiol Biotechnol 2024; 108:69. [PMID: 38183488 DOI: 10.1007/s00253-023-12895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 01/08/2024]
Abstract
While glycoside hydrolase family 1 (GH1) enzymes mostly catalyze hydrolysis reactions, rice Os9BGlu31 preferentially catalyzes transglycosylation to transfer a glucosyl moiety to another aglycone moiety to form a new glycosylated compound through a retaining mechanism. In this study, Os9BGlu31 was used to synthesize eight phenolic acid glucosyl esters, which were evaluated for activities in cholangiocarcinoma cells. The transglycosylation products of Os9BGlu31 wild type and its mutant variants were detected, produced on a milligram scale, and purified, and their structures were characterized by NMR spectroscopy. The transglycosylation products were evaluated by antioxidant and anti-proliferative assays, followed by an anti-migration assay for the selected phenolic acid glucosyl ester. Os9BGlu31 mutants produced higher yield and activity than wild-type enzymes on phenolic acids to produce phenolic acid glucosyl esters. Among these, gallic acid glucosyl ester (β-glucogallin) had the highest antioxidant activity and anti-proliferative activity in cholangiocarcinoma cells. It also inhibited the migration of cholangiocarcinoma cells. Our study demonstrated that rice Os9BGlu31 transglucosidase is a promising enzyme for glycosylation of bioactive compounds in one-step reactions and provides evidence that β-glucogallin inhibits cell proliferation and migration of cholangiocarcinoma cells. KEY POINTS: • Os9BGlu31 transglucosidases produced phenolic acid glucosyl esters for bioactivity testing. • Phenolic acid glucosyl esters were tested for cytotoxicity in cholangiocarcinoma cells. • β-Glucogallin displayed the highest inhibition of cholangiocarcinoma cell growth.
Collapse
Affiliation(s)
- Eko Suyanto
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Jaggaiah N Gorantla
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Maniganda Santi
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Fatchiyah Fatchiyah
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Mariena Ketudat-Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chutima Talabnin
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand.
| |
Collapse
|
4
|
Nicolson GL, Ferreira de Mattos G. Membrane Lipid Replacement for reconstituting mitochondrial function and moderating cancer-related fatigue, pain and other symptoms while counteracting the adverse effects of cancer cytotoxic therapy. Clin Exp Metastasis 2024; 41:199-217. [PMID: 38879842 DOI: 10.1007/s10585-024-10290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/25/2024] [Indexed: 06/30/2024]
Abstract
Cancer-related fatigue, pain, gastrointestinal and other symptoms are among the most familiar complaints in practically every type and stage of cancer, especially metastatic cancers. Such symptoms are also related to cancer oxidative stress and the damage instigated by cancer cytotoxic therapies to cellular membranes, especially mitochondrial membranes. Cancer cytotoxic therapies (chemotherapy and radiotherapy) often cause adverse symptoms and induce patients to terminate their anti-neoplastic regimens. Cancer-related fatigue, pain and other symptoms and the adverse effects of cancer cytotoxic therapies can be safely moderated with oral Membrane Lipid Replacement (MLR) glycerolphospholipids and mitochondrial cofactors, such as coenzyme Q10. MLR provides essential membrane lipids and precursors to maintain mitochondrial and other cellular membrane functions and reduces fatigue, pain, gastrointestinal, inflammation and other symptoms. In addition, patients with a variety of chronic symptoms benefit from MLR supplements, and MLR also has the ability to enhance the bioavailability of nutrients and slowly remove toxic, hydrophobic molecules from cells and tissues.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, 92647, USA.
- Department of Molecular Pathology, The Institute for Molecular Medicine, P.O. Box 9355, S. Laguna Beach, CA, 92652, USA.
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| |
Collapse
|
5
|
Salim EI, Alabasy MM, Nashar EME, Al-Zahrani NS, Alzahrani MA, Guo Z, Beltagy DM, Shahen M. Molecular interactions between metformin and D-limonene inhibit proliferation and promote apoptosis in breast and liver cancer cells. BMC Complement Med Ther 2024; 24:185. [PMID: 38711049 PMCID: PMC11071183 DOI: 10.1186/s12906-024-04453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/22/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Cancer is a fatal disease that severely affects humans. Designing new anticancer strategies and understanding the mechanism of action of anticancer agents is imperative. HYPOTHESIS/PURPOSE In this study, we evaluated the utility of metformin and D-limonene, alone or in combination, as potential anticancer therapeutics using the human liver and breast cancer cell lines HepG2 and MCF-7. STUDY DESIGN An integrated systems pharmacology approach is presented for illustrating the molecular interactions between metformin and D-limonene. METHODS We applied a systems-based analysis to introduce a drug-target-pathway network that clarifies different mechanisms of treatment. The combination treatment of metformin and D-limonene induced apoptosis in both cell lines compared with single drug treatments, as indicated by flow cytometric and gene expression analysis. RESULTS The mRNA expression of Bax and P53 genes were significantly upregulated while Bcl-2, iNOS, and Cox-2 were significantly downregulated in all treatment groups compared with normal cells. The percentages of late apoptotic HepG2 and MCF-7 cells were higher in all treatment groups, particularly in the combination treatment group. Calculations for the combination index (CI) revealed a synergistic effect between both drugs for HepG2 cells (CI = 0.14) and MCF-7 cells (CI = 0.22). CONCLUSION Our data show that metformin, D-limonene, and their combinations exerted significant antitumor effects on the cancer cell lines by inducing apoptosis and modulating the expression of apoptotic genes.
Collapse
Affiliation(s)
- Elsayed I Salim
- Department of Zoology, Research Lab of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mona M Alabasy
- Department of Zoology, Research Lab of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Eman M El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
| | - Norah S Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammed A Alzahrani
- Internal Medicine Department, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
| | - Zihu Guo
- College of Life Science, Center of Bioinformatics, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Doha M Beltagy
- Biochemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mohamed Shahen
- Department of Zoology, Research Lab of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
6
|
Yasir B, Rahim A, Lallo S, Saito Y, Nakagawa-Goto K, Rohman A, Alam G. Cytotoxicity Activity, Metabolite Profiling, and Isolation Compound from Crude Hexane Extract of Cleome rutidospermae. Asian Pac J Cancer Prev 2023; 24:3345-3352. [PMID: 37898837 PMCID: PMC10770682 DOI: 10.31557/apjcp.2023.24.10.3345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/22/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE This study isolated the chemical compounds and evaluated the cytotoxic activity of the crude hexane extract of Cleome rutidospermae herb (CRH). METHODS The isolate was purified using silica gel, column chromatography, and preparative thin layer chromatography (PTLC). Furthermore, the structure of the compounds was identified by spectroscopic methods using 1D, 2D NMR, and mass spectrometry. The cytotoxic activity of CRH at a concentration of 20 ug/mL was also tested against MCF-7, A549, KB, KB-VIN, and MDA-MB-231 cancer cells using the sulforhodamine B (SRB) method. RESULTS The CRH contained compounds of unsaturated fatty acid, saturated fatty acid, lipid, glycerol, ω-3 fatty acid, and cholesterol. Two compounds were obtained from the plant, and their structures were identified as (1) Stigmasta-5,22-dien-3-ol (STML) and (2) 1,2-Benzene dicarboxylic acid, 1,2-bis (2-Ethylhexyl) esters (DEHP). These compounds were reported in this plant for the first time. In comparison, CRH had % growth inhibition in the proliferation of MCF-7 cells up to 28.1%, with cancer cells A549, KB, KB-VIN, and MDA-MB-231 by >50% Compared to the negative DMSO of 0.20%, while the positive control could inhibit the growth of all cancer cells (100%). CONCLUSION Our findings suggested that crude herb from the plant CRH was the potential for breast cancer treatment.
