1
|
Hasan R, Zhao Z, Li Y, Liu Y, Zhang Y, Cheng K. Small extracellular vesicles (sEVs) in pancreatic cancer progression and diagnosis. J Control Release 2025; 380:269-282. [PMID: 39889882 PMCID: PMC11908897 DOI: 10.1016/j.jconrel.2025.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Pancreatic cancer is one of the most aggressive malignancies with poor prognostic outcomes, necessitating the exploration of novel biomarkers and therapeutic targets for early detection and effective treatment. Small extracellular vesicles (sEVs) secreted by cells, have gained considerable attention in cancer research due to their role in intercellular communication and their potential as non-invasive biomarkers. This review focuses on the role of sEVs in the progression of pancreatic cancer and their application as biomarkers. We delve into the biogenesis, composition, and functional implications of sEVs in pancreatic tumor biology, emphasizing their involvement in processes such as tumor growth, metastasis, immune modulation, and chemotherapy resistance. In addition, we discuss the challenges in isolating and characterizing sEVs. The review also highlights recent advances in the utilization of sEV-derived biomarkers for the early diagnosis, prognosis, and monitoring of pancreatic cancer. By synthesizing the latest findings, we aim to underscore the significance of sEVs in pancreatic cancer and their potential to revolutionize patient management through improved diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Reaid Hasan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanke Li
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
2
|
Ljungström M, Oltra E. Methods for Extracellular Vesicle Isolation: Relevance for Encapsulated miRNAs in Disease Diagnosis and Treatment. Genes (Basel) 2025; 16:330. [PMID: 40149481 PMCID: PMC11942051 DOI: 10.3390/genes16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles that facilitate intercellular communication by carrying essential biomolecules under physiological and pathological conditions including microRNAs (miRNAs). They are found in various body fluids, such as blood, urine, and saliva, and their levels fluctuate with disease progression, making them valuable diagnostic tools. However, isolating EVs is challenging due to their small size and biological complexity. Here, we summarize the principles behind the most common EV isolation methods including ultracentrifugation, precipitation, immunoaffinity, sorting, ultrafiltration, size exclusion chromatography, and microfluidics while highlighting protocol strengths and weaknesses. We also review the main strategies to identify and quantify circulating miRNAs with a particular focus on EV-encapsulated miRNAs. Since these miRNAs hold special clinical interest derived from their superior stability and therapeutic potential, the information provided here should provide valuable guidance for future research initiatives in the promising field of disease diagnostic and treatment based on EV-encapsulated miRNAs.
Collapse
Affiliation(s)
- Maria Ljungström
- Escuela de Doctorado, School of Health Sciences, Catholic University of Valencia, 46001 Valencia, Spain;
| | - Elisa Oltra
- Department of Pathology, School of Health Sciences, Catholic University of Valencia, 46001 Valencia, Spain
| |
Collapse
|
3
|
Owecki W, Wojtowicz K, Nijakowski K. Salivary Extracellular Vesicles in Detection of Cancers Other than Head and Neck: A Systematic Review. Cells 2025; 14:411. [PMID: 40136660 PMCID: PMC11941535 DOI: 10.3390/cells14060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Cancer is one of the leading causes of death worldwide. Evidence indicates that extracellular vesicles are involved in cancer development and may be used as promising biomarkers in cancer detection. Concomitantly, saliva constitutes a non-invasive and inexpensive source of biomarkers. This systematic review investigates the use of salivary extracellular vesicles in detecting cancers located outside of the head and neck. PubMed, Web of Science, Scopus, and Embase were thoroughly searched from database inception to 16 July 2024. Data from sixteen eligible studies were analyzed, including glioblastoma, lung, esophageal, gastric, prostate, hepatocellular, breast, and pancreatobiliary tract cancers. The findings highlight strong diagnostic potential for lung and esophageal cancers, where specific exosomal RNAs and proteins demonstrated high accuracy in distinguishing cancer patients from healthy individuals. Additionally, biomarkers in glioblastoma showed prognostic value, while those in hepatocellular and pancreatobiliary cancers exhibited potential for early detection. However, gastric and prostate cancer biomarkers showed limited reliability, and breast cancer biomarkers require further validation. In conclusion, salivary extracellular vesicles present potential in non-invasive detection across multiple cancer types; however, their diagnostic power needs further research, including standardization and large-scale validation.
Collapse
Affiliation(s)
- Wojciech Owecki
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- The Student Scientific Society, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
4
|
Rahimian S, Mirkazemi K, Kamalinejad A, Doroudian M. Exosome-based advances in pancreatic cancer: The potential of mesenchymal stem cells. Crit Rev Oncol Hematol 2025; 207:104594. [PMID: 39732301 DOI: 10.1016/j.critrevonc.2024.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024] Open
Abstract
Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), is one of the most challenging clinical conditions due to its late-stage diagnosis and poor survival rates. Mesenchymal stem cells (MSCs), used for targeted therapies, are being explored as a promising treatment because of their tumor-homing properties and potential contributions to the pancreatic cancer microenvironment. Understanding these interactions is crucial for developing effective treatments. In this study, we investigated how MSCs exhibit tropism towards tumors, influence the microenvironment through paracrine effects, and serve as potential drug delivery vehicles. We also examined their role in progression and therapeutic resistance in pancreatic cancer therapy. The cytotoxic effects of certain compounds on tumor cells, the use of genetically modified MSCs as drug carriers, and the potential of exosomal biomarkers like miRNAs and riRNAs for diagnosis and monitoring of pancreatic cancer were analyzed. Overall, MSC-based therapies, coupled with insights into tumor-stromal interactions, offer new avenues for improving outcomes in pancreatic cancer treatment. Additionally, the use of MSC-based therapies in clinical trials is discussed. While MSCs show promising potential for pancreatic cancer monitoring, diagnosis, and treatment, results so far have been limited.
Collapse
Affiliation(s)
- Sana Rahimian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kimia Mirkazemi
- Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Armita Kamalinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
5
|
Dong X, Lin Y, Li K, Liang G, Huang X, Pan J, Wang L, Zhang D, Liu T, Wang T, Yan X, Zhang L, Li X, Qu X, Jia D, Li Y, Zhang H. Consensus statement on extracellular vesicles in liquid biopsy for advancing laboratory medicine. Clin Chem Lab Med 2025; 63:465-482. [PMID: 38896030 DOI: 10.1515/cclm-2024-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Extracellular vesicles (EVs) represent a diverse class of nanoscale membrane vesicles actively released by cells. These EVs can be further subdivided into categories like exosomes and microvesicles, based on their origins, sizes, and physical attributes. Significantly, disease-derived EVs have been detected in virtually all types of body fluids, providing a comprehensive molecular profile of their cellular origins. As a result, EVs are emerging as a valuable addition to liquid biopsy techniques. In this collective statement, the authors share their current perspectives on EV-related research and product development, with a shared commitment to translating this newfound knowledge into clinical applications for cancer and other diseases, particularly as disease biomarkers. The consensus within this document revolves around the overarching recognition of the merits, unresolved questions, and existing challenges surrounding EVs. This consensus manuscript is a collaborative effort led by the Committee of Exosomes, Society of Tumor Markers, Chinese anti-Cancer Association, aimed at expediting the cultivation of robust scientific and clinically applicable breakthroughs and propelling the field forward with greater swiftness and efficacy.
Collapse
Affiliation(s)
- Xingli Dong
- 558113 Central Laboratory, Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen Clinical Research Center for hematologic disease, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Yusheng Lin
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Thoracic Surgery, 47885 The First Affiliated Hospital of Jinan University , Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Kai Li
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Gaofeng Liang
- 74623 School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology , Luoyang, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang Province, Harbin, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Tong Wang
- 47885 MOE Key Laboratory of Tumor Molecular Biology, College of Life Science and Technology, Jinan University , Guangzhou, China
| | - Xiaomei Yan
- Department of Chemical Biology, 534787 MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, China
| | - Long Zhang
- 12377 MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University , Hangzhou, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, 558113 Shenzhen Key Laboratory, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Xiujuan Qu
- Department of Medical Oncology, 159407 The First Hospital of China Medical University , Shenyang, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
6
|
Yuan J, Yan K, Guo Y, Li Y. MicroRNAs: emerging biomarkers and therapeutic targets in pancreatic cancer. Front Mol Biosci 2024; 11:1457875. [PMID: 39290995 PMCID: PMC11406015 DOI: 10.3389/fmolb.2024.1457875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease with high aggressiveness and a dismal prognosis, which is challenging to diagnose clinically early and gains low benefit from standard therapies. MicroRNAs (miRNAs) have become a hot topic in oncology research. Current evidence indicates that miRNAs are regulators involved in the entire process of PC, providing new diagnostic and therapeutic strategies for this fatal disease. Related research has been rapidly updated, making it necessary to review it to propose new directions and ideas and provide guidance for the development of precision medicine for PC. We reviewed the relevant literature through Pubmed, Embase, Web of Science and Medline, showing that abnormally expressed miRNAs in PC patients have the potential to be used as biomarkers for diagnosis and prognosis, highlighting the excellent prospect of combining miRNAs with traditional therapies, and the effective application of these factors for PC, especially miRNA mimics and inhibitors. MiRNAs participate in the entire process of PC and play important roles in diagnosis, treatment and prognosis. They are potential factors in conquering PC in the future.
Collapse
Affiliation(s)
- Jiaqian Yuan
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaiqi Yan
- Department of Materials Engineering and Science, Ningbo University of Technology, Ningbo, China
| | - Yong Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Contran N, Arrigoni G, Battisti I, D'Incà R, Angriman I, Franchin C, Scapellato ML, Padoan A, Moz S, Aita A, Savarino E, Lorenzon G, Zingone F, Spolverato G, Pucciarelli S, Nordi E, Galozzi P, Basso D. Colorectal cancer and inflammatory bowel diseases share common salivary proteomic pathways. Sci Rep 2024; 14:17711. [PMID: 39085299 PMCID: PMC11291686 DOI: 10.1038/s41598-024-68400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Inflammatory bowels diseases (IBD) are high risk conditions for colorectal cancer (CRC). The discovery of IBD and CRC noninvasive protein/peptide biomarkers using saliva and feces was the aim of this study involving 20 controls, 25 IBD (12 Crohn's Disease-CD), 37 CRC. By untargeted proteomic (LTQ-Orbitrap/MS), a total of 152 proteins were identified in saliva. Absent in controls, 73 proteins were present in both IBD and CRC, being mainly related to cell-adhesion, cadherin-binding and enzyme activity regulation (g-Profiler). Among the remaining 79 proteins, 14 were highly expressed in CD and 11 in CRC. These proteins clustered in DNA replication/expression and innate/adaptive immunity. In stool, endogenous peptides from 30 different proteins were identified, two being salivary and CD-associated: Basic Proline-rich Protein 1 (PRBs) and Acidic Proline-rich Phosphoprotein. Biological effects of the PRBs-related peptides GQ-15 and GG-17 found in CD stool were evaluated using CRC cell lines. These peptides induced cell proliferation and activated Erk1/2, Akt and p38 pathways. In conclusion, the salivary proteome unveiled DNA stability and immunity clusters shared between IBD and CRC. Salivary PRB-derived peptides, enriched in CD stool, stimulate CRC cell proliferation and the pro-oncogenic RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways suggesting a potential involvement of PRBs in IBD and cancer pathogenesis.
Collapse
Affiliation(s)
- Nicole Contran
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy.
| | - Giorgio Arrigoni
- Department of Biomedical Sciences (DBS), University of Padova, 35128, Padova, Italy
| | - Ilaria Battisti
- Department of Biomedical Sciences (DBS), University of Padova, 35128, Padova, Italy
| | - Renata D'Incà
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Imerio Angriman
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences (DBS), University of Padova, 35128, Padova, Italy
| | - Maria L Scapellato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128, Padova, Italy
| | - Andrea Padoan
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Stefania Moz
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Ada Aita
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Gaya Spolverato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Salvatore Pucciarelli
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Evelyn Nordi
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Paola Galozzi
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Daniela Basso
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| |
Collapse
|
8
|
Qin C, Li T, Lin C, Zhao B, Li Z, Zhao Y, Wang W. The systematic role of pancreatic cancer exosomes: distant communication, liquid biopsy and future therapy. Cancer Cell Int 2024; 24:264. [PMID: 39054529 PMCID: PMC11271018 DOI: 10.1186/s12935-024-03456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal diseases worldwide. Cancer-derived exosomes, benefiting from the protective role of the lipid membrane, exhibit remarkable stability in the circulatory system. These exosomes, released by tumor microenvironment, contain various biomolecules such as proteins, RNAs, and lipids that plays a pivotal role in mediating distant communication between the local pancreatic tumor and other organs or tissues. They facilitate the transfer of oncogenic factors to distant sites, contributing to the compromised body immune system, distant metastasis, diabetes, cachexia, and promoting a microenvironment conducive to tumor growth and metastasis in pancreatic cancer patients. Beyond their intrinsic roles, circulating exosomes in peripheral blood can be detected to facilitate accurate liquid biopsy. This approach offers a novel and promising method for the diagnosis and management of pancreatic cancer. Consequently, circulating exosomes are not only crucial mediators of systemic cell-cell communication during pancreatic cancer progression but also hold great potential as precise tools for pancreatic cancer management and treatment. Exosome-based liquid biopsy and therapy represent promising advancements in the diagnosis and treatment of pancreatic cancer. Exosomes can serve as drug delivery vehicles, enhancing the targeting and efficacy of anticancer treatments, modulating the immune system, and facilitating gene editing to suppress tumor growth. Ongoing research focuses on biomarker identification, drug delivery systems, and clinical trials to validate the safety and efficacy of exosome-based therapies, offering new possibilities for early diagnosis and precision treatment in pancreatic cancer. Leveraging the therapeutic potential of exosomes, including their ability to deliver targeted drugs and modulate immune responses, opens new avenues for innovative treatment strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Lin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Cheng FC, Wang LH, Lai YJ, Chiang CP. The utility of microbiome (microbiota) and exosomes in dentistry. J Dent Sci 2024; 19:1313-1319. [PMID: 39035305 PMCID: PMC11259687 DOI: 10.1016/j.jds.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 07/23/2024] Open
Abstract
The concept of the oral-systemic link is important in both basic and clinical dentistry. The microbiome (microbiota) and exosomes are two prevalent issues in the modern medical researches. The common advent of oral and general microbiological investigation originated from the initial observations of oral bacteria within the dental plaque known as oral microbiome. In addition to oral diseases related to oral microbiome, the disruption of the oral and intestinal microbiome could result in the onset of systemic diseases. In the past decade, the exosomes have emerged in the field of the medical researches as they play a role in regulating the transport of intracellular vesicles. However, with the rapid advancement of exosomes researches in recent years, oral tissues (such as dental pulp stem cells and salivary gland cells) are used as the research materials to further promote the development of regenerative medicine. This article emphasized the importance of the concept of the oral-systemic link through the examples of microbiome (microbiota) and exosomes. Through the researches related to microbiome (microbiota) and exosomes, many evidences showed that as the basic dentistry developed directly from the assistance of the basic medicine, indirectly the progress of the basic dentistry turns back to promote the development of the basic medicine, indicating the importance of the concept of the oral-systemic link. The understanding of the oral-systemic link is essential for both clinicians and medical researchers, regardless of their dental backgrounds.
Collapse
Affiliation(s)
- Feng-Chou Cheng
- Chia-Te Dental Clinic, New Taipei City, Taiwan
- School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
- Science Education Center, National Taiwan Normal University, Taipei, Taiwan
| | - Ling-Hsia Wang
- Center for the Literature and Art, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Yun-Ju Lai
- School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Pin Chiang
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
10
|
Aalami AH, Shahriari A, Mazaheri M, Aalami F, Sahebkar A. Advancing gastrointestinal cancer diagnostics: a systematic review and meta-analysis of circulating microRNA-1246 as a non-invasive biomarker. Biomarkers 2024; 29:233-243. [PMID: 38696280 DOI: 10.1080/1354750x.2024.2350714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Despite numerous reports on the alterations of microRNA-1246 (miR-1246) expression level in digestive system cancers, its role in gastrointestinal cancers (GICs) remains unclear. This meta-analysis aimed to assess the diagnostic potential of circulating miR-1246 in GICs. METHODS Meta-disc version 1.4 and Comprehensive Meta-Analysis (CMA) version 3.7 software were used to calculate pooled sensitivity, specificity, likelihood ratios, diagnostic odds ratio (DOR), area under the curve (AUC), Q*index and summary receiver-operating characteristic (SROC). Subgroup analyses were conducted for cancer type, sample type and geographical region. Publication bias was assessed using Begg's and Egger's tests. RESULTS A total of 14 articles involving 18 studies and 1526 participants (972 cases and 554 controls) were included. The diagnostic accuracy of miRNA-1246 in GICs was as follows: pooled sensitivity: 0.81 (95% CI: 0.79 - 0.83), specificity: 0.74 (95% CI: 0.71 - 0.77), PLR: 3.315 (95% CI: 2.33 - 4.72), NLR: 0.221 (95% CI: 0.153 - 0.319), DOR: 16.87 (95% CI: 9.45 - 30.09), AUC: 0.891, and Q*-index: 0.807. No publication bias was found based on Begg's (p = 0.172) and Egger's (p = 0.113) tests. CONCLUSION Circulating miR-1246 shows promise as a non-invasive biomarker for early detection of GICs.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ali Shahriari
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Mazaheri
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Farnoosh Aalami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Zhang Z, Liu T, Dong M, Ahamed MA, Guan W. Sample-to-answer salivary miRNA testing: New frontiers in point-of-care diagnostic technologies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1969. [PMID: 38783564 PMCID: PMC11141732 DOI: 10.1002/wnan.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/10/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
MicroRNA (miRNA), crucial non-coding RNAs, have emerged as key biomarkers in molecular diagnostics, prognosis, and personalized medicine due to their significant role in gene expression regulation. Salivary miRNA, in particular, stands out for its non-invasive collection method and ease of accessibility, offering promising avenues for the development of point-of-care diagnostics for a spectrum of diseases, including cancer, neurodegenerative disorders, and infectious diseases. Such development promises rapid and precise diagnosis, enabling timely treatment. Despite significant advancements in salivary miRNA-based testing, challenges persist in the quantification, multiplexing, sensitivity, and specificity, particularly for miRNA at low concentrations in complex biological mixtures. This work delves into these challenges, focusing on the development and application of salivary miRNA tests for point-of-care use. We explore the biogenesis of salivary miRNA and analyze their quantitative expression and their disease relevance in cancer, infection, and neurodegenerative disorders. We also examined recent progress in miRNA extraction, amplification, and multiplexed detection methods. This study offers a comprehensive view of the development of salivary miRNA-based point-of-care testing (POCT). Its successful advancement could revolutionize the early detection, monitoring, and management of various conditions, enhancing healthcare outcomes. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Zhikun Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Md. Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
12
|
Ramadan F, Saab R, Ghamloush F, Khoueiry R, Herceg Z, Gomez L, Badran B, Clezardin P, Hussein N, Cohen PA, Ghayad SE. Exosome-Mediated Paracrine Signaling Unveils miR-1246 as a Driver of Aggressiveness in Fusion-Negative Rhabdomyosarcoma. Cancers (Basel) 2024; 16:1652. [PMID: 38730605 PMCID: PMC11083369 DOI: 10.3390/cancers16091652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Rhabdomyosarcoma is a pediatric cancer associated with aggressiveness and a tendency to develop metastases. Fusion-negative rhabdomyosarcoma (FN-RMS) is the most commonly occurring subtype of RMS, where metastatic disease can hinder treatment success and decrease survival rates. RMS-derived exosomes were previously demonstrated to be enriched with miRNAs, including miR-1246, possibly contributing to disease aggressiveness. We aimed to decipher the functional impact of exosomal miR-1246 on recipient cells and its role in promoting aggressiveness. Treatment of normal fibroblasts with FN-RMS-derived exosomes resulted in a significant uptake of miR-1246 paired with an increase in cell proliferation, migration, and invasion. In turn, delivery of miR-1246-mimic lipoplexes promoted fibroblast proliferation, migration, and invasion in a similar manner. Conversely, when silencing miR-1246 in FN-RMS cells, the resulting derived exosomes demonstrated reversed effects on recipient cells' phenotype. Delivery of exosomal miR-1246 targets GSK3β and promotes β-catenin nuclear accumulation, suggesting a deregulation of the Wnt pathway, known to be important in tumor progression. Finally, a pilot clinical study highlighted, for the first time, the presence of high exosomal miR-1246 levels in RMS patients' sera. Altogether, our results demonstrate that exosomal miR-1246 has the potential to alter the tumor microenvironment of FN-RMS cells, suggesting its potential role in promoting oncogenesis.
Collapse
Affiliation(s)
- Farah Ramadan
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
- Department of Biology, Faculty of Science II, Lebanese University, Beirut 6573, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
| | - Raya Saab
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (R.S.); (F.G.)
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Farah Ghamloush
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (R.S.); (F.G.)
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69366 Cedex 07 Lyon, France; (R.K.); (Z.H.)
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69366 Cedex 07 Lyon, France; (R.K.); (Z.H.)
| | - Ludovic Gomez
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France;
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
| | - Philippe Clezardin
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
| | - Nader Hussein
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon 1, 69008 Lyon, France
| | - Pascale A. Cohen
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut 6573, Lebanon
- C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, 13005 Marseille, France
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
13
|
Cui L, Zheng J, Lu Y, Lin P, Lin Y, Zheng Y, Xu R, Mai Z, Guo B, Zhao X. New frontiers in salivary extracellular vesicles: transforming diagnostics, monitoring, and therapeutics in oral and systemic diseases. J Nanobiotechnology 2024; 22:171. [PMID: 38610017 PMCID: PMC11015696 DOI: 10.1186/s12951-024-02443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Salivary extracellular vesicles (EVs) have emerged as key tools for non-invasive diagnostics, playing a crucial role in the early detection and monitoring of diseases. These EVs surpass whole saliva in biomarker detection due to their enhanced stability, which minimizes contamination and enzymatic degradation. The review comprehensively discusses methods for isolating, enriching, quantifying, and characterizing salivary EVs. It highlights their importance as biomarkers in oral diseases like periodontitis and oral cancer, and underscores their potential in monitoring systemic conditions. Furthermore, the review explores the therapeutic possibilities of salivary EVs, particularly in personalized medicine through engineered EVs for targeted drug delivery. The discussion also covers the current challenges and future prospects in the field, emphasizing the potential of salivary EVs in advancing clinical practice and disease management.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
14
|
Nair S, Razo-Azamar M, Jayabalan N, Dalgaard LT, Palacios-González B, Sørensen A, Kampmann U, Handberg A, Carrion F, Salomon C. Advances in extracellular vesicles as mediators of cell-to-cell communication in pregnancy. Cytokine Growth Factor Rev 2024; 76:86-98. [PMID: 38233286 DOI: 10.1016/j.cytogfr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Cell-to-cell communication mediated by Extracellular Vesicles (EVs) is a novel and emerging area of research, especially during pregnancy, in which placenta derived EVs can facilitate the feto-maternal communication. EVs comprise a heterogeneous group of vesicle sub-populations with diverse physical and biochemical characteristics and originate by specific biogenesis mechanisms. EVs transfer molecular cargo (including proteins, nucleic acids, and lipids) between cells and are critical mediators of cell communication. There is growing interest among researchers to explore into the molecular cargo of EVs and their functions in a physiological and pathological context. For example, inflammatory mediators such as cytokines are shown to be released in EVs and EVs derived from immune cells play key roles in mediating the immune response as well as immunoregulatory pathways. Pregnancy complications such as gestational diabetes mellitus, preeclampsia, intrauterine growth restriction and preterm birth are associated with altered levels of circulating EVs, with differential EV cargo and bioactivity in target cells. This implicates the intriguing roles of EVs in reprogramming the maternal physiology during pregnancy. Moreover, the capacity of EVs to carry bioactive molecules makes them a promising tool for biomarker development and targeted therapies in pregnancy complications. This review summarizes the physiological and pathological roles played by EVs in pregnancy and pregnancy-related disorders and describes the potential of EVs to be translated into clinical applications in the diagnosis and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Melissa Razo-Azamar
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), CDMX, 14330, Mexico
| | - Nanthini Jayabalan
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| | | | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), CDMX, 14330, Mexico
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, and Department of Clinical Medicine, Aarhus University, Denmark
| | - Aase Handberg
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
15
|
Madadjim R, An T, Cui J. MicroRNAs in Pancreatic Cancer: Advances in Biomarker Discovery and Therapeutic Implications. Int J Mol Sci 2024; 25:3914. [PMID: 38612727 PMCID: PMC11011772 DOI: 10.3390/ijms25073914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic cancer remains a formidable malignancy characterized by high mortality rates, primarily attributable to late-stage diagnosis and a dearth of effective therapeutic interventions. The identification of reliable biomarkers holds paramount importance in enhancing early detection, prognostic evaluation, and targeted treatment modalities. Small non-coding RNAs, particularly microRNAs, have emerged as promising candidates for pancreatic cancer biomarkers in recent years. In this review, we delve into the evolving role of cellular and circulating miRNAs, including exosomal miRNAs, in the diagnosis, prognosis, and therapeutic targeting of pancreatic cancer. Drawing upon the latest research advancements in omics data-driven biomarker discovery, we also perform a case study using public datasets and address commonly identified research discrepancies, challenges, and limitations. Lastly, we discuss analytical approaches that integrate multimodal analyses incorporating clinical and molecular features, presenting new insights into identifying robust miRNA-centric biomarkers.
Collapse
Affiliation(s)
| | | | - Juan Cui
- School of Computing, University of Nebraska—Lincoln, Lincoln, NE 68588, USA; (R.M.); (T.A.)
| |
Collapse
|
16
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Vasileiadi S, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. A Current Synopsis of the Emerging Role of Extracellular Vesicles and Micro-RNAs in Pancreatic Cancer: A Forward-Looking Plan for Diagnosis and Treatment. Int J Mol Sci 2024; 25:3406. [PMID: 38542378 PMCID: PMC10969997 DOI: 10.3390/ijms25063406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 12/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 11527 Athens, Greece;
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sofia Vasileiadi
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
17
|
Andre M, Caobi A, Miles JS, Vashist A, Ruiz MA, Raymond AD. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer 2024; 24:322. [PMID: 38454346 PMCID: PMC10921614 DOI: 10.1186/s12885-024-11819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Liquid biopsy can detect circulating cancer cells or tumor cell-derived DNA at various stages of cancer. The fluid from these biopsies contains extracellular vesicles (EVs), such as apoptotic bodies, microvesicles, exomeres, and exosomes. Exosomes contain proteins and nucleic acids (DNA/RNA) that can modify the microenvironment and promote cancer progression, playing significant roles in cancer pathology. Clinically, the proteins and nucleic acids within the exosomes from liquid biopsies can be biomarkers for the detection and prognosis of cancer. We review EVs protein and miRNA biomarkers identified for select cancers, specifically melanoma, glioma, breast, pancreatic, hepatic, cervical, prostate colon, and some hematological malignancies. Overall, this review demonstrates that EV biomolecules have great potential to expand the diagnostic and prognostic biomarkers used in Oncology; ultimately, EVs could lead to earlier detection and novel therapeutic targets. Clinical implicationsEVs represent a new paradigm in cancer diagnostics and therapeutics. The potential use of exosomal contents as biomarkers for diagnostic and prognostic indicators may facilitate cancer management. Non-invasive liquid biopsy is helpful, especially when the tumor is difficult to reach, such as in pancreatic adenocarcinoma. Moreover, another advantage of using minimally invasive liquid biopsy is that monitoring becomes more manageable. Identifying tumor-derived exosomal proteins and microRNAs would allow a more personalized approach to detecting cancer and improving treatment.
Collapse
Affiliation(s)
- Mickensone Andre
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Allen Caobi
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Jana S Miles
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Arti Vashist
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Marco A Ruiz
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
- Medical Oncology, Baptist Health Miami Cancer Institute, Miami, 33176, FL, USA
| | - Andrea D Raymond
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA.
| |
Collapse
|
18
|
Anitha K, Posinasetty B, Naveen Kumari K, Chenchula S, Padmavathi R, Prakash S, Radhika C. Liquid biopsy for precision diagnostics and therapeutics. Clin Chim Acta 2024; 554:117746. [PMID: 38151071 DOI: 10.1016/j.cca.2023.117746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Liquid biopsy (LB) has emerged as a highly promising and non-invasive diagnostic approach, particularly in the field of oncology, and has garnered interest in various medical disciplines. This technique involves the examination of biomolecules released into physiological fluids, such as urine samples, blood, and cerebrospinal fluid (CSF). The analysed biomolecules included circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free DNA (cfDNA), exosomes, and other cell-free components. In contrast to conventional tissue biopsies, LB provides minimally invasive diagnostics, offering invaluable insights into tumor characteristics, treatment response, and early disease detection. This Review explores the contemporary landscape of technologies and clinical applications in the realm of LB, with a particular emphasis on the isolation and analysis of ctDNA and/or cfDNA. Various methodologies have been employed, including droplet digital polymerase chain reaction (DDP), BEAMing (beads, emulsion, amplification, and magnetics), TAm-Seq (tagged-amplicon deep sequencing), CAPP-Seq (cancer personalized profiling by deep sequencing), WGBS-Seq (whole genome bisulfite sequencing), WES (whole exome sequencing), and WGS (whole-genome sequencing). Additionally, CTCs have been successfully isolated through biomarker-based cell capture, employing both positive and negative enrichment strategies based on diverse biophysical and other inherent properties. This approach also addresses challenges and limitations associated with liquid biopsy techniques, such as sensitivity, specificity, standardization and interpretability of findings. This review seeks to identify the current technologies used in liquid biopsy samples, emphasizing their significance in identifying tumor markers for cancer detection, prognosis, and treatment outcome monitoring.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur 425405, India
| | | | - K Naveen Kumari
- Sri Krishna Teja Pharmacy College, Tirupati, Andhra Pradesh 517502, India
| | | | - R Padmavathi
- SVS Medical College, Hyderabad, Telangana, India
| | - Satya Prakash
- All India Institute of Medical Sciences, Bhopal 462020, India
| | | |
Collapse
|
19
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 3-therapeutic + diagnostic potential in dentistry. Periodontol 2000 2024; 94:415-482. [PMID: 38546137 DOI: 10.1111/prd.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 05/18/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of various diseases. Over 5000 publications are currently being published on this topic yearly, many of which in the dental space. This extensive review article is the first scoping review aimed at summarizing all therapeutic uses of exosomes in regenerative dentistry. A total of 944 articles were identified as using exosomes in the dental field for either their regenerative/therapeutic potential or for diagnostic purposes derived from the oral cavity. In total, 113 research articles were selected for their regenerative potential (102 in vitro, 60 in vivo, 50 studies included both). Therapeutic exosomes were most commonly derived from dental pulps, periodontal ligament cells, gingival fibroblasts, stem cells from exfoliated deciduous teeth, and the apical papilla which have all been shown to facilitate the regenerative potential of a number of tissues including bone, cementum, the periodontal ligament, nerves, aid in orthodontic tooth movement, and relieve temporomandibular joint disorders, among others. Results demonstrate that the use of exosomes led to positive outcomes in 100% of studies. In the bone field, exosomes were found to perform equally as well or better than rhBMP2 while significantly reducing inflammation. Periodontitis animal models were treated with simple gingival injections of exosomes and benefits were even observed when the exosomes were administered intravenously. Exosomes are much more stable than growth factors and were shown to be far more resistant against degradation by periodontal pathogens found routinely in a periodontitis environment. Comparative studies in the field of periodontal regeneration found better outcomes for exosomes even when compared to their native parent stem cells. In total 47 diagnostic studies revealed a role for salivary/crevicular fluid exosomes for the diagnosis of birth defects, cardiovascular disease, diabetes, gingival recession detection, gingivitis, irritable bowel syndrome, neurodegenerative disease, oral lichen planus, oral squamous cell carcinoma, oropharyngeal cancer detection, orthodontic root resorption, pancreatic cancer, periodontitis, peri-implantitis, Sjögren syndrome, and various systemic diseases. Hence, we characterize the exosomes as possessing "remarkable" potential, serving as a valuable tool for clinicians with significant advantages.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
- Advanced PRF Education, Venice, Florida, USA
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
20
|
Ihlamur M, Kelleci K, Zengin Y, Allahverdiyev MA, Abamor EŞ. Applications of Exosome Vesicles in Different Cancer Types as Biomarkers. Curr Mol Med 2024; 24:281-297. [PMID: 36941811 DOI: 10.2174/1566524023666230320120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
One of the biggest challenges in the fight against cancer is early detection. Early diagnosis is vital, but there are some barriers such as economic, cultural, and personal factors. Considering the disadvantages of radiological imaging techniques or serological analysis methods used in cancer diagnosis, such as being expensive, requiring expertise, and being time-consuming, there is a need to develop faster, more reliable, and cost-effective diagnostic methods for use in cancer diagnosis. Exosomes, which are responsible for intercellular communication with sizes ranging from 30-120 nm, are naturally produced biological nanoparticles. Thanks to the cargo contents they carry, they are a potential biomarker to be used in the diagnosis of cancer. Exosomes, defined as extracellular vesicles of endosomal origin, are effective in cancer growth, progression, metastasis, and drug resistance, and changes in microenvironmental conditions during tumor development change exosome secretion. Due to their high cellular activity, tumor cells produce much higher exosomes than healthy cells. Therefore, it is known that the number of exosomes in body fluids is significantly rich compared to other cells and can act as a stand-alone diagnostic biomarker. Cancer- derived exosomes have received great attention in recent years for the early detection of cancer and the evaluation of therapeutic response. In this article, the content, properties, and differences of exosomes detected in common types of cancer (lung, liver, pancreas, ovaries, breast, colorectal), which are the leading causes of cancer-related deaths, are reviewed. We also discuss the potential utility of exosome contents as a biomarker for early detection, which is known to be important in targeted cancer therapy.
Collapse
Affiliation(s)
- Murat Ihlamur
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Biruni University, Vocational School, Department of Electronics and Automation, Istanbul, Turkey
| | - Kübra Kelleci
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Beykoz University, Vocational School, Department of Medical Services and Techniques, Istanbul, Turkey
| | - Yağmur Zengin
- Bogazici University, Biomedical Engineering Institute, Department of Biomedical Engineering, Istanbul, Turkey
| | - M Adil Allahverdiyev
- Institute of the V. Akhundov National Scientific Research Medical Prophylactic, Baku, Azerbaijan Republic
| | - Emrah Şefik Abamor
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
21
|
Wu J, Liu G, Jia R, Guo J. Salivary Extracellular Vesicles: Biomarkers and Beyond in Human Diseases. Int J Mol Sci 2023; 24:17328. [PMID: 38139157 PMCID: PMC10743646 DOI: 10.3390/ijms242417328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Extracellular vesicles, as bioactive molecules, have been extensively studied. There are abundant studies in the literature on their biogenesis, secretion, structure, and content, and their roles in pathophysiological processes. Extracellular vesicles have been reviewed as biomarkers for use in diagnostic tools. Saliva contains many extracellular vesicles, and compared with other body fluids, it is easier to obtain in a non-invasive way, making its acquisition more easily accepted by patients. In recent years, there have been numerous new studies investigating the role of salivary extracellular vesicles as biomarkers. These studies have significant implications for future clinical diagnosis. Therefore, in this paper, we summarize and review the potential applications of salivary extracellular vesicles as biomarkers, and we also describe their other functions (e.g., hemostasis, innate immune defense) in both oral and non-oral diseases.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Gege Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
22
|
Wang K, Wang X, Pan Q, Zhao B. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer 2023; 22:167. [PMID: 37803304 PMCID: PMC10557192 DOI: 10.1186/s12943-023-01870-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies. Surgical resection is a potential curative approach for PC, but most patients are unsuitable for operations when at the time of diagnosis. Even with surgery, some patients may still experience tumour metastasis during the operation or shortly after surgery, as precise prognosis evaluation is not always possible. If patients miss the opportunity for surgery and resort to chemotherapy, they may face the challenging issue of chemotherapy resistance. In recent years, liquid biopsy has shown promising prospects in disease diagnosis, treatment monitoring, and prognosis assessment. As a noninvasive detection method, liquid biopsy offers advantages over traditional diagnostic procedures, such as tissue biopsy, in terms of both cost-effectiveness and convenience. The information provided by liquid biopsy helps clinical practitioners understand the molecular mechanisms underlying tumour occurrence and development, enabling the formulation of more precise and personalized treatment decisions for each patient. This review introduces molecular biomarkers and detection methods in liquid biopsy for PC, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), noncoding RNAs (ncRNAs), and extracellular vesicles (EVs) or exosomes. Additionally, we summarize the applications of liquid biopsy in the early diagnosis, treatment response, resistance assessment, and prognostic evaluation of PC.
Collapse
Affiliation(s)
- Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Bei Zhao
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
23
|
Luo L, Zhang W, Li Z. LncRNA HAGLR May Aggravate Melanoma Malignancy Via miR-4644/ASB11 Pathway. Mol Biotechnol 2023; 65:1619-1631. [PMID: 36735150 DOI: 10.1007/s12033-023-00672-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
In this study, we aimed to assess the biological functions of HAGLR and its underlying mechanisms in melanoma. HAGLR and ASB11 were knocked down by transfection with the corresponding siRNAs. Meanwhile, miR-4644 was downregulated using the miR-4644 inhibitor treatment. The target interactions among the three molecules were demonstrated using dual-luciferase reporter and RNA immunoprecipitation assays. The levels of HAGLR, miR-4644, and ASB11 in melanoma cells and tissues were assessed using quantitative real‑time PCR and western blotting. The functions and mechanisms underlying HAGLR action in melanoma progression were examined using Cell Counting Kit-8, Transwell, Caspase-3 activity, and xenograft tumor formation assays. HAGLR and ASB11 expression were elevated, whereas that of miR-4644 was downregulated in melanoma cells and tissues. The viability and migration of melanoma cells (A875 and A375) were markedly suppressed by the knockdown of HAGLR and ASB11 but promoted following miR-4644 inhibitor transfection. In contrast, apoptosis showed the opposite trend. In vivo, tumor weight declined considerably with downregulation of HAGLR. Mechanistically, HAGLR sponges miR-4644, increasing the levels of ASB11 and further aggravating melanoma. It latter negatively targets ASB11 in melanoma cells. Hence, the HAGLR-miR-4644-ASB11 axis may be a promising target for melanoma treatment.
Collapse
Affiliation(s)
- Longjun Luo
- Department of Burns & Skin Wounds Repair Center, The Third Hospital of Wuhan, Wuhan, 430070, Hubei, People's Republic of China
| | - Wenhui Zhang
- Department of Plastic & Cosmetic Surgery, Tongji Medical College Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Zi Li
- Department of Orthopedics & Plastic Surgery, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hongkong Road, Jiang'an District, Wuhan, 430015, Hubei, People's Republic of China.
| |
Collapse
|
24
|
Müller Bark J, Trevisan França de Lima L, Zhang X, Broszczak D, Leo PJ, Jeffree RL, Chua B, Day BW, Punyadeera C. Proteome profiling of salivary small extracellular vesicles in glioblastoma patients. Cancer 2023; 129:2836-2847. [PMID: 37254878 PMCID: PMC10952188 DOI: 10.1002/cncr.34888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) play a critical role in intercellular communication under physiological and pathological conditions, including cancer. EVs cargo reflects their cell of origin, suggesting their utility as biomarkers. EVs are detected in several biofluids, and their ability to cross the blood-brain barrier has highlighted their potential as prognostic and diagnostic biomarkers in gliomas, including glioblastoma (GBM). Studies have demonstrated the potential clinical utility of plasma-derived EVs in glioma. However, little is known about the clinical utility of saliva-derived EVs in GBM. METHODS Small EVs were isolated from whole mouth saliva of GBM patients pre- and postoperatively. Isolation was performed using differential centrifugation and/or ultracentrifugation. EVs were characterized by concentration, size, morphology, and EVs cell-surface protein markers. Protein cargo in EVs was profiled using mass spectrometry. RESULTS There were no statistically significant differences in size and concentration of EVs derived from pre- and post GBM patients' saliva samples. A higher number of proteins were detected in preoperative samples compared to postoperative samples. The authors found four highly abundant proteins (aldolase A, 14-3-3 protein ε, enoyl CoA hydratase 1, and transmembrane protease serine 11B) in preoperative saliva samples from GBM patients with poor outcomes. Functional enrichment analysis of pre- and postoperative saliva samples showed significant enrichment of several pathways, including those related to the immune system, cell cycle and programmed cell death. CONCLUSIONS This study, for the first time, demonstrates the feasibility of isolating and characterizing small EVs from pre- and postoperative saliva samples from GBM patients. Preliminary findings encourage further large cohort validation studies on salivary small EVs to evaluate prognosis in GBM.
Collapse
Affiliation(s)
- Juliana Müller Bark
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
| | - Lucas Trevisan França de Lima
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
- Gallipoli Medical Research InstituteGreenslopes Private HospitalBrisbaneQueenslandAustralia
| | - Xi Zhang
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
| | - Daniel Broszczak
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Paul J. Leo
- Translational Research InstituteBrisbaneQueenslandAustralia
- Translational Genomics GroupQueensland University of TechnologyTranslational Research InstituteWoolloongabbaQueenslandAustralia
| | - Rosalind L. Jeffree
- Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
- Kenneth G. Jamieson Department of NeurosurgeryRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Benjamin Chua
- Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
- Cancer Care ServicesRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Bryan W. Day
- Cell and Molecular Biology DepartmentSid Faithfull Brain Cancer LaboratoryQIMR Berghofer MRIBrisbaneQueenslandAustralia
| | - Chamindie Punyadeera
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Menzies Health Institute (MHIQ)Griffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
25
|
Xia B, Liu Y, Wang J, Lu Q, Lv X, Deng K, Yang J. Emerging role of exosome-shuttled noncoding RNAs in gastrointestinal cancers: From intercellular crosstalk to clinical utility. Pharmacol Res 2023; 195:106880. [PMID: 37543095 DOI: 10.1016/j.phrs.2023.106880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Gastrointestinal cancer remains a significant global health burden. The pursuit of advancing the comprehension of tumorigenesis, along with the identification of reliable biomarkers and the development of precise therapeutic strategies, represents imperative objectives in this field. Exosomes, small membranous vesicles released by most cells, commonly carry functional biomolecules, including noncoding RNAs (ncRNAs), which are specifically sorted and encapsulated by exosomes. Exosome-mediated communication involves the release of exosomes from tumor or stromal cells and the uptake by nearby or remote recipient cells. The bioactive cargoes contained within these exosomes exert profound effects on the recipient cells, resulting in significant modifications in the tumor microenvironment (TME) and distinct alterations in gastrointestinal tumor behaviors. Due to the feasibility of isolating exosomes from various bodily fluids, exosomal ncRNAs have shown great potential as liquid biopsy-based indicators for different gastrointestinal cancers, using blood, ascites, saliva, or bile samples. Moreover, exosomes are increasingly recognized as natural delivery vehicles for ncRNA-based therapeutic interventions. In this review, we elucidate the processes of ncRNA-enriched exosome biogenesis and uptake, examine the regulatory and functional roles of exosomal ncRNA-mediated intercellular crosstalk in gastrointestinal TME and tumor behaviors, and explore their potential clinical utility in diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
- Bihan Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yuzhi Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qing Lu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xiuhe Lv
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| | - Jinlin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
26
|
Khan IA, Saraya A. Circulating MicroRNAs as Noninvasive Diagnostic and Prognostic Biomarkers in Pancreatic Cancer: A Review. J Gastrointest Cancer 2023; 54:720-730. [PMID: 36322366 DOI: 10.1007/s12029-022-00877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal human cancers. Currently, most PC cases are diagnosed at an already advanced stage. Early detection of PC is critical to improving survival rates. Therefore, there is an urgent need to identify biomarkers for the early detection of PC. Recently, circulating miRNAs in whole blood and other body fluids have been reported as promising biomarkers for the early detection of various cancers, including PC. Furthermore, due to minimal invasiveness and technical availability, circulating miRNAs hold promise for further wide usage. As a potential novel molecular marker, circulating miRNAs not only represent promising noninvasive diagnostic and prognostic tools but could also improve the evaluation of tumor classification, metastasis, and curative effect. The purpose of this review is to outline the available information regarding circulating miRNAs as biomarkers for the early detection of PC.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
27
|
Xing S, Zhu Y, You Y, Wang S, Wang H, Ning M, Jin H, Liu Z, Zhang X, Yu C, Lu ZJ. Cell-free RNA for the liquid biopsy of gastrointestinal cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1791. [PMID: 37086051 DOI: 10.1002/wrna.1791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Gastrointestinal (GI) cancer includes many cancer types, such as esophageal, liver, gastric, pancreatic, and colorectal cancer. As the cornerstone of personalized medicine for GI cancer, liquid biopsy based on noninvasive biomarkers provides promising opportunities for early diagnosis and dynamic treatment management. Recently, a growing number of studies have demonstrated the potential of cell-free RNA (cfRNA) as a new type of noninvasive biomarker in body fluids, such as blood, saliva, and urine. Meanwhile, transcriptomes based on high-throughput RNA detection technologies keep discovering new cfRNA biomarkers. In this review, we introduce the origins and applications of cfRNA, describe its detection and qualification methods in liquid biopsy, and summarize a comprehensive list of cfRNA biomarkers in different GI cancer types. Moreover, we also discuss perspective studies of cfRNA to overcome its current limitations in clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Yumin Zhu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yaxian You
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siqi Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Ning
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Heyue Jin
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhengxia Liu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Zhang
- Department of Health Care, Jiangsu Women and Children Health Hospital, the First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Kuniyoshi N, Imazu H, Masuzaki R, Yamazaki M, Hamana S, Nomura S, Hayama J, Osawa R, Yamada K, Fujisawa M, Saito K, Kogure H. Diagnostic utility of quantitative analysis of microRNA in bile samples obtained during endoscopic retrograde cholangiopancreatography for malignant biliary strictures. PLoS One 2023; 18:e0289537. [PMID: 37561751 PMCID: PMC10414614 DOI: 10.1371/journal.pone.0289537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The sensitivity of bile cytology for malignant biliary strictures is not adequate. To overcome this limitation, we evaluated whether quantitative analysis of microRNAs (miRNAs) in bile can provide a precise diagnosis of malignant biliary strictures due to pancreatic cancer (PC) and biliary tract cancer (BTC). METHODS This was a retrospective evaluation of miRNA levels in stored bile samples of patients with PC, BTC or benign biliary stricture obtained during biliary drainage from April 2019 to December 2021 at our institution. A total of 113 patients (PC; n = 40, BTC; n = 38, control; n = 35) were enrolled. The miRNA candidates to be quantified were determined with microarray analysis from each 3 patients with PC, BTC and controls. RESULTS Using microarray analysis, we confirmed four significantly up-regulated miRNAs (miR-1275, miR-6891-5p, miR-7107-5p, miR-3197) in patients with PC and BTC compared to control patients. Quantitative PCR was then performed in 113 bile samples for these miRNAs. miR-1275 was significantly upregulated in PC (p = 0.003) and BTC (p = 0.049) compared to controls, miR-6891-5p was significantly upregulated in PC compared to controls (p = 0.025). In particular, a combination of bile cytology and miR-1275 in bile showed a sensitivity of 77.5% (95% CI, 70.7-77.5%), specificity of 100% (95% CI, 92.2-100%) and an area under the curve (AUC) of 0.93, and provided a significantly greater additional diagnostic effect than bile cytology alone (p = 0.014). CONCLUSIONS This study suggest that bile miRNAs could be potential biomarkers for pancreato-biliary diseases, particularly miR-1275 and miR-6891-5p may be helpful in the diagnosis of PC and BTC.
Collapse
Affiliation(s)
- Noriyuki Kuniyoshi
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hiroo Imazu
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Chiyoda-ku, Tokyo, Japan
| | - Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Motomi Yamazaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Suguru Hamana
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Shuzo Nomura
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Jo Hayama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Rota Osawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Chiyoda-ku, Tokyo, Japan
| | - Koji Yamada
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Chiyoda-ku, Tokyo, Japan
| | - Mariko Fujisawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Kei Saito
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hirofumi Kogure
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
29
|
Baek W, Lee J, Jang Y, Kim J, Shin DA, Park H, Koo BN, Lee H. Assessment of Risk Factors for Postoperative Delirium in Older Adults Who Underwent Spinal Surgery and Identifying Associated Biomarkers Using Exosomal Protein. J Korean Acad Nurs 2023; 53:371-384. [PMID: 37673813 DOI: 10.4040/jkan.22146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE With an increase in the aging population, the number of patients with degenerative spinal diseases undergoing surgery has risen, as has the incidence of postoperative delirium. This study aimed to investigate the risk factors affecting postoperative delirium in older adults who had undergone spine surgery and to identify the associated biomarkers. METHODS This study is a prospective study. Data of 100 patients aged ≥ 70 years who underwent spinal surgery were analyzed. Demographic data, medical history, clinical characteristics, cognitive function, depression symptoms, functional status, frailty, and nutritional status were investigated to identify the risk factors for delirium. The Confusion Assessment Method, Delirium Rating Scale-R-98, and Nursing Delirium Scale were also used for diagnosing delirium. To discover the biomarkers, urine extracellular vesicles (EVs) were analyzed for tau, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), neurofilament light, and glial fibrillary acidic protein using digital immunoassay technology. RESULTS Nine patients were excluded, and data obtained from the remaining 91 were analyzed. Among them, 18 (19.8%) developed delirium. Differences were observed between participants with and without delirium in the contexts of a history of mental disorder and use of benzodiazepines (p = .005 and p = .026, respectively). Tau and UCH-L1-concentrations of urine EVs-were comparatively higher in participants with severe delirium than that in participants without delirium (p = .002 and p = .001, respectively). CONCLUSION These findings can assist clinicians in accurately identifying the risk factors before surgery, classifying high-risk patients, and predicting and detecting delirium in older patients. Moreover, urine EV analysis revealed that postoperative delirium following spinal surgery is most likely associated with brain damage.
Collapse
Affiliation(s)
- Wonhee Baek
- Department of Nursing, Yonsei University Graduate School, Seoul, Korea
| | - JuHee Lee
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Korea
| | - Yeonsoo Jang
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Korea
| | - Jeongmin Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Ah Shin
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunki Park
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyangkyu Lee
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Korea.
| |
Collapse
|
30
|
El-Tanani M, Nsairat H, Matalka II, Aljabali AAA, Mishra V, Mishra Y, Naikoo GA, Chava SR, Charbe NB, Tambuwala MM. Impact of exosome therapy on pancreatic cancer and its progression. Med Oncol 2023; 40:225. [PMID: 37405480 PMCID: PMC10322774 DOI: 10.1007/s12032-023-02101-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer, one of the most aggressive tumors, has a dismal prognosis because of the low rates of early identification, fast progression, difficulties following surgery, and the ineffectiveness of current oncologic therapies. There are no imaging techniques or biomarkers that can accurately identify, categorize, or predict the biological behavior of this tumor. Exosomes are extracellular vesicles that play a crucial rule in the progression, metastasis, and chemoresistance of pancreatic cancer. They have been verified to be potential biomarkers for pancreatic cancer management. Studying the role of exosomes in pancreatic cancer is substantial. Exosomes are secreted by most eukaryotic cells and participated in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long non-coding RNA, circular RNA, etc., play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, in this concise review, we intend to summarize exosomes components and isolation, exosome secretion, function, importance of exosomes in the progression of pancreatic cancer and exosomal miRNAs as possible pancreatic cancer biomarkers. Finally, the application potential of exosomes in the treatment of pancreatic cancer, which provides theoretical supports for using exosomes to serve precise tumor treatment in the clinic, will be discussed.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK.
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | | | - Nitin B Charbe
- Department of Pharmaceutics, College of Pharmacy, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, FL, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
31
|
Săsăran MO, Bănescu C. Role of salivary miRNAs in the diagnosis of gastrointestinal disorders: a mini-review of available evidence. Front Genet 2023; 14:1228482. [PMID: 37456668 PMCID: PMC10346860 DOI: 10.3389/fgene.2023.1228482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
MiRNAs are short, non-coding RNA molecules, which are involved in the regulation of gene expression and which play an important role in various biological processes, including inflammation and cell cycle regulation. The possibility of detecting their extracellular expression, within body fluids, represented the main background for their potential use as non-invasive biomarkers of various diseases. Salivary miRNAs particularly gained interest recently due to the facile collection of stimulated/unstimulated saliva and their stability among healthy subjects. Furthermore, miRNAs seem to represent biomarker candidates of gastrointestinal disorders, with miRNA-based therapeutics showing great potential in those conditions. This review aimed to highlight available evidence on the role of salivary miRNAs in different gastrointestinal conditions. Most salivary-based miRNA studies available in the literature that focused on pathologies of the gastrointestinal tract have so far been conducted on pancreatic cancer patients and delivered reliable results. A few studies also showed the diagnostic utility of salivary miRNAs in conditions such as esophagitis, esophageal cancer, colorectal cancer, or inflammatory bowel disease. Moreover, several authors showed that salivary miRNAs may confidently be used as biomarkers of gastric cancer, but the use of salivary miRNA candidates in gastric inflammation and pre-malignant lesions, essential stages of Correa's cascade, is still put into question. On the other hand, besides miRNAs, other salivary omics have shown biomarker potential in gastro-intestinal conditions. The limited available data suggest that salivary miRNAs may represent reliable biomarker candidates for gastrointestinal conditions. However, their diagnostic potential requires validation through future research, performed on larger cohorts.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics 3, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Târgu Mureș, Romania
| | - Claudia Bănescu
- Genetics Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Targu Mures, Romania
| |
Collapse
|
32
|
Fang X, Lan H, Jin K, Qian J. Pancreatic cancer and exosomes: role in progression, diagnosis, monitoring, and treatment. Front Oncol 2023; 13:1149551. [PMID: 37287924 PMCID: PMC10242099 DOI: 10.3389/fonc.2023.1149551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most dangerous diseases that threaten human life, and investigating the details affecting its progression or regression is particularly important. Exosomes are one of the derivatives produced from different cells, including tumor cells and other cells such as Tregs, M2 macrophages, and MDSCs, and can help tumor growth. These exosomes perform their actions by affecting the cells in the tumor microenvironment, such as pancreatic stellate cells (PSCs) that produce extracellular matrix (ECM) components and immune cells that are responsible for killing tumor cells. It has also been shown that pancreatic cancer cell (PCC)-derived exosomes at different stages carry molecules. Checking the presence of these molecules in the blood and other body fluids can help us in the early stage diagnosis and monitoring of PC. However, immune system cell-derived exosomes (IEXs) and mesenchymal stem cell (MSC)-derived exosomes can contribute to PC treatment. Immune cells produce exosomes as part of the mechanisms involved in the immune surveillance and tumor cell-killing phenomenon. Exosomes can be modified in such a way that their antitumor properties are enhanced. One of these methods is drug loading in exosomes, which can significantly increase the effectiveness of chemotherapy drugs. In general, exosomes form a complex intercellular communication network that plays a role in developing, progressing, diagnosing, monitoring, and treating pancreatic cancer.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
33
|
Zou X, Huang Z, Guan C, Shi W, Gao J, Wang J, Cui Y, Wang M, Xu Y, Zhong X. Exosomal miRNAs in the microenvironment of pancreatic cancer. Clin Chim Acta 2023; 544:117360. [PMID: 37086943 DOI: 10.1016/j.cca.2023.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Pancreatic cancer (PC) is highly aggressive having an extremely poor prognosis. The tumor microenvironment (TME) of PC is complex and heterogeneous. Various cellular components in the microenvironment are capable of secreting different active substances that are involved in promoting tumor development. Their release may occur via exosomes, the most abundant extracellular vesicles (EVs), that can carry numerous factors as well as act as a mean of intercellular communication. Emerging evidence suggests that miRNAs are involved in the regulation and control of many pathological and physiological processes. They can also be transported by exosomes from donor cells to recipient cells, thereby regulating the TME. Exosomal miRNAs show promise for use as future targets for PC diagnosis and prognosis, which may reveal new treatment strategies for PC. In this paper, we review the important role of exosomal miRNAs in mediating cellular communication in the TME of PC as well as their potential use in clinical applications.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiangang Wang
- Central hospital of Baoji, Baoji, Shaanxi 721000, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Yi Xu
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
34
|
Liu W, Wang J, Shen X, Shi H. The implications of salivary exosomes as a theranostic secret of human cancers with a focus on oral cancer. Int J Surg 2023; 109:1072-1075. [PMID: 36999809 PMCID: PMC10389483 DOI: 10.1097/js9.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Affiliation(s)
- Wei Liu
- Department of Oral Mucosal Diseases
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinbing Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuemin Shen
- Department of Oral Mucosal Diseases
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Shi
- Department of Oral Surgery, Shanghai Ninth People’s Hospital
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Jalaludin I, Lubman DM, Kim J. A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:844-872. [PMID: 34747512 DOI: 10.1002/mas.21749] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exosomes (small extracellular vesicles) in living organisms play an important role in processes such as cell proliferation or intercellular communication. Recently, exosomes have been extensively investigated for biomarker discoveries for various diseases. An important aspect of exosome analysis involves the development of enrichment methods that have been introduced for successful isolation of exosomes. These methods include ultracentrifugation, size exclusion chromatography, polyethylene glycol-based precipitation, immunoaffinity-based enrichment, ultrafiltration, and asymmetric flow field-flow fractionation among others. To confirm the presence of exosomes, various characterization methods have been utilized such as Western blot analysis, atomic force microscopy, electron microscopy, optical methods, zeta potential, visual inspection, and mass spectrometry. Recent advances in high-resolution separations, high-performance mass spectrometry and comprehensive proteome databases have all contributed to the successful analysis of exosomes from patient samples. Herein we review various exosome enrichment methods, characterization methods, and recent trends of exosome investigations using mass spectrometry-based approaches for biomarker discovery.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
36
|
Circulating Biomarkers for Cancer Detection: Could Salivary microRNAs Be an Opportunity for Ovarian Cancer Diagnostics? Biomedicines 2023; 11:biomedicines11030652. [PMID: 36979630 PMCID: PMC10044752 DOI: 10.3390/biomedicines11030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the crucial regulatory functions of gene expression at post-transcriptional level, detectable in cell and tissue extracts, and body fluids. For their stability in body fluids and accessibility to sampling, circulating miRNAs and changes of their concentration may represent suitable disease biomarkers, with diagnostic and prognostic relevance. A solid literature now describes the profiling of circulating miRNA signatures for several tumor types. Among body fluids, saliva accurately reflects systemic pathophysiological conditions, representing a promising diagnostic resource for the future of low-cost screening procedures for systemic diseases, including cancer. Here, we provide a review of literature about miRNAs as potential disease biomarkers with regard to ovarian cancer (OC), with an excursus about liquid biopsies, and saliva in particular. We also report on salivary miRNAs as biomarkers in oncological conditions other than OC, as well as on OC biomarkers other than miRNAs. While the clinical need for an effective tool for OC screening remains unmet, it would be advisable to combine within a single diagnostic platform, the tools for detecting patterns of both protein and miRNA biomarkers to provide the screening robustness that single molecular species separately were not able to provide so far.
Collapse
|
37
|
Casajuana Ester M, Day RM. Production and Utility of Extracellular Vesicles with 3D Culture Methods. Pharmaceutics 2023; 15:pharmaceutics15020663. [PMID: 36839984 PMCID: PMC9961751 DOI: 10.3390/pharmaceutics15020663] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as promising biomarkers, cell-free therapeutic agents, and drug delivery carriers. Despite their great clinical potential, poor yield and unscalable production of EVs remain significant challenges. When using 3D culture methods, such as scaffolds and bioreactors, large numbers of cells can be expanded and the cell environment can be manipulated to control the cell phenotype. This has been employed to successfully increase the production of EVs as well as to enhance their therapeutic effects. The physiological relevance of 3D cultures, such as spheroids, has also provided a strategy for understanding the role of EVs in the pathogenesis of several diseases and to evaluate their role as tools to deliver drugs. Additionally, 3D culture methods can encapsulate EVs to achieve more sustained therapeutic effects as well as prevent premature clearance of EVs to enable more localised delivery and concentrated exosome dosage. This review highlights the opportunities and drawbacks of different 3D culture methods and their use in EV research.
Collapse
|
38
|
Huang Z, Yang X, Huang Y, Tang Z, Chen Y, Liu H, Huang M, Qing L, Li L, Wang Q, Jie Z, Jin X, Jia B. Saliva - a new opportunity for fluid biopsy. Clin Chem Lab Med 2023; 61:4-32. [PMID: 36285724 DOI: 10.1515/cclm-2022-0793] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022]
Abstract
Saliva is a complex biological fluid with a variety of biomolecules, such as DNA, RNA, proteins, metabolites and microbiota, which can be used for the screening and diagnosis of many diseases. In addition, saliva has the characteristics of simple collection, non-invasive and convenient storage, which gives it the potential to replace blood as a new main body of fluid biopsy, and it is an excellent biological diagnostic fluid. This review integrates recent studies and summarizes the research contents of salivaomics and the research progress of saliva in early diagnosis of oral and systemic diseases. This review aims to explore the value and prospect of saliva diagnosis in clinical application.
Collapse
Affiliation(s)
- Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaoxia Yang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Li Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhuye Jie
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, P.R. China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Jin
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
39
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
40
|
Huynh KQ, Le AT, Phan TT, Ho TT, Pho SP, Nguyen HT, Le BT, Nguyen TT, Nguyen ST. The Diagnostic Power of Circulating miR-1246 in Screening Cancer: An Updated Meta-analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8379231. [PMID: 37122536 PMCID: PMC10139802 DOI: 10.1155/2023/8379231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
Background MicroRNA-1246 (miR-1246), an oncomiR that regulates the expression of multiple cancer-related genes, has been attracted and studied as a promising indicator of various tumors. However, diverse conclusions on diagnostic accuracy have been shown due to the small sample size and limited studies included. This meta-analysis is aimed at systematically assessing the performance of extracellular circulating miR-1246 in screening common cancers. Methods We searched the PubMed/MEDLINE, Web of Science, Cochrane Library, and Google Scholar databases for relevant studies until November 28, 2022. Then, the summary receiver operating characteristic (SROC) curves were drawn and calculated area under the curve (AUC), diagnostic odds ratio (DOR), sensitivity, and specificity values of circulating miR-1246 in the cancer surveillance. Results After selection and quality assessment, 29 eligible studies with 5914 samples (3232 cases and 2682 controls) enrolled in the final analysis. The pooled AUC, DOR, sensitivity, and specificity of circulating miR-1246 in screening cancers were 0.885 (95% confidence interval (CI): 0.827-0.892), 27.7 (95% CI: 17.1-45.0), 84.2% (95% CI: 79.4-88.1), and 85.3% (95% CI: 80.5-89.2), respectively. Among cancer types, superior performance was noted for breast cancer (AUC = 0.950, DOR = 98.5) compared to colorectal cancer (AUC = 0.905, DOR = 47.6), esophageal squamous cell carcinoma (AUC = 0.757, DOR = 8.0), hepatocellular carcinoma (AUC = 0.872, DOR = 18.6), pancreatic cancer (AUC = 0.767, DOR = 12.3), and others (AUC = 0.887, DOR = 27.5, P = 0.007). No significant publication bias in DOR was observed in the meta-analysis (funnel plot asymmetry test with P = 0.652; skewness value = 0.672, P = 0.071). Conclusion Extracellular circulating miR-1246 may serve as a reliable biomarker with good sensitivity and specificity in screening cancers, especially breast cancer.
Collapse
Affiliation(s)
- Khanh Quang Huynh
- The Breast Unit, Cancer Center, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Anh Tuan Le
- Department of Chemo-Radiotherapy, Cancer Center, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Thang Thanh Phan
- The Laboratory D Unit, Cancer Center, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Toan Trong Ho
- The Laboratory D Unit, Cancer Center, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Suong Phuoc Pho
- The Laboratory D Unit, Cancer Center, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Hang Thuy Nguyen
- Department of Clinical Pathology, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Binh Thanh Le
- Department of General Director, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Thuc Tri Nguyen
- Department of General Director, Cho Ray Hospital, HCMC 700000, Vietnam
| | - Son Truong Nguyen
- Department of General Director, Cho Ray Hospital, HCMC 700000, Vietnam
| |
Collapse
|
41
|
Nalavade R, Singh M. Intracellular Compartmentalization: A Key Determinant of MicroRNA Functions. Microrna 2023; 12:114-130. [PMID: 37638608 DOI: 10.2174/2211536612666230330184006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 08/29/2023]
Abstract
Being an integral part of the eukaryotic transcriptome, miRNAs are regarded as vital regulators of diverse developmental and physiological processes. Clearly, miRNA activity is kept in check by various regulatory mechanisms that control their biogenesis and decay pathways. With the increasing technical depth of RNA profiling technologies, novel insights have unravelled the spatial diversity exhibited by miRNAs inside a cell. Compartmentalization of miRNAs adds complexity to the regulatory circuits of miRNA expression, thereby providing superior control over the miRNA function. This review provides a bird's eye view of miRNAs expressed in different subcellular locations, thus affecting the gene regulatory pathways therein. Occurrence of miRNAs in diverse intracellular locales also reveals various unconventional roles played by miRNAs in different cellular organelles and expands the scope of miRNA functions beyond their traditionally known repressive activities.
Collapse
Affiliation(s)
- Rohit Nalavade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
42
|
Liu J, Huang D, Cai Y, Cao Z, Liu Z, Zhang S, Zhao L, Wang X, Wang Y, Huang F, Wu Z. Saliva diagnostics: emerging techniques and biomarkers for salivaomics in cancer detection. Expert Rev Mol Diagn 2022; 22:1077-1097. [PMID: 36631426 DOI: 10.1080/14737159.2022.2167556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The pursuit of easy-to-use, non-invasive and inexpensive diagnostics is an urgent task for clinicians and scientists. Saliva is an important component of body fluid with regular changes of contents under various pathophysiological conditions, and the biomarkers identified from saliva shows high application potentials and values in disease diagnostics. This review introduces the latest developments in saliva research, with an emphasis on the detection and application of salivary biomarkers in cancer detection. AREAS COVERED Detection of disease-specific biomarkers in saliva samples by existing salivaomic methods can be used to diagnose various human pathological conditions and was introduced in details. This review also covers the saliva collection methods, the analytical techniques as well as the corresponding commercial products, with an aim to describe an holistic process for saliva-based diagnostics. EXPERT OPINION Saliva, as a non-invasive and collectable body fluid, can reflect the pathophysiological changes of the human body to a certain extent. Identification of reliable saliva biomarkers can provide a convenient way for cancer detection in clinical applications.
Collapse
Affiliation(s)
- Jieren Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Dongna Huang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuanzhe Cai
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhihua Cao
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhiyu Liu
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lin Zhao
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xin Wang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Feijuan Huang
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Zhengzhi Wu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
43
|
Koopaie M, Kolahdooz S, Fatahzadeh M, Aleedawi ZA. Salivary noncoding RNA in the diagnosis of pancreatic cancer: Systematic review and meta-analysis. Eur J Clin Invest 2022; 52:e13848. [PMID: 35906804 DOI: 10.1111/eci.13848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic cancer is considered one of the most deadly malignancies, primarily because of its diagnostic challenges. We performed a systematic review and diagnostic meta-analysis to evaluate the diagnostic value of noncoding salivary RNAs in pancreatic cancer diagnosis. METHODS Our investigation involved pertinent studies published in PubMed, Scopus, Web of Science, LIVIVO, Ovid and also the Google Scholar search engine. Specificity and sensitivity were calculated, as were positive and negative likelihood ratios (PLR and NLR), and the diagnostic odds ratio (DOR). The summary receiver-operating characteristics and area under the curve were plotted and assessed. RESULTS This meta-analysis and systematic review involved and examined five studies that contained 145 study units with a total of 2731 subjects (1465 pancreatic cancer patients versus 1266 noncancer controls). The pooled specificity, sensitivity, NLR, PLR and DOR were 0.783 (95% CI: 0.759-0.805), 0.829 (95% CI: 0.809-0.848), 0.309 (95% CI: 0.279-0.343), 3.386 (95% CI: 2.956-3.879) and 18.403 (95% CI: 14.753-22.954), respectively, with the area under the curve (AUC) equal to 0.882. Subgroup analyses were conducted based on the saliva type (unstimulated and stimulated), mean age of patients, sample size, type of control, serum carbohydrate antigen 19-9 (CA19-9) level and type of salivary noncoding RNA (microRNA (miRNA) and long noncoding RNA (lncRNA)). CONCLUSIONS The results of our systematic review and meta-analysis suggest that noncoding RNA biomarkers in the stimulated saliva could be a promising approach for accurate pancreatic cancer diagnosis in the early stages.
Collapse
Affiliation(s)
| | | | - Mahnaz Fatahzadeh
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Zainab Abdulkareem Aleedawi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Dentist, Private Dental Clinic, Beirut, Lebanon
| |
Collapse
|
44
|
Kalemaj Z, Marino MM, Santini AC, Tomaselli G, Auti A, Cagetti MG, Borsello T, Costantino A, Inchingolo F, Boccellino M, Di Domenico M, Tartaglia GM. Salivary microRNA profiling dysregulation in autism spectrum disorder: A pilot study. Front Neurosci 2022; 16:945278. [PMID: 36340774 PMCID: PMC9629840 DOI: 10.3389/fnins.2022.945278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2024] Open
Abstract
INTRODUCTION Autism spectrum disorders (ASD) are the most prevalent neurobiological disorders in children. The etiology comprises genetic, epigenetic, and environmental factors such as dysfunction of the immune system. Epigenetic mechanisms are mainly represented by DNA methylation, histone modifications, and microRNAs (miRNA). The major explored epigenetic mechanism is mediated by miRNAs which target genes known to be involved in ASD pathogenesis. Salivary poly-omic RNA measurements have been associated with ASD and are helpful to differentiate ASD endophenotypes. This study aims to comprehensively examine miRNA expression in children with ASD and to reveal potential biomarkers and possible disease mechanisms so that they can be used to improve faction between individuals by promoting more personalized therapeutic approaches. MATERIALS AND METHODS Saliva samples were collected from 10 subjects: 5 samples of children with ASD and 5 from healthy controls. miRNAs were analyzed using an Illumina Next-Generation-Sequencing (NGS) system. RESULTS Preliminary data highlighted the presence of 365 differentially expressed miRNAs. Pathway analysis, molecular function, biological processes, and target genes of 41 dysregulated miRNAs were assessed, of which 20 were upregulated, and 21 were downregulated in children with ASD compared to healthy controls. CONCLUSION The results of this study represent preliminary but promising data, as the identified miRNA pathways could represent useful biomarkers for the early non-invasive diagnosis of ASD.
Collapse
Affiliation(s)
- Zamira Kalemaj
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Michela Marino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Giovanni Tomaselli
- Pharmacological Research Institute Mario Negri-IRCCS, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, Milan, Italy
| | - Amogh Auti
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Grazia Cagetti
- Department of Biomedical, Surgical and Dental Science, Università di Milano, Milan, Italy
| | - Tiziana Borsello
- Pharmacological Research Institute Mario Negri-IRCCS, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, Milan, Italy
| | - Antonella Costantino
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Inchingolo
- Section of Dental Medicine, Department of Interdisciplinary Medicine, Università di Bari “Aldo Moro”, Bari, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
45
|
Zhang W, Campbell DH, Walsh BJ, Packer NH, Liu D, Wang Y. Cancer-derived small extracellular vesicles: emerging biomarkers and therapies for pancreatic ductal adenocarcinoma diagnosis/prognosis and treatment. J Nanobiotechnology 2022; 20:446. [PMID: 36242076 PMCID: PMC9563798 DOI: 10.1186/s12951-022-01641-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal cancers worldwide with high mortality, which is mainly due to the lack of reliable biomarkers for PDAC diagnosis/prognosis in the early stages and effective therapeutic strategies for the treatment. Cancer-derived small extracellular vesicles (sEVs), which carry various messages and signal biomolecules (e.g. RNAs, DNAs, proteins, lipids, and glycans) to constitute the key features (e.g. genetic and phenotypic status) of cancer cells, are regarded as highly competitive non-invasive biomarkers for PDAC diagnosis/prognosis. Additionally, new insights on the biogenesis and molecular functions of cancer-derived sEVs pave the way for novel therapeutic strategies based on cancer-derived sEVs for PDAC treatment such as inhibition of the formation or secretion of cancer-derived sEVs, using cancer-derived sEVs as drug carriers and for immunotherapy. This review provides a comprehensive overview of the most recent scientific and clinical research on the discovery and involvement of key molecules in cancer-derived sEVs for PDAC diagnosis/prognosis and strategies using cancer-derived sEVs for PDAC treatment. The current limitations and emerging trends toward clinical application of cancer-derived sEVs in PDAC diagnosis/prognosis and treatment have also been discussed.
Collapse
Affiliation(s)
- Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia
| | | | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, 2113, Sydney, NSW, Australia
| | - Nicolle H Packer
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia.
| |
Collapse
|
46
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The current review aims to present the most recent achievements on the role of microRNAs (miRNAs) on the kidney function to stimulate research in the field and to expand new emerging concepts. RECENT FINDINGS The focus is on the role of miRNAs in intercellular communication along the segments of the nephron and on the epi-miRNAs, namely the possibility of some miRNAs to modulate the epigenetic machinery and so gene expression. Indeed, recent evidence showed that miRNAs included in exosomes and released by proximal tubule cells can modulate ENaC activity on cells of collecting duct. These data, although, from in-vitro models open to a novel role for miRNAs to participate in paracrine signaling pathways. In addition, the role of miRNAs as epigenetic modulators is expanding not only in the cancer field, but also in the other kidney diseases. Recent evidence identified three miRNAs able to modulate the AQP2 promoter metilation and showing an additional level of regulation for the AQP2. SUMMARY These evidence can inspire novel area of research both for renal physiology and drug discovery. The diseases involving the collecting duct are still missing disease modifying agents and the expanding miRNAs field could represent an opportunity.
Collapse
|
48
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
49
|
Chu X, Yang Y, Tian X. Crosstalk between Pancreatic Cancer Cells and Cancer-Associated Fibroblasts in the Tumor Microenvironment Mediated by Exosomal MicroRNAs. Int J Mol Sci 2022; 23:ijms23179512. [PMID: 36076911 PMCID: PMC9455258 DOI: 10.3390/ijms23179512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant digestive tumors, characterized by a low rate of early diagnosis, strong invasiveness, and early metastasis. The abundant stromal cells, dense extracellular matrix, and lack of blood supply in PDAC limit the penetration of chemotherapeutic drugs, resulting in poor efficacy of the current treatment regimens. Cancer-associated fibroblasts (CAFs) are the major stromal cells in the tumor microenvironment. Tumor cells can secrete exosomes to promote the generation of activated CAFs, meanwhile exosomes secreted by CAFs help promote tumor progression. The aberrant expression of miRNAs in exosomes is involved in the interaction between tumor cells and CAFs, which provides the possibility for the application of exosomal miRNAs in the diagnosis and treatment of PDAC. The current article reviews the mechanism of exosomal miRNAs in the crosstalk between PDAC cells and CAFs in the tumor microenvironment, in order to improve the understanding of TME regulation and provide evidence for designing diagnostic and therapeutic targets against exosome miRNA in human PDAC.
Collapse
|
50
|
Gongye X, Tian M, Xia P, Qu C, Chen Z, Wang J, Zhu Q, Li Z, Yuan Y. Multi-omics analysis revealed the role of extracellular vesicles in hepatobiliary & pancreatic tumor. J Control Release 2022; 350:11-25. [PMID: 35963466 DOI: 10.1016/j.jconrel.2022.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
Liquid biopsy is rapidly growing into a hot research field due to its unique advantages of minimal invasiveness, and extracellular vesicle (EVs) are also expected to become an important pillar in the diagnostic technology system as a newly discovered active substance carrier. More and more research has highlighted the important contribution of EVs in the progress of tumor. Molecular changes during disease progression could be detected in EVs. However, the diagnostic applications of EVs are not generally understood. Combined with the characteristics of hepatobiliary and pancreatic tumor, we summarized the recent developments in various omics analysis of EVs. Furtherly, we explored the role of EVs in the early diagnosis of hepatobiliary and pancreatic tumors by multi-omics analysis.
Collapse
Affiliation(s)
- Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Chengmin Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, PR China.
| | - Qian Zhu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Zhijie Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| |
Collapse
|