1
|
Lu T, Huo Z, Zhang Y, Li X. The Role of the p21-Activated Kinase Family in Tumor Immunity. Int J Mol Sci 2025; 26:3885. [PMID: 40332759 PMCID: PMC12027587 DOI: 10.3390/ijms26083885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
The p21-activated kinases (PAKs) are a group of evolutionarily conserved serine/threonine protein kinases and serve as a downstream target of the small GTPases Rac and Cdc42, both of which belong to the Rho family. PAKs play pivotal roles in various physiological processes, including cytoskeletal rearrangement and cellular signal transduction. Group II PAKs (PAK4-6) are particularly closely linked to human tumors, such as breast and pancreatic cancers, while Group I PAKs (PAK1-3) are indispensable for normal physiological functions such as cardiovascular development and neurogenesis. In recent years, the association of PAKs with diseases like cancer and the rise of small-molecule inhibitors targeting PAKs have attracted significant attention. This article focuses on the analysis of PAKs' role in tumor progression and immune infiltration, as well as the current small-molecule inhibitors of PAKs and their mechanisms.
Collapse
Affiliation(s)
- Tianqi Lu
- Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the People’s Republic of China, Department of Cell Biology, China Medical University, Shenyang 110122, China;
- Department of Pharmaceutical Neuroendocrinology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zijun Huo
- The Second Clinical College, China Medical University, Shenyang 110122, China; (Z.H.); (Y.Z.)
| | - Yiran Zhang
- The Second Clinical College, China Medical University, Shenyang 110122, China; (Z.H.); (Y.Z.)
| | - Xiaodong Li
- Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the People’s Republic of China, Department of Cell Biology, China Medical University, Shenyang 110122, China;
| |
Collapse
|
2
|
Han SH, Mo JS, Yun KJ, Chae SC. MicroRNA 429 regulates MMPs expression by modulating TIMP2 expression in colon cancer cells and inflammatory colitis. Genes Genomics 2024; 46:763-774. [PMID: 38733517 DOI: 10.1007/s13258-024-01520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND In a previous study, we found that the expression of microRNA 429 (MIR429) was decreased in dextran sodium sulfate (DSS)-induced mouse colitis tissues. OBJECTIVE In this study, we aimed to investigate the interaction of MIR429 with TIMP metallopeptidase inhibitor 2 (TIMP2), one of its candidate target genes, in human colorectal cancer (CRC) cells and DSS-induced mouse colitis tissues. METHODS A luciferase reporter system was used to confirm the effect of MIR429 on TIMP2 expression. The expression levels of MIR429 and target genes in cells or tissues were evaluated through quantitative RT-PCR, western blotting, or immunohistochemistry. RESULTS We found that the expression level of MIR429 was downregulated in human CRC tissues, and also showed that TIMP2 is a direct target gene of MIR429 in CRC cell lines. Furthermore, MIR429 regulate TIMP2-mediated matrix metallopeptidases (MMPs) expression in CRC cells. We also generated cell lines stably expressing MIR429 in CRC cell lines and showed that MIR429 regulates the expression of MMPs by mediating TIMP2 expression. In addition to human CRC tissues, we found that TIMP2 was highly expressed in mouse colitis tissues and human ulcerative colitis (UC) tissues. CONCLUSIONS Our findings suggest that the expression of endogenous MIR429 was reduced in human CRC tissues and colitis, leading to upregulation of its target gene TIMP2. The upregulation of TIMP2 by decreased MIR429 expression in CRC tissues and inflamed tissues suggests that it may affect extracellular matrix (ECM) remodeling through downregulation of MMPs. Therefore, MIR429 may have therapeutic value for human CRC and colitis.
Collapse
Affiliation(s)
- Seol-Hee Han
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Ji-Su Mo
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea.
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, 54538, Republic of Korea.
| |
Collapse
|
3
|
Chen H, Yao J, Shan Z, Wei Y, You S, Li D, Zhang Y. To Assess the Role of microRNA-451 in the Progression and Metastasis of Colorectal Cancer. Appl Biochem Biotechnol 2024; 196:1044-1057. [PMID: 37318687 DOI: 10.1007/s12010-023-04538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 06/16/2023]
Abstract
The study aimed to determine the expression of miR451 in colorectal cancer (CRC) subjects with CRC cells, and the role of miR451 in colorectal cancer cells. In October 2020, ATC purchased CRC and normal mucosal cell lines of CRC and implanted them in DMEM with 10% fetal serum. The suitability of the HT29 cell line is verified using the STR profile. In an incubator with 5% CO2, enlarged cells were placed at 37 °C. TCGA data was used to select the top 120 patients with a high voice and the lowest 120 patients with a low voice. Cells were collected and coated with Annexin V and PE according to the manufacturer's instructions after 24.0 h. After that, the cells were separated. Cells were also tested using flow cytometry. HCT-120 cells were transplanted into a concentration of 5×105/ml cells in 6-source plates. HCT120 cells in the experimental group were combined with miR451 mimics, miR451 inhibitors, or miR451 miR + SMAD4B for 12 h at 37 °C, and cells were collected 24 h later at 37 °C. The sample was injected with 5 ml of Annexin VFITC and PE. Compared with normal colorectal mucosal cells, CRC cell lines decreased miR451 expression levels (fetal human cells (FHC) and HCoEpiC). Then, the HCT120 cells were transfected with miR451 inhibitors, and 72 h after transfection, say of miR451 was normal. There was a significant decrease in cell function in the miR451mimic groups, but an increase when the miR451 was blocked. The proliferation of cancer cells was prevented and chemotherapy was effective when miR451 was overexpressed. The SMAD4 gene provides instructions for making a protein involved in transmitting chemical signals from the cell surface to the nucleus. The SMAD4B expression was tested by RT-qPCR and Western blotting after 72.0 h of transmission. The mRNA and protein expression of SMAD4B decreased significantly when miR451 was significantly higher than when inhibited, as revealed in the results of this study. Seventy-two hours after transplantation, mRNA levels and SMAD4B proteins were measured in HCT120 cells. In addition, the researchers in this study investigated whether miR451 was associated with SMAD4B-directed control of CRC growth and migration. It was found that SMAD4B is highly expressed in both CRC and para-cancer tissues while using the TCGA database to detect SMAD4B expression. Patients with CRC with SMAD4B have a severe prognosis. MiR451 is sensitive to depressive disorders by targeting SMAD4B, according to these studies. We found that miR451 inhibited cell growth and migration, made CRC cells more readily available in chemotherapy, and did so by targeting SMAD4B. The findings suggest that miR451 and its genetic predisposition, SMAD4B, may help predict the prognosis and course of cancer patients. Treatments that target the miR451/SMAD4B axis may be helpful to people with CRC.
Collapse
Affiliation(s)
- Hong Chen
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, No 9 of Chongwen Road, Suzhou, Jiangsu Province, 215000, China
| | - Jun Yao
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, No 9 of Chongwen Road, Suzhou, Jiangsu Province, 215000, China
| | - Zhili Shan
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, No 9 of Chongwen Road, Suzhou, Jiangsu Province, 215000, China
| | - YiJun Wei
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, No 9 of Chongwen Road, Suzhou, Jiangsu Province, 215000, China
| | - Shijie You
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, No 9 of Chongwen Road, Suzhou, Jiangsu Province, 215000, China
| | - Dechun Li
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, No 9 of Chongwen Road, Suzhou, Jiangsu Province, 215000, China
| | - Yi Zhang
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, No 9 of Chongwen Road, Suzhou, Jiangsu Province, 215000, China.
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No 899 of Pinghai Road, Suzhou, Jiangsu Province, 215000, China.
| |
Collapse
|
4
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
5
|
Zhou J, Chen W, He Q, Chen D, Li C, Jiang C, Ding Z, Qian Q. SERBP1 affects the apoptotic level by regulating the expression and alternative splicing of cellular and metabolic process genes in HeLa cells. PeerJ 2022; 10:e14084. [PMID: 36213507 PMCID: PMC9536300 DOI: 10.7717/peerj.14084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background RNA-binding proteins (RBPs) have important roles in orchestrating posttranscriptional regulation and modulating many tumorigenesis events. SERBP1 has been recognized as an important regulator in multiple cancers, while it remains unclear whether SERBP1-regulated gene expression at the transcriptome-wide level is significantly correlated with tumorigenesis. Methods We overexpressed SERBP1 in HeLa cells and explored whether SERBP1 overexpression (SERBP1-OE) affects the proliferation and apoptosis of HeLa cells. We analyzed the transcriptome-wide gene expression changes and alternative splicing changes mediated by SERBP1-OE using the transcriptome sequencing method (RNA-seq). RT-qPCR was conducted to assay SERBP1-regulated alternative splicing. Results SERBP1-OE induced the apoptosis of HeLa cells. The downregulated genes were strongly enriched in the cell proliferation and apoptosis pathways according to the GO analysis, including FOS, FOSB, PAK6 and RAB26. The genes undergoing at least one SERBP1-regulated alternative splicing event were enriched in transcriptional regulation, suggesting a mechanism of the regulation of gene expression, and in pyruvate and fatty acid metabolic processes critical for tumorigenesis events. The SERBP1-regulated alternative splicing of ME3, LPIN3, CROT, PDP1, SLC27A1 and ALKBH7 was validated by RT-qPCR analysis. Conclusions We for the first time demonstrated the cellular function and molecular targets of SERBP1 in HeLa cells at transcriptional and post-transcriptional levels. The SERBP1-regulated gene expression and alternative splicing networks revealed by this study provide important information for exploring the functional roles and regulatory mechanisms of SERBP1 in cancer development and progression.
Collapse
Affiliation(s)
- Junjie Zhou
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Wenhao Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Qianwen He
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wu Han, Hubei, China
| | - Chunguang Li
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| |
Collapse
|
6
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
7
|
Guo Z, Liu X, Shao H. E2F4-induced AGAP2-AS1 up-regulation accelerates the progression of colorectal cancer via miR-182-5p/CFL1 axis. Dig Liver Dis 2022; 54:878-889. [PMID: 34838479 DOI: 10.1016/j.dld.2021.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are closely associated with the pathogenesis of numerous diseases including cancers. LncRNA AGAP2 Antisense RNA 1 (AGAP2-AS1) has been found to participate in the tumorigenesis of several kinds of human cancers. Nonetheless, its potential function in colorectal cancer (CRC) was still poorly investigated. METHODS The expression level of RNAs or proteins was assessed by RT-qPCR or western blot analysis. Functional experiments were performed to analyze the role of AGAP2-AS1 in CRC in vitro and in vivo. Mechanism investigations were fulfilled to determine the potential mechanism of the molecules. RESULTS AGAP2-AS1 expression was significantly elevated in CRC cells and could be transcriptionally activated by E2F Transcription Factor 4 (E2F4). Down-regulated AGAP2-AS1 could weaken CRC cell growth, migration, invasion, and epithelial-mesenchymal transition (EMT). MicroRNA-182-5p (miR-182-5p) was the target downstream molecule of AGAP2-AS1. Furthermore, Cofilin 1 (CFL1) was proved as the target of miR-182-5p. Mechanically, AGAP2-AS1 could boost the CFL1 expression via competitively binding to miR-182-5p in CRC. Importantly, CFL1 restoration could counteract the in vitro and in vivo suppression of depleted AGAP2-AS1 on CRC progression. CONCLUSION E2F4-stimulated AGAP2-AS1 aggravated CRC development through regulating miR-182-5p/CFL1 axis, implying that AGAP2-AS1 might become a potent new target for future therapies for CRC.
Collapse
Affiliation(s)
- Zhen Guo
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Xuezhong Liu
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Hongjin Shao
- Anorectal Department, Liaocheng People's Hospital, NO.67 Dongchang West Road, Dongchangfu District, Liaocheng, Shandong 252000, China.
| |
Collapse
|
8
|
Kolegova ES, Kakurina GV, Shashova EE, Yunusova NV, Spirina LV, Sidenko EA, Kostromitskiy DN, Dobrodeev AY, Kondakova IV. Relationship of intracellular proteolysis with CAP1 and cofilin1 in non-small-cell lung cancer. J Biosci 2021. [DOI: 10.1007/s12038-021-00177-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Yang C, Chen SJ, Chen BW, Zhang KW, Zhang JJ, Xiao R, Li PG. Gene Expression Profile of the Human Colorectal Carcinoma LoVo Cells Treated With Sporamin and Thapsigargin. Front Oncol 2021; 11:621462. [PMID: 34113558 PMCID: PMC8185278 DOI: 10.3389/fonc.2021.621462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Sporamin, a proteinase inhibitor isolated from the sweet potato (Ipomoea batatas), has shown promising anticancer effect against colorectal cancer (CRC) in vitro and in vivo but its mechanisms of action are poorly understood. In the present study, high throughput RNA sequencing (RNA-seq) technology was applied to explore the transcriptomic changes induced by sporamin in the presence of thapsigargin (TG), a non-12-O-tetradecanolphorbol-13-acetate type cancer promoter, in the LoVo human CRC cells. Cellular total RNA was extracted from the cells after they were treated with vehicle (CTL), 1 μM of thapsigargin (TG), or 1 μM of TG plus 30 μM of sporamin (TGSP) for 24 h. The migratory capacity of the cells was determined by wound healing assay. The gene expression profiles of the cells were determined by RNA-seq on an Illumina platform. GO enrichment analysis, KEGG pathway analysis, protein-protein interaction (PPI) network construction, and transcription factors (TF) prediction were all performed based on the differentially expressed genes (DEGs) across groups with a series of bioinformatics tools. Finally, the effect and potential molecular targets of the sporamin at the transcriptome level were evaluated. Sporamin significantly inhibited the migration of cells induced by TG. Among the 17915 genes detected in RNA-seq, 46 DEGs were attributable to the effect of sporamin. RT-PCR experiment validated that the expression of RGPD2, SULT1A3, and BIVM-ERCC5 were up-regulated while NYP4R, FOXN1, PAK6, and CEACAM20 were down-regulated. Sporamin enhanced the mineral absorption pathway, worm longevity regulating pathway, and pyrimidine metabolism pathway. Two TFs (SMIM11A and ATOH8) were down-regulated by sporamin. HMOX1 (up-regulated) and NME1-NME2 (down-regulated) were the main nodes in a PPI network consisting of 16 DEGs that were modulated by sporamin in the presence of TG. Sporamin could favorably alter the gene expression profile of CRC cells, up-regulating the genes that contribute to the homeostasis of intracellular metal ions and the activities of essential enzymes and DNA damage repairment. More studies are warranted to verify its effect on specific genes and delineate the mechanism of action implicated in the process.
Collapse
Affiliation(s)
- Chun Yang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Si-Jia Chen
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Bo-Wen Chen
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Kai-Wen Zhang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Jing-Jie Zhang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China.,National Center for Child Nutriment Quality Supervision and Testing, China National Children's Center, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Peng-Gao Li
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| |
Collapse
|
10
|
Ma J, Wei H, Li X, Qu X. Hsa-miR-149-5p Suppresses Prostate Carcinoma Malignancy by Suppressing RGS17. Cancer Manag Res 2021; 13:2773-2783. [PMID: 33790651 PMCID: PMC8007479 DOI: 10.2147/cmar.s281968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are key players in the progression of human cancers. While several miRNAs have been reported to regulate the development of tumors, the molecular mechanisms and roles of miR-149-5p in prostate carcinoma (PCa) remain unclear. Our aim was to investigate the interaction and functions of miR-149-5p and RGS17 in PCa. Methods Microarray analysis was performed to identify the key miRNA and gene involved in PCa progression. The expression levels of miRNA and mRNA in PCa tissues and cells were verified by qRT-PCR. MTT assay, BrdU proliferation assay and wound-healing assay were applied to assess the effect of miR-149-5p and RGS17 on PCa cells’ viability, proliferation, and migration ability. The association between RGS17 and miR-149-5p was identify using dual-luciferase reporter assay and Western blot assay. Results Data analysis indicated the reduction of miR-149-5p expression in PCa tissues and cells. Experimental investigations also showed that this miRNA suppressed the viability, proliferation and migration ability of PCa cells. RGS17 was found to be the target of miR-149-5p, and the low expression of miR-149-5p upregulated RGS17 in PCa tissues and cells. The results of the cell-function assays showed that RGS17 acted as an oncogene in PCa even though its promotive effect could be reversed by miR-149-5p. Conclusion This research confirmed that by targeting and inhibiting RGS17, miR-149-5p could suppress PCa development.
Collapse
Affiliation(s)
- Jinhua Ma
- Department of Urinary Surgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, 430030, People's Republic of China
| | - Hongbing Wei
- Department of Urinary Surgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, 430030, People's Republic of China
| | - Xianlin Li
- Department of Urinary Surgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, 430030, People's Republic of China
| | - Xi Qu
- Department of Urinary Surgery, The Third People's Hospital of Hubei Province, Wuhan, Hubei, 430030, People's Republic of China
| |
Collapse
|
11
|
Xu J, Huang Y, Zhao J, Wu L, Qi Q, Liu Y, Li G, Li J, Liu H, Wu H. Cofilin: A Promising Protein Implicated in Cancer Metastasis and Apoptosis. Front Cell Dev Biol 2021; 9:599065. [PMID: 33614640 PMCID: PMC7890941 DOI: 10.3389/fcell.2021.599065] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cofilin is an actin-binding protein that regulates filament dynamics and depolymerization. The over-expression of cofilin is observed in various cancers, cofilin promotes cancer metastasis by regulating cytoskeletal reorganization, lamellipodium formation and epithelial-to-mesenchymal transition. Clinical treatment of cancer regarding cofilin has been explored in aspects of tumor cells apoptosis and cofilin related miRNAs. This review addresses the structure and phosphorylation of cofilin and describes recent findings regarding the function of cofilin in regulating cancer metastasis and apoptosis in tumor cells.
Collapse
Affiliation(s)
- Jing Xu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jimeng Zhao
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guona Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Tian X, Chang J, Zhang N, Wu S, Liu H, Yu J. MicroRNA-429 acts as a tumor suppressor in colorectal cancer by targeting high mobility group box 3. Oncol Lett 2021; 21:250. [PMID: 33664814 PMCID: PMC7882897 DOI: 10.3892/ol.2021.12511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common solid tumors worldwide and has an extremely poor prognosis. MicroRNA-429 (miR-429) has been reported to participate in the progression of CRC. However, the pathological mechanisms require further investigation. The aim of the present study was to investigate the association between miR-429 and high mobility group box 3 (HMGB3) in CRC and the associated mechanism. The mRNA expression levels of miR-429 and HMGB3 in 65 paired CRC and adjacent tissues were examined by reverse transcription-quantitative PCR. Furthermore, a dual-luciferase reporter assay was performed to identify the association between miR-429 and HMGB3. Finally, the effects of miR-429 and HMGB3 on the proliferation and apoptosis of CRC cells were detected. As a result, it was identified that miR-429 expression was downregulated and HMGB3 expression was upregulated in CRC tissues compared with in adjacent non-cancer tissues, and the expression levels of miR-429 were negatively associated with those of HMGB3. Notably, HMGB3 was demonstrated to be a direct target of miR-429 by dual-luciferase reporter assay. Furthermore, transfection with a miR-429 mimic significantly inhibited HMGB3 expression and led to decreased proliferation and increased apoptosis of CRC cells. On the other hand, transient overexpression of HMGB3 partially inhibited the antitumor effects of miR-429. To the best of our knowledge, the present study demonstrated for the first time that miR-429 regulated the proliferation and apoptosis of CRC cells via HMGB3, suggesting a specific tumor suppressive function of the miR-429/HMGB3 signaling pathway in CRC.
Collapse
Affiliation(s)
- Xiangyang Tian
- Department of Oncology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Jianlan Chang
- Department of Oncology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ningning Zhang
- Department of Oncology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Shouxin Wu
- Biotecan Medical Diagnostics Co., Ltd., Zhangjiang Center for Translational Medicine, Shanghai 201203, P.R. China
| | - Huimin Liu
- Biotecan Medical Diagnostics Co., Ltd., Zhangjiang Center for Translational Medicine, Shanghai 201203, P.R. China
| | - Junyan Yu
- Department of Oncology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
13
|
Cheng G, Li Y, Liu Z, Song X. The microRNA-429/DUSP4 axis regulates the sensitivity of colorectal cancer cells to nintedanib. Mol Med Rep 2021; 23:228. [PMID: 33495832 PMCID: PMC7893689 DOI: 10.3892/mmr.2021.11867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common malignancies, which ranks third among all cancer-related deaths worldwide. Nintedanib is an orally available tyrosine kinase inhibitor that can treat CRC; however, drug resistance to nintedanib leads to unsatisfactory treatments for patients with CRC. The aim of the present study was to explore whether overexpression of miR-429 elevated the sensitivity of CRC cells to nintedanib by downregulating dual specificity protein phosphatase 4 (DUSP4). The nintedanib-resistant CRC cell model was established via the treatment of cells with nintedanib in a dose-dependent manner. Reverse transcription-quantitative PCR was used to detect the expression levels of miR-429 and DUSP4, and to confirm the transfection efficiency of miR-429 mimic and DUSP4 overexpression plasmid. Cell Counting Kit-8 assay was utilized to measure the inhibition rate of cells. Western blotting was conducted to observe the expression levels of DUSP4 protein, apoptosis-related proteins and proteins related to the JNK signaling pathway. Dual-luciferase reporter assay was performed to evaluate luciferase activity and TUNEL assay was conducted to detect the apoptosis of cells. The results revealed that miR-429 mimic elevated the sensitivity of CRC cells to nintedanib. Moreover, by ENCORI prediction, DUSP4 was identified as a target gene of miR-429, and overexpression of DUSP4 reversed the inducing effect of miR-429 overexpression on the sensitivity of CRC cells to nintedanib. In conclusion, overexpression of miR-429 may elevate the sensitivity of CRC cells to nintedanib through inhibition of the JNK signaling pathway by targeting DUSP4. These findings may aid in the prevention of drug resistance of CRC cells to nintedanib.
Collapse
Affiliation(s)
- Guohua Cheng
- Department of Oncology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yarong Li
- Department of Oncology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhaoyu Liu
- Department of Oncology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiang Song
- Department of Oncology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
14
|
Sun L, Zhou X, Jiang Q, Zhuang Y, Li D. Low miR-1273a expression predicts poor prognosis of colon cancer and facilitates tumor cell proliferation, migration, and invasion. ACTA ACUST UNITED AC 2021; 54:e10394. [PMID: 33439933 PMCID: PMC7798139 DOI: 10.1590/1414-431x202010394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) have been indicated to be frequently dysregulated in various cancers and promising biomarkers for colon cancer. The present study aimed to assess the prognostic significance and biological function of miR-1273a in colon cancer. The expression levels of miR-1273a was estimated using quantitative real-time polymerase chain reaction. Kaplan-Meier survival curves and Cox regression analysis were used to evaluate the prognostic value of miR-1273a in patients of colon cancer. The effects of miR-1273a on cell proliferation, migration, and invasion were investigated by cell experiments. The expression of miR-1273a was downregulated in colon cancer tissues and tumor cell lines compared with the normal controls (all P<0.001). The aberrant expression of miR-1273a was associated with vascular invasion (P=0.005), differentiation (P=0.023), lymph node metastasis (P=0.021), and TNM stage (P=0.004). The patients with low miR-1273a expression had low overall survival compared with the patients with high miR-1273a expression (log-rank P=0.002). miR-1273a was detected to be an independent prognostic biomarker for patients. Furthermore, the results of cell experiments revealed that miR-1273a downregulation promoted, while miR-1273a upregulation suppressed the cell proliferation, migration, and invasion. In conclusion, all data indicated that a downregulated expression of miR-1273a predicted poor prognosis for colon cancer and enhanced tumor cell proliferation, migration, and invasion. Thus, we suggest that methods to promote miR-1273a expression may serve as novel therapeutic strategies in colon cancer.
Collapse
Affiliation(s)
- Lei Sun
- Invasive Technology Department, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Xin Zhou
- Rectal Surgery Department, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Qian Jiang
- Rectal Surgery Department, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Yiping Zhuang
- Invasive Technology Department, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Dongzheng Li
- General Surgery Department, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Zheng J, Zhang C, Li Y, Jiang Y, Xing B, Du X. p21-activated kinase 6 controls mitosis and hepatocellular carcinoma progression by regulating Eg5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118888. [PMID: 33098954 DOI: 10.1016/j.bbamcr.2020.118888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
P21-activated kinases 6 (PAK6) associated with many fundamental cellular processes in cancer including cell-cell adhesion, migration and apoptosis. Here, we report a novel function of PAK6 in mitosis. Expression of PAK6 peaks in the M phase. Knockdown of PAK6 increases cell number in G2/M and promotes cell proliferation. PAK6 specifically colocalizes with Eg5 in the centrosome. Depletion of PAK6 results in multipolar spindle and a simultaneous upregulation of Eg5. Further, the PAK6 depletion-induced multiple spindle and cell cycle progression is reversed by knockdown of Eg5. These data suggest that PAK6 regulates spindle formation and cell cycle by regulating Eg5 expression. Additionally, expression of PAK6 is upregulated when Eg5 is downregulated or inhibited. Thus, PAK6 and Eg5 negatively inter-regulate each other. Significantly, the effect of PAK6 expression on the outcome of the HCC patients is controlled by Eg5 expression. Inhibition of Eg5 reverses PAK6 depletion-promoted cell invasion. Collectively, our data indicate that the inter-regulation between PAK6 and Eg5 might promote the progression of HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yuan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Baocai Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China.
| |
Collapse
|
16
|
Zhou Q, Feng X, Ye F, Lei F, Jia X, Feng D. miR-27a promotion resulting from silencing of HDAC3 facilitates the recovery of spinal cord injury by inhibiting PAK6 expression in rats. Life Sci 2020; 260:118098. [PMID: 32679145 DOI: 10.1016/j.lfs.2020.118098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 01/21/2023]
Abstract
AIMS Spinal cord injury (SCI) is one of the most devastating diseases that challenges neurology and medicine, leading to paraplegia or quadriplegia worldwide. Neuroprotection conferred by histone deacetylase (HDAC) inhibitors against various insults and deficits in the central nervous system has been reported previously. Herein, we set out to ascertain whether HDAC3 inhibition exerts neuroprotective effects against SCI. MAIN METHODS A modified Allen's weight-drop method was performed to induce experimental SCI in rats. Basso-Beattie-Bresnahan (BBB) scores were used to assess locomotor function. Flow cytometric analysis of AnnexinV-FITC/PI double staining, TUNEL staining, and immunoblotting analysis of apoptosis-related proteins were performed to determine apoptosis in H2O2-induced cell injury of primary rat neurons. KEY FINDINGS Upregulated HDAC3 and downregulated miR-27a were observed in spinal cord tissues of SCI rats and H2O2-injured neurons. HDAC3 knockdown by its specific shRNA restored the locomotor function of SCI rats and prevented rat neurons from H2O2-induced apoptosis through promotion of miR-27a. miR-27a targeted PAK6 (encoding P21-activated kinase 6) and inhibited its expression. The effects of HDAC3 knockdown on the locomotor function of SCI rats and H2O2-induced apoptosis of rat neurons were lost upon further PAK6 overexpression. SIGNIFICANCE The present study uncovers that silencing HDAC3 inhibited PAK6 expression by upregulating miR-27a, eventually inhibiting neuron apoptosis and promoting the recovery of SCI, which might provide a novel therapeutic target for SCI.
Collapse
Affiliation(s)
- Qingzhong Zhou
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Xiaolan Feng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Fei Ye
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Fei Lei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Xufeng Jia
- Department of Orthopaedics, The People's Hospital of Jianyang City, Jianyang 641400, PR China.
| | - Daxiong Feng
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
17
|
Gong CC, Li TT, Pei DS. PAK6: a potential anti-cancer target. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Dong-Sheng Pei
- Xuzhou Medical University, China; Xuzhou Medical University, China
| |
Collapse
|
18
|
Ding Q, Li X, Sun Y, Zhang X. Schizandrin A inhibits proliferation, migration and invasion of thyroid cancer cell line TPC-1 by down regulation of microRNA-429. Cancer Biomark 2019; 24:497-508. [PMID: 30909188 DOI: 10.3233/cbm-182222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Schizandrin A (SchA) exerts anticancer potential. However, the effects of SchA on thyroid cancer (TC) have not been clear illuminated. Therefore, we investigated the effects of SchA on TC cell line TPC-1 and the underlying mechanisms. METHODS TPC-1 cells were treated with SchA and/or transfected with miR-429 mimic, anti-miR-429 and their corresponding negative controls (NC). Cell viability, proliferation, migration, invasion and cell apoptosis were examined by CCK-8 assay, bromodeoxyuridine, modified two-chamber migration assay, Millicell Hanging Cell Culture and flow cytometry analysis, respectively. The expression of miR-429, p16, Cyclin D1, cyclin-dependent kinases 4 (CDK4), matrix metalloprotein (MMP)-2, MMP-9 and Vimentin was detected by qRT-PCR. All protein expression was examined by western blot. RESULTS SchA inhibited cell proliferation, metastasis and induced cell apoptosis. Moreover, SchA negatively regulated miR-429 expression. Treatment with miR-429 mimic and SchA reversed the results led by SchA and NC. Furthermore, the phosphorylation β-catenin, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK) were statistically down-regulated by SchA while co-treatment with miR-429 mimic and SchA led to the opposite trend. Moreover, miR-429 knockdown showed contrary results. CONCLUSION SchA inhibits cell proliferation, migration, invasion and inactivates Wnt/β-catenin and MEK/ERK signaling pathways by down regulating miR-429.
Collapse
|
19
|
Kolegova ES, Kakurina GV, Kondakova IV, Dobrodeev AY, Kostromitskii DN, Zhuikova LD. Adenylate Cyclase-Associated Protein 1 and Cofilin in Progression of Non-Small Cell Lung Cancer. Bull Exp Biol Med 2019; 167:393-395. [PMID: 31346877 DOI: 10.1007/s10517-019-04534-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 10/26/2022]
Abstract
We studied the expression of mRNA and the level of CAP1 (adenylate cyclase-associated protein 1) and cofilin proteins in the tissues of patients with non-small cell lung cancer. The expression of mRNA and the level of CAP1 in tumor tissue increased during growth of the primary tumor and its metastasis. It was shown that with the growth of the primary tumor, the content of cofilin in the tumor tissue decreases against the background of increased expression of its mRNA; in regional metastasis, the content of cofilin and expression of the corresponding mRNA increased. It was found that increased content of the studied proteins in the tumor tissue increased the risk of metastasis.
Collapse
Affiliation(s)
- E S Kolegova
- Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia.
| | - G V Kakurina
- Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | - I V Kondakova
- Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | - A Yu Dobrodeev
- Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | | | - L D Zhuikova
- Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
20
|
Genome-wide profiling of long noncoding RNA expression patterns and CeRNA analysis in mouse cortical neurons infected with different strains of borna disease virus. Genes Dis 2019; 6:147-158. [PMID: 31193942 PMCID: PMC6545444 DOI: 10.1016/j.gendis.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/09/2019] [Indexed: 12/05/2022] Open
Abstract
Borna disease virus 1 (BoDV-1) is neurotropic prototype of Bornaviruses causing neurological diseases and maintaining persistent infection in brain cells of mammalian species. Long non-coding RNA (lncRNA) is transcript of more than 200 nucleotides without protein-coding function regulating various biological processes as proliferation, apoptosis, cell migration and viral infection. However, regulatory of lncRNAs in BoDV-1 infection remains unknown. To identify differential expression profiles and predict functions of lncRNA in BoDV-1 infection, microarray data showed that 3528 lncRNAs and 2661 lncRNAs were differentially expressed in Strain V and Hu-H1 BoDV-infected groups compared with control groups, respectively. Gene Ontology (GO) and pathway analysis suggested that differential lncRNAs may be involved in regulation of metabolic, biological regulation, cellular process, endocytosis, viral infections and cell adhesion processes, cancer in both BoDV-infected strains. ENSMUST00000128469 was found down-regulated in both BoDV-infected groups compared with control groups consistent with microarray (p < 0.05). ceRNA analysis indicated possible interaction networks as ENSMUST00000128469/miR-22-5p, miR-206-3p, miR-302b-5p, miR-302c-3p, miR-1a-3p/Igf1. Igf1 was found up-regulated in both BoDV-infected groups compared with control groups (p < 0.05). Possible functions of predicted target mRNAs and miRNAs of ENSMUST00000128469 were involved in cell proliferation, transcriptional misregulation and proteoglycan pathways enriched in cancer. lncRNA may be involved in regulation of Hu-H1 inhibited cell proliferation and promoted apoptosis through NF-kB, JNK/MAPK signaling, BCL2 and CDK6/E2F1 pathways different from Strain V. Possible interaction networks as ENSMUST00000128469/miR-22-5p, miR-206-3p, miR-302b-5p, miR-302c-3p, miR-1a-3p/Igf1 may involve in regulation of cell proliferation, apoptosis, and cancer.
Collapse
|
21
|
MiR-144 inhibits growth and metastasis in colon cancer by down-regulating SMAD4. Biosci Rep 2019; 39:BSR20181895. [PMID: 30745456 PMCID: PMC6395301 DOI: 10.1042/bsr20181895] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (MiRs) are thought to display regulator action in tumor suppression and oncogenesis. miR-144 plays an important role in the development of various cancers, such as colorectal cancer, breast cancer, and lung cancer, by targetting different molecules potentially involved in many signaling pathways. SMAD4 is a common signaling during tumor progression, and it can inhibit cell proliferation and promote cell motility in most epithelial cells. The present study focused on the effect of miR-144 and SMAD4 on colon cancer in order to find the novel gene therapy target for the treatment of colon cancer. Quantitative real-time polymerase chain reaction was used to assess the expression level of miR-144 in colon cancer tissues and SW620 cells. MTT assay, scratch test, and transwell assay were used to evaluate cell proliferation, migration, and invasion, respectively. Moreover, luciferase assays were utilized to identify the predictive effect of miR-144 on SMAD4. Western blotting was performed to determine the relative expression of protein related to SMAD4. We found miR-144 level was significantly lower in colon cancer tissues and SW620 cells. Moreover, SMAD4 level, both in mRNA and protein, was obviously elevated in colon cancer tissues. Further, miR-144 mimics treatment inhibited cells proliferation, invasion, and migration. Fluorescence intensity of miR-144 mimics group in wild type cells was decreased. MiR-144 mimics repressed the SMAD4 expression both in mRNA and protein. These findings about miR-144/SMAD4 pair provide a novel therapeutic method for colon cancer patients.
Collapse
|
22
|
Qian B, Zhao L, Wang X, Xu J, Teng F, Gao L, Shen R. RETRACTED: miR-149 regulates the proliferation and apoptosis of cervical cancer cells by targeting GIT1. Biomed Pharmacother 2018; 105:1106-1116. [DOI: 10.1016/j.biopha.2018.06.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
|
23
|
Jiang LT, Wan CH, Guo QH, Yang SJ, Wu JD, Cai J. Long Noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Promotes Renal Cell Carcinoma Progression via Sponging miRNA-429. Med Sci Monit 2018; 24:1794-1801. [PMID: 29588438 PMCID: PMC5887685 DOI: 10.12659/msm.909450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background It is well known that long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is closely correlated with the tumorigenesis of multiple cancers, including renal cell carcinoma (RCC). However, the potential functional mechanism is still elusive. Material/Methods In our present research, quantitative real-time polymerase chain reaction (qRT-PCR) was performed for the measurement of MALAT1 and miR-429. CCK-8 assay and Transwell assay were performed for the proliferation, migration, and invasion abilities of RCC cells. Dual-luciferase reporter assay was performed to validate the interaction within MALAT1 and miR-429. Results Data found that MALAT1 was overexpressed in RCC clinical samples and cell lines. Moreover, loss-of-functional experiments showed that MALAT1 knockdown suppress the proliferation, migration, and invasion abilities of RCC cells. RT-PCR showed that miR-429 expression was downregulated in RCC cell lines, which was negatively correlated with that of MALAT1. Bioinformatics analysis suggested that miR-429 had complementary binding sequences with MALAT1, which was confirmed by dual-luciferase reporter assay. Conclusions In summary, our results concluded that MALAT1 functioned as an oncogene in RCC by sponging miR-429, acting as its competing endogenous RNA (ceRNA).
Collapse
Affiliation(s)
- Lin-Tao Jiang
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Chun-Hua Wan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Qing-Hao Guo
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Shi-Jiang Yang
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jing-Dong Wu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jun Cai
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
24
|
O'Brien SJ, Carter JV, Burton JF, Oxford BG, Schmidt MN, Hallion JC, Galandiuk S. The role of the miR-200 family in epithelial-mesenchymal transition in colorectal cancer: a systematic review. Int J Cancer 2018; 142:2501-2511. [DOI: 10.1002/ijc.31282] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Stephen J. O'Brien
- Price Institute of Surgical Research, The Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville; Louisville KY
| | - Jane V. Carter
- Price Institute of Surgical Research, The Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville; Louisville KY
- Department of Surgery; North Cumbria University Hospitals NHS Trust; Whitehaven Cumbria United Kingdom
| | - James F. Burton
- Price Institute of Surgical Research, The Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville; Louisville KY
| | - Brent G. Oxford
- Price Institute of Surgical Research, The Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville; Louisville KY
| | - Miranda N. Schmidt
- Price Institute of Surgical Research, The Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville; Louisville KY
| | - Jacob C. Hallion
- Price Institute of Surgical Research, The Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville; Louisville KY
| | - Susan Galandiuk
- Price Institute of Surgical Research, The Hiram C. Polk Jr., M.D. Department of Surgery, University of Louisville; Louisville KY
| |
Collapse
|
25
|
Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene 2016; 605:20-31. [PMID: 28007610 DOI: 10.1016/j.gene.2016.12.014] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
PAKs, p21-activated kinases, play central roles and act as converging junctions for discrete signals elicited on the cell surface and for a number of intracellular signaling cascades. PAKs phosphorylate a vast number of substrates and act by remodeling cytoskeleton, employing scaffolding, and relocating to distinct subcellular compartments. PAKs affect wide range of processes that are crucial to the cell from regulation of cell motility, survival, redox, metabolism, cell cycle, proliferation, transformation, stress, inflammation, to gene expression. Understandably, their dysregulation disrupts cellular homeostasis and severely impacts key cell functions, and many of those are implicated in a number of human diseases including cancers, neurological disorders, and cardiac disorders. Here we provide an overview of the members of the PAK family and their current status. We give special emphasis to PAK1 and PAK4, the prototypes of groups I and II, for their profound roles in cancer, the nervous system, and the heart. We also highlight other family members. We provide our perspective on the current advancements, their growing importance as strategic therapeutic targets, and our vision on the future of PAKs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India.
| | - Rahul Sanawar
- Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
26
|
Peng G, Liao Y, Shen C. miRNA-429 Inhibits Astrocytoma Proliferation and Invasion by Targeting BMI1. Pathol Oncol Res 2016; 23:369-376. [DOI: 10.1007/s12253-016-0113-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/07/2016] [Indexed: 01/05/2023]
|
27
|
Jin L, Li Y, Liu J, Yang S, Gui Y, Mao X, Nie G, Lai Y. Tumor suppressor miR-149-5p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Mol Med Rep 2016; 13:5386-92. [PMID: 27121091 DOI: 10.3892/mmr.2016.5205] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/20/2016] [Indexed: 11/06/2022] Open
Abstract
Several studies have recently explored the role of microRNAs (miRNAs, miRs) in the tumorigenesis of various types of cancer. miRNAs have been reported to be involved in numerous cell processes, including cell apoptosis, proliferation and migration, thus suggesting that miRNAs may have an important role in cancer progression. Downregulation of miR-149-5p has been detected in RCC tissues by microarray profiling; however, its expression and function in RCC has yet to be elucidated. In the present study, reverse transcription‑quantitative polymerase chain reaction was performed to detect the expression levels of miR‑149‑5p in RCC tissues and paired normal tissues. In order to determine whether miR-149-5p was able to regulate cell proliferation, apoptosis or migration, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometric and wound healing assays were conducted. The results demonstrated that miR‑149‑5p was significantly downregulated in RCC tissues compared with in normal tissues (P<0.05). The restoration of miR-149-5p expression using synthetic mimics suppressed cell proliferation and migration, and promoted cell apoptosis. These results indicated that miR‑149‑5p may act as a tumor suppressor in RCC. The present study is the first, to the best of our knowledge, to identify miR‑149‑5p as a tumor suppressor in RCC. Future studies will be focused on the potential role of miR‑149‑5p as a biomarker for the early detection and prognostic prediction of RCC, and as a therapeutic target in RCC. In addition, further exploration regarding the pathways underlying the effects of miR‑149‑5p in RCC is required.
Collapse
Affiliation(s)
- Lu Jin
- The Second Clinical College, Anhui Medical University, Anhui, Hefei 230032, P.R. China
| | - Yifan Li
- The Second Clinical College, Anhui Medical University, Anhui, Hefei 230032, P.R. China
| | - Jiaju Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Guohui Nie
- Department of Otolaryngology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
28
|
Chen CP, Sun ZL, Lu X, Wu WX, Guo WL, Lu JJ, Han C, Huang JQ, Fang Y. MiR-340 suppresses cell migration and invasion by targeting MYO10 in breast cancer. Oncol Rep 2015; 35:709-16. [PMID: 26573744 DOI: 10.3892/or.2015.4411] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors among females, and can seriously affect the physical and mental health and even threaten the lives of women. Recently, research has demonstrated that microRNAs (miRNAs), as a new method of regulation, have been shown to have oncogenic and tumor‑suppressive functions in human breast cancer. Detection of their expression may lead to the identification of novel markers for breast cancer. In the present study, we firstly detected miR‑340 expression and found lower expression of miR‑340 in 6 human breast cancer cell lines by using RT‑qPCR. Then by using wound healing assay and Transwell migration and invasion experiments, we focused on the role of miR-340 in the regulation of tumor cell migration and invasion, exploring the relationship between them. The results revealed that induction of miR‑340 expression was able to suppress tumor cell migration and invasion, whereas knockdown of miR‑340 expression promoted breast cancer cell migration and invasion. At the gene level, MYO10 (myosin X), as a direct miR‑340 target gene, mediated the cell migration and invasion. Finally, we verified our research further at the tissue specimen level and in animal experiments. In brief, miR‑340 plays an important role in breast cancer progression. Thus, miR‑340 may be further explored as a novel biomarker for breast cancer metastasis and prognosis, and potentially a therapeutic target.
Collapse
Affiliation(s)
- Cai-Ping Chen
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Zong-Lin Sun
- Department of Breast Surgery, Zaozhuang Mining Group Center Hospital, Zaozhuang, Shandong 277800, P.R. China
| | - Xiang Lu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Wan-Xin Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Wen-Li Guo
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Jian-Ju Lu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Chao Han
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Jian-Qi Huang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Ying Fang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| |
Collapse
|