1
|
Critelli RM, Casari F, Borghi A, Serino G, Caporali C, Magistri P, Pecchi A, Shahini E, Milosa F, Di Marco L, Pivetti A, Lasagni S, Schepis F, De Maria N, Dituri F, Martínez-Chantar ML, Di Benedetto F, Giannelli G, Villa E. The Neoangiogenic Transcriptomic Signature Impacts Hepatocellular Carcinoma Prognosis and Can Be Triggered by Transarterial Chemoembolization Treatment. Cancers (Basel) 2024; 16:3549. [PMID: 39456643 PMCID: PMC11505901 DOI: 10.3390/cancers16203549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: We evaluated the relationship between the neoangiogenic transcriptomic signature (nTS) and clinical symptoms, treatment outcomes, and survival in hepatocellular carcinoma (HCC) patients. Methods: This study prospectively followed 328 patients in the derivation and 256 in the validation cohort (with a median follow-up of 31 and 22 months, respectively). The nTS was associated with disease presentation, treatments administered, and overall survival rates. Additionally, this study investigated how multiple treatments influenced changes in nTS status and alterations in microRNA expression. Results: The nTS was identified in 27.4% of patients, linked to aggressive features like multifocality and elevated alpha-fetoprotein (AFP), a pattern consistent with that of the validation cohort. Most patients in both cohorts received treatment for HCC. nTS+ patients had limited access to, and benefited less from, liver transplantation or radiofrequency ablation (RFA) compared to nTS- patients. By the end, 78.9% had died, with nTS- patients showing better median survival and response to treatments than their nTS+ counterparts, who had lower survival across all treatment types. Among those who received transarterial chemoembolization (TACE), 31.2% (21/80 patients after the initial treatment and another four following a second TACE) transitioned from an nTS- to an nTS+ status. This shift was associated with lower survival and alterations in microRNA expressions related to oncogenic pathways. Conclusions: The nTS markedly influences treatment eligibility and survival in patients with HCC. Notably, the nTS can develop after repeated TACE procedures, significantly impacting patient survival and altering oncogenic microRNA expression patterns. These findings highlight the critical role of the nTS in guiding treatment decisions and prognostication in HCC management.
Collapse
Affiliation(s)
- Rosina Maria Critelli
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Federico Casari
- Radiology, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.C.); (C.C.); (A.P.)
| | - Alberto Borghi
- Internal Medicine, Ospedale di Faenza, 48018 Faenza, Italy;
| | - Grazia Serino
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - Cristian Caporali
- Radiology, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.C.); (C.C.); (A.P.)
| | - Paolo Magistri
- HPB Surgery and Liver Transplant Unit, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Annarita Pecchi
- Radiology, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.C.); (C.C.); (A.P.)
| | - Endrit Shahini
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - Fabiola Milosa
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Lorenza Di Marco
- Clinical and Experimental Medicine PhD Program, 41125 Modena, Italy;
| | - Alessandra Pivetti
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Simone Lasagni
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Filippo Schepis
- M.E.C. Dipartimental Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Nicola De Maria
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Francesco Dituri
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), 28200 Madrid, Spain
| | - Fabrizio Di Benedetto
- HPB Surgery and Liver Transplant Unit, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - Erica Villa
- M.E.C. Dipartimental Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
2
|
Wu L, Zhang Y, Ren J. Targeting non-coding RNAs and N 6-methyladenosine modification in hepatocellular carcinoma. Biochem Pharmacol 2024; 223:116153. [PMID: 38513741 DOI: 10.1016/j.bcp.2024.116153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancers, accounts for a significant portion of cancer-related death globally. However, the molecular mechanisms driving the onset and progression of HCC are still not fully understood. Emerging evidence has indicated that non-protein-coding regions of genomes could give rise to transcripts, termed non-coding RNA (ncRNA), forming novel functional driving force for aberrant cellular activity. Over the past decades, overwhelming evidence has denoted involvement of a complex array of molecular function of ncRNAs at different stages of HCC tumorigenesis and progression. In this context, several pre-clinical studies have highlighted the potentials of ncRNAs as novel therapeutic modalities in the management of human HCC. Moreover, N6-methyladenosine (m6A) modification, the most prevalent form of internal mRNA modifications in mammalian cells, is essential for the governance of biological processes within cells. Dysregulation of m6A in ncRNAs has been implicated in human carcinogenesis, including HCC. In this review, we will discuss dysregulation of several hallmark ncRNAs (miRNAs, lncRNAs, and circRNAs) in HCC and address the latest advances for their involvement in the onset and progression of HCC. We also focus on dysregulation of m6A modification and various m6A regulators in the etiology of HCC. In the end, we discussed the contemporary preclinical and clinical application of ncRNA-based and m6A-targeted therapies in HCC.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
3
|
van Gelderen TA, Ribas L. miR-210 promotes immune- and suppresses oocyte meiosis-related genes in the zebrafish ovarian cells. Genomics 2024; 116:110820. [PMID: 38437972 DOI: 10.1016/j.ygeno.2024.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
microRNA-210 (miRNA), a well-documented miRNA, has been implicated in a myriad of biological processes, including responses to hypoxia, angiogenesis, cell proliferation, and male infertility in humans. However, a comprehensive understanding of its functions in fish requires further investigation. This study pursued to elucidate the downstream effect of dre-miR-210-5p on primary ovarian cell culture in zebrafish (Danio rerio), an animal model. A protocol was settled down by incubations with either an miR-210 mimic or a scrambled miRNA in the isolated ovaries. RNA-sequencing analysis identified ∼6000 differentially expressed target genes revealing that downregulated genes were associated with reproduction-related pathways while immune-related pathways displayed an upregulated pattern. To identify molecular markers, predicted target genes were classified into reproduction and immune cell types. These findings underscore the existence of a profound interplay between the reproductive and immune systems, with miR-210 emerging as a pivotal player in orchestrating transcriptomic alterations within fish ovaries.
Collapse
Affiliation(s)
- Tosca A van Gelderen
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain; PhD program in Genetics, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain.
| |
Collapse
|
4
|
Fanoodi A, Maharati A, Akhlaghipour I, Rahimi HR, Moghbeli M. MicroRNAs as the critical regulators of tumor angiogenesis in liver cancer. Pathol Res Pract 2023; 251:154913. [PMID: 37931431 DOI: 10.1016/j.prp.2023.154913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Liver cancer is one of the most common malignancies in human digestive system. Despite the recent therapeutic methods, there is a high rate of mortality among liver cancer patients. Late diagnosis in the advanced tumor stages can be one of the main reasons for the poor prognosis in these patients. Therefore, investigating the molecular mechanisms of liver cancer can be helpful for the early stage tumor detection and treatment. Vascular expansion in liver tumors can be one of the important reasons for poor prognosis and aggressiveness. Therefore, anti-angiogenic drugs are widely used in liver cancer patients. MicroRNAs (miRNAs) have key roles in the regulation of angiogenesis in liver tumors. Due to the high stability of miRNAs in body fluids, these factors are widely used as the non-invasive diagnostic and prognostic markers in cancer patients. Regarding, the importance of angiogenesis during liver tumor growth and invasion, in the present review, we discussed the role of miRNAs in regulation of angiogenesis in these tumors. It has been reported that miRNAs mainly exert an anti-angiogenic function by regulation of tumor microenvironment, transcription factors, and signaling pathways in liver tumors. This review can be an effective step to suggest the miRNAs for the non-invasive early detection of malignant and invasive liver tumors.
Collapse
Affiliation(s)
- Ali Fanoodi
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Vahabi M, Comandatore A, Franczak MA, Smolenski RT, Peters GJ, Morelli L, Giovannetti E. Role of exosomes in transferring chemoresistance through modulation of cancer glycolytic cell metabolism. Cytokine Growth Factor Rev 2023; 73:163-172. [PMID: 37541790 DOI: 10.1016/j.cytogfr.2023.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Chemoresistance constitute a major obstacle in cancer treatment, leading to limited options and decreased patient survival. Recent studies have revealed a novel mechanism of chemoresistance acquisition: the transfer of information via exosomes, small vesicles secreted by various cells. Exosomes play a crucial role in intercellular communication by carrying proteins, nucleic acids, and metabolites, influencing cancer cell behavior and response to treatment. One crucial mechanism of resistance is cancer metabolic reprogramming, which involves alterations in the cellular metabolic pathways to support the survival and proliferation of drug-resistant cancer cells. This metabolic reprogramming often includes increased glycolysis, providing cancer cells with the necessary energy and building blocks to evade the effects of chemotherapy. Notably, exosomes have been found to transport glycolytic enzymes, as identified in proteomic profiling, leading to the reprogramming of metabolic pathways, facilitating altered glucose metabolism and increased lactate production. As a result, they profoundly impact the tumor microenvironment, promoting tumor progression, survival, immune evasion, and drug resistance.Understanding the complexities of such exosome-mediated cell-to-cell communication might open new therapeutic avenues and facilitate biomarker development in managing cancers characterized by aggressive glycolytic features. Moreover, given the intricate nature of metabolic abnormalities combining future exosome-based-targeted therapies with existing treatments like chemotherapy, immunotherapy, and targeted therapies holds promise for achieving synergistic effects to overcome resistance and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands
| | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marika A Franczak
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy.
