1
|
Chen ZS, Peng SI, Leong LI, Gall-Duncan T, Wong NSJ, Li TH, Lin X, Wei Y, Koon AC, Huang J, Sun JKL, Turner C, Tippett L, Curtis MA, Faull RLM, Kwan KM, Chow HM, Ko H, Chan TF, Talbot K, Pearson CE, Chan HYE. Mutant huntingtin induces neuronal apoptosis via derepressing the non-canonical poly(A) polymerase PAPD5. Nat Commun 2025; 16:3307. [PMID: 40204699 PMCID: PMC11982267 DOI: 10.1038/s41467-025-58618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play crucial roles in post-transcriptional gene regulation. Poly(A) RNA polymerase D5 (PAPD5) catalyzes the addition of adenosine to the 3' end of miRNAs. In this study, we demonstrate that the Yin Yang 1 protein, a transcriptional repressor of PAPD5, is recruited to both RNA foci and protein aggregates, resulting in an upregulation of PAPD5 expression in Huntington's disease (HD). Additionally, we identify a subset of PAPD5-regulated miRNAs with increased adenylation and reduced expression in our disease model. We focus on miR-7-5p and find that its reduction causes the activation of the TAB2-mediated TAK1-MKK4-JNK pro-apoptotic pathway. This pathway is also activated in induced pluripotent stem cell-derived striatal neurons and post-mortem striatal tissues isolated from HD patients. In addition, we discover that a small molecule PAPD5 inhibitor, BCH001, can mitigate cell death and neurodegeneration in our disease models. This study highlights the importance of PAPD5-mediated miRNA dysfunction in HD pathogenesis and suggests a potential therapeutic direction for the disease.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shaohong Isaac Peng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lok I Leong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nathan Siu Jun Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz Ho Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuming Wei
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alex Chun Koon
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- School of Psychology, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Ko
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Yoshioka H, Horita H, Tsukiboshi Y, Kurita H, Ogata A, Ogata K. Cleft Palate Induced by Mycophenolate Mofetil Is Associated with miR-4680-3p and let-7c-5p in Human Palate Cells. Noncoding RNA 2025; 11:12. [PMID: 39997612 PMCID: PMC11858478 DOI: 10.3390/ncrna11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Cleft palate is a birth defect associated with environmental and genetic factors. Disturbance of microRNAs (miRNAs) and exposure to medicinal agents during pregnancy can cause cleft palate. Although an association between medicine-induced cleft palate and miRNAs has been suggested, it remains to be fully elucidated. This study aimed to clarify the molecular mechanism underlying mycophenolate mofetil (MPM)-induced inhibition of cell proliferation and miRNA expression in human embryonic palatal mesenchymal (HEPM) cells. Methods: Cell viability, apoptosis, and cell cycle-related markers were evaluated 48 h after MPM treatment. In addition, miRNA levels and expression of their downstream genes were measured, and a rescue experiment was performed using miR-4680-3p and/or let-7c-5p inhibitors. Results: MPM dose-dependently reduced HEPM cell viability. Additionally, MPM treatment suppressed cyclin-D1, cyclin E1, cyclin-dependent kinase (CDK)-2, and CDK6 expression in HEPM cells. Furthermore, MPM upregulated miR-4680-3p and let-7c-5p expression and downregulated the downstream genes of each miRNA. Moreover, miR-4680-3p and/or let-7c-5p inhibitors alleviated MPM-induced inhibition of cell proliferation. Conclusions: These results suggest that MPM-induced cleft palate is associated with miR-4680-3p and let-7c-5p expression in HEPM cells.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
- Department of Hygiene, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Hanane Horita
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Yosuke Tsukiboshi
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu 501-1196, Japan
| | - Aya Ogata
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Ibrahim N, Alsadi N, Yasavoli-Sharahi H, Shahbazi R, Hebbo MJ, Kambli D, Balcells F, Matar C. Berberine Inhibits Breast Cancer Stem Cell Development and Decreases Inflammation: Involvement of miRNAs and IL-6. Curr Dev Nutr 2025; 9:104532. [PMID: 39896297 PMCID: PMC11786844 DOI: 10.1016/j.cdnut.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025] Open
Abstract
Background Breast cancer (BC) is a health concern worldwide and is often accompanied by depressive symptoms in patients. In BC, elevated interleukin-6 (IL-6) levels contribute to an inflammatory signature linked to cancer stem cell (CSC) stemness and depressive behaviors. Bioactive food components, such as berberine (BBR), have preventative effects against BC by targeting CSCs. Objectives This study aimed to investigate the effects of BBR on breast CSC proliferation, on levels of specific micro (mi)RNAs and IL-6 in vitro and in vivo, and in alleviating depressive-like behaviors in mice with BC. Methods Mammosphere formation assays were conducted by treating murine 4T1 and human MDA-MB-231 BC cell lines with BBR. qPCR analysis of miRNAs miR-let-7c and miR-34a-5p was performed on 4T1 CSCs exposed to BBR. BBR was administered orally to female BALB/c, followed by injection with mammary carcinoma cells to induce BC. Behavioral tests were conducted to assess depressive-like behaviors. Tumor tissues were collected for ex vivo mammosphere assays, miRNA expression analysis, and IL-6 detection by ELISA. Serum was also collected for IL-6 analysis. Results BBR treatment inhibited mammosphere formation and proliferation of CSCs derived from 4T1 and MDA-MB-231 cell lines. Quantification of mammosphere formation showed a significant decrease in both cell lines at 75 μM BBR (4T1: P < 0.001; MDA-MB-231: P < 0.0001). BBR upregulated the expression of miRNAs miR-let-7c and miR-34a in both cell lines, with miR-34a showing a significant increase (P < 0.001) and let-7c showing a significant increase (P < 0.05) in expression. In vivo, oral administration of BBR reduced mammosphere formation in breast tumor tissues (P < 0.0001) and elevated expression of miR-145 and miR-34a, with both showing significant upregulation (P < 0.0001), indicating its potential tumor-suppressive effects. BBR treatment resulted in a significant decrease in serum IL-6 levels (P < 0.05), suggesting anti-inflammatory properties, while the IL-6 in tumor tissue did not show significant changes (P > 0.05). However, no significant differences were observed in depressive-like behaviors between control and treatment groups. Conclusions BBR may have the potential to be used as an "Epi-Natural Compound" to prevent cancer by reducing inflammation and affecting epigenetics.
Collapse
Affiliation(s)
- Nour Ibrahim
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nawal Alsadi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Roghayeh Shahbazi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary Joe Hebbo
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Darshan Kambli
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Florencia Balcells
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chantal Matar
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Laha S, Das S, Banerjee U, Ganguly T, Senapati S, Chatterjee G, Chatterjee R. Genome-wide RNA-seq, DNA methylation and small RNA-seq analysis unraveled complex gene regulatory networks in psoriasis pathogenesis. Gene 2025; 933:148903. [PMID: 39233195 DOI: 10.1016/j.gene.2024.148903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Psoriasis is a complex inflammatory skin disease characterized by reversible albeit relapsing red scaly plaques in the skin of a patient. In addition to the genetic predisposition, involvement of epigenetic and non-coding RNAs have also been liked with the disease. Nevertheless, any comprehensive study involving transcriptomic, small-RNA and DNA methylation at the genomic level from same patients is lacking. To investigate the complex regulation of molecular pathways in psoriasis, we carried out multi-omics integrative analysis of RNA-sequencing, small RNA-sequencing and DNA methylation profiling from the psoriatic and adjacent normal skin tissues. Our multi-omics analysis identified the genes and biological processes regulated either independently or in combination by DNA methylation and microRNAs. We identified miRNAs that specifically regulated keratinocyte hyper-proliferation, and cell cycle progression and checkpoint signaling in psoriasis. On contrary, DNA methylation was found to be more predominant in regulating immune and inflammatory responses, another causative factor in psoriasis pathogenesis. Many characteristic pathways in psoriasis e.g., Th17 cell differentiation and JAK-STAT signaling, were found to be regulated by both miRNAs and DNA methylation. We carried out functional characterization of a downregulated miRNA hsa-let-7c-5p, predicted to target upregulated genes in psoriasis involved in cell cycle processes, Th17 cell differentiation and JAK-STAT signaling pathways. Overexpression of hsa-let-7c-5p in keratinocytes caused the downregulation of its target genes, resulting in reduced cell proliferation and migration rates, demonstrating potential of miRNAs in regulating psoriasis pathogenesis. In conclusion, our findings identified distinct and shared gene-networks regulated by DNA methylation and miRNAs of a complex disease with reversible phenotype.