Collapse
Affiliation(s)
- Budiman Yasir
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar, 90242, Indonesia.
- Department of Pharmacognosy-Phytochemistry Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia.
- Faculty of Health Sciences, Almarisah Madani University, Makassar, 90245, Indonesia.
| | - Abdul Rahim
- Department of Pharmacognosy-Phytochemistry Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia.
| | - Subehan Lallo
- Department of Pharmacognosy-Phytochemistry Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia.
| | - Yohei Saito
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Kyoko Nakagawa-Goto
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Abdul Rohman
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, 55281, Indonesia.
| | - Gemini Alam
- Department of Pharmacognosy-Phytochemistry Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia.
| |
Collapse
|
7
|
Enrique Cuevas-Suárez C, Aldrighi Münchow E, Gonçalves Schwarzbold C, Kuhn Rutz J, Fernandes da Silva A, Piva E. Effect of naturally derived antioxidants as polymerization inhibitors on experimental adhesive resins. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Mohamed RW, Sharaky M, Ismail SH, Hamed Shosha NN. Pivotal Role of Copper Nanoparticles Shelled by Turmeric or Sumac on Huh-7 Cell Line Cytotoxicity, Apoptosis and Antioxidant Capacity. Pak J Biol Sci 2022; 25:952-960. [PMID: 36404749 DOI: 10.3923/pjbs.2022.952.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
<b>Background and Objective:</b> Cancer is a complex interaction among multiple signalling pathways involving a variety of target molecules. Nanoparticles were used in cancer treatment because of their intrinsic anticancer properties. The use of plant extracts in the preparation of metallic nanoparticles as a convenient substitute has been proposed. This study assessed the cytotoxic, antioxidant and apoptotic effects of copper nanoparticles shelled with either turmeric or sumac biosynthesized as core-shell nanostructures on the liver tumour cell line (Huh-7). <b>Materials and Methods:</b> The nanostructures were synthesized by sonochemical method and characterization was done to confirm the successful synthesis within the nanoscale. Cytotoxicity of nanostructures was investigated on Huh-7 and normal kidney epithelial cell lines (VERO). Malondialdehyde, nitric oxide, reduced glutathione and superoxide dismutase were estimated in cell lysate to assess the antioxidant properties of nanostructures. Caspase-3 was also measured as an apoptotic marker. <b>Results:</b> Both nanostructures had low IC<sub>50</sub> on Huh-7 cells and a non-toxic effect on VERO cells. The cytotoxic effect was coupled with a significant increase in antioxidant activities and apoptotic efficiency compared to control. <b>Conclusion:</b> The findings summarized here support the utilization of biosynthesized copper with turmeric or sumac as core-shell nanostructures as a novel chemotherapeutic drug for cancer treatment that improves antioxidant effect that modulates the side effect of cytotoxicity. Also, it is obvious that copper nanostructure biosynthesized with turmeric has a more advanced effect than that of sumac.
Collapse
|
9
|
Ivanov AA, Ukladov EA, Kremis SA, Sharapov SZ, Baiborodin SI, Lipeeva AV, Shults EE, Golubeva TS. Investigation of cytotoxic and antioxidative activity of 1,2,3-triazolyl-modified furocoumarins and 2,3-dihydrofurocoumarins. PROTOPLASMA 2022; 259:1321-1330. [PMID: 35080665 DOI: 10.1007/s00709-022-01739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
High biological activity of natural furocoumarins is often linked to a series of adverse side effects, e.g., genotoxicity. This makes it desirable to develop semi-synthetic derivatives with reduced negative activity while retaining or even enhancing the positive properties. Previously, we have studied the genotoxic activity of a library of twenty-one 1,2,3-triazolyl-modified furocoumarins and 2,3-dihydrofurocoumarins and identified modifications that minimize the negative properties. In the current article, we report on an investigation into the cytotoxic activity of the same library. We have aimed to rank the substances in order of the severity of their cytotoxicity and therefore to predict, with the use of statistical processing, the most promising substituents for the furocoumarin scaffold.
Collapse
Affiliation(s)
- Artemii A Ivanov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Stepan A Kremis
- Federal Research Center of Fundamental and Translational Medicine SB RAS, Novosibirsk, Russia
| | - Sodbo Z Sharapov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Alla V Lipeeva
- Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Elvira E Shults
- Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Tatiana S Golubeva
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
10
|
Perna S, Alawadhi H, Riva A, Allegrini P, Petrangolini G, Gasparri C, Alalwan TA, Rondanelli M. In Vitro and In Vivo Anticancer Activity of Basil ( Ocimum spp.): Current Insights and Future Prospects. Cancers (Basel) 2022; 14:cancers14102375. [PMID: 35625980 PMCID: PMC9139360 DOI: 10.3390/cancers14102375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Basil (Ocimum basilicum) is a medicinal herb of the family Lamiaceae that contains a variety of potential bioactive compounds, such as polyphenols, flavonoids, phenolics, and essential oils. Ocimum basilicum can boost phagocytic action of neutrophils and immunostimulant effect, antimicrobial activity due to linalool by having inhibitory action toward all tested microorganism, and additionally, rosmarinic acid shows inhibition in DNA synthesis, as well as protein synthesis when experimented on hepatoma-derived cell line (HepG2), this resulted by lower DNA fragments plus suppression on caspase-3 activation, which blocks apoptosis. The aim of this review is to spotlight and discuss the anti-cancer activity of basil (Ocimum) and its implications in cancer prevention and treatment. Antioxidants and other bioactive compounds in basil leaves show important potential anti-cancer activity regards to cell death and viability inhibition, cytotoxicity, inducing apoptosis, slowing down tumor growth and especially on cell cycle arrest both in vivo and in vitro. Abstract Background: Cancer is an irregular proliferation of cells that starts with a gene mutation that alters cellular function, is triggered by several factors, and can be inherited or acquired. The aim of this review is to discuss the anticancer activity of basil and its components’ strength, focusing on its implication in cancer prevention and treatment. Methods: This systematic review involves all of the studies published from 1 January 2010 through 1 January 2022. Results: In this review, 16 research articles are included to discuss the potential anticancer ability of the extracts of various Ocimum basilicum varieties at various dosages, applied to different cancer cells. Of those 16 articles, 2 were in vivo studies, 13 were in vitro studies, and 1 study conducted both in vivo and in vitro experiments. Antioxidants and other bioactive compounds in basil leaves show important potential anticancer activity at dosage of 4 mg/mL as aqueous extract or essential oil up to 200 µg/mL could slow-down tumor growth and progression with regards to cell death and viability inhibition. At dosages from 50 to 500 µg/mL is effective as anti-proliferative activities. cytotoxicity, inducing apoptosis, slowing down tumor growth, and especially cell cycle arrest, both in vivo and in vitro. Human studies show effects at dosages from 1 to 2.5 mg/daily on general vital activities and on reducing cytokines activity. Conclusions: Based on 16 published studies, basil demonstrates important anticancer activities in vivo and vitro models, and it could act as a potential cancer.