| |
Collapse
|
6
|
Liu Q, Huang J, Yan W, Liu Z, Liu S, Fang W. FGFR families: biological functions and therapeutic interventions in tumors. MedComm (Beijing) 2023; 4:e367. [PMID: 37750089 PMCID: PMC10518040 DOI: 10.1002/mco2.367] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
There are five fibroblast growth factor receptors (FGFRs), namely, FGFR1-FGFR5. When FGFR binds to its ligand, namely, fibroblast growth factor (FGF), it dimerizes and autophosphorylates, thereby activating several key downstream pathways that play an important role in normal physiology, such as the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K)/AKT, phospholipase C gamma/diacylglycerol/protein kinase c, and signal transducer and activator of transcription pathways. Furthermore, as an oncogene, FGFR genetic alterations were found in 7.1% of tumors, and these alterations include gene amplification, gene mutations, gene fusions or rearrangements. Therefore, FGFR amplification, mutations, rearrangements, or fusions are considered as potential biomarkers of FGFR therapeutic response for tyrosine kinase inhibitors (TKIs). However, it is worth noting that with increased use, resistance to TKIs inevitably develops, such as the well-known gatekeeper mutations. Thus, overcoming the development of drug resistance becomes a serious problem. This review mainly outlines the FGFR family functions, related pathways, and therapeutic agents in tumors with the aim of obtaining better outcomes for cancer patients with FGFR changes. The information provided in this review may provide additional therapeutic ideas for tumor patients with FGFR abnormalities.
Collapse
Affiliation(s)
- Qing Liu
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiyu Huang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Weiwei Yan
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhen Liu
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
- Key Laboratory of Protein Modification and DegradationBasic School of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Shu Liu
- Department of Breast SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Weiyi Fang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
8
|
Stechele M, Link H, Hirner-Eppeneder H, Alunni-Fabbroni M, Wildgruber M, Salvermoser L, Corradini S, Schinner R, Ben Khaled N, Rössler D, Galun E, Goldberg SN, Ricke J, Kazmierczak PM. Circulating miR-21 as a prognostic biomarker in HCC treated by CT-guided high-dose rate brachytherapy. Radiat Oncol 2023; 18:125. [PMID: 37507808 PMCID: PMC10375621 DOI: 10.1186/s13014-023-02316-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND AND AIMS Prognostic biomarkers identifying patients with early tumor progression after local ablative therapy remain an unmet clinical need. The aim of this study was to investigate circulating miR-21 and miR-210 levels as prognostic biomarkers of HCC treated by CT-guided high-dose rate brachytherapy (HDR-BT). MATERIALS AND METHODS 24 consecutive HCC patients (BCLC A and B) treated with CT-guided HDR-BT (1 × 15 Gy) were included in this prospective IRB-approved study. RT-PCR was performed to quantify miR-21 and miR-210 levels in blood samples acquired prior to and 2 d after HDR-BT. Follow-up imaging (contrast-enhanced liver MRI and whole-body CT) was performed in 3 months follow-up intervals. Therapy response was assessed with patients classified as either responders or non-responders (12 each). Responders were defined as having no local or diffuse systemic progression within 6 months and no diffuse systemic progression exceeding 3 nodules/nodule diameter > 3 cm from 6 months to 2 years. Non-responders had recurrence within 6 months and/or tumor progression with > 3 nodules or individual lesion diameter > 3 cm or extrahepatic disease within two years, respectively. Biostatistics included parametric and non-parametric testing (Mann-Whitney-U-test), as well as Kaplan-Meier curve construction. RESULTS The responder group demonstrated significantly decreasing miR-21 values 2 d post therapy compared to non-responders (median miR-21 2-ΔΔCт: responders 0.73 [IQR 0.34], non-responders 1.53 [IQR 1.48]; p = 0.0102). miR-210 did not show any significant difference between responders and non-responders (median miR-210 2-ΔΔCт: responders 0.74 [IQR 0.45], non-responders 0.99 [IQR 1.13]; p = 0.8399). Kaplan-Meier curves demonstrated significantly shorter time to systemic progression for increased miR-21 (p = 0.0095) but not miR-210 (p = 0.7412), with events accumulating > 1 year post therapy in non-responders (median time to systemic progression 397 days). CONCLUSION Increasing circulating miR-21 levels are associated with poor response and shorter time to systemic progression in HDR-BT-treated HCC. This proof-of-concept study provides a basis for further investigation of miR-21 as a prognostic biomarker and potential stratifier in future clinical trials of interventional oncology therapies. TRIAL REGISTRATION In this monocentric clinical study, we analyzed prospectively acquired data of 24 patients from the "ESTIMATE" patient cohort (Studiennummer: DRKS00010587, Deutsches Register Klinischer Studien). Ethical approval was provided by the ethics committee "Ethikkommission bei der LMU München" (reference number "17-346") on June 20, 2017 and August 26, 2020.
Collapse
Affiliation(s)
- Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Henrike Link
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Heidrun Hirner-Eppeneder
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lukas Salvermoser
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Rössler
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy and Division of Image-Guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Shraga Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy and Division of Image-Guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | | |
Collapse
|
9
|
Wen T, Hong Y, Cui Y, Pan J, Wang Y, Luo Y. Downregulation of miR-210-3p Attenuates High Glucose-Induced Angiogenesis of Vascular Endothelial Cells via Targeting FGFRL1. Ophthalmic Res 2023; 66:913-920. [PMID: 37062273 DOI: 10.1159/000530160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 04/18/2023]
Abstract
INTRODUCTION Vascular endothelial cell injury and angiogenesis induced by hyperglycemia are the main pathological basis of vascular complications in diabetes mellitus. Our study aimed to investigate the role and mechanism of miR-210-3p in high glucose (HG)-induced angiogenesis. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with HG to mimic the pathological process of hyperglycemia. HUVECs were divided into the control group, HG group, HG+inhibitor-NC group, and HG+miR-210-3p inhibitor group. Proliferation and migration were tested by wound healing assay, tube formation, and Transwell assay. Quantitation real-time PCR and Western blots were performed to determine the expression of miR-210-3p and relative proteins, respectively. RESULTS The level of miR-210-3p significantly increased in HUVECs treated by HG. The knockdown of miR-210-3p attenuated the tube formation, proliferation, and migration of cultured HUVECs in vitro to inhibit angiogenesis by increasing the expression of fibroblast growth factor receptor-like 1 (FGFRL1) and then attenuating the phosphorylation of signal transducer and activator of transcription 3 (STAT3), extracellular regulated protein kinases, and protein kinase B (Akt). CONCLUSION Our study revealed that miR-210-3p might be a promising target for treating diabetic-associated vascular injury.
Collapse
Affiliation(s)
- Tao Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Hong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yamei Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianying Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yishen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Baig MS, Deepanshu, Prakash P, Alam P, Krishnan A. In silico analysis reveals hypoxia-induced miR-210-3p specifically targets SARS-CoV-2 RNA. J Biomol Struct Dyn 2023; 41:12305-12327. [PMID: 36752331 DOI: 10.1080/07391102.2023.2175255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/01/2023] [Indexed: 02/09/2023]
Abstract
Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deepanshu
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
11
|
Small RNA-Seq Reveals Similar miRNA Transcriptome in Children and Young Adults with T-ALL and Indicates miR-143-3p as Novel Candidate Tumor Suppressor in This Leukemia. Int J Mol Sci 2022; 23:ijms231710117. [PMID: 36077521 PMCID: PMC9456032 DOI: 10.3390/ijms231710117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify miRNAs and pathways specifically deregulated in adolescent and young adult (AYA) T-ALL patients. Small RNA-seq showed no major differences between AYA and pediatric T-ALL, but it revealed downregulation of miR-143-3p in T-ALL patients. Prediction algorithms identified several known and putative oncogenes targeted by this miRNA, including KRAS, FGF1, and FGF9. Pathway analysis indicated signaling pathways related to cell growth and proliferation, including FGFR signaling and PI3K-AKT signaling, with the majority of genes overrepresented in these pathways being predicted targets of hsa-miR-143-3p. By luciferase reporter assays, we validated direct interactions of this miRNA with KRAS, FGF1 and FGF9. In cell proliferation assays, we showed reduction of cell growth upon miR-143-3p overexpression in two T-ALL cell lines. Our study is the first description of the miRNA transcriptome in AYA T-ALL patients and the first report on tumor suppressor potential of miR-143-3p in T-ALL. Downregulation of this miRNA in T-ALL patients might contribute to enhanced growth and viability of leukemic cells. We also discuss the potential role of miR-143-3p in FGFR signaling. Although this requires more extensive validation, it might be an interesting direction, since FGFR inhibition proved promising in preclinical studies in various cancers.