Collapse
Affiliation(s)
- Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Shantanab Das
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Urbee Banerjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Torsa Ganguly
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India
| | - Swapan Senapati
- Consultant Dermatologist, Uttarpara, Hooghly, West Bengal 712258, India
| | - Gobinda Chatterjee
- Department of Dermatology, IPGMER/SSKM Hospital, Kolkata, West Bengal, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, West Bengal 700108, India.
| |
Collapse
|
5
|
Kaya M, Abuaisha A, Suer I, Emiroglu S, Önder S, Onay Ucar E, Yenerel MN, Palanduz S, Cefle K, Ozturk S, Kurt Z. Let-7b-5p sensitizes breast cancer cells to doxorubicin through Aurora Kinase B. PLoS One 2025; 20:e0307420. [PMID: 39787178 PMCID: PMC11717257 DOI: 10.1371/journal.pone.0307420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression level of the target genes in the cell. Breast cancer is responsible for the majority of cancer-related deaths among women globally. It has been proven that deregulated miRNAs may play an essential role in the progression of breast cancer. It has been shown in many cancers, including breast cancer, that aberrant expression of miRNAs may be associated with drug resistance. This study investigated the effect of let-7b-5p, detected by bioinformatics methods, on Dox resistance through the Aurora Kinase B (AURKB) gene. In silico analysis using publicly available miRNA expression, GEO datasets revealed that let-7b-5p significantly downregulated in BC. Further in silico studies revealed that of the genes among the potential targets of let-7b-5p, AURKB was the most negatively correlated and may be closely associated with Dox resistance. Expression analysis via quantitative PCR confirmed that let-7b-5p was downregulated and AURKB was upregulated in breast cancer tissue samples. Later, functional studies conducted with MCF-10A, MCF-7, and MDA-MB-231 cell lines demonstrated that let-7b-5p inhibits cancer cells through AURKB and sensitizes them to Dox resistance. In conclusion, it has been shown that the let-7b-5p/AURKB axis may be significant in breast cancer progression and the disruption in this axis may contribute to the trigger of Dox resistance.
Collapse
Affiliation(s)
- Murat Kaya
- Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Capa, Fatih, Istanbul, Turkey
| | | | - Ilknur Suer
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Capa, Fatih, Istanbul, Turkey
| | - Selman Emiroglu
- Istanbul Faculty of Medicine, Department of General Surgery, Division of Breast Surgery, Istanbul University, Capa, Fatih, Istanbul, Turkey
- Department of General Surgery, Biruni University School of Medicine, Biruni University, Istanbul, Turkey
| | - Semen Önder
- Istanbul Faculty of Medicine, Department of Pathology Capa, Istanbul University, Fatih Istanbul, Turkey
| | - Evren Onay Ucar
- Faculty of Science, Department Of Molecular Biology and Genetics, Istanbul University, Capa, Fatih, Istanbul, Turkey
| | - Mustafa Nuri Yenerel
- Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Istanbul University, Capa, Fatih, İstanbul, Turkey
| | - Sukru Palanduz
- Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Capa, Fatih, Istanbul, Turkey
| | - Kivanc Cefle
- Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Capa, Fatih, Istanbul, Turkey
| | - Sukru Ozturk
- Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Capa, Fatih, Istanbul, Turkey
| | - Zeyneb Kurt
- Information School, The Wave, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Khalaf BH, Suleiman AA, Suwaid MA. Exploring the Regulatory Roles of miR-21, miR-15, and miR-let-7 in ABC Transporter-Mediated Chemoresistance: Implications for Breast Cancer Etiology and Treatment. Mol Biotechnol 2025; 67:149-159. [PMID: 38133750 DOI: 10.1007/s12033-023-00990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Breast cancer, a prevalent and aggressive malignancy among females worldwide, poses a significant challenge due to resistance to chemotherapy and tyrosine kinase inhibitors. In breast cancer, ABC transporters play a pivotal role by contributing to chemoresistance and drug efflux, a phenomenon observed also in various cancers. This study aims to elucidate the role of oncomiRs miR-15, miR-21, and miR-let-7 in breast cancer etiology and their impact on chemotherapy-resistant oncogenes ABCA1, ABCB1, and ABCC1. Blood samples from female breast cancer patients were analyzed to assess the expression levels of miRNAs and oncogenes by qPCR. Significantly, miR-21 exhibited a positive correlation with ABCA1 in newly diagnosed patients, while miR-15 and miR-let-7 displayed a positive correlation with ABCA1 in the metastasis group. Additionally, miR-let-7 demonstrated a negative correlation with ABCC1 in newly diagnosed patients. This study's findings provide valuable insights into the cancer etiology of these miRNAs and their interactions with ABCA1, ABCB1, and ABCC1. Targeting these interactions holds promise for mitigating drug efflux and chemoresistance in breast cancer, potentially enhancing current treatments and improving patient outcomes.
Collapse
|
7
|
Yasavoli‐Sharahi H, Shahbazi R, Alsadi N, Robichaud S, Kambli D, Izadpanah A, Mohsenifar Z, Matar C. Edodes Cultured Extract Regulates Immune Stress During Puberty and Modulates MicroRNAs Involved in Mammary Gland Development and Breast Cancer Suppression. Cancer Med 2024; 13:e70277. [PMID: 39382253 PMCID: PMC11462599 DOI: 10.1002/cam4.70277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Immune stressors, such as lipopolysaccharides (LPS), profoundly affect microbiota balance, leading to gut dysbiosis. This imbalance disrupts the metabolic phenotype and structural integrity of the gut, increasing intestinal permeability. During puberty, a critical surge in estrogen levels is crucial for mammary gland development. However, inflammation originating from the gut in this period may interfere with this development, potentially heightening breast cancer risk later. The long-term effects of pubertal inflammation on mammary development and breast cancer risk are underexplored. Such episodes can dysregulate cytokine levels and microRNA expression, altering mammary cell gene expression, and predisposing them to tumorigenesis. METHODS This study hypothesizes that prebiotics, specifically Lentinula edodes Cultured Extract (AHCC), can counteract LPS's adverse effects. Using BALB/c mice, an acute LPS dose was administered at puberty, and breast cancer predisposition was assessed at 13 weeks. Cytokine and tumor-related microRNA levels, tumor development, and cancer stem cells were explored through immunoassays and qRT-PCR. RESULTS Results show that LPS induces lasting effects on cytokine and microRNA expression in mammary glands and tumors. AHCC modulates cytokine expression, including IL-1β, IL-17A/F, and IL-23, and mitigates LPS-induced IL-6 in mammary glands. It also regulates microRNA expression linked to tumor progression and suppression, particularly counteracting the upregulation of oncogenic miR-21, miR-92, and miR-155. Although AHCC slightly alters some tumor-suppressive microRNAs, these changes are modest, highlighting a complex regulatory role that warrants further study. CONCLUSION These findings underscore the potential of dietary interventions like AHCC to mitigate pubertal LPS-induced inflammation on mammary gland development and tumor formation, suggesting a preventive strategy against breast cancer.
Collapse
Affiliation(s)
- Hamed Yasavoli‐Sharahi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Samuel Robichaud
- Department of PathologyUniversity of MontrealMontrealQuebecCanada
| | - Darshan Babu Kambli
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Zhaleh Mohsenifar
- Department of PathologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- School of Nutrition Sciences, Faculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
8
|
Záveský L, Jandáková E, Weinberger V, Minář L, Kohoutová M, Faridová AT, Slanař O. The Overexpressed MicroRNAs miRs-182, 155, 493, 454, and U6 snRNA and Underexpressed let-7c, miR-328, and miR-451a as Potential Biomarkers in Invasive Breast Cancer and Their Clinicopathological Significance. Oncology 2024; 103:112-127. [PMID: 39134012 PMCID: PMC11793102 DOI: 10.1159/000540863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice. INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Luboš Minář
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Milada Kohoutová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| | - Adéla Tefr Faridová
- After-surgery Gynecological Department, Institute for the Care of Mother and Child, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
9
|
Md Zaki FA, Mohamad Hanif EA. Identifying miRNA as biomarker for breast cancer subtyping using association rule. Comput Biol Med 2024; 178:108696. [PMID: 38850957 DOI: 10.1016/j.compbiomed.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
- This paper presents a comprehensive study focused on breast cancer subtyping, utilizing a multifaceted approach that integrates feature selection, machine learning classifiers, and miRNA regulatory networks. The feature selection process begins with the CFS algorithm, followed by the Apriori algorithm for association rule generation, resulting in the identification of significant features tailored to Luminal A, Luminal B, HER-2 enriched, and Basal-like subtypes. The subsequent application of Random Forest (RF) and Support Vector Machine (SVM) classifiers yielded promising results, with the SVM model achieving an overall accuracy of 76.60 % and the RF model demonstrating robust performance at 80.85 %. Detailed accuracy metrics revealed strengths and areas for refinement, emphasizing the potential for optimizing subtype-specific recall. To explore the regulatory landscape in depth, an analysis of selected miRNAs was conducted using MIENTURNET, a tool for visualizing miRNA-target interactions. While FDR analysis raised concerns for HER-2 and Basal-like subtypes, Luminal A and Luminal B subtypes showcased significant miRNA-gene interactions. Functional enrichment analysis for Luminal A highlighted the role of Ovarian steroidogenesis, implicating specific miRNAs such as hsa-let-7c-5p and hsa-miR-125b-5p as potential diagnostic biomarkers and regulators of Luminal A breast cancer. Luminal B analysis uncovered associations with the MAPK signaling pathway, with miRNAs like hsa-miR-203a-3p and hsa-miR-19a-3p exhibiting potential diagnostic and therapeutic significance. In conclusion, this integrative approach combines machine learning techniques with miRNA analysis to provide a holistic understanding of breast cancer subtypes. The identified miRNAs and associated pathways offer insights into potential diagnostic biomarkers and therapeutic targets, contributing to the ongoing efforts to improve breast cancer diagnostics and personalized treatment strategies.