Collapse
Affiliation(s)
- Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain; (H.A.); (T.A.A.)
- Correspondence:
| | - Hajar Alawadhi
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain; (H.A.); (T.A.A.)
| | - Antonella Riva
- Development Department, Indena SpA, 20139 Milan, Italy; (A.R.); (P.A.); (G.P.)
| | - Pietro Allegrini
- Development Department, Indena SpA, 20139 Milan, Italy; (A.R.); (P.A.); (G.P.)
| | | | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ‘‘Istituto Santa Margherita’’, University of Pavia, 27100 Pavia, Italy;
| | - Tariq A. Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq P.O. Box 32038, Bahrain; (H.A.); (T.A.A.)
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
11
|
Karatoprak GŞ, Göger F, Çelik İ, Budak Ü, Akkol EK, Aschner M. Phytochemical profile, antioxidant, antiproliferative, and enzyme inhibition-docking analyses of Salvia ekimiana Celep & Doğan. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 146:36-47. [PMID: 35210693 PMCID: PMC8863303 DOI: 10.1016/j.sajb.2021.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salvia ekimiana Celep & Doğan is an endemic species of Turkey. To our knowledge, the number of studies on biological activities and phytochemical profiling of this plant is quite limited. Therefore, this study aimed to analyze its activities and phytochemical content in detail. The qualitative-quantitative compositions were determined via spectrophotometric and chromatographic (LC-MS/MS and HPLC) techniques. 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH•) and 2,2'-Azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) radical scavenging and ascorbate-iron (III)-catalyzed phospholipid peroxidation experiments were performed to measure antioxidant capacity. Hyaluronidase, collagenase, and elastase enzyme inhibition tests were determined in vitro using a spectrophotometer. Antiproliferative activity was evaluated in human lung cancer (A549) and human breast cancer (MCF7) cells. The murine fibroblast (L929) cell line was used as a normal control cell. While the subextract rich in phenolic compounds was n-butanol extract, rosmarinic acid was defined as the main secondary metabolite. The highest antioxidant activity observed for the n-butanol subextract included the following: DPPH• EC50: 0.08±0.00 mg/mL, TEAC/ABTS: 2.19±0.09 mmol/L Trolox, MDA EC50: 0.42±0.03 mg/mL. The methanolic extract, the ethyl acetate, and n-butanol subextracts displayed significant inhibitory activity on collagenase, while the other subextracts did not show any inhibitory activity on hyaluronidase and elastase. Due to strong interactions with their active sites, molecular docking showed luteolin 7-glucuronide, apigenin 7-glucuronide, and luteolin 5-glucoside had the highest binding affinity with target enzymes. The chloroform subextract showed significant cytotoxicity in all cell lines. These novel results revealed that S. ekimiana has strong antioxidant, collagenase enzyme inhibitory, and cytotoxic potential.
Collapse
Affiliation(s)
- Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
- Corresponding Author. (G.Ş. Karatoprak)
| | - Fatih Göger
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Department of Pharmacy, Yunus Emre Vocational School, Anadolu University, 26470 Eskişehir, Turkey
| | - İsmail Çelik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ümit Budak
- Department of Biology, Art and Science Faculty, Bozok University, 66100 Yozgat, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
12
|
Rayan M, Shadafny S, Falah A, Falah M, Abu-Lafi S, Asli S, Rayan A. A Novel Docetaxel-Biotin Chemical Conjugate for Prostate Cancer Treatment. Molecules 2022; 27:961. [PMID: 35164226 PMCID: PMC8839329 DOI: 10.3390/molecules27030961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
A novel conjugate of docetaxel and biotin (designated as IDD-1010) was designed and chemically synthesized via an ester linkage at position 2' carbon in docetaxel. The synthesized pure IDD-1010 exhibits a potent anti-cancer activity in in vitro and in vivo studies. At 10 nM, IDD-1010 has induced increased apoptosis and mitotic arrest of PC3-Luc prostate cancer cells, causing aneuploidy and cell death at higher concentrations. Toxicology studies indicate that the maximal tolerated dose (MTD) of IDD-1010 is 150 mg/kg in mice; equivalent to about 12.2 mg/kg of body weight, or to about an 850 mg dose for a patient weighing 70 kg. The MTD-treated mice exhibited weight gain similar to that of the control group, with no gross pathological signs at 14 days post-dosing. At a lower dose, IDD-1010 treatment did not lead to any significant weight loss in mice, although decreased the tumor volume stemming from injecting cancer cells into the dorsal loop of mouse prostate, and it was found to be more potent than Paclitaxel (reference drug). Similarly, IDD-1010 treatment significantly reduced tumor weight and thereby increased the percentage of mice survival as compared to reference drug-treated and control groups. To summarize, the described experiments using IDD-1010, as compared to the reference drug, strongly suggest a potential treatment utility with a wider therapeutic window for prostate cancer. Henceforth, clinical research on such a novel drug candidate would be greatly worthwhile.