Collapse
|
12
|
MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225604. [PMID: 34830755 PMCID: PMC8615702 DOI: 10.3390/cancers13225604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma (HNSCC), which arises from the oral epithelium, is one of the most common cancers worldwide. Despite excellent diagnosis and treatment improvements, the mortality rate associated with HNSCC is still extremely high. Current data suggest that dysregulation of exosomes and metabolic abnormalities are involved in the initiation and progression of HNSCC. Thus, approaches for targeting exosomes in the tumor microenvironment and metabolic reprogramming pathways represent potential therapeutic strategies. Moreover, some miRNAs are thought to have significant functions in regulating the progression of HNSCC. The present article aims to summarize the current knowledge concerning the important miRNAs in both exosomes and cancer metabolism, as well as discuss future perspectives regarding their future diagnostic potential and treatment recommendations. Abstract MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that negatively regulate gene expression by binding to target mRNAs. Deregulated miRNAs can act as either oncogenic miRNAs or tumor suppressor miRNAs in controlling proliferation, differentiation, apoptosis, metastasis, epithelial–mesenchymal transition, and immune responses, which are all involved in the carcinogenesis process of HNSCC. Recent findings have shown that metabolic reprogramming is an important hallmark of cancer, which is necessary for malignant transformation and tumor development. Some reprogrammed metabolisms are believed to be required for HNSCC against an unfavorable tumor microenvironment (TME). The TME is composed of various cell types embedded in the altered extracellular matrix, among which exosomes, secreted by cancer cells, are one of the most important factors. Tumor-derived exosomes reshape the tumor microenvironment and play a crucial role in cell-to-cell communication during HNSCC development. Exosomes encapsulate many biomolecules, including miRNAs, circulate in body fluids, and can transmit intercellular regulatory messages to nearby and distant sites, which indicates that exosomal miRNAs have the potential to become non-invasive biomarkers. This review aims to clarify the functions of diverse miRNAs in HNSCC metabolic reprogramming and tumor-derived exosomes. In addition, it also emphasizes the potential role of miRNA as a biomarker in the diagnosis, prognosis, and treatment of HNSCC cancer.
Collapse
|
13
|
Pachva MC, Lai H, Jia A, Rouleau M, Sorensen PH. Extracellular Vesicles in Reprogramming of the Ewing Sarcoma Tumor Microenvironment. Front Cell Dev Biol 2021; 9:726205. [PMID: 34604225 PMCID: PMC8484747 DOI: 10.3389/fcell.2021.726205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (EwS) is a highly aggressive cancer and the second most common malignant bone tumor of children and young adults. Although patients with localized disease have a survival rate of approximately 75%, the prognosis for patients with metastatic disease remains dismal (<30%) and has not improved in decades. Standard-of-care treatments include local therapies such as surgery and radiotherapy, in addition to poly-agent adjuvant chemotherapy, and are often associated with long-term disability and reduced quality of life. Novel targeted therapeutic strategies that are more efficacious and less toxic are therefore desperately needed, particularly for metastatic disease, given that the presence of metastasis remains the most powerful predictor of poor outcome in EwS. Intercellular communication within the tumor microenvironment is emerging as a crucial mechanism for cancer cells to establish immunosuppressive and cancer-permissive environments, potentially leading to metastasis. Altering this communication within the tumor microenvironment, thereby preventing the transfer of oncogenic signals and molecules, represents a highly promising therapeutic strategy. To achieve this, extracellular vesicles (EVs) offer a candidate mechanism as they are actively released by tumor cells and enriched with proteins and RNAs. EVs are membrane-bound particles released by normal and tumor cells, that play pivotal roles in intercellular communication, including cross-talk between tumor, stromal fibroblast, and immune cells in the local tumor microenvironment and systemic circulation. EwS EVs, including the smaller exosomes and larger microvesicles, have the potential to reprogram a diversity of cells in the tumor microenvironment, by transferring various biomolecules in a cell-specific manner. Insights into the various biomolecules packed in EwS EVs as cargos and the molecular changes they trigger in recipient cells of the tumor microenvironment will shed light on various potential targets for therapeutic intervention in EwS. This review details EwS EVs composition, their potential role in metastasis and in the reprogramming of various cells of the tumor microenvironment, and the potential for clinical intervention.
Collapse
Affiliation(s)
- Manideep C Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Horton Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Andy Jia
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Rouleau
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Xu G, Yang Z, Sun Y, Dong H, Ma J. Interaction of microRNAs with sphingosine kinases, sphingosine-1 phosphate, and sphingosine-1 phosphate receptors in cancer. Discov Oncol 2021; 12:33. [PMID: 35201458 PMCID: PMC8777508 DOI: 10.1007/s12672-021-00430-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a pleiotropic lipid mediator, participates in various cellular processes during tumorigenesis, including cell proliferation, survival, drug resistance, metastasis, and angiogenesis. S1P is formed by two sphingosine kinases (SphKs), SphK1 and SphK2. The intracellularly produced S1P is delivered to the extracellular space by ATP-binding cassette (ABC) transporters and spinster homolog 2 (SPNS2), where it binds to five transmembrane G protein-coupled receptors to mediate its oncogenic functions (S1PR1-S1PR5). MicroRNAs (miRNAs) are small non-coding RNAs, 21-25 nucleotides in length, that play numerous crucial roles in cancer, such as tumor initiation, progression, apoptosis, metastasis, and angiogenesis via binding to the 3'-untranslated region (3'-UTR) of the target mRNA. There is growing evidence that various miRNAs modulate tumorigenesis by regulating the expression of SphKs, and S1P receptors. We have reviewed various roles of miRNAs, SphKs, S1P, and S1P receptors (S1PRs) in malignancies and how notable miRNAs like miR-101, miR-125b, miR-128, and miR-506, miR-1246, miR-21, miR-126, miR499a, miR20a-5p, miR-140-5p, miR-224, miR-137, miR-183-5p, miR-194, miR181b, miR136, and miR-675-3p, modulate S1P signaling. These tumorigenesis modulating miRNAs are involved in different cancers including breast, gastric, hepatocellular carcinoma, prostate, colorectal, cervical, ovarian, and lung cancer via cell proliferation, invasion, angiogenesis, apoptosis, metastasis, immune evasion, chemoresistance, and chemosensitivity. Therefore, understanding the interaction of SphKs, S1P, and S1P receptors with miRNAs in human malignancies will lead to better insights for miRNA-based cancer therapy.
Collapse
Affiliation(s)
- Guangmeng Xu
- Department of Colorectal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Yamin Sun
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Hongmei Dong
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Jingru Ma
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000 China
| |
Collapse
|
15
|
Association of Exosomal miR-210 with Signaling Pathways Implicated in Lung Cancer. Genes (Basel) 2021; 12:genes12081248. [PMID: 34440422 PMCID: PMC8392066 DOI: 10.3390/genes12081248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
MicroRNA is a class of non-coding RNA involved in post-transcriptional gene regulation. Aberrant expression of miRNAs is well-documented in molecular cancer biology. Extensive research has shown that miR-210 is implicated in the progression of multiple cancers including that of the lung, bladder, colon, and renal cell carcinoma. In recent years, exosomes have been evidenced to facilitate cell–cell communication and signaling through packaging and transporting active biomolecules such as miRNAs and thereby modify the cellular microenvironment favorable for lung cancers. MiRNAs encapsulated inside the lipid bilayer of exosomes are stabilized and transmitted to target cells to exert alterations in the epigenetic landscape. The currently available literature indicates that exosomal miR-210 is involved in the regulation of various lung cancer-related signaling molecules and pathways, including STAT3, TIMP-1, KRAS/BACH2/GATA-3/RIP3, and PI3K/AKT. Here, we highlight major findings and progress on the roles of exosomal miR-210 in lung cancer.
Collapse
|
16
|
Bahrami A, Moradi Binabaj M, A Ferns G. Exosomes: Emerging modulators of signal transduction in colorectal cancer from molecular understanding to clinical application. Biomed Pharmacother 2021; 141:111882. [PMID: 34218003 DOI: 10.1016/j.biopha.2021.111882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes are small cell derived membrane nano-vesicles that carry various components including lipids, proteins and nucleic acids. There is accumulating evidence that exosomes have a role in tumorigenesis, tumor invasiveness and metastasis. Furthermore, oncogene mutation may influence exosome release from tumor cells. Exosomes may induce colorectal cancer by altering signaling cascades such as the Wnt/β-catenin and KRAS pathways that are involved in cell proliferation, apoptosis, dissemination, angiogenesis, and drug resistance. The aim of this review was to overview recent findings evaluating the association between tumor cells-derived exosomes and their content in modulating signaling pathways in colorectal cancer.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| |
Collapse
|
17
|
Pourmohammad P, Maroufi NF, Rashidi M, Vahedian V, Pouremamali F, Faridvand Y, Ghaffari-Novin M, Isazadeh A, Hajazimian S, Nejabati HR, Nouri M. Potential Therapeutic Effects of Melatonin Mediate via miRNAs in Cancer. Biochem Genet 2021; 60:1-23. [PMID: 34181134 DOI: 10.1007/s10528-021-10104-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
miRNAs are evolutionarily conserved non-coding ribonucleic acids with a length of between 19 and 25 nucleotides. Because of their ability to regulate gene expression, miRNAs have an important function in the controlling of various biological processes, such as cell cycle, differentiation, proliferation, and apoptosis. Owing to the long-standing regulative potential of miRNAs in tumor-suppressive pathways, scholars have recently paid closer attention to the expression profile of miRNAs in various types of cancer. Melatonin, an indolic compound secreted from pineal gland and some peripheral tissues, has been considered as an effective anti-tumor hormone in a wide spectrum of cancers. Furthermore, it induces apoptosis, inhibits tumor metastasis and invasion, and also angiogenesis. A growing body of evidence indicates the effects of melatonin on miRNAs expression in broad spectrum of diseases, including cancer. Due to the long-term effects of the regulation of miRNAs expression, melatonin could be a promising therapeutic factor in the treatment of cancers via the regulation of miRNAs. Therefore, in this review, we will discuss the effects of melatonin on miRNAs expression in various types of cancers.