Collapse
Affiliation(s)
- Fatimah Audah Md Zaki
- Department of Internet Engineering & Computer Science, Universiti Tunku Abdul Rahman (UTAR), Selangor, Malaysia.
| | - Ezanee Azlina Mohamad Hanif
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Wang H, Zhou F, Wan J, Yu H, Wang J. Long noncoding RNA TMPO-AS1 upregulates BCAT1 expression to promote cell proliferation in nasopharyngeal carcinoma via microRNA let-7c-5p. Genes Environ 2024; 46:14. [PMID: 38937856 PMCID: PMC11210057 DOI: 10.1186/s41021-024-00308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) is a group of RNA transcripts that contribute to tumor development by post-transcriptionally regulating cancer-related genes. Nasopharyngeal carcinoma (NPC) is an epithelial tumor that occurs in the nasopharynx and is common in North Africa and Southeast Asia. The study investigated the functions of lncRNA TMPO-AS1 in NPC cell proliferation and apoptosis as well as its related competing endogenous RNA (ceRNA) mechanism. METHODS Candidate microRNA and genes that may regulated by TMPO-AS1 were predicted with the bioinformatic tool starBase. TMPO-AS1 expression in NPC tissue, cells, nuclear part, and cytoplasmic part was measured by RT-qPCR. MTT assay, EdU assay, and flow cytometry analysis were carried out to evaluate NPC cell viability, proliferation, and apoptosis, respectively. RNA immunoprecipitation assay and luciferase reporter assay were conducted to detect the binding between TMPO-AS1 and let-7c-5p or that between let-7c-5p and BCAT1. RESULTS TMPO-AS1 and BCAT1 showed high expression in NPC tissue and cells, while let-7c-5p was downregulated in NPC. The silencing of TMPO-AS1 suppressed NPC cell proliferation while promoting cell apoptosis. Moreover, TMPO-AS1 interacted with let-7c-5p and negatively regulated let-7c-5p expression. BCAT1 was a target of let-7c-5p and was inversely regulated by let-7c-5p in NPC cells. The repressive impact of TMPO-AS1 knockdown on NPC cell growth was countervailed by overexpressed BCAT1. CONCLUSION TMPO-AS1 accelerates NPC cell proliferation and represses cell apoptosis by interacting with let-7c-5p to regulate BCAT1 expression.
Collapse
Affiliation(s)
- Huan Wang
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Fuming Zhou
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Jia Wan
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Hong Yu
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China
| | - Jin Wang
- Department of Otolaryngology, Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), 176 Qingnian Road, Kunming City, Yunnan Province, 650021, China.
| |
Collapse
|
11
|
Piergentili R, Marinelli E, Cucinella G, Lopez A, Napoletano G, Gullo G, Zaami S. miR-125 in Breast Cancer Etiopathogenesis: An Emerging Role as a Biomarker in Differential Diagnosis, Regenerative Medicine, and the Challenges of Personalized Medicine. Noncoding RNA 2024; 10:16. [PMID: 38525735 PMCID: PMC10961778 DOI: 10.3390/ncrna10020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Breast Cancer (BC) is one of the most common cancer types worldwide, and it is characterized by a complex etiopathogenesis, resulting in an equally complex classification of subtypes. MicroRNA (miRNA or miR) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to tumor development and angiogenesis in different types of cancer. Recently, complex interactions among coding and non-coding RNA have been elucidated, further shedding light on the complexity of the roles these molecules fulfill in cancer formation. In this context, knowledge about the role of miR in BC has significantly improved, highlighting the deregulation of these molecules as additional factors influencing BC occurrence, development and classification. A considerable number of papers has been published over the past few years regarding the role of miR-125 in human pathology in general and in several types of cancer formation in particular. Interestingly, miR-125 family members have been recently linked to BC formation as well, and complex interactions (competing endogenous RNA networks, or ceRNET) between this molecule and target mRNA have been described. In this review, we summarize the state-of-the-art about research on this topic.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy;
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Alessandra Lopez
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| |
Collapse
|
12
|
Tsukiboshi Y, Noguchi A, Horita H, Mikami Y, Yokota S, Ogata K, Yoshioka H. Let-7c-5p associate with inhibition of phenobarbital-induced cell proliferation in human palate cells. Biochem Biophys Res Commun 2024; 696:149516. [PMID: 38241808 DOI: 10.1016/j.bbrc.2024.149516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Cleft palate (CP) is one of the most common congenital diseases, and is accompanied by a complicated etiology. Medical exposure in women is among one of the reasons leading to CP. Recently, it has been reported that microRNA (miRNA) plays a crucial role in palate formation and the disruption of miRNA that influence the development of CP. Although association with pharmaceuticals and miRNAs were suggested, it has remained largely unknow. The aim of the current investigation is to elucidate upon the miRNA associated with the inhibition of phenobarbital (PB)-induced cell proliferation in human embryonic palatal mesenchymal (HEPM) cells. We showed that PB inhibited HEPM cell viability in a dose-dependent manner. We demonstrated that PB treatment suppressed cyclin-D1 expression in HEPM cells. Furthermore, PB upregulated let-7c-5p expression and downregulated the expression of two downstream genes (BACH1 and PAX3). Finally, we demonstrated that the let-7c-5p inhibitor alleviated PB-induced inhibition of cell proliferation and altered BACH1 and PAX3 expression levels. These results suggest that PB suppresses cell viability by modulating let-7c-5p expression.
Collapse
Affiliation(s)
- Yosuke Tsukiboshi
- Department of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu, 509-0293, Japan
| | - Azumi Noguchi
- Department Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Hanane Horita
- Department of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu, 509-0293, Japan
| | - Yurie Mikami
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Yoshioka
- Department of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu, 509-0293, Japan.
| |
Collapse
|
13
|
Zhao T, Sun J, Lu X, Liu L, Chen L, Zhao W, Zhou B. Let-7a-5p abrogates progression of papillary thyroid carcinoma cells by decreasing nuclear receptor subfamily 6 group a member 1-mediated lipogenesis. J Biochem Mol Toxicol 2024; 38:e23572. [PMID: 37905833 DOI: 10.1002/jbt.23572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Increasing evidence shows that microRNAs (miRNAs) contribute vital roles in papillary thyroid carcinoma (PTC) carcinogenesis, proliferation, invasion, and so on. As the most common endocrine malignancy, there still have largely unknown molecular events. First, our analysis and open access database information indicates that the downregulation of let-7a-5p accelerates PTC progression. Next, lentivirus mediates the overexpression of let-7a-5p PTC cells, and found let-7a-5p suppressed cancer cells proliferation and invasion. Interestingly, bioinformatics analysis hints NR6A1 is the potential target gene of let-7a-5p. The regulation was validated by luciferase and quantitative reverse transcription polymerase chain reaction (qRT-PCR) in PTC tissue and the clinic tumors. Moreover, let-7a-5p regulated NR6A1 involved in PTC cells lipogensis in vitro and in vivo. Finally, let-7a-5p abrogates PCT xenograft tumors growth, NR6A1 expression and lipogenesis. Taken together, our data indicates that let-7a-5p suppresses PCT progression through decreased lipogenesis, the related let-7a-5p/NR6A1axis might be promising candidate targets for PTC treatment.
Collapse
Affiliation(s)
- Tao Zhao
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Jinghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xiangdong Lu
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Lingling Liu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Lin Chen
- Department of Outpatient, North Sichuan Medical College, Nanchong, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Bin Zhou
- Department of Thyroid and Breast Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| |
Collapse
|
14
|
Dziechciowska I, Dąbrowska M, Mizielska A, Pyra N, Lisiak N, Kopczyński P, Jankowska-Wajda M, Rubiś B. miRNA Expression Profiling in Human Breast Cancer Diagnostics and Therapy. Curr Issues Mol Biol 2023; 45:9500-9525. [PMID: 38132441 PMCID: PMC10742292 DOI: 10.3390/cimb45120595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancer types worldwide. Regarding molecular characteristics and classification, it is a heterogeneous disease, which makes it more challenging to diagnose. As is commonly known, early detection plays a pivotal role in decreasing mortality and providing a better prognosis for all patients. Different treatment strategies can be adjusted based on tumor progression and molecular characteristics, including personalized therapies. However, dealing with resistance to drugs and recurrence is a challenge. The therapeutic options are limited and can still lead to poor clinical outcomes. This review aims to shed light on the current perspective on the role of miRNAs in breast cancer diagnostics, characteristics, and prognosis. We discuss the potential role of selected non-coding RNAs most commonly associated with breast cancer. These include miR-21, miR-106a, miR-155, miR-141, let-7c, miR-335, miR-126, miR-199a, miR-101, and miR-9, which are perceived as potential biomarkers in breast cancer prognosis, diagnostics, and treatment response monitoring. As miRNAs differ in expression levels in different types of cancer, they may provide novel cancer therapy strategies. However, some limitations regarding dynamic alterations, tissue-specific profiles, and detection methods must also be raised.