Collapse
Affiliation(s)
- Mahmoud Rayan
- Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka EL-Garbiah 30100, Israel;
| | - Seba Shadafny
- R&D Department, IDD Therapeutics LTD, Nazareth 1711102, Israel;
- Chemistry Education Branch, Iksal Comprehensive School, Iksal 16920, Israel
| | - Adam Falah
- Science Department, York University, Toronto, ON M3J 1P3, Canada;
| | - Mizied Falah
- Institute for Medical Research, Holy Family Hospital, Nazareth 16000, Israel;
| | - Saleh Abu-Lafi
- Faculty of Pharmacy, Al-Quds University, Abu-Dies 144, Palestine;
| | - Sare Asli
- The Institute of Applied Research, Galilee Society, Shefa-Amr 2020, Israel;
- Faculty of Science, Al-Qasemi Academic College, Baka EL-Garbiah 30100, Israel
| | - Anwar Rayan
- Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka EL-Garbiah 30100, Israel;
- R&D Department, IDD Therapeutics LTD, Nazareth 1711102, Israel;
- Faculty of Science, Al-Qasemi Academic College, Baka EL-Garbiah 30100, Israel
| |
Collapse
|
13
|
In Vitro Investigation of the Antioxidant and Cytotoxic Potential of Tabernaemontana ventricosa Hochst. ex A. DC. Leaf, Stem, and Latex Extracts. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tabernaemontana ventricosa (Apocynaceae) a latex-bearing plant is used in traditional medicine for its therapeutic benefits in reducing fever and hypertension and wound healing. Due to limited information on the plant’s pharmacological activities, this study aimed to investigate the antioxidant potential of the leaf, stem, and latex extracts of T. ventricosa, using the Folin-Ciocalteu (total phenolics), aluminum chloride colorimetric (total flavonoids), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. The cytotoxic activity was evaluated in the human HEK293 (embryonic kidney), HeLa (cervical carcinoma), and MCF-7 (breast adenocarcinoma) cell lines using the MTT assay. The latex extracts possessed the highest total phenolic content (115.36 ± 2.89 mg GAE/g), followed by the stem hexane extracts (21.33 ± 0.42 mg GAE/g), the chloroform leaf (7.89 ± 0.87 mg GAE/g), and the chloroform stem (4.69 ± 0.21 mg GAE/g) extracts. The flavonoid content was substantially high ranging from 946.92 ± 6.29 mg QE/g in the stem hexane, 768.96 ± 5.43 mg QE/g in the latex, 693.24 ± 4.12 mg QE/g in the stem chloroform, and 662.20 ± 1.00 mg QE/g in the leaf hexane extracts. The DPPH assays showed the highest percentage of inhibition at 240 µg/mL, for the stem hexane (70.10%), stem methanol (65.24%), and stem chloroform (60.26%) extracts, with their respective IC50 values of 19.26 µg/mL (stem hexane), 6.19 µg/mL (stem methanol), and 22.56 µg/mL (stem chloroform). The FRAP assays displayed minimal inhibition ranging from 4.73% to 14.40%, except for the latex extracts which displayed moderate inhibition at 15 µg/mL (21.82%) and substantial inhibition at 240 µg/mL (98.48%). The HeLa and MCF-7 cell lines were the most sensitive to the extracts, with the hexane, chloroform, and methanol leaf and stem, and latex extracts significantly affecting the percentage cell survival. Overall, the various parts of T. ventricosa exhibited strong antioxidant activity correlating to its cytotoxicity. Further studies should focus on the isolation of specific antioxidant compounds that could be investigated for their anticancer potential.
Collapse
|
14
|
RP-HPLC-ESI-QTOF-MS Qualitative Profiling, Antioxidant, Anti-Enzymatic, Anti-Inflammatory, and Non-Cytotoxic Properties of Ephedra alata Monjauzeana. Foods 2022; 11:foods11020145. [PMID: 35053877 PMCID: PMC8774970 DOI: 10.3390/foods11020145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022] Open
Abstract
An investigation was conducted to study the beneficial effects of Ephedra alata monjauzeana crude extract (EamCE). The chemical profile was determined using RP-HPLC–ESI-QTOF-MS analysis, revealing the presence of twenty-one flavonoids and phenolic acids. A series of antioxidant assays was carried out using ten different methods. The EamCE has demonstrated a significant antioxidant potential, with interesting IC50 values not exceeding 40 µg/mL in almost activities. Likewise, a significant inhibition of key enzymes, involved in some health issues, such as Alzheimer’s disease, diabetes, hyperpigmentation, dermatological disorders, gastric/urinary bacterial infections, and obesity, was observed for the first time. The IC50 values ranged from 22.46 to 54.93. The anti-inflammatory and non-cytotoxic activities were assessed by heat-induced hemolysis and cell culture methods, respectively; the EamCE has shown a prominent effect in both tests, notably for the anti-inflammatory effect that was superior to the reference compound “diclofenac” (IC50: 71.03 ± 1.38 > 70.23 ± 0.99 (µg/mL)). According to these results, this plant could be used in a large spectrum as a food supplement, as a natural remedy for various physiological disorders and pathologies; and it might serve as a preventive and health care agent.
Collapse
|
15
|
Hussain A, Safdar N, Ain NU, Abbasi R, Yasmin A. Litchi chinensis inspired nanoformulations: a synergy guided approach for unraveling promising cytotoxic attributes of metal and nonmetal conjugates. Toxicol Res (Camb) 2021; 10:1187-1201. [PMID: 34956622 DOI: 10.1093/toxres/tfab103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 10/15/2021] [Indexed: 11/12/2022] Open
Abstract
In present study, diverse Litchi chinensis-mediated nanostructures in combination with 5-fluorouracil drug were fabricated viz. Au, Se, Ag, Ag-Se, Ag-Au, 5-FU Ag-Se and 5-FU Ag-Au with subsequent characterization and scrutinization of their anticarcinogenic capabilities. UV-Visible spectroscopic analysis confirmed the state transition for each precursor salt. XRD and transmission electron microscopy analysis revealed spherical/quasispherical nanostructures with monoclinic crystalline organization ranged between 18 nm and 38 nm. FTIR analysis revealed fabricated nanoparticles to be capped with various phytoconstituents. DLS and Zeta potential analysis of unloaded and drug-loaded bielemental nanoparticles (BNPs) showed comparatively large hydrodynamic particle size distribution and sufficient stability of nanoparticles. BNPs showed promising lethality concentrations for brine shrimp (LC50 < 2 μg/ml) and antitumor (LC50 < 10 μg/ml) assessments. These findings were in positive correlation with the antioxidant inhibitory concentrations IC50 (74.2-180.1 μg/ml) of the tested entities. Ag-Se and Ag-Au were loaded with 5-FU (loading efficiency of 47% ± 1.14 and 25% ± 0.32, respectively) in light of their promising cytotoxic actions. All nanostructures showed profound hemocompatibility with maximum hemolytic activity as low as 2.4%. Highly significant difference (P < 0.01) was observed in antineoplastic potentials of unloaded and 5-FU loaded BNPs against HepG2 and HT144, with most substantial IC50 for 5-FU Ag-Au (8.95 ± 2.86 μg/ml). 5-FU Ag-Au was identified as a significant inducer of DNA fragmentation with maximum relative tail moment (HepG2: 3.45 ± 0.21) among all treatments.
Collapse
Affiliation(s)
- Amina Hussain
- Microbiology and Biotechnology Research Laboratory, Department of Biotechnology, Fatima Jinnah Women University, Pakistan Old Presidency, The Mall, Rawalpindi 46000, Pakistan
| | - Naila Safdar
- Microbiology and Biotechnology Research Laboratory, Department of Biotechnology, Fatima Jinnah Women University, Pakistan Old Presidency, The Mall, Rawalpindi 46000, Pakistan
| | - Noor-Ul Ain
- Microbiology and Biotechnology Research Laboratory, Department of Biotechnology, Fatima Jinnah Women University, Pakistan Old Presidency, The Mall, Rawalpindi 46000, Pakistan
| | - Rashda Abbasi
- Cancer Biology Institute of Biomedical and Genetic Engineering (IBGE), G-9/1, Islamabad 44000, Pakistan
| | - Azra Yasmin
- Microbiology and Biotechnology Research Laboratory, Department of Biotechnology, Fatima Jinnah Women University, Pakistan Old Presidency, The Mall, Rawalpindi 46000, Pakistan
| |
Collapse
|
16
|
Physicochemical Properties of Choline Chloride-Based Natural Deep Eutectic Solvents (NaDES) and Their Applicability for Extracting Oil Palm Flavonoids. SUSTAINABILITY 2021. [DOI: 10.3390/su132312981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oil palm (Elaeis guineensis Jacq.) leaf (OPL) is abundantly generated from oil palm plantations as biomass that is rich in bioactive metabolites, primarily flavonoids. Six natural deep eutectic solvents (NaDES) were synthesized using a direct heating technique from different combinations of choline chloride with 1,2-propanediol (PD), 1,4-butanediol (BD), glycerol (GLY), glucose (GLU), maltose (MAL) and lactic acid (LA). The synthesized NaDES were subjected to physicochemical and biological evaluations comprising physical appearance, density, water activity, viscosity, polarity, thermal behaviors, spectroscopic analysis, cytotoxicity, radical scavenging activities and solubility tests. Compared to aqueous methanol, the synthesized NaDES, which appeared as a slightly to moderately viscous transparent liquid, showed favorable physicochemical properties as extraction solvents with a low cytotoxicity profile on cultured fibroblast cells. Further, the NaDES obtained from the choline chloride:lactic acid (LA) combination showed high free radical scavenging characteristics. Hydrogen bonding interactions were shown to play a significant role in the formation of the NaDES. Further, ultra-high-performance liquid chromatography ultraviolet/photodiode array (UHPLC-UV/PDA) analysis revealed that the NaDES from the choline chloride:glycerol (GLY) combination had comparable efficiencies with aqueous methanol regarding extracting flavonoids (luteolin and apigenin derivatives) from OPLs. The results of the present study suggested that the tailor-made NaDES were not only easy-to-use, stable and safe solvents but also suitable for extracting bioactive phytochemical compounds. The study highlighted their potential as an alternative green technology for applications in oil palm biomass utilization programs.
Collapse
|
17
|
Swargiary A, Roy MK, Verma AK. In vitro study of the antioxidant, antiproliferative, and anthelmintic properties of some medicinal plants of Kokrajhar district, India. J Parasit Dis 2021; 45:1123-1134. [PMID: 34789998 DOI: 10.1007/s12639-021-01410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022] Open
Abstract
Alstonia scholaris, Cardiospermum halicacabum, Hydrocotyle sibthorpioides, and Hypericum japonicum are important folk medicinal plants used by tribal communities of Bodoland region of Assam to treat helminth infections. Because of their ethnomedicinal values, the present study was designed to investigate the antioxidant, antiproliferative, and anthelmintic activities of the plants. The antioxidant activity was measured by total antioxidant capacity, total phenolics (TPC), total flavonoid (TFC), FRAP, DPPH, ABTS, and TBARS assay. Antiproliferative and apoptosis-inducing activities of plants were conducted in Dalton's lymphoma (DL) cells. Cells were treated for 24 h with different doses (25-200 mg/mL) of plant extracts. Anthelmintic study was conducted by treating the Paramphistomum sp. at different doses of plant extracts. Phytochemical and antioxidant studies showed rich TPC, TFC, and free radical scavenging activity in H. japonicum and H. sibthorpioides. Both the antiproliferative and anthelmintic bioassays showed a dose-dependent efficacy in all plants. H. japonicum showed the strongest anthelmintic activity (LC50 0.21 mg/mL) followed by H. sibthorpioides (5.36 mg/mL), C. halicacabum (13.40 mg/mL), and A. scholaris (18.40 mg/mL). Evidently, H. sibthorpioides showed the strongest antiproliferative and apoptosis-inducing activities among all the plants. The study observed a positive correlation between the antioxidant properties and antiproliferative and anthelmintic activities of the plants. We, therefore, conclude that the phytocompounds present in the crude extracts along with antioxidant molecules may have combined effects contributing to the antiproliferative and anthelmintic activities of the plants.
Collapse
Affiliation(s)
- Ananta Swargiary
- Department of Zoology, Bodoland University, Kokrajhar, Assam, 783370 India
| | | | | |
Collapse
|
18
|
Prasedya ES, Ardiana N, Padmi H, Ilhami BTK, Martyasari NWR, Sunarwidhi AL, Nikmatullah A, Widyastuti S, Sunarpi H, Frediansyah A. The Antiproliferative and Apoptosis-Inducing Effects of the Red Macroalgae Gelidium latifolium Extract against Melanoma Cells. Molecules 2021; 26:molecules26216568. [PMID: 34770978 PMCID: PMC8587204 DOI: 10.3390/molecules26216568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
The red macroalga Gelidium latifolium is widely distributed in the coastal areas of Indonesia. However, current knowledge on its potential biological activities is still limited. In this study, we investigated the potential bioactive compounds in Gelidium latifolium ethanol extract (GLE), and its cytotoxic effects against the murine B16-F10 melanoma cell line. GLE shows high total phenolic content (107.06 ± 17.42 mg GAE/g) and total flavonoid content (151.77 ± 3.45 mg QE/g), which potentially contribute to its potential antioxidant activity (DPPH = 650.42 ± 2.01 µg/mL; ABTS = 557.01 ± 1.94 µg/mL). ESI-HR-TOF-MS analysis revealed large absorption in the [M-H]- of 327.2339 m/z, corresponding to the monoisotopic molecular mass of brassicolene. The presence of this compound potentially contributes to GLE's cytotoxic activity (IC50 = 84.29 ± 1.93 µg/mL). Furthermore, GLE significantly increased the number of apoptotic cells (66.83 ± 3.06%) compared to controls (18.83 ± 3.76%). Apoptosis was also confirmed by changes in the expression levels of apoptosis-related genes (i.e., p53, Bax, Bak, and Bcl2). Downregulated expression of Bcl2 indicates an intrinsic apoptotic pathway. Current results suggest that components of Gelidium latifolium should be further investigated as possible sources of novel antitumor drugs.
Collapse
Affiliation(s)
- Eka Sunarwidhi Prasedya
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | - Nur Ardiana
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | - Hasriaton Padmi
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | - Bq Tri Khairina Ilhami
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | - Ni Wayan Riyani Martyasari
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | | | - Aluh Nikmatullah
- Faculty of Agriculture, University of Mataram, Mataram 83125, Indonesia;
| | - Sri Widyastuti
- Faculty of Food Science and Agroindustry, University of Mataram, Mataram 83125, Indonesia;
| | - Haji Sunarpi
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, Mataram University, Mataram 83126, Indonesia; (E.S.P.); (N.A.); (H.P.); (B.T.K.I.); (N.W.R.M.); (H.S.)
| | - Andri Frediansyah
- Pharmaceutical Institute, Eberhard Karls University of Tuebingen, 72074 Tuebingen, Germany
- Research Division for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), Wonosari 55861, Indonesia
- National Research and Innovation Agency (BRIN), Wonosari 55861, Indonesia
- Correspondence:
| |
Collapse
|
19
|
Theofylaktou D, Takan I, Karakülah G, Biz GM, Zanni V, Pavlopoulou A, Georgakilas AG. Mining Natural Products with Anticancer Biological Activity through a Systems Biology Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9993518. [PMID: 34422220 PMCID: PMC8376429 DOI: 10.1155/2021/9993518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/26/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023]
Abstract
Natural products, like turmeric, are considered powerful antioxidants which exhibit tumor-inhibiting activity and chemoradioprotective properties. Nowadays, there is a great demand for developing novel, affordable, efficacious, and effective anticancer drugs from natural resources. In the present study, we have employed a stringent in silico methodology to mine and finally propose a number of natural products, retrieved from the biomedical literature. Our main target was the systematic search of anticancer products as anticancer agents compatible to the human organism for future use. In this case and due to the great plethora of such products, we have followed stringent bioinformatics methodologies. Our results taken together suggest that natural products of a great diverse may exert cytotoxic effects in a maximum of the studied cancer cell lines. These natural compounds and active ingredients could possibly be combined to exert potential chemopreventive effects. Furthermore, in order to substantiate our findings and their application potency at a systems biology level, we have developed a representative, user-friendly, publicly accessible biodatabase, NaturaProDB, containing the retrieved natural resources, their active ingredients/fractional mixtures, the types of cancers that they affect, and the corresponding experimentally verified target genes.
Collapse
Affiliation(s)
- Dionysia Theofylaktou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir, Turkey
| | - Vaso Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece
| |
Collapse
|
20
|
Abstract
Reactive oxygen species (ROS) are related to several degenerative diseases. In this study, Acacia, a genus with many fast-growing species, was investigated to explore the many phytochemical compounds that are biologically active in processes dealing with ROS-related diseases. This study aimed to select extracts of Acacia heartwood on the basis of their pharmacological and phytochemical profiles and identify their bioactive compounds. Five methanolic extracts from Acacia heartwood were evaluated for their antioxidant activity using three different in vitro assays: toxicity toward Artemia salina and phenolic and polyphenolic content. Multivariate analysis was conducted to select two promising extracts and then their bioactive compounds were identified using liquid chromatography coupled with mass spectrometry. Acacia crassicarpa extracts showed the highest antioxidant activity, as well as phenolic and hydrolyzable tannin contents, but low toxicity. The A. mangium extract exhibited high flavonoid and condensed tannin content, whereas A. decurrrens had the highest toxicity with low antioxidant activity. Pearson’s correlation analysis demonstrated no correlation between antioxidant activity and toxicity. Moreover, the phytochemical profile exhibited an association with pharmacological parameters. Principal component analysis followed by cluster analysis divided the extracts into three clusters. Two heartwood extracts of A. crassicarpa and A. auriculiformis were chosen as the best extracts. Identification showed that these extracts were dominated by phenolic compounds, as well as anthraquinone and xanthone.
Collapse
|
21
|
Antioxidant and Understanding the Anticancer Properties in Human Prostate and Breast Cancer Cell Lines of Chemically Characterized Methanol Extract from Berberis hispanica Boiss. & Reut. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The current research was conducted to investigate the chemical profile, antiproliferative, and antioxidant activities of methanol extracts obtained by two different methods including maceration and Soxhlet from Berberis hispanica Boiss. & Reut. Antiproliferative activities were evaluated by the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay in four human cancer cell lines including prostate (LnCap and 22 RV1) and breast cancer (MDA-MB-231 and MCF7). The antioxidant power was evaluated by DPPH ((2,2-diphenyl-1-picryl-hydrazyl-hydrate), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and FRAPS (Ferric reducing antioxidant power) tests. The chemical composition was conducted by gas chromatography-mass spectrometry (GC-MS) after methylation. Total phenolic and flavonoid contents were assessed using the Folin–Ciocalteu method. The phytochemical analysis showed that the tested extracts possessed inserting potentially active compounds. The MTT test revealed that both extracts (maceration and Soxhlet) reduced cell viability in all cell lines tested. In breast cancer cell lines MDA-MB-231 and MCF-7, the IC50 values obtained by maceration were 16.55 ± 0.58 and 17.95 ± 0.58 µg/mL, respectively. These values were slightly lower than those obtained with the Soxhlet extract toward MDA-MB-231 (19.93 ± 0.74 µg/mL) and MCF-7 (20.22 ± 0.89 µg/mL). Regarding prostate cancer cells 22 RV and LnCap, the IC50 values obtained by maceration extract (22 RV: 11.75 ± 0.35 µg/mL; LnCap: 11.91 ± 0.54 µg/mL) were also slightly lower than those obtained with Soxhlet (22 RV: 13.47 ± 0.52 µg/mL; LnCap: 19.64 ± 1.05 µg/mL). The antioxidant activity showed that the studied extracts had considerable antioxidant activity (DPPH, FRAP, and ABTS) with particular attention to the extract obtained with maceration. The Berberis hispanica Bois. and Reut. can serve society as it provides potentially bioactive compounds that may find application in the medical sector to control such diseases.
Collapse
|
22
|
Lieshchova MA, Brygadyrenko VV. Influence of Lavandula angustifolia, Melissa officinalis and Vitex angus-castus on the organism of rats fed with excessive fat-containing diet. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Plant food additives are becoming more and more popular and broadly applied products, though the information on risks they poses to the organism is limited and contradictive. Obesity and overeating are some of the commonest health issues around the world, and people are increasingly consuming workability-enhancing preparations as a simple and fast method of weight control. The plant-based preparations are considered less harmful than the synthetic chemical ones. Lavandula angustifolia Mill., Melissa officinalis L. and Vitex angus-castus L. are broadly used as food additives and medicinal plants, despite the fact that their complex physiological assessment on model animals in the conditions of obesity has not yet been performed. We carried out a 30-day experiment on white male rats. All the animals were given high-fat diet, and the experimental animals, in addition to this diet, received 5% crumbled dry herbs of L. angustifolia, M. officinalis or V. angus-castus. Taking into account the overall amount of consumed food, the mean daily gain in body weight; at the end of the experiment, we determined the index of the weight of the internal organs, biochemical and morphological blood parameters. At the beginning and the end of the experiment, the rats were examined for motor and orienting activities, and emotional status. Rats on high-fat diet gained up to 112% body weight by the end of the experiment, while rats that had received V. angus-castus gained up to 119%, M. officinalis – 135%, L. angustifolia – 139%, compared with the initial body weight. Addition of medicinal plants to the diet led to increase in average daily weight increment, significantly and reliably after consuming lavender and lemon balm, less significantly and unreliably after eating Vitex. L. angustifolia and M. officinalis reduced the relative brain weight, and ingestion of L. angustifolia and M. officinalis caused notable decrease in the relative mass of the thymus (down to 58% and 47% of the relative weight of thymus in animals of the control group respectively). Also, these plants decreased the motor and orienting activities of the rats by the end of the experiment. As for the biochemical parameters of blood, the activity of alkaline phosphatase significantly increased to 406% following consumption of Melissa, to 350% after consuming lavender, and to 406% after Vitex, compared to the control group. Furthermore, all the groups were observed to have increased AST and ALT activities. Intake of lavender led to increases in cholesterol (to 125%) and LDL cholesterol (to 228%), whereas the groups that consumed lemon balm were observed to have decreases in urea nitrogen (to 79%), totalbilirubin (to 63%) and triglycerides (to 63%). Addition of Vitex led to increase in the index of aterogenecity against the background of notable fall in HDL cholesterol (to 52% of the control group). The medicinal plants also contributed to the normalization of the glucose level. Morphological analysis of blood revealed no significant changes, except heightened content of monocytes in blood, which is characteristic of all groups, including the control. Effects of L. angustifolia, M. officinalis and V. angus-castus on the organism of rats on excessive-fat diet require additional histological, histochemical and immunological surveys.
Collapse
|
23
|
The Reproductive Toxicity Associated with Dodonaea viscosa, a Folk Medicinal Plant in Saudi Arabia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6689110. [PMID: 33510808 PMCID: PMC7822660 DOI: 10.1155/2021/6689110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Dodonaea viscosa is a medicinal plant which is being used to treat various diseases in humans. The available safety data suggest that the plant does not produce any side effects, or toxicity, in tested adult experimental animals. However, the influence of D. viscosa on fetus or embryonic development is largely not known. This study was conducted in order to find out the reproductive toxicity of D. viscosa in experimental animals. Zebrafish embryos were used as the in vivo developmental toxicity animal model. Methanolic crude extract, hexane, chloroform, and butanol fractions were prepared from the leaves of D. viscosa. Zebrafish embryos were exposed to serial dilution of crude extract and other fractions. The crude extract and hexane fraction induced higher level of toxicity in zebrafish embryos as compared to chloroform and butanol fractions. The phenol and flavonoid estimation revealed that crude leaves extract and hexane fractions had lower content of phenol and flavonoid. Two major compounds, phytol and methyl ester, of hexadecanoic acid were identified by gas chromatography and mass spectrophotometry (GC-MS) analysis. More detailed studies are needed to check the toxicity of D. viscosa in pregnant experimental animals; however, the results from this study have shown that D. viscosa possesses reproductive toxicity and its use and doses must be carefully monitored in pregnant patients.
Collapse
|
24
|
Rummun N, Rondeau P, Bourdon E, Pires E, McCullagh J, Claridge TDW, Bahorun T, Li WW, Neergheen VS. Terminalia bentzoë, a Mascarene Endemic Plant, Inhibits Human Hepatocellular Carcinoma Cells Growth In Vitro via G0/G1 Phase Cell Cycle Arrest. Pharmaceuticals (Basel) 2020; 13:ph13100303. [PMID: 33053825 PMCID: PMC7650599 DOI: 10.3390/ph13100303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Tropical forests constitute a prolific sanctuary of unique floral diversity and potential medicinal sources, however, many of them remain unexplored. The scarcity of rigorous scientific data on the surviving Mascarene endemic taxa renders bioprospecting of this untapped resource of utmost importance. Thus, in view of valorizing the native resource, this study has as its objective to investigate the bioactivities of endemic leaf extracts. Herein, seven Mascarene endemic plants leaves were extracted and evaluated for their in vitro antioxidant properties and antiproliferative effects on a panel of cancer cell lines, using methyl thiazolyl diphenyl-tetrazolium bromide (MTT) and clonogenic cell survival assays. Flow cytometry and comet assay were used to investigate the cell cycle and DNA damaging effects, respectively. Bioassay guided-fractionation coupled with liquid chromatography mass spectrometry (MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopic analysis were used to identify the bioactive compounds. Among the seven plants tested, Terminaliabentzoë was comparatively the most potent antioxidant extract, with significantly (p < 0.05) higher cytotoxic activities. T. bentzoë extract further selectively suppressed the growth of human hepatocellular carcinoma cells and significantly halted the cell cycle progression in the G0/G1 phase, decreased the cells' replicative potential and induced significant DNA damage. In total, 10 phenolic compounds, including punicalagin and ellagic acid, were identified and likely contributed to the extract's potent antioxidant and cytotoxic activities. These results established a promising basis for further in-depth investigations into the potential use of T. bentzoë as a supportive therapy in cancer management.
Collapse
Affiliation(s)
- Nawraj Rummun
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, 97490 Sainte-Clotilde, Reunion, France; (P.R.); (E.B.)
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, 97490 Sainte-Clotilde, Reunion, France; (P.R.); (E.B.)
| | - Elisabete Pires
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - James McCullagh
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - Timothy D. W. Claridge
- Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, UK; (E.P.); (J.M.); (T.D.W.C.)
| | - Theeshan Bahorun
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
| | - Wen-Wu Li
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
- Correspondence: (W.-W.L.); (V.S.N.)
| | - Vidushi S. Neergheen
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
- Biopharmaceutical Unit Centre for Biomedical and Biomaterials Research, MSIRI Building, University of Mauritius, Réduit 80837, Mauritius;
- Correspondence: (W.-W.L.); (V.S.N.)
| |
Collapse
|
25
|
Godlewska-Żyłkiewicz B, Świsłocka R, Kalinowska M, Golonko A, Świderski G, Arciszewska Ż, Nalewajko-Sieliwoniuk E, Naumowicz M, Lewandowski W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4454. [PMID: 33049979 PMCID: PMC7579235 DOI: 10.3390/ma13194454] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Natural carboxylic acids are plant-derived compounds that are known to possess biological activity. The aim of this review was to compare the effect of structural differences of the selected carboxylic acids (benzoic acid (BA), cinnamic acid (CinA), p-coumaric acid (p-CA), caffeic acid (CFA), rosmarinic acid (RA), and chicoric acid (ChA)) on the antioxidant, antimicrobial, and cytotoxic activity. The studied compounds were arranged in a logic sequence of increasing number of hydroxyl groups and conjugated bonds in order to investigate the correlations between the structure and bioactivity. A review of the literature revealed that RA exhibited the highest antioxidant activity and this property decreased in the following order: RA > CFA ~ ChA > p-CA > CinA > BA. In the case of antimicrobial properties, structure-activity relationships were not easy to observe as they depended on the microbial strain and the experimental conditions. The highest antimicrobial activity was found for CFA and CinA, while the lowest for RA. Taking into account anti-cancer properties of studied NCA, it seems that the presence of hydroxyl groups had an influence on intermolecular interactions and the cytotoxic potential of the molecules, whereas the carboxyl group participated in the chelation of endogenous transition metal ions.
Collapse
Affiliation(s)
- Beata Godlewska-Żyłkiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Aleksandra Golonko
- Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02–532 Warsaw, Poland;
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Żaneta Arciszewska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Edyta Nalewajko-Sieliwoniuk
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland;
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| |
Collapse
|
26
|
Banach M, Wiloch M, Zawada K, Cyplik W, Kujawski W. Evaluation of Antioxidant and Anti-Inflammatory Activity of Anthocyanin-Rich Water-Soluble Aronia Dry Extracts. Molecules 2020; 25:E4055. [PMID: 32899830 PMCID: PMC7570557 DOI: 10.3390/molecules25184055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
Aronia fruits contain many valuable components that are beneficial to human health. However, fruits are characterized by significant variations in chemical composition dependent on the growing conditions and harvesting period. Therefore, there is a need to formulate the extracts with a precisely defined content of health-promoting substances. Aronia dry extracts (ADE) were prepared from frozen pomace applying water extraction, followed by purification and spray-drying. Subsequently, the content of anthocyanins, phenolic acids, and polyphenols was determined. The high-quality chokeberry pomace enabled obtaining extracts with anthocyanin content much higher than the typical market standards. Moreover, it was found that the antioxidant capacity of aronia extracts exceeded those found in other fruit preparations. Antioxidant and free-radical scavenging properties were evaluated using a 2,2'-diphenyl-1-picrylhydrazyl using Electron Paramagnetic Resonance (EPR) spectroscopy (DPPH-EPR) test and Oxygen Radical Absorbance Capacity (ORAC) assay. The inhibition of lipid peroxidation and the level of inflammatory markers have been also investigated using lipopolysaccharide (LPS)-stimulated RAW 264 cells. It was revealed that ADE standardized to 25% of anthocyanins depresses the level of markers of inflammation and lipid peroxidation (Interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and malondialdehyde (MDA)) in in vitro conditions. Additionally, it was confirmed that ADE at all analyzed concentrations did not show any cytotoxic effect as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
Collapse
Affiliation(s)
- Mariusz Banach
- Greenvit Ltd., 27A Wojska Polskiego Avenue, 18-300 Zambrów, Poland; (M.B.); (W.C.)
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | | | - Katarzyna Zawada
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Wojciech Cyplik
- Greenvit Ltd., 27A Wojska Polskiego Avenue, 18-300 Zambrów, Poland; (M.B.); (W.C.)
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| |
Collapse
|
27
|
Anti-Hepatocellular-Cancer Activity Exerted by β-Sitosterol and β-Sitosterol-Glucoside from Indigofera zollingeriana Miq. Molecules 2020; 25:molecules25133021. [PMID: 32630623 PMCID: PMC7411723 DOI: 10.3390/molecules25133021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Indigofera zollingeriana Miq (I.zollingeriana) is a widely grown tree in Vietnam. It is used to cure various illnesses. The purpose of this study was to investigate the chemical constituents of an I. zollingeriana extract and test its anticancer activity on hepatocellular cells (Huh7 and HepG2). The experimental results of the analysis of the bioactive compounds revealed that β-sitosterol (β-S) and β-sitosterol-glucoside (β-SG) were the main ingredients of the I.zollingeriana extract. Regarding anticancer activity, the β-S and β-SG of I. zollingeriana were found to exhibit cytotoxic effects against HepG2 and Huh7 cells, but not against normal human primary fibroblasts. The β-S was able to inhibit the proliferation of HepG2 and Huh7 cells in a dose-dependent manner with half-maximal inhibitory concentration (IC50) values of 6.85 ± 0.61 µg/mL and 8.71 ± 0.21 µg/mL, respectively (p < 0.01), whereas the β-SG IC50 values were 4.64 ± 0.48 µg/mL for HepG2 and 5.25 ± 0.14 µg/mL for Huh7 cells (p < 0.01). Remarkably, our study also indicated that β-S and β-SG exhibited cytotoxic activities via inducing apoptosis and activating caspase-3 and -9 in these cells. These findings demonstrated that β-S and β-SG from I.zollingeriana could potentially be developed into promising therapeutic agents to treat liver cancer.
Collapse
|
28
|
Correlation between Antibacterial Activity and Free-Radical Scavenging: In-Vitro Evaluation of Polar/Non-Polar Extracts from 25 Plants. Processes (Basel) 2020. [DOI: 10.3390/pr8010117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objectives: The current study aimed to measure the antioxidant and antibacterial activities of 25 wild Palestinian edible plants, which were subjected to extraction by polar and non-polar solvents. Correlations between free radical scavenging activity and antibacterial activity of the extracts were assessed for both polar and non-polar fractions. Materials: Twenty-five wild edible plant species that are frequently consumed by people in Palestine (mainly in a rural area) were examined. Among them, 10 plant species were among those with the highest mean cultural importance values, according to an ethnobotanical survey that was conducted in the West Bank, Palestine, a few years ago. Method: The protocol of the DPPH assay for testing free-radical scavenging was utilized for determining EC50 values, while microdilution tests were conducted to determine the 50% inhibitory concentration (IC50) of the extracts for the microorganism Staphylococcus mutans. Results and Discussion: Eight extracts (non-polar fractions) were found to possess an antibacterial IC50 of less than 20 ppm, such as Foeniculum vulgare, Salvia palaestinafruticose, Micromeria fruticose, Trigonella foenum-graecum, Cichorium pumilum jacq, Salvia hierosolymitana boiss, Ruta chalepensis, and Chrysanthemum coronarium. The polar fractions possess higher antioxidant activity, while non-polar fraction possess higher antibacterial activity. Looking at all the results together can deceive and lead to the conclusion that there is no correlation between antibacterial activity against S. mutans and free radical scavenging (R2 equals 0.0538). However, in-depth analysis revealed that non-polar plant extracts with an EC50 of free radical scavenging ≤100 ppm have a four-fold order of enrichment toward more activity against S. mutans. These findings are of high importance for screening projects. A four-fold order of enrichment could save plenty of time and many in screening projects. The antibacterial active extracts marked by low-medium free radical scavenging might act through a mechanism of action other than that of highly active, free radical scavenging extracts. Conclusion: The screening of antioxidant and antimicrobial activity performed on 25 selected wild plant extracts revealed a satisfactory free radical scavenging and antimicrobial potential that could be of value in the management of oxidative stress. Further studies are recommended to explore novel and highly active natural antibacterial products.
Collapse
|