Collapse
Affiliation(s)
- Pirouz Pourmohammad
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Science, Ardabil, Islamic Republic of Iran
| | - Nazila Fathi Maroufi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vahid Vahedian
- Researchers Club of Tums Preclinical Core Facility (TPCF), Tehran University of Medical Science (TUMS), Tehran, Iran.,Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University (IAU), Sari, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Ghaffari-Novin
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
19
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Strobel HA, Schultz A, Moss SM, Eli R, Hoying JB. Quantifying Vascular Density in Tissue Engineered Constructs Using Machine Learning. Front Physiol 2021; 12:650714. [PMID: 33986691 PMCID: PMC8110917 DOI: 10.3389/fphys.2021.650714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Given the considerable research efforts in understanding and manipulating the vasculature in tissue health and function, making effective measurements of vascular density is critical for a variety of biomedical applications. However, because the vasculature is a heterogeneous collection of vessel segments, arranged in a complex three-dimensional architecture, which is dynamic in form and function, it is difficult to effectively measure. Here, we developed a semi-automated method that leverages machine learning to identify and quantify vascular metrics in an angiogenesis model imaged with different modalities. This software, BioSegment, is designed to make high throughput vascular density measurements of fluorescent or phase contrast images. Furthermore, the rapidity of assessments makes it an ideal tool for incorporation in tissue manufacturing workflows, where engineered tissue constructs may require frequent monitoring, to ensure that vascular growth benchmarks are met.
Collapse
Affiliation(s)
- Hannah A Strobel
- Tissue Modeling, Advanced Solutions Life Sciences, Manchester, NH, United States
| | - Alex Schultz
- Innovations Laboratory, Advanced Solutions Life Sciences, Louisville, KY, United States
| | - Sarah M Moss
- Tissue Modeling, Advanced Solutions Life Sciences, Manchester, NH, United States
| | - Rob Eli
- Innovations Laboratory, Advanced Solutions Life Sciences, Louisville, KY, United States
| | - James B Hoying
- Tissue Modeling, Advanced Solutions Life Sciences, Manchester, NH, United States
| |
Collapse
|
21
|
Xu F, Wu H, Xiong J, Peng T. Long Non-coding RNA DLEU2L Targets miR-210-3p to Suppress Gemcitabine Resistance in Pancreatic Cancer Cells via BRCA2 Regulation. Front Mol Biosci 2021; 8:645365. [PMID: 33968986 PMCID: PMC8100451 DOI: 10.3389/fmolb.2021.645365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Gemcitabine (GEM) resistance remains a challenging clinical issue to overcome in chemotherapy against pancreatic cancer. We previously demonstrated that miR-210 derived from pancreatic cancer stem cells enhanced the GEM-resistant properties of pancreatic cancer cells, thus identifying miR-210 as an oncogenic miRNA. Herein, we report the existence of an upstream effector that acts as a competing endogenous RNA (ceRNA) to miR-210. Bioinformatic screening was performed to identify lncRNAs with a binding relationship to miR-210. Overexpression and interference vectors were constructed to demonstrate the effect of ceRNA activity in pancreatic cell behavior, both in vitro and in vivo. DLEU2L (deleted in lymphocytic leukemia 2-like), which is expressed at low levels in pancreatic cancer tissues, was shown to exhibit a binding relationship with miR-210-3p. Overexpression of DLEU2L and silencing of miR-210-3p suppressed the proliferation, migration, and invasion of pancreatic cancer cells while promoting apoptosis. These effects occurred via the inhibition of the Warburg effect (aerobic glycolysis) and AKT/mTOR signaling. In addition, we showed that BRCA2 is a target gene of miR-210-3p, and the downregulation of miR-210-3p by DLEU2L effectively induced an upregulation of BRCA2 via the ceRNA mechanism. In vivo, DLEU2L overexpression and miR-210-3p interference suppressed pancreatic tumor progression, consistent with the results of in vitro studies. The findings of our study establish DLEU2L as a ceRNA to miR-210-3p and reveal the critical role of the DLEU2L/miR-210-3p crosstalk in targeting GEM resistance.
Collapse
Affiliation(s)
- Fei Xu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiongxin Xiong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol 2021; 189:114409. [PMID: 33428895 DOI: 10.1016/j.bcp.2021.114409] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-coding, conserved, single-stranded nucleotide sequences involved in physiological and developmental processes. Recent evidence suggests an association between miRNAs' deregulation with initiation, promotion, progression, and drug resistance in cancer cells. Besides, miRNAs are known to regulate the epithelial-mesenchymal transition, angiogenesis, autophagy, and senescence in different cancer types. Previous reports proposed that apart from the antioxidant potential, flavonoids play an essential role in miRNAs modulation associated with changes in cancer-related proteins, tumor suppressor genes, and oncogenes. Thus, flavonoids can suppress proliferation, help in the development of drug sensitivity, suppress metastasis and angiogenesis by modulating miRNAs expression. In the present review, we summarize the role of miRNAs in cancer, drug resistance, and the chemopreventive potential of flavonoids mediated by miRNAs. The potential of flavonoids to modulate miRNAs expression in different cancer types demonstrate their selectivity and importance as regulators of carcinogenesis. Flavonoids as chemopreventive agents targeting miRNAs are extensively studied in vitro, in vivo, and pre-clinical studies, but their efficiency in targeting miRNAs in clinical studies is less investigated. The evidence presented in this review highlights the potential of flavonoids in cancer prevention/treatment by regulating miRNAs, although further investigations are required to validate and establish their clinical usefulness.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawahar Lal Nehru University, New Delhi 110067, India
| | - Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
23
|
ZHENG F, WANG Z. miRNA-1180 suppresses HCC cell activities via TRAF1/NF-κB signaling pathway. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.26219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng ZHENG
- Qilu Hospital of Shandong University, China
| | - Zheng WANG
- Qilu Hospital of Shandong University, China
| |
Collapse
|
24
|
Molecular and Functional Roles of MicroRNAs in the Progression of Hepatocellular Carcinoma-A Review. Int J Mol Sci 2020; 21:ijms21218362. [PMID: 33171811 PMCID: PMC7664704 DOI: 10.3390/ijms21218362] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the fourth leading cause of cancer deaths globally, of which hepatocellular carcinoma (HCC) is the major subtype. Viral hepatitis B and C infections, alcohol abuse, and metabolic disorders are multiple risk factors for liver cirrhosis and HCC development. Although great therapeutic advances have been made in recent decades, the prognosis for HCC patients remains poor due to late diagnosis, chemotherapy failure, and frequent recurrence. MicroRNAs (miRNAs) are endogenous, non-coding RNAs that regulate various molecular biological phenomena by suppressing the translation of target messenger RNAs (mRNAs). miRNAs, which often become dysregulated in malignancy, control cell proliferation, migration, invasion, and development in HCC by promoting or suppressing tumors. Exploring the detailed mechanisms underlying miRNA-mediated HCC development and progression can likely improve the outcomes of patients with HCC. This review summarizes the molecular and functional roles of miRNAs in the pathogenesis of HCC. Further, it elucidates the utility of miRNAs as novel biomarkers and therapeutic targets.
Collapse
|
25
|
Bian X, Liu J, Yang Q, Liu Y, Jia W, Zhang X, Li YX, Shao X, Wang YL. MicroRNA-210 regulates placental adaptation to maternal hypoxic stress during pregnancy†. Biol Reprod 2020; 104:418-429. [PMID: 33074310 DOI: 10.1093/biolre/ioaa187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miR)-210 is a well-known hypoxia-inducible small RNA. Increasing in vitro evidence demonstrates its involvement in regulating multiple behaviors of placental trophoblasts. However, direct in vivo evidence remains lacking. In the present study, we generated a miR-210-deficient mouse strain using CRISPR/Cas9 technology, in which miR-210 expression was markedly deficient in various tissues. Little influence on fertility rate and litter size was observed after the deletion of miR-210 in mice. Continuous exposure of pregnant mice to hypoxia (10.5% O2) from E6.5 to E10.5 or to E18.5 led to reduction in fetal weight, and such fetal weight loss was markedly worsened in miR-210-knockout dams. Analysis of the placental structure demonstrated the reduced expansion of placental spongiotrophoblast layer and hampered development of labyrinth fetal blood vessels in knockout mice compared to the wild-type controls upon hypoxia stimulation. The findings indicate that miR-210 participates in regulating placental adaptation to hypoxic stress during pregnancy.