Collapse
Affiliation(s)
- Iga Dziechciowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Małgorzata Dąbrowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Anna Mizielska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Pyra
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants, Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70 Str., 60-812 Poznan, Poland
| | - Magdalena Jankowska-Wajda
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8 Str., 61-614 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.D.); (M.D.); (A.M.)
| |
Collapse
|
15
|
Huang L, Lou K, Wang K, Liang L, Chen Y, Zhang J. Let-7c-5p Represses Cisplatin Resistance of Lung Adenocarcinoma Cells by Targeting CDC25A. Appl Biochem Biotechnol 2023; 195:1644-1655. [PMID: 36355336 DOI: 10.1007/s12010-022-04219-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
Cisplatin broadly functions as a routine treatment for lung adenocarcinoma (LUAD) patients. However, primary and acquired cisplatin resistances frequently occur in the treatment of LUAD patients, seriously affecting the therapeutic effect of cisplatin in patients. We intended to illustrate the impact of let-7c-5p/cell division cycle 25A (CDC25A) axis on cisplatin resistance in LUAD. Expression of let-7c-5p and CDC25A was analyzed via quantitative real-time polymerase chain reaction. The interaction between the two was verified by dual-luciferase reporter detection. For detecting half-maximal inhibitory concentration value of cisplatin in LUAD cells and cell proliferation, we separately applied Cell Counting Kit-8 and colony formation assays. Furthermore, we measured cell apoptosis and cell cycle distribution via flow cytometry, as well as cell cycle-related protein expression via Western blot. Let-7c-5p was evidently downregulated in LUAD, while CDC25A was remarkably upregulated. Let-7c-5p upregulation arrested LUAD cells to proliferate, stimulated cell apoptosis, and arrested cell cycle in G0/G1 phase, thus enhancing sensitivity of LUAD cells to cisplatin. In terms of mechanism, CDC25A was directly targeted by let-7c-5p, and the influence of let-7c-5p overexpression on LUAD proliferation, apoptosis, cell cycle, and cisplatin resistance could be reversed by CDC25A upregulation. Let-7c-5p improved sensitivity of LUAD cells to cisplatin by modulating CDC25A, and let-7c-5p/CDC25A axis was an underlying target for the intervention of LUAD cisplatin resistance.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People's Hospital, Taizhou, 318020, China
| | - Kai Lou
- Emergency Department, Taizhou First People's Hospital, Taizhou, 318020, China
| | - Kunyu Wang
- Department of Thoracic Surgery, Taizhou First People's Hospital, Huangyan District, No.218 Hengjie Road, Taizhou, 318020, Zhejiang, China
| | - Lingxin Liang
- Department of Thoracic Surgery, Taizhou First People's Hospital, Huangyan District, No.218 Hengjie Road, Taizhou, 318020, Zhejiang, China
| | - Yi Chen
- Department of Thoracic Surgery, Taizhou First People's Hospital, Huangyan District, No.218 Hengjie Road, Taizhou, 318020, Zhejiang, China
| | - Jichen Zhang
- Department of Thoracic Surgery, Taizhou First People's Hospital, Huangyan District, No.218 Hengjie Road, Taizhou, 318020, Zhejiang, China.
| |
Collapse
|
16
|
Chen W, Wang H, Shen Y, Wang S, Liu D, Zhao H, Wang G, Huang F, Wang W, Wu R, Hou L, Ye Z, Zhang X, Geng X, Yu X. Let-7c-5p down-regulates immune-related CDCA8 to inhibit hepatocellular carcinoma. Funct Integr Genomics 2023; 23:56. [PMID: 36737507 DOI: 10.1007/s10142-023-00974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the effect of let-7c-5p on the malignant behaviors of hepatocellular carcinoma (HCC) and its specific molecular pathway. METHODS Differential expression and survival analysis of let-7c-5p were obtained from The Cancer Genome Atlas database, and then its expression level was preliminarily verified through qPCR. The effect of let-7c-5p on the malignant phenotype of HCC cells was subsequently evaluated using CCK-8, transwell, wound healing, and flow cytometry assays. Downstream mRNA regulated by let-7c-5p was identified and confirmed by ENCORI database, dual-luciferase reporter, and western blot assays. The immunocorrelation of genes was evaluated by Xiantao tool, and TIMER and TISIDB databases. RESULTS The expression level of let-7c-5p in HCC was obviously reduced, which was found to be closely associated with the short survival time of HCC patients. Cell phenotypic experiments showed that let-7c-5p inhibited proliferation, invasion, and migration and promoted apoptosis of HCC cells. Dual-luciferase reporter and western blot analysis demonstrated that CDCA8 is a downstream mRNA of let-7c-5p and is negatively regulated by it. Rescue experiment revealed that CDCA8 reversed the effect of let-7c-5p on the malignant phenotype of HCC cells. Furthermore, analysis of the public database revealed that CDCA8 is related to some immune cells and immunomodulators, and that it may participate in the regulation of some immune pathways and immune functions. CONCLUSION Let-7c-5p has been proved to suppress HCC by down-regulating immune-related CDCA8, which will help understand the pathogenesis of HCC and develop drugs for its treatment.
Collapse
Affiliation(s)
- Wanjin Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Haibo Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
| | - Yuanlong Shen
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shouwen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Deng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hongchuan Zhao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Guobin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fan Huang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ruolin Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liujin Hou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhenghui Ye
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xinghua Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoping Geng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaojun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China. .,Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
17
|
Lu Z, Wu S, Xiao Z, Song J, Wu H, Peng X. Responses of microRNA in digestive glands of mussel Mytilus galloprovincialis exposed to polystyrene nanoplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114412. [PMID: 36527847 DOI: 10.1016/j.ecoenv.2022.114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Polystyrene nanoplastics (PS-NPs) are typical accumulated nanoplastics in the marine environment and organisms, and have strong potential risks to marine ecological environment and human health. MiRNAs could respond to and participate in the response process of environmental stressors. However, the response of miRNAs to nanoplastics has not been fully explored. In this study, miRNA responses of digestive glands in mussels Mytilus galloprovincialis treated by 200 nm PS-NPs (20, 200, 2000 μg/L) for 7 days were characterized by BGISEQ-500 deep sequencing and bioinformatics analysis, along with histopathological quantification with planimetric parameters on hematoxylin and eosin (H&E) staining. Results showed that one novel miRNA (novel_mir63) and seven known miRNAs (miR-34_2, miR-34_5, miR-281_8, let-7-5p_6, miR-10, miR-124, miR-29b-3p) were significantly (adjusted P-value < 0.05) differentially expressed after PS-NPs treatments, and most of them were down-regulated expect for novel_mir63 and miR-34_2. Function analysis of target genes corresponding to these differentially expressed miRNAs indicated that PS-NPs disturbed the process related to metabolism, aging, cardiac function, neural excitation, and repairment. Among them, acetyl-CoA C-acetyltransferase and purine metabolism pathway played vital connection roles. Meanwhile, significantly morphology changes of digestive tubes obtained from H&E stained sections also implied severely disrupted metabolic capability in digestive glands, reflected by significantly increased mean diverticular radius (MDR) and mean luminal radius (MLR) values and the ratio of MLR to mean epithelial thickness (MET), and significantly decreased MET value and MET/MDR. Overall, these findings have revealed new characterization of miRNAs and their target genes in mussel M. galloprovincialis under PS-NPs stress, and provide important clues to further elucidate the toxicity mechanisms of PS-NPs.
Collapse
Affiliation(s)
- Zhen Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai 264003, PR China; Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China
| | - Sihan Wu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China
| | - Zeyu Xiao
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China
| | - Jun Song
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai 264003, PR China.
| | - Xiao Peng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
18
|
Naeem P, Baumgartner A, Ghaderi N, Sefat F, Alhawamdeh M, Heidari S, Shahzad F, Swaminathan K, Akhbari P, Isreb M, Anderson D, Wright A, Najafzadeh M. Anticarcinogenic impact of extracellular vesicles (exosomes) from cord blood stem cells in malignant melanoma: A potential biological treatment. J Cell Mol Med 2022; 27:222-231. [PMID: 36545841 PMCID: PMC9843520 DOI: 10.1111/jcmm.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
Incidence of Malignant Melanoma has become the 5th in the UK. To date, the major anticancer therapeutics include cell therapy, immunotherapy, gene therapy and nanotechnology-based strategies. Recently, extracellular vesicles, especially exosomes, have been highlighted for their therapeutic benefits in numerous chronic diseases. Exosomes display multifunctional properties, including inhibition of cancer cell proliferation and initiation of apoptosis. In the present in vitro study, the antitumour effect of cord blood stem cell (CBSC)-derived exosomes was confirmed by the CCK-8 assay (p < 0.05) on CHL-1 melanoma cells and improve the repair mechanism on lymphocytes from melanoma patients. Importantly, no significant effect was observed in healthy lymphocytes when treated with the exosome concentrations at 24, 48 and 72 h. Comet assay results (OTM and %Tail DNA) demonstrated that the optimal exosome concentration showed a significant impact (p < 0.05) in lymphocytes from melanoma patients whilst causing no significant DNA damage in lymphocytes of healthy volunteers was 300 μg/ml. Similarly, the Comet assay results depicted significant DNA damage in a melanoma cell line (CHL-1 cells) treated with CBSC-derived exosomes, both the cytotoxicity of CHL-1 cells treated with CBSC-derived exosomes exhibited a significant time-dependent decrease in cell survival. Sequencing analysis of CBSC exosomes showed the presence of the let-7 family of miRNAs, including let-7a-5p, let-7b-5p, let-7c-5p, let-7d-3p, let-7d-5p and two novel miRNAs. The potency of CBSC exosomes in inhibiting cancer progression in lymphocytes from melanoma patients and CHL-1 cells whilst causing no harm to the healthy lymphocytes makes it a potential candidate as an anticancer therapy.
Collapse
Affiliation(s)
- Parisa Naeem
- School of Life SciencesUniversity of BradfordBradfordUK
| | - Adi Baumgartner
- School of Science, Technology and Health, BiosciencesYork St John UniversityYorkUK
| | - Nader Ghaderi
- Bradford Teaching Hospitals NHS Foundation TrustSt Luke's HospitalBradfordUK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, Faculty of Engineering and InformaticsUniversity of BradfordBradfordUK
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical SciencesMutah UniversityAlkarakJordan
| | - Saeed Heidari
- Cell Therapy and Tissue engineering Department, Faculty of Medical SciencesShahid Beheshti UniversityTehranIran
| | | | | | - Pouria Akhbari
- Institute of Biomedical and Clinical Science, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Mohammad Isreb
- School of Pharmacy and Medical SciencesUniversity of BradfordBradfordUK
| | | | - Andrew Wright
- Bradford Teaching Hospitals NHS Foundation TrustSt Luke's HospitalBradfordUK
| | | |
Collapse
|
19
|
Xue C, Liu C, Yun X, Zou X, Li X, Wang P, Li F, Ge Y, Zhang Q, Xie X, Li X, Luo B. Knockdown of hsa_circ_0008922 inhibits the progression of glioma. PeerJ 2022; 10:e14552. [PMID: 36570001 PMCID: PMC9784332 DOI: 10.7717/peerj.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A glioma is a tumor originating from glial cells in the central nervous system. Although significant progress has been made in diagnosis and treatment, most high-grade glioma patients are prone to recurrence. Therefore, molecular targeted therapy may become a new direction for adjuvant therapy in glioma. In recent years, many studies have revealed that circular RNA (circRNA) may play an important role in the occurrence and development of many tumors including gliomas. Our previous study found that the expression of hsa_circ_0008922 was up-regulated in glioma tissues upon RNA sequencing. The biological mechanism of circ_0008922 is still unreported in gliomas. Therefore, in this study, we preliminarily outlined the expression of hsa_circ_0008922 in glioma and explored its biological functions. METHODS The expression of hsa_circ_0008922 in forty glioma tissues and four glioma cell lines (A172, U251, SF763 and U87) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The correlation between hsa_circ_0008922 expression and clinicopathological features of glioma patients was evaluated by Fisher's exact test. To understand the potential function of hsa_circ_0008922 in glioma, we constructed small interfering RNA (siRNA) to hsa_circ_0008922 to downregulate its expression in glioma cell lines A172 and U251. With these hsa_circ_0008922 downregulated cells, a series of assays were carried out as follows. Cell proliferation was detected by CCK8 assay, migration and invasion were determined by wound healing assay and transwell assay, respectively. Colony formation ability was evaluated by plate clonogenic assay. Moreover, flow cytometry combined with Western blot was performed to analyze apoptosis status and the expression of apoptotic related proteins (caspase 3 and caspase 9). Finally, the possible biological pathways and potential miRNA targets of hsa_circ_0008922 were predicted by bioinformatics. RESULTS We found that the expression of hsa_circ_0008922 in glioma tissues was 3.4 times higher than that in normal tissues. The expression of has_circ_0008922 was correlated with WHO tumor grade. After down-regulating the expression of hsa_circ_0008922, malignant biological behavior of glioma cells was inhibited, such as cell proliferation, colony formation, migration, and invasion. At the same time, it also induced apoptosis of glioma cells. Predicted analysis by bioinformatics demonstrated that hsa_circ_0008922 may be involved in tumor-related pathways by acting as a molecular sponge for multiple miRNAs (hsa-let-7e-5p, hsa-miR-506-5p, hsa-let-7b-5p, hsa-let-7c-5p and hsa-let-7a-5p). Finally, we integrated our observation to build a circRNA-miRNA-mRNA predictive network.
Collapse
Affiliation(s)
- Chunhong Xue
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Xiang Yun
- Department of International Cooperation and External Exchange, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoqiong Zou
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Xin Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Ping Wang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Feng Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xisheng Li
- Department of Neurosurgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Preclinical Medicine (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
20
|
Wang Q, Wu G, Fu L, Li Z, Wu Y, Zhu T, Yu G. Tumor-promoting roles of HMMR in lung adenocarcinoma. Mutat Res 2022; 826:111811. [PMID: 36603370 DOI: 10.1016/j.mrfmmm.2022.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 12/16/2022]
Abstract
Searching for differential genes in lung adenocarcinoma (LUAD) is vital for research. Hyaluronan mediated motility receptor (HMMR) promotes malignant progression of cancer patients. However, the molecular regulators of HMMR-mediated LUAD onset are unknown. This work aimed to study the relevance of HMMR to proliferation, migration and invasion of LUAD cells. Let-7c-5p and HMMR levels in LUAD cells and HLF-a cells were assessed, and their correlation was also detected. Their interaction was determined by dual-luciferase experiments and qRT-PCR. Cell proliferation, migration and invasion potentials in vitro were validated through cell counting kit-8 (CCK-8), colony formation, scratch healing, and transwell assays. The expression of HMMR was examined by qRT-PCR and western blot and the expression of let-7c-5p was assayed by qRT-PCR. It was found that HMMR level was increased in LUAD and negatively correlated with let-7c-5p level. Let-7c-5p directly targeted HMMR to repress LUAD cell proliferation, migration and invasion. The above data illustrated that the let-7c-5p/HMMR axis may provide certain therapeutic value for LUAD patients.
Collapse
Affiliation(s)
- Qihao Wang
- Shaoxing University School of Medicine, Shaoxing, Zhejiang Province 312000, China
| | - Guomin Wu
- Shaoxing University School of Medicine, Shaoxing, Zhejiang Province 312000, China
| | - Linhai Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoxing University (Shaoxing People's Hospital), Shaoxing, Zhejiang Province 312000, China
| | - Zhupeng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoxing University (Shaoxing People's Hospital), Shaoxing, Zhejiang Province 312000, China
| | - Yuanlin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoxing University (Shaoxing People's Hospital), Shaoxing, Zhejiang Province 312000, China
| | - Ting Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoxing University (Shaoxing People's Hospital), Shaoxing, Zhejiang Province 312000, China
| | - Guangmao Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoxing University (Shaoxing People's Hospital), Shaoxing, Zhejiang Province 312000, China.
| |
Collapse
|
21
|
RGS16 regulated by let-7c-5p promotes glioma progression by activating PI3K-AKT pathway. Front Med 2022; 17:143-155. [PMID: 36414916 DOI: 10.1007/s11684-022-0929-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
Gliomas are the most common central nervous system tumours; they are highly aggressive and have a poor prognosis. RGS16 belongs to the regulator of G-protein signalling (RGS) protein family, which plays an important role in promoting various cancers, such as breast cancer, pancreatic cancer, and colorectal cancer. Moreover, previous studies confirmed that let-7c-5p, a well-known microRNA, can act as a tumour suppressor to regulate the progression of various tumours by inhibiting the expression of its target genes. However, whether RGS16 can promote the progression of glioma and whether it is regulated by miR let-7c-5p are still unknown. Here, we confirmed that RGS16 is upregulated in glioma tissues and that high expression of RGS16 is associated with poor survival. Ectopic deletion of RGS16 significantly suppressed glioma cell proliferation and migration both in vitro and in vivo. Moreover, RGS16 was validated as a direct target gene of miR let-7c-5p. The overexpression of miR let-7c-5p obviously downregulated the expression of RGS16, and knocking down miR let-7c-5p had the opposite effect. Thus, we suggest that the suppression of RGS16 by miR let-7c-5p can promote glioma progression and may serve as a potential prognostic biomarker and therapeutic target in glioma.
Collapse
|
22
|
Zhang Y, Zhang T, Xu L, Zhu Y, Zhao LL, Li XD, Yang WW, Chen J, Gu M, Gu XS, Yang J. Evolution of the ErbB gene family and analysis of regulators of Egfr expression during development of the rat spinal cord. Neural Regen Res 2022; 17:2484-2490. [PMID: 35535900 PMCID: PMC9120683 DOI: 10.4103/1673-5374.339010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Egfr, a member of the ErbB gene family, plays a critical role in tissue development and homeostasis, wound healing, and disease. However, expression and regulators of Egfr during spinal cord development remain poorly understood. In this study, we investigated ErbB evolution and analyzed co-expression modules, miRNAs, and transcription factors that may regulate Egfr expression in rats. We found that ErbB family members formed via Egfr duplication in the ancient vertebrates but diverged after speciation of gnathostomes. We identified a module that was co-expressed with Egfr, which involved cell proliferation and blood vessel development. We predicted 25 miRNAs and nine transcription factors that may regulate Egfr expression. Dual-luciferase reporter assays showed six out of nine transcription factors significantly affected Egfr promoter reporter activity. Two of these transcription factors (KLF1 and STAT3) inhibited the Egfr promoter reporter, whereas four transcription factors (including FOXA2) activated the Egfr promoter reporter. Real-time PCR and immunofluorescence experiments showed high expression of FOXA2 during the embryonic period and FOXA2 was expressed in the floor plate of the spinal cord, suggesting the importance of FOXA2 during embryonic spinal cord development. Considering the importance of Egfr in embryonic spinal cord development, wound healing, and disease (specifically in cancer), regulatory elements identified in this study may provide candidate targets for nerve regeneration and disease treatment in the future.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Tao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Ye Zhu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li-Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Di Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wei-Wei Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Miao Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xiao-Song Gu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
23
|
Prajapati KS, Shuaib M, Gupta S, Kumar S. Withaferin A mediated changes of miRNA expression in breast cancer-derived mammospheres. Mol Carcinog 2022; 61:876-889. [PMID: 35770722 DOI: 10.1002/mc.23440] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023]
Abstract
Breast cancer is a heterogeneous disease consisting of atypical cell populations that share stem cell-like characteristics associated with therapeutic resistance, disease relapse, and poor clinical outcome. MicroRNAs (miRNA), and small noncoding RNA, are pivotal in the regulation of self-renewal, stemness, and cellular differentiation. Withaferin A (WA), a steroidal lactone, is a major bioactive constituent of Withania somnifera (Solanaceae) known for its anticancer properties. In this study, the effect of WA on modulation of miRNA expression in breast cancer-derived mammosphere was assessed utilizing small RNA sequencing. Treatment with WA inhibited MCF-7 and T47D cells derived mammosphere formation with a significant decrease in CD44, EpCAM, Nanog, OCT4, and SOX2 as markers of self-renewal and stemness. Small RNA sequencing demonstrated a total of 395 differentially expressed miRNAs (DEMs) including 194 upregulated and 201 downregulated miRNAs in WA-treated MCF-7 mammospheres. Bioinformatics analysis utilizing the KEGG pathway, Gene Ontology enrichment, protein-protein, and miRNA-mRNA interaction network identified altered expression in a few hub genes viz. AKT1, PTEN, MYC, CCND1, VEGFA, NOTCH1, and IGFR1 associated with DEMs in WA-treated mammospheres. Further quantitative RT-PCR analysis validated the expression of DEMs including miR-549a-5p, miR-1247-5p, miR-124-5p, miR-137-5p, miR-34a-5p, miR-146a-5p, miR-99a-5p, miR-181a-5p, let-7c-5p, and let-7a-5p. In particular, let-7c-5p is designated as a tumor suppressor in breast cancer. An increase in miR-let-7c-5p expression was noted after WA treatment, with a simultaneous decrease in CCND1 and c-MYC at mRNA and protein levels. Taken together, our study demonstrated WA-mediated miRNA expression, in particular, upregulation of miR-let-7c-5p, leads to the inhibition of breast cancer cells derived mammospheres.
Collapse
Affiliation(s)
- Kumari Sunita Prajapati
- Department of Biochemistry, Molecular Signaling & Drug Discovery Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Mohd Shuaib
- Department of Biochemistry, Molecular Signaling & Drug Discovery Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Sanjay Gupta
- Department of Urology, Nutrition, Pharmacology and Pathology, The James and Eilleen Dicke Research Laboratory, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shashank Kumar
- Department of Biochemistry, Molecular Signaling & Drug Discovery Laboratory, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
24
|
Hsa-let-7c-5p, hsa-miR-130b-3p, and hsa-miR-142-3p as Novel miRNA Biomarkers for Melanoma Progression. Genet Res (Camb) 2022; 2022:5671562. [PMID: 35903462 PMCID: PMC9282999 DOI: 10.1155/2022/5671562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to screen miRNA biomarkers for melanoma progression. Raw melanoma data were downloaded from the Gene Expression Omnibus (GSE34460, GSE35579, GSE18509, and GSE24996) and the Cancer Genome Atlas (TCGA). Then, all differentially expressed miRNAs (DEmiRNAs) between benign vs. primary, metastatic vs. benign, and metastatic vs. primary groups were obtained in the GSE34460 and GSE35579 datasets, and the miRNAs related to disease progression were further screened. Then, the miRNA-gene network was constructed, followed by enrichment, survival, and cluster analyses. Differentially expressed genes (DEGs), tumor-infiltrating immune cells, and tumor mutation burden (TMB) between subtypes were analyzed. miRNAs were verified in the GSE18509 and GSE24996 datasets. A total of 132 and 209 DEmiRNAs were obtained in the GSE34460 and GSE35579 datasets, respectively, and 27 DEmiRNAs related to disease progression were screened. hsa-miR-106b-5p, hsa-miR-27b-3p, and hsa-miR-141-3p had a higher degree and were regulated by numerous genes in the miRNA-gene network. Moreover, four miRNAs were associated with prognosis: hsa-let-7c-5p, hsa-miR-130b-3p, hsa-miR-142-3p, and hsa-miR-509-3p. Furthermore, the bidirectional hierarchical clustering of 27 miRNAs was classified into three subtypes, and TMB and four types of immune cells, including activated dendritic cells, naïve CD4 T cells, M1 macrophages, and plasma cells, showed significant differences among the three subtypes. The expression levels of most miRNAs in the GSE18509 and GSE24996 datasets were consistent with those in the training dataset. These miRNAs, including hsa-let-7c-5p, hsa-miR-130b-3p, and hsa-miR-142-3p, and activated dendritic cells, naïve CD4 T cells, M1 macrophages, and plasma cells may play vital roles in the pathogenesis of melanoma.
Collapse
|
25
|
Liu X, Zeng W, Zheng D, Tang M, Zhou W. Let-7c-5p Restrains Cell Growth and Induces Apoptosis of Lung Adenocarcinoma Cells via Targeting ESPL1. Mol Biotechnol 2022; 64:1367-1375. [PMID: 35639278 DOI: 10.1007/s12033-022-00511-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
Abstract
Lung adenocarcinoma (LUAD) is a predominant malignancy, and its high mortality prompts us to incessantly probe the relevant targeted treatment. This work intended to study the molecular mechanism of ESPL1 in LUAD. Bioinformatics analysis was performed for pan-cancer and prognosis analysis as well as target gene prediction. Expression of ESPL1 mRNA and let-7c-5p was determined via qRT-PCR, and western blot was employed to detect protein level of ESPL1. Dual-luciferase reporter gene method verified the interaction between ESPL1 and let-7c-5p. Thereafter, CCK-8, wound healing, Transwell, and flow cytometry assays were utilized to investigate proliferation, migration, and apoptosis of LUAD cells. The results revealed that ESPL1 was upregulated in LUAD, which was associated with poor prognosis. Overexpressed ESPL1 promoted LUAD cells to invade, proliferate, and migrate. Furthermore, ESPL1 was a target gene of let-7c-5p. Let-7c-5p was downregulated in LUAD cells, and played a suppressive role in LUAD malignant development, while reversed by ESPL1. Taken together, it was posited that let-7c-5p/ESPL1 may be underlying therapeutic targets of LUAD.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, China
| | - Wei Zeng
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, China
| | - Dayang Zheng
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, China
| | - Min Tang
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, China
| | - Wangyan Zhou
- Department of Medical Record, Hengyang Medical School, The First Affiliated Hospital, University of South China, Chuanshan Avenue 69, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
26
|
Pan-cancer analysis of microRNA expression profiles highlights microRNAs enriched in normal body cells as effective suppressors of multiple tumor types: A study based on TCGA database. PLoS One 2022; 17:e0267291. [PMID: 35476804 PMCID: PMC9045663 DOI: 10.1371/journal.pone.0267291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are frequently deregulated in various types of cancer. While antisense oligonucleotides are used to block oncomiRs, delivery of tumour-suppressive miRNAs holds great potential as a potent anti-cancer strategy. Here, we aim to determine, and functionally analyse, miRNAs that are lowly expressed in various types of tumour but abundantly expressed in multiple normal tissues. METHODS The miRNA sequencing data of 14 cancer types were downloaded from the TCGA dataset. Significant differences in miRNA expression between tumor and normal samples were calculated using limma package (R programming). An adjusted p value < 0.05 was used to compare normal versus tumor miRNA expression profiles. The predicted gene targets were obtained using TargetScan, miRanda, and miRDB and then subjected to gene ontology analysis using Enrichr. Only GO terms with an adjusted p < 0.05 were considered statistically significant. All data from wet-lab experiments (cell viability assays and flow cytometry) were expressed as means ± SEM, and their differences were analyzed using GraphPad Prism software (Student's t test, p < 0.05). RESULTS By compiling all publicly available miRNA profiling data from The Cancer Genome Atlas (TCGA) Pan-Cancer Project, we reveal a small set of tumour-suppressing miRNAs (which we designate as 'normomiRs') that are highly expressed in 14 types of normal tissues but poorly expressed in corresponding tumour tissues. Interestingly, muscle-enriched miRNAs (e.g. miR-133a/b and miR-206) and miRNAs from DLK1-DIO3 locus (e.g. miR-381 and miR-411) constitute a large fraction of the normomiRs. Moreover, we define that the CCCGU motif is absent in the oncomiRs' seed sequences but present in a fraction of tumour-suppressive miRNAs. Finally, the gain of function of candidate normomiRs across several cancer cell types indicates that miR-206 and miR-381 exert the most potent inhibition on multiple cancer types in vitro. CONCLUSION Our results reveal a pan-cancer set of tumour-suppressing miRNAs and highlight the potential of miRNA-replacement therapies for targeting multiple types of tumour.
Collapse
|
27
|
Santos-Álvarez JC, Velázquez-Enríquez JM, García-Carrillo R, Rodríguez-Beas C, Ramírez-Hernández AA, Reyes-Jiménez E, González-García K, López-Martínez A, Pérez-Campos Mayoral L, Aguilar-Ruiz SR, Romero-Tlalolini MDLÁ, Torres-Aguilar H, Castro-Sánchez L, Arellanes-Robledo J, Vásquez-Garzón VR, Baltiérrez-Hoyos R. miRNAs Contained in Extracellular Vesicles Cargo Contribute to the Progression of Idiopathic Pulmonary Fibrosis: An In Vitro Aproach. Cells 2022; 11:cells11071112. [PMID: 35406675 PMCID: PMC8997737 DOI: 10.3390/cells11071112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. Lesions in the lung epithelium cause alterations in the microenvironment that promote fibroblast accumulation. Extracellular vesicles (EVs) transport proteins, lipids, and nucleic acids, such as microRNAs (miRNAs). The aim of this study was to characterize the differentially expressed miRNAs in the cargo of EVs obtained from the LL97 and LL29 fibroblast cell lines isolated from IPF lungs versus those derived from the CCD19 fibroblast cell line isolated from a healthy donors. We characterized EVs by ultracentrifugation, Western blotting, and dynamic light scattering. We identified miRNAs by small RNA-seq, a total of 1144 miRNAs, of which 1027 were known miRNAs; interestingly, 117 miRNAs were novel. Differential expression analysis showed that 77 miRNAs were upregulated and 68 were downregulated. In addition, pathway enrichment analyses from the Gene Ontology and Kyoto Encyclopedia of Genomes identified several miRNA target genes in the categories, cell proliferation, regulation of apoptosis, pathways in cancer, and proteoglycans in cancer. Our data reveal that miRNAs contained in EVs cargo could be helpful as biomarkers for fibrogenesis, diagnosis, and therapeutic intervention of IPF.
Collapse
Affiliation(s)
- Jovito Cesar Santos-Álvarez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Juan Manuel Velázquez-Enríquez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Rosendo García-Carrillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico;
| | | | - Alma Aurora Ramírez-Hernández
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Edilburga Reyes-Jiménez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Karina González-García
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Armando López-Martínez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico;
| | - Sergio Roberto Aguilar-Ruiz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | | | - Honorio Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico;
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima 28045, Mexico;
| | | | - Verónica Rocío Vásquez-Garzón
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (M.d.l.Á.R.-T.); (V.R.V.-G.)
| | - Rafael Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (M.d.l.Á.R.-T.); (V.R.V.-G.)
- Correspondence:
| |
Collapse
|
28
|
Lv X, Fang Z, Qi W, Xu Y, Chen W. Long Non-coding RNA HOXA11-AS Facilitates Proliferation of Lung Adenocarcinoma Cells via Targeting the Let-7c-5p/IGF2BP1 Axis. Front Genet 2022; 13:831397. [PMID: 35368660 PMCID: PMC8969016 DOI: 10.3389/fgene.2022.831397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 12/09/2022] Open
Abstract
Objective: This study investigates the relationship between the HOXA11-AS/let-7c-5p/IGF2BP1 regulatory axis and lung adenocarcinoma. Methods: The expression levels of HOXA11-AS, let-7c-5p, and IGF2BP1 were evaluated in LUAD tissue and cell lines. Subcellular fractionation detection assay was adopted to verify the HOXA11-AS distribution in LUAD cells. The interaction relationship between let-7c-5p and HOXA11-AS or IGF2BP1 was validated by dual-luciferase reporter detection. In RNA binding protein immunoprecipitation assay, the binding relationship between HOXA11-AS and let-7c-5p was identified. The cell viability of transfected cells was tested by the Cell Counting Kit-8 assay. The mouse xenograft model was used to identify the effect of HOXA11-AS on tumor growth in vivo. Results: Upregulation of lncRNA HOXA11-AS was found in LUAD, and suppression of HOXA11-AS could suppress the proliferative ability of LUAD cells. The let-7c-5p was expressed to be downregulated, which played an inhibitory role in LUAD cell proliferation. Let-7c-5p was negatively regulated by HOXA11-AS. HOXA11-AS promoted LUAD cell proliferation, while let-7c-5p had an inverse effect. Besides, IGF2BP1, regulated by let-7c-5p, had a positive relation with HOXA11-AS, while overexpression of IGF2BP1 could suppress the inhibition of silencing HOXA11-AS on LUAD cell proliferation. Experiments on mice confirmed that HOXA11-AS facilitated LUAD cell growth in vivo through regulating the let-7c-5p/IGF2BP1 axis. Conclusion: HOXA11-AS promoted LUAD cell proliferation by targeting let-7c-5p/IGF2BP1, which could be potential molecular targets for LUAD.
Collapse
Affiliation(s)
- Xiaodong Lv
- Department of Respiration, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhixian Fang
- Department of Respiration, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yufen Xu
- Department of Oncology, Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Wenyu Chen, ; Yufen Xu,
| | - Wenyu Chen
- Department of Respiration, Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Wenyu Chen, ; Yufen Xu,
| |
Collapse
|
29
|
Wang L, Zou J, Zhang J. Dysregulation of let-7c-5p/Tyrosyl-DNA phosphodiesterase 1 axis indicates an unfavorable outcome in gastric cancer. EUR J INFLAMM 2022. [DOI: 10.1177/20587392211069258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Tyrosyl-DNA phosphodiesterase 1 (TDP1) can repair oxidative damage-caused 3′-phosphoglycolates and promote cancer progression. However, the clinical significance of TDP1 and its correlation with microRNAs (miRNAs) in gastric cancer (GC) remains unknown. Methods The relationship of TDP1 or let-7c-5p with the clinical outcomes of GC was determined by a tissue microarray and TCGA dataset. Cell viability and invasion were assessed by MTT and Transwell assays. Pearson correlation analysis, luciferase gene report, qRT-PCR, and Western blot analyses were used to analyze the interaction between TDP1 and let-7c-5p in GC tissues and cells. Results We found that TDP1 expression was elevated in GC tissues and associated with the dysregulation of let-7c-5p. Knockdown of TDP1 inhibited GC cell proliferation and invasion. let-7c-5p could be found to bind with TDP1, reduce its expression levels, and represent a predictive marker in GC. Conclusion Our findings demonstrated that dysregulation of let-7c-5p/TDP1 axis could predict a poor prognosis in GC.
Collapse
Affiliation(s)
- Lan Wang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Zou
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
30
|
Wang L, Xiao X, Du H. The Regulation of let-7c-5p on the Biological Characteristics of Lung Adenocarcinoma Cells by Targeting AURKB. Mol Biotechnol 2022; 64:526-534. [PMID: 34997902 DOI: 10.1007/s12033-021-00446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
To study the modulatory mechanism of let-7c-5p on the biological characteristics of lung adenocarcinoma (LUAD) cells by targeting AURKB. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. CCK-8, colony formation, scratch healing, Transwell, and flow cytometry assays were employed to test biological functions of LUAD cells. Western Blot was undertaken to assay the protein level of AURKB, and qRT-PCR was undertaken to test AURKB mRNA and let-7c-5p expression. Dual-luciferase reporter gene method was applied to detect the interaction between AURKB and let-7c-5p. Let-7c-5p was much likely to target AURKB expression. Let-7c-5p was poorly expressed in LUAD cells and suppressed AURKB. Silencing AURKB or overexpressing let-7c-5p both could suppress proliferation, migration, and invasion and stimulate apoptosis, while overexpressing the two simultaneously could reverse such effect. Forced expression of let-7c-5p inhibited proliferation, migration, and invasion and accelerated apoptosis of LUAD cells by inhibiting AURKB, which may provide a new way to understand the malignant progression of LUAD.
Collapse
Affiliation(s)
- Lisi Wang
- Department of Respiratory and Critical Care Medicine, Chongqing People's Hospital, Chongqing, 400013, People's Republic of China
| | - Xiaolong Xiao
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 200231, People's Republic of China
| | - Hong Du
- Quality Control Department of Medical, Chongqing People's Hospital, 118 Xingguang Avenue, Liangjiang New Area, Chongqing, 401121, People's Republic of China.
| |
Collapse
|
31
|
Circ_HECTD1 regulates cerebral ischemia injury via mechanisms involving the regulation of let-7c-5p/ROCK1 axis. Neuroreport 2022; 33:13-22. [PMID: 34874325 DOI: 10.1097/wnr.0000000000001743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ischemia is the main cause of cerebral ischemic stroke with a high mortality rate, and it is affected by the dysfunction of circular RNAs. The underlying molecular mechanisms of circ_HECTD1 were explored in cerebral ischemia stroke. METHODS PC-12 cells were treated with oxygen-glucose deprivation/reoxygenation (OGD/R) as the cell model of cerebral ischemia model. The expression levels of circ_HECTD1, let-7c-5p, and Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) were determined by quantitative real-time PCR in PC-12 cells. The proliferation ability of PC-12 cells was assessed by 5-ethynyl-2'-deoxyuridine and 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide assays. The protein expression levels were quantified by western blot analysis. Flow cytometry was performed to analyze cell apoptosis. Lactate dehydrogenase concentration was assessed by a commercialized kit. Dual-luciferase reporter assay was used to confirm the interaction relationships among circ_HECTD1, let-7c-5p and ROCK1. RESULTS Circ_HECTD1 was upregulated in OGD/R-treated PC-12 cells. The results also showed that cell proliferation was decreased and apoptosis was increased in OGD/R-treated PC-12 cells, which was overturned by the inhibition of circ_HECTD1. Let-7c-5p was a target of circ_HECTD1, and the protective effects of circ_HECTD1 knockdown on OGD/R-treated PC-12 cells were canceled after co-transfection with let-7c-5p inhibitor. We found that ROCK1 was a potential target of let-7c-5p. Let-7c-5p -mediated the effects on the proliferation and apoptosis of OGD/R-treated PC-12 cells by targeting ROCK1. CONCLUSION Circ_HECTD1 was implicated in the development of cerebral ischemia stroke. Knockdown of circ_HECTD1 protected against cerebral ischemia injury in OGD/R-treated PC-12 cells depending on the regulation of let-7c-5p/ROCK1 axis.
Collapse
|
32
|
Gan H, Xu X, Bai Y. Trametes robiniophila represses angiogenesis and tumor growth of lung cancer via strengthening let-7d-5p and targeting NAP1L1. Bioengineered 2021; 13:6698-6710. [PMID: 34898380 PMCID: PMC8973683 DOI: 10.1080/21655979.2021.2012619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trametes robiniophila (Huaier) is available to refrain lung cancer (LC) cell progression, but its impact and mechanism on angiogenesis of LC are not proved. The study was to explore the potential mechanism of Huaier repressing angiogenesis and tumor growth in LC via strengthening let-7d-5p and targeting NAP1L1. Let-7d-5p and NAP1L1 expression was detected in LC tissues and cells (A549). Pretreatment of A549 cells was with Huaier. Transfection of changed let-7d-5p and NAP1L1 was to A549 cells to uncover their roles in LC cell progression with angiogenesis. Evaluation of the impact of let-7d-5p on angiogenesis in LC was in vitro in a mouse xenograft model. Identification of the targeting of let-7d-5p with NAP1L1 was clarified. The results clarified reduced let-7d-5p but elevated NAP1L1 were manifested in LC. Huaier restrained angiogenesis and tumor growth of LC in vivo and in vitro; Augmented let-7d-5p or declined NAP1L1 motivated the therapy of Huaier on LC; Let-7d-5p negatively modulated NAP1L1; Elevated NAP1L1 reversed the influence of enhancive let-7d-5p. These results strongly suggest that Huaier represses angiogenesis and tumor growth in LC via strengthening let-7d-5p and targeting NAP1L1. Huaier/let-7d-5p/NAP1L1 axis is supposed to be a promising target for the treatment of angiogenesis and tumor growth in LC via elevated let-7d-5p and targeted NAP1L1.
Collapse
Affiliation(s)
- HuiZhu Gan
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun City, JiLin Province, 130031, China
| | - XinXin Xu
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun City, JiLin Province, 130031, China
| | - YinYin Bai
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun City, JiLin Province, 130031, China
| |
Collapse
|
33
|
Lin X, Wang S, Lin K, Zong J, Zheng Q, Su Y, Huang T. Competitive Endogenous RNA Landscape in Epstein-Barr Virus Associated Nasopharyngeal Carcinoma. Front Cell Dev Biol 2021; 9:782473. [PMID: 34805186 PMCID: PMC8600047 DOI: 10.3389/fcell.2021.782473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Non-coding RNAs have been shown to play important regulatory roles, notably in cancer development. In this study, we investigated the role of microRNAs and circular RNAs in Nasopharyngeal Carcinoma (NPC) by constructing a circRNA-miRNA-mRNA co-expression network and performing differential expression analysis on mRNAs, miRNAs, and circRNAs. Specifically, the Epstein-Barr virus (EBV) infection has been found to be an important risk factor for NPC, and potential pathological differences may exist for EBV+ and EBV- subtypes of NPC. By comparing the expression profile of non-cancerous immortalized nasopharyngeal epithelial cell line and NPC cell lines, we identified differentially expressed coding and non-coding RNAs across three groups of comparison: cancer vs. non-cancer, EBV+ vs. EBV- NPC, and metastatic vs. non-metastatic NPC. We constructed a ceRNA network composed of mRNAs, miRNAs, and circRNAs, leveraging co-expression and miRNA target prediction tools. Within the network, we identified the regulatory ceRNAs of CDKN1B, ZNF302, ZNF268, and RPGR. These differentially expressed axis, along with other miRNA-circRNA pairs we identified through our analysis, helps elucidate the genetic and epigenetic changes central to NPC progression, and the differences between EBV+ and EBV- NPC.
Collapse
Affiliation(s)
- Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Steven Wang
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Keyu Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Jingfeng Zong
- Department of Radiotherapy, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Qianlan Zheng
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Ying Su
- Laboratory of Radiation Oncology and Radiobiology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Li M, Yang B, Li X, Ren H, Zhang L, Li L, Li W, Wang X, Zhou H, Zhang W. Identification of Prognostic Factors Related to Super Enhancer-Regulated ceRNA Network in Metastatic Lung Adenocarcinoma. Int J Gen Med 2021; 14:6261-6275. [PMID: 34629892 PMCID: PMC8493278 DOI: 10.2147/ijgm.s332317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction The regulatory mechanisms of super enhancers (SEs) and ceRNA networks in LUAD progression are not well understood. We aimed to discover the prognostic-related ceRNA network regulated by SEs in metastatic LUAD. Methods RNA-seq data were extracted from The Cancer Genome Atlas (TCGA) database. Differentially expressed (DE) RNAs were identified by edgeR. CeRNA network was predicted and visualized using starBase and Cytoscape. H3K27ac ChIP-seq data were derived from the Gene Expression Omnibus (GEO) database, and used for SE identification. Kaplan–Meier curve and multivariate Cox model were applied for prognostic analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein–protein interaction (PPI) network were performed for functional analysis. SEs of AC074117.1 were verified by ChIP-qPCR in A549 and H1299 cells. MTT assay was performed to analyze cell proliferation. Luciferase activity assay was carried out to validate the target targeting relationships of ceRNA network. Results A total of 2355 DEmRNA, 483 DElncRNA and 155 DEmiRNA were identified between metastatic LUAD and adjacent normal tissues. CeRNA network consisting of 7 DElncRNAs, 18 DEmiRNAs and 15 DEmRNAs was constructed. Among the seven DElncRNAs in ceRNA network, only AC074117.1 was regulated by SEs. SE-regulated prognostic ceRNA sub-network consisting of FKBP3, E2F2, AC074117.1 and hsa-let-7c-5p was screened and verified. The overlapping co-expressed mRNAs of FKBP3, E2F2, AC074117.1 and hsa-let-7c-5p were mainly related to cell division and Fanconi anemia pathway. Genes in the ceRNA sub-network were correlated with DNA mismatch repair markers. Functional experiments proved that AC074117.1 was highly expressed in LUAD cells. AC074117.1 silencing notably inhibited proliferation of A549 and H1299 cells. Luciferase activity assay confirmed the direct relationship in AC074117.1-hsa-let-7c-5p-FKBP3/E2F2 network. Conclusion A novel prognostic ceRNA sub-network regulated by SEs was identified in metastatic LUAD. This study provided potential therapeutic targets and prognostic markers for further study of metastatic LUAD.
Collapse
Affiliation(s)
- Mingjiang Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Haixia Ren
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Lei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Wei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Xuhui Wang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Honggang Zhou
- College of Pharmacy, Nankai University, State Key Laboratory of Medicinal Chemical Biology, Tianjin, People's Republic of China
| | - Weidong Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, People's Republic of China
| |
Collapse
|
35
|
The Role of microRNAs in Pulp Inflammation. Cells 2021; 10:cells10082142. [PMID: 34440911 PMCID: PMC8391605 DOI: 10.3390/cells10082142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The dental pulp can be affected by thermal, physical, chemical, and bacterial phenomena that stimulate the inflammatory response. The pulp tissue produces an immunological, cellular, and vascular reaction in an attempt to defend itself and resolve the affected tissue. The expression of different microRNAs during pulp inflammation has been previously documented. MicroRNAs (miRNAs) are endogenous small molecules involved in the transcription of genes that regulate the immune system and the inflammatory response. They are present in cellular and physiological functions, as well as in the pathogenesis of human diseases, becoming potential biomarkers for diagnosis, prognosis, monitoring, and safety. Previous studies have evidenced the different roles played by miRNAs in proinflammatory, anti-inflammatory, and immunological phenomena in the