Collapse
Affiliation(s)
- Xiaotao Bian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Yanlei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wentong Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Liskova A, Koklesova L, Samec M, Varghese E, Abotaleb M, Samuel SM, Smejkal K, Biringer K, Petras M, Blahutova D, Bugos O, Pec M, Adamkov M, Büsselberg D, Ciccocioppo R, Adamek M, Rodrigo L, Caprnda M, Kruzliak P, Kubatka P. Implications of flavonoids as potential modulators of cancer neovascularity. J Cancer Res Clin Oncol 2020; 146:3079-3096. [PMID: 32902794 DOI: 10.1007/s00432-020-03383-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The formation of new blood vessels from previous ones, angiogenesis, is critical in tissue repair, expansion or remodeling in physiological processes and in various pathologies including cancer. Despite that, the development of anti-angiogenic drugs has great potential as the treatment of cancer faces many problems such as development of the resistance to treatment or an improperly selected therapy approach. An evaluation of predictive markers in personalized medicine could significantly improve treatment outcomes in many patients. METHODS This comprehensive review emphasizes the anticancer potential of flavonoids mediated by their anti-angiogenic efficacy evaluated in current preclinical and clinical cancer research. RESULTS AND CONCLUSION Flavonoids are important groups of phytochemicals present in common diet. Flavonoids show significant anticancer effects. The anti-angiogenic effects of flavonoids are currently a widely discussed topic of preclinical cancer research. Flavonoids are able to regulate the process of tumor angiogenesis through modulation of signaling molecules such as VEGF, MMPs, ILs, HIF or others. However, the evaluation of the anti-angiogenic potential of flavonoids within the clinical studies is not frequently discussed and is still of significant scientific interest.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Petras
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dana Blahutova
- Department of Biology and Ecology, Faculty of Education, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, 24144, Qatar.
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic. .,St. Anne's University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| |
Collapse
|
27
|
Adipose-derived exosomal miR-210/92a cluster inhibits adipose browning via the FGFR-1 signaling pathway in high-altitude hypoxia. Sci Rep 2020; 10:14390. [PMID: 32873843 PMCID: PMC7463015 DOI: 10.1038/s41598-020-71345-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Cold and hypoxia are critical drivers of adaptation to high altitudes. Organisms at high altitudes have adapted to maximize the efficiency of oxygen utilization and are less prone to obesity and diabetes than those at low altitudes. Brown adipose tissue (BAT) dissipates energy in the form of heat in both humans and rodents; it also serves to regulate metabolism to curb obesity. However, the role of BAT in high-altitude populations is poorly understood. Serum exosomes can be easily obtained, enabling the study of BAT functions and identification of biomarkers in serum exosomes, both of which contribute to understanding the role of BAT in high-altitude populations. 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography integrated with computed tomography (PET/CT) is the gold standard for studying BAT in human adults. Here, we studied BAT in healthy high-altitude populations via PET/CT and serum exosomal microRNAs (miRNAs). The observations were validated in mouse tissues and demonstrated that high-altitude hypoxia activated BAT through attenuated white adipose tissue (WAT) secreted exosomal miR-210/92a, which enhanced the FGFR-1 expression in BAT.
Collapse
|
28
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Goldani F, Parizadeh SMR, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Avan A. MicroRNAs as Potential Diagnostic and Prognostic Biomarkers in Hepatocellular Carcinoma. Curr Drug Targets 2020; 20:1129-1140. [PMID: 30848198 DOI: 10.2174/1389450120666190307095720] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer, and the second most common cause of cancer-associated death globally. One of the major reasons for this high rate of mortality is a failure to make an early diagnosis. The average survival in untreated HCC patients is estimated to be approximately three months. The 5-year overall survival rate after radical resection is about 15-40% and within two years, more than two third of patients experience a relapse. To date, the most common biomarker which has been used for the diagnosis of HCC is serum alpha-fetoprotein (AFP). However, there is a lack of sensitive and specific tumor biomarkers for the early diagnosis of HCC. MicroRNAs are a class of short endogenous RNA with crucial role in many biological activities and cellular pathways and can be found in various tissues and body fluids. The aim of this review was to summarize the results of recent studies investigating miRNAs as novel biomarkers for the early diagnosis and prognostic risk stratification of patients with this type of liver cancer.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of medical sciences, Mashhad, Iran
| | - Fatemeh Goldani
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of medical sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Wang L, He J, Hu H, Tu L, Sun Z, Liu Y, Luo F. Lung CSC-derived exosomal miR-210-3p contributes to a pro-metastatic phenotype in lung cancer by targeting FGFRL1. J Cell Mol Med 2020; 24:6324-6339. [PMID: 32396269 PMCID: PMC7294132 DOI: 10.1111/jcmm.15274] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/14/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023] Open
Abstract
Lung cancer has the highest mortality rate among human cancers, and the majority of deaths can be attributed to metastatic spread. Lung cancer stem cells (CSCs) are a component of the tumour microenvironment that contributes to this process. Exosomes are small membrane vesicles secreted by all types of cells that mediate cell interactions, including cancer metastasis. Here, we show that lung CSC-derived exosomes promote the migration and invasion of lung cancer cells, up-regulate expression levels of N-cadherin, vimentin, MMP-9 and MMP-1, and down-regulate E-cadherin expression. Moreover, we verified that these exosomes contribute to a pro-metastatic phenotype in lung cancer cells via miR-210-3p transfer. The results of bioinformatics analysis and dual-luciferase reporter assays further indicated that miR-210-3p may bind to fibroblast growth factor receptor-like 1 (FGFRL1); silencing FGFRL1 enhanced the metastatic ability of lung cancer cells, whereas overexpressing FGFRL1 suppressed metastasis. Taken together, our results provide new insights into a potential molecular mechanism whereby lung CSC-derived exosomal miR-210-3p targets FGFRL1 to promote lung cancer metastasis. FGFRL1 may be a promising therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Li Wang
- Lung Cancer Center, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.,Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Jun He
- Lung Cancer Center, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Haoyue Hu
- Lung Cancer Center, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Li Tu
- Lung Cancer Center, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhen Sun
- Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yanyang Liu
- Lung Cancer Center, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Luo
- Lung Cancer Center, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Li X, Yuan M, Song L, Wang Y. Silencing of microRNA-210 inhibits the progression of liver cancer and hepatitis B virus-associated liver cancer via targeting EGR3. BMC MEDICAL GENETICS 2020; 21:48. [PMID: 32138690 PMCID: PMC7059654 DOI: 10.1186/s12881-020-0974-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study was aimed to investigate the regulatory role of microRNA-210 (miRNA-210) on the progression of liver cancer and Hepatitis B virus (HBV)-associated liver cancer. METHODS The expression of miRNA-210 was detected in liver tissues of HBV-associated cirrhosis and liver cancer, and in HepG2 and HepG2.2.15 cells by qRT-PCR. MiRNA-210 was silenced in HepG2 and HepG2.2.15 cells by the transfection of miRNA-210 inhibitor. The cell viability and apoptosis was detected by MTT assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining, respectively. The protein expression of EGR3 was detected by Western blot. The regulatory relationship between EGR3 and miRNA-210 was predicted by TargetScan and identified by Dual luciferase reporter gene assay. RESULTS MiRNA-210 was overexpressed in the liver tissues of HBV-associated cirrhosis and liver cancer, and in HepG2 and HepG2.2.15 cells (P < 0.05). Silencing of miRNA-210 inhibited the viability and promoted the apoptosis of HepG2 and HepG2.2.15 cells (P < 0.05). EGR3 was a target of miRNA-210, which was down-regulated in the liver tissues of HBV-associated cirrhosis and liver cancer, and in HepG2 and HepG2.2.15 cells (P < 0.05). Silencing of miRNA-210 increased the mRNA and protein expression of EGR3 (P < 0.05). Silencing of EGR3 reversed the anti-tumor effect of miRNA-210 inhibitor on HepG2 and HepG2.2.15 cells (P < 0.05). CONCLUSIONS Silencing of miRNA-210 inhibits the progression of liver cancer and HBV-associated liver cancer via up-regulating EGR3.
Collapse
Affiliation(s)
- Xiaojie Li
- The seventh Inpatient Area, Qingdao Sixth People’s Hospital, No. 9, Fushun Road, Shibei District, Qingdao City, 266033 Shandong Province China
| | - Mei Yuan
- Department of Inspection, Qingdao Sixth People’s Hospital, No. 9, Fushun Road, Shibei District, Qingdao City, 266033 Shandong Province China
| | - Lu Song
- Department of Inspection, Qingdao Sixth People’s Hospital, No. 9, Fushun Road, Shibei District, Qingdao City, 266033 Shandong Province China
| | - Yan Wang
- Chronic Disease Management Center, Qingdao Sixth People’s Hospital, No. 9, Fushun Road, Shibei District, Qingdao, 266033 Shandong Province China
| |
Collapse
|
31
|
Orso F, Quirico L, Dettori D, Coppo R, Virga F, Ferreira LC, Paoletti C, Baruffaldi D, Penna E, Taverna D. Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Semin Cancer Biol 2020; 60:214-224. [DOI: 10.1016/j.semcancer.2019.07.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
|
32
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
33
|
Leone P, Buonavoglia A, Fasano R, Solimando AG, De Re V, Cicco S, Vacca A, Racanelli V. Insights into the Regulation of Tumor Angiogenesis by Micro-RNAs. J Clin Med 2019; 8:jcm8122030. [PMID: 31757094 PMCID: PMC6947031 DOI: 10.3390/jcm8122030] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
One of the hallmarks of cancer is angiogenesis, a series of events leading to the formation of the abnormal vascular network required for tumor growth, development, progression, and metastasis. MicroRNAs (miRNAs) are short, single-stranded, non-coding RNAs whose functions include modulation of the expression of pro- and anti-angiogenic factors and regulation of the function of vascular endothelial cells. Vascular-associated microRNAs can be either pro- or anti-angiogenic. In cancer, miRNA expression levels are deregulated and typically vary during tumor progression. Experimental data indicate that the tumor phenotype can be modified by targeting miRNA expression. Based on these observations, miRNAs may be promising targets for the development of novel anti-angiogenic therapies. This review discusses the role of various miRNAs and their targets in tumor angiogenesis, describes the strategies and challenges of miRNA-based anti-angiogenic therapies and explores the potential use of miRNAs as biomarkers for anti-angiogenic therapy response.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
- Correspondence: ; Tel.: +39-080-5478050; Fax: +39-080-5478-045
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Viale Orazio Flacco, 65, 70124 Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy;
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| |
Collapse
|
34
|
Dai Y, Shen JL, Zheng XY, Lin TY, Yu HT. Integrated analysis of hypoxia-induced miR-210 signature as a potential prognostic biomarker of hepatocellular carcinoma: a study based on The Cancer Genome Atlas. J Zhejiang Univ Sci B 2019; 20:928-932. [PMID: 31595729 PMCID: PMC6825812 DOI: 10.1631/jzus.b1900343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/12/2019] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer and is the second leading cause of cancer mortality with an estimated 745 500 deaths annually (Jemal et al., 2011). Although new therapeutic modalities including novel chemotherapeutic interventions and targeted therapy have been applied, the prognosis of HCC patients remains unsatisfactory due to the high incidence of intrahepatic and distal metastases (Siegel et al., 2018).
Collapse
Affiliation(s)
- Yi Dai
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ji-liang Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xue-yong Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tian-yu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Hai-tao Yu
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
35
|
Nasr MA, Salah RA, Abd Elkodous M, Elshenawy SE, El-Badri N. Dysregulated MicroRNA Fingerprints and Methylation Patterns in Hepatocellular Carcinoma, Cancer Stem Cells, and Mesenchymal Stem Cells. Front Cell Dev Biol 2019; 7:229. [PMID: 31681762 PMCID: PMC6811506 DOI: 10.3389/fcell.2019.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the top causes of cancer mortality worldwide. Although HCC has been researched extensively, there is still a need for novel and effective therapeutic interventions. There is substantial evidence that initiation of carcinogenesis in liver cirrhosis, a leading cause of HCC, is mediated by cancer stem cells (CSCs). CSCs were also shown to be responsible for relapse and chemoresistance in several cancers, including HCC. MicroRNAs (miRNAs) constitute important epigenetic markers that regulate carcinogenesis by acting post-transcriptionally on mRNAs, contributing to the progression of HCC. We have previously shown that co-culture of cancer cells with mesenchymal stem cells (MSCs) could induce the reprogramming of MSCs into CSC-like cells. In this review, we evaluate the available data concerning the epigenetic regulation of miRNAs through methylation and the possible role of this regulation in stem cell and somatic reprogramming in HCC.
Collapse
Affiliation(s)
- Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| |
Collapse
|
36
|
Human amniotic membrane conditioned medium inhibits proliferation and modulates related microRNAs expression in hepatocarcinoma cells. Sci Rep 2019; 9:14193. [PMID: 31578445 PMCID: PMC6775050 DOI: 10.1038/s41598-019-50648-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
The placental stem cells have called the focus of attention for their therapeutic potential to treat different diseases, including cancer. There is plenty evidence about the antiproliferative, antiangiogenic and proapoptotic properties of the amniotic membrane. Liver cancer is the fifth cause of cancer in the world, with a poor prognosis and survival. Alternative treatments to radio- or chemotherapy have been searched. In this work we aimed to study the antiproliferative properties of the human amniotic membrane conditioned medium (AM-CM) in hepatocarcinoma cells. In addition, we have analyzed the regulation of pro and antiOncomiRs expression involved in hepatocarcinoma physiology. We have determined by 3H-thymidine incorporation assay that AM-CM inhibits DNA synthesis in HepG2 cells after 72 h of treatment. AM-CM pure or diluted at 50% and 25% also diminished HepG2 and HuH-7 cells viability and cell number. Furthermore, AM-CM induced cell cycle arrest in G2/M. When proliferation mechanisms were analyzed we found that AM-CM reduced the expression of both Cyclin D1 mRNA and protein. Nuclear expression of Ki-67 was also reduced. We observed that this CM was able to promote the expression of p53 and p21 mRNA and proteins, leading to cell growth arrest. Moreover, AM-CM induced an increase in nuclear p21 localization, observed by immunofluorescence. As p53 levels were increased, Mdm-2 expression was downregulated. Interestingly, HepG2 and HuH-7 cells treatment with AM-CM during 24 and 72 h produced an upregulation of antiOncomiRs 15a and 210, and a downregulation of proOncomiRs 206 and 145. We provide new evidence about the promising novel applications of human amniotic membrane in liver cancer.
Collapse
|
37
|
Samec M, Liskova A, Kubatka P, Uramova S, Zubor P, Samuel SM, Zulli A, Pec M, Bielik T, Biringer K, Kudela E, Benacka J, Adamek M, Rodrigo L, Ciccocioppo R, Kwon TK, Baranenko D, Kruzliak P, Büsselberg D. The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J Cancer Res Clin Oncol 2019; 145:1665-1679. [PMID: 31127362 DOI: 10.1007/s00432-019-02940-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Phytochemicals are naturally occurring plant-derived compounds and some of them have the potential to serve as anticancer drugs. Based on recent evidence, aberrantly regulated expression of microRNAs (miRNAs) is closely associated with malignancy. MicroRNAs are characterized as small non-coding RNAs functioning as posttranscriptional regulators of gene expression. Accordingly, miRNAs regulate various target genes, some of which are involved in the process of carcinogenesis. RESULTS This comprehensive review emphasizes the anticancer potential of phytochemicals, either isolated or in combination, mediated by miRNAs. The ability to modulate the expression of miRNAs demonstrates their importance as regulators of tumorigenesis. Phytochemicals as anticancer agents targeting miRNAs are widely studied in preclinical in vitro and in vivo research. Unfortunately, their anticancer efficacy in targeting miRNAs is less investigated in clinical research. CONCLUSIONS Significant anticancer properties of phytochemicals as regulators of miRNA expression have been proven, but more studies investigating their clinical relevance are needed.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovak Republic.
- Division of Oncology, Department of Experimental Carcinogenesis, Jessenius Faculty of Medicine, Biomedical Center Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Sona Uramova
- Division of Oncology, Department of Experimental Carcinogenesis, Jessenius Faculty of Medicine, Biomedical Center Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovak Republic
| | - Tibor Bielik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jozef Benacka
- Faculty of Health Science and Social Work, Trnava University, Trnava, Slovakia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Luis Rodrigo
- Faculty of Medicine, Central University Hospital of Asturias (HUCA), University of Oviedo, Oviedo, Spain
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, AOUI Policlinico G.B. Rossi, University of Verona, Verona, Italy
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
- Department of Internal Medicine, Brothers of Mercy Hospital, Polni 553/3, 63900, Brno, Czech Republic.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW We discuss recent discoveries in hypoxic cellular pathophysiology and explore the interplay between hypoxic malignant cells and other stromal elements. This review will provide an update on the effects of hypoxia on cancer outcomes and therapeutic resistance. RECENT FINDINGS Hypoxia has been discovered to be a key driver for tumor progression, both because of impacts on tumor cells and separately on the wider tumor microenvironment. The latter effects occur via epithelial mesenchymal transition, autophagy and metabolic switching. Through epithelial mesenchymal transition, hypoxia both drives metastasis and renders key target tissues receptive to metastasis. Autophagy is a double-edged sword which requires greater understanding to ascertain when it is a threat. Metabolic switching allows tumor cells to access hypoxic survival mechanisms even under normoxic conditions.Every element of the malignant stroma contributes to hypoxia-driven progression. Exosomal transfer of molecules from hypoxic tumor cells to target stromal cell types and the importance of microRNAs in intercellular communication have emerged as key themes.Antiangiogenic resistance can be caused by hypoxia-driven vasculogenic mimicry. Beyond this, hypoxia contributes to resistance to virtually all oncological treatment modalities. SUMMARY Recent advances have moved us closer to being able to exploit hypoxic mechanisms to overcome hypoxia-driven progression and therapy failure.
Collapse
Affiliation(s)
- Andrew Redfern
- School of Medicine, The University of Western Australia, Perth
| | - Veenoo Agarwal
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane
- Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
39
|
Qin L, Huang J, Wang G, Huang J, Wu X, Li J, Yi W, Qin F, Huang D. Integrated analysis of clinical significance and functional involvement of microRNAs in hepatocellular carcinoma. J Cell Physiol 2019; 234:23581-23595. [PMID: 31210353 DOI: 10.1002/jcp.28927] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Li Qin
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Jian Huang
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Guodong Wang
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Jinxin Huang
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Xintian Wu
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Jinzhuan Li
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Weili Yi
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Fuhui Qin
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| | - Dongning Huang
- Department of Radiation Oncology Liuzhou Worker Hospital Liuzhou Guangxi Province People's Republic of China
| |
Collapse
|
40
|
Zhang H, Hao J, Sun X, Zhang Y, Wei Q. Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease. Interact Cardiovasc Thorac Surg 2019; 27:336-342. [PMID: 29608698 DOI: 10.1093/icvts/ivy058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/06/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Our goal was to evaluate the expressions of 14 selected pro-angiogenic micro-ribonucleic acids in patients with coronary heart disease (CHD) and healthy controls (HCs) and to assess the correlations of those micro-ribonucleic acids with risk and severity of CHD. METHODS In the exploration stage, 20 patients with CHD were enrolled; in the validation stage, 102 patients with CHD and 92 age- and gender-matched HCs with the same eligibility of those in the exploration stage were recruited. Blood samples were collected from all participants, and plasma levels of micro-ribonucleic acids were measured by the quantitative polymerase chain reaction method. RESULTS In the exploration stage, the expression of miR-126, miR-17-5p, miR-19a, miR-92a, miR-210 and miR-378 in patients with CHD was down-regulated compared with that of HCs. In the validation stage, miR-126, miR-17-5p, miR-92a, miR-210 and miR-378 levels decreased remarkably in patients with CHD compared with the HCs. Plasma levels of miR-126, miR-17-5p, miR-92a, miR-210 and miR-378 were independent prediction factors for CHD. The combination of miR-126, miR-17-5p, miR-92a, miR-210 and miR-378 was of good diagnostic value for CHD with an area under the curve of 0.756. Additionally, plasma levels of miR-126, miR-210 and miR-378 correlated negatively with Gensini scores. CONCLUSIONS Circulating miR-126, miR-17-5p, miR-92a, miR-210 and miR-378 could serve as novel, promising biomarkers for risk and severity of CHD. Additionally, miR-126, miR-210 and miR-378 were negatively associated with Gensini scores.
Collapse
Affiliation(s)
- Hualong Zhang
- Department of Cardiology, Xingtai People's Hospital, Hubei Medical University Affiliated Hospital, Xingtai, China
| | - Jie Hao
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinxin Sun
- Department of Cardiology, Xingtai People's Hospital, Hubei Medical University Affiliated Hospital, Xingtai, China
| | - Youliang Zhang
- Department of Cardiology, Xingtai People's Hospital, Hubei Medical University Affiliated Hospital, Xingtai, China
| | - Qingmin Wei
- Department of Cardiology, Xingtai People's Hospital, Hubei Medical University Affiliated Hospital, Xingtai, China
| |
Collapse
|
41
|
Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A. Regulation of tumor angiogenesis by microRNAs: State of the art. J Cell Physiol 2019; 234:1099-1110. [PMID: 30070704 DOI: 10.1002/jcp.27051] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs, miRs) are small (21-25 nucleotides) endogenous and noncoding RNAs involved in many cellular processes such as apoptosis, development, proliferation, and differentiation via binding to the 3'-untranslated region of the target mRNA and inhibiting its translation. Angiogenesis is a hallmark of cancer, which provides oxygen and nutrition for tumor growth while removing deposits and wastes from the tumor microenvironment. There are many angiogenesis stimulators, among which vascular endothelial growth factor (VEGF) is the most well known. VEGF has three tyrosine kinase receptors, which, following VEGF binding, initiate proliferation, invasion, migration, and angiogenesis of endothelial cells in the tumor environment. One of the tumor microenvironment conditions that induce angiogenesis through increasing VEGF and its receptors expression is hypoxia. Several miRNAs have been identified that affect different targets in the tumor angiogenesis pathway. Most of these miRNAs affect VEGF and its tyrosine kinase receptors expression downstream of the hypoxia-inducible Factor 1 (HIF-1). This review focuses on tumor angiogenesis regulation by miRNAs and the mechanism underlying this regulation.
Collapse
Affiliation(s)
- Nasser H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejad Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Ji J, Rong Y, Luo CL, Li S, Jiang X, Weng H, Chen H, Zhang WW, Xie W, Wang FB. Up-Regulation of hsa-miR-210 Promotes Venous Metastasis and Predicts Poor Prognosis in Hepatocellular Carcinoma. Front Oncol 2018; 8:569. [PMID: 30560088 PMCID: PMC6287006 DOI: 10.3389/fonc.2018.00569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/13/2018] [Indexed: 01/29/2023] Open
Abstract
Objective: To investigate the potential biomarkers for venous metastasis of hepatocellular carcinoma (HCC), and briefly discuss their target genes and the signaling pathways they are involved in. Materials and Method: The dataset GSE6857 was downloaded from GEO. Significantly differentially expressed miRNAs were identified using the R package “limma,” After that, the survival analysis was conducted to discover the significance of these up-regulated miRNAs for the prognosis of HCC patients. Additionally, miRNAs which were up-regulated in venous metastasis positive HCC tissues and were significant for the prognosis of HCC patients were further verified in clinical samples using RT-qPCR. The miRNAs were then analyzed for their correlations with clinical characteristics including survival time, AFP level, pathological grade, TNM stage, tumor stage, lymph-node metastasis, distant metastasis, child-pugh score, vascular invasion, liver fibrosis and race using 375 HCC samples downloaded from the TCGA database. The target genes of these miRNAs were obtained using a miRNA target gene prediction database, and their functions were analyzed using the online tool DAVID. Results: 15 miRNAs were differentially expressed in samples with venous metastasis, among which 7 were up-regulated in venous metastasis positive HCC samples. As one of the up-regulated miRNAs, hsa-miR-210 was identified as an independent prognostic factor for HCC. Using RT-qPCR, it was evident that hsa-miR-210 expression was significantly higher in venous metastasis positive HCC samples (p = 0.0036). Further analysis indicated that hsa-miR-210 was positively associated with AFP level, pathological grade, TNM stage, tumor stage and vascular invasion. A total of 168 hsa-miR-210 target genes, which are mainly related to tumor metastasis and tumor signaling pathways, were also predicted in this study. Conclusion: hsa-miR-210 might promote vascular invasion of HCC cells and could be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Jia Ji
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang-Liang Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuo Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Weng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wu-Wen Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Xie
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Alkannin protects human renal proximal tubular epithelial cells from LPS-induced inflammatory injury by regulation of microRNA-210. Biomed Pharmacother 2018; 108:1679-1685. [PMID: 30372870 DOI: 10.1016/j.biopha.2018.09.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is a fatal complication induced by systemic lupus erythematosus (SLE). As the current therapeutic approaches for LN are not a permanent cure, we studied the potential therapeutic effects of alkannin (ALK) on LPS-treated human proximal tubular cells (HK-2 cells), aiming to find novel therapeutic drugs for LN treatment. METHODS Cell viability, apoptotic cells, expression of p53 and proteins associated with apoptosis, and release of IL-6 and TNF-α in LPS-treated HK-2 cells were measured by using CCK-8 assay, flow cytometry assay, Western blot analysis and RT-qPCR/ELISA, respectively. Effects of ALK on LPS-treated HK-2 cells were evaluated, and miR-210 expression was determined by RT-qPCR. Afterwards, whether ALK affected LPS-treated cells via regulating miR-210 was verified, and the involvements of the NF-κB and p38MAPK pathways were finally studied using Western blot analysis. RESULTS LPS-induced decrease of cell viability, increase of apoptosis, and release of IL-6 and TNF-α were attenuated by ALK treatment. We found miR-210 level in LPS-treated cells was elevated by ALK, and miR-210 inhibition could effectively reverse the effects of ALK on LPS-treated cells. Moreover, we found the phosphorylation levels of key kinases in the NF-κB and p38MAPK pathways were reduced by ALK via up-regulating miR-210 in LPS-treated cells. CONCLUSION ALK attenuated LPS-induced inflammatory injury in HK-2 cells possibly through up-regulating miR-210. The LPS-induced activation of the NF-κB and p38MAPK pathways was attenuated by ALK via regulation of miR-210.
Collapse
|
44
|
Xu X, Tao Y, Shan L, Chen R, Jiang H, Qian Z, Cai F, Ma L, Yu Y. The Role of MicroRNAs in Hepatocellular Carcinoma. J Cancer 2018; 9:3557-3569. [PMID: 30310513 PMCID: PMC6171016 DOI: 10.7150/jca.26350] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers, leading to the second cancer-related death in the global. Although the treatment of HCC has greatly improved over the past few decades, the survival rate of patients is still quite low. Thus, it is urgent to explore new therapies, especially seek for more accurate biomarkers for early diagnosis, treatment and prognosis in HCC. MicroRNAs (miRNAs), small noncoding RNAs, are pivotal participants and regulators in the development and progression of HCC. Great progress has been made in the studies of miRNAs in HCC. The key regulatory mechanisms of miRNAs include proliferation, apoptosis, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance and autophagy in HCC. And exosomal miRNAs also play important roles in proliferation, invasion, metastasis, and drug resistance in HCC by regulating gene expression in the target cells. In addition, some miRNAs, including exosomal miRNAs, can be as potential diagnostic and prediction markers in HCC. This review summarizes the latest researches development of miRNAs in HCC in recent years.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Liang Shan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Rui Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Hongyuan Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Feng Cai
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| |
Collapse
|
45
|
Bi Y, Shen G, Quan Y, Jiang W, Xu F. Long noncoding RNA FAM83H‐AS1 exerts an oncogenic role in glioma through epigenetically silencing CDKN1A (p21). J Cell Physiol 2018; 233:8896-8907. [PMID: 29870057 DOI: 10.1002/jcp.26813] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/30/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Yong‐Yan Bi
- Department of Neurosurgery, Minhang Hospital Fudan University Shanghai China
| | - Gang Shen
- Department of Neurosurgery, Minhang Hospital Fudan University Shanghai China
| | - Yong Quan
- Department of Neurosurgery, Minhang Hospital Fudan University Shanghai China
| | - Wei Jiang
- Department of Neurosurgery, Minhang Hospital Fudan University Shanghai China
| | - Fulin Xu
- Department of Neurosurgery, Minhang Hospital Fudan University Shanghai China
| |
Collapse
|
46
|
Abstract
Hypoxia is a common feature in solid tumors and is associated with cancer progression. The main regulators of the hypoxic response are hypoxia-inducible transcription factors (HIFs) that guide the cellular adaptation to hypoxia by gene activation. The actual oxygen sensing is performed by HIF prolyl hydroxylases (PHDs) that under normoxic conditions mark the HIF-α subunit for degradation. Cancer progression is not regulated only by the cancer cells themselves but also by the whole tumor microenvironment, which consists of cellular and extracellular components. Hypoxic conditions also affect the stromal compartment, where stromal cells are in close contact with the cancer cells. The important function of HIF in cancer cells has been shown by many animal models and described in hundreds of reviews, but less in known about PHDs and even less PHDs in stromal cells. Here, we review hypoxic signaling in tumors, mainly in the tumor stroma, with a focus on HIFs and PHDs.
Collapse
Affiliation(s)
- Anu Laitala
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| |
Collapse
|
47
|
Fan ZG, Qu XL, Chu P, Gao YL, Gao XF, Chen SL, Tian NL. MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol Med Rep 2018; 17:5658-5665. [PMID: 29484401 PMCID: PMC5866007 DOI: 10.3892/mmr.2018.8620] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 11/14/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-210 (miRNA-210) has been reported to be associated with angiogenesis and may serve important roles in acute myocardial infarction (AMI), which remain unclear. The present study sought to evaluate the efficacy of miRNA‑210 in AMI and to examine the potential associated mechanisms. AMI models were established in Sprague‑Dawley rats. The expression of miRNA‑210 was upregulated via transfection with lentivirus‑mediated agonists and quantitative analysis was performed using the reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Immunoblotting and RT‑qPCR were separately used to detect the expression levels of hepatocyte growth factor (HGF) in heart samples, while only the protein expression level of β‑myosin heavy chain (β‑MHC) was assessed. The expression of HGF in human umbilical vein endothelial cells under hypoxic conditions was silenced by transfecting with small interfering RNA, as demonstrated by the determination of associated protein expression levels. The microvessel density (MVD) of the infarcted myocardium was selected to be the angiogenesis efficacy endpoint, which was evaluated by platelet endothelial cell adhesion molecule immunostaining. Markedly increased expression of HGF was observed among the AMI rats receiving miRNA‑210 agonists, demonstrated via quantitative analyses using RT‑qPCR or western blotting. Promotion of angiogenesis was observed with the increased MVD. Improved cardiac function in the rats was subsequently noted, as they exhibited improved left ventricular fractional shortening and left ventricular ejection fraction percentages, which may result from improved cardiac contractility indicated by attenuating the increase in β‑MHC protein expression. Overexpression of miRNA‑210 appeared to be an advantageous therapeutic tool for treating AMI, primarily due to its promoting effects on angiogenesis in the infarcted myocardium by stimulating HGF expression and inducing improved left ventricular remodeling, leading to improved cardiac function.
Collapse
Affiliation(s)
- Zhong-Guo Fan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin-Liang Qu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Peng Chu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ya-Li Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Nai-Liang Tian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
48
|
Yang Q, Wang P, Du X, Wang W, Zhang T, Chen Y. Direct repression of IGF2 is implicated in the anti-angiogenic function of microRNA-210 in human retinal endothelial cells. Angiogenesis 2018; 21:313-323. [DOI: 10.1007/s10456-018-9597-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
|
49
|
Nunez Lopez YO, Victoria B, Golusinski P, Golusinski W, Masternak MM. Characteristic miRNA expression signature and random forest survival analysis identify potential cancer-driving miRNAs in a broad range of head and neck squamous cell carcinoma subtypes. Rep Pract Oncol Radiother 2018; 23:6-20. [PMID: 29187807 PMCID: PMC5698002 DOI: 10.1016/j.rpor.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/27/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022] Open
Abstract
AIM To characterize the miRNA expression profile in head and neck squamous cell carcinoma (HNSSC) accounting for a broad range of cancer subtypes and consequently identify an optimal miRNA signature with prognostic value. BACKGROUND HNSCC is consistently among the most common cancers worldwide. Its mortality rate is about 50% because of the characteristic aggressive behavior of these cancers and the prevalent late diagnosis. The heterogeneity of the disease has hampered the development of robust prognostic tools with broad clinical utility. MATERIALS AND METHODS The Cancer Genome Atlas HNSC dataset was used to analyze level 3 miRNA-Seq data from 497 HNSCC patients. Differential expression (DE) analysis was implemented using the limma package and multivariate linear model that adjusted for the confounding effects of age at diagnosis, gender, race, alcohol history, anatomic neoplasm subdivision, pathologic stage, T and N stages, and vital status. Random forest (RF) for survival analysis was implemented using the randomForestSRC package. RESULTS A characteristic DE miRNA signature of HNSCC, comprised of 11 upregulated (i.e., miR-196b-5p, miR-1269a, miR-196a-5p, miR-4652-3p, miR-210-3p, miR-1293, miR-615-3p, miR-503-5p, miR-455-3p, miR-205-5p, and miR-21-5p) and 9 downregulated (miR-376c-3p, miR-378c, miR-29c-3p, miR-101-3p, miR-195-5p, miR-299-5p, miR-139-5p, miR-6510-3p, miR-375) miRNAs was identified. An optimal RF survival model was built from seven variables including age at diagnosis, miR-378c, miR-6510-3p, stage N, pathologic stage, gender, and race (listed in order of variable importance). CONCLUSIONS The joint differential miRNA expression and survival analysis controlling for multiple confounding covariates implemented in this study allowed for the identification of a previously undetected prognostic miRNA signature characteristic of a broad range of HNSCC.
Collapse
Affiliation(s)
- Yury O. Nunez Lopez
- Translational Research Institute for Metabolism & Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
| | - Pawel Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
50
|
Prognostic value of microRNAs in hepatocellular carcinoma: a meta-analysis. Oncotarget 2017; 8:107237-107257. [PMID: 29291025 PMCID: PMC5739810 DOI: 10.18632/oncotarget.20883] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background Numerous articles reported that dysregulated expression levels of miRNAs correlated with survival time of HCC patients. However, there has not been a comprehensive meta-analysis to evaluate the accurate prognostic value of miRNAs in HCC. Design Meta-analysis. Materials and Methods Studies, published in English, estimating expression levels of miRNAs with any survival curves in HCC were identified up until 15 April, 2017 by performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two independent authors. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). Results 54 relevant articles about 16 miRNAs, with 6464 patients, were ultimately included. HCC patients with high expression of tissue miR-9 (HR = 2.35, 95% CI = 1.46–3.76), miR-21 (HR = 1.76, 95% CI = 1.29–2.41), miR-34c (HR = 1.64, 95% CI = 1.05–2.57), miR-155 (HR = 2.84, 95% CI = 1.46–5.51), miR-221 (HR = 1.76, 95% CI = 1.02–3.04) or low expression of tissue miR-22 (HR = 2.29, 95% CI = 1.63–3.21), miR-29c (HR = 1.35, 95% CI = 1.10–1.65), miR-34a (HR = 1.84, 95% CI = 1.30–2.59), miR-199a (HR = 2.78, 95% CI = 1.89–4.08), miR-200a (HR = 2.64, 95% CI = 1.86–3.77), miR-203 (HR = 2.20, 95% CI = 1.61–3.00) have significantly poor OS (P < 0.05). Likewise, HCC patients with high expression of blood miR-21 (HR = 1.73, 95% CI = 1.07–2.80), miR-192 (HR = 2.42, 95% CI = 1.15–5.10), miR-224 (HR = 1.56, 95% CI = 1.14–2.12) or low expression of blood miR-148a (HR = 2.26, 95% CI = 1.11–4.59) have significantly short OS (P < 0.05). Conclusions In conclusion, tissue miR-9, miR-21, miR-22, miR-29c, miR-34a, miR-34c, miR-155, miR-199a, miR-200a, miR-203, miR-221 and blood miR-21, miR-148a, miR-192, miR-224 demonstrate significantly prognostic value. Among them, tissue miR-9, miR-22, miR-155, miR-199a, miR-200a, miR-203 and blood miR-148a, miR-192 are potential prognostic candidates for predicting OS in HCC.
Collapse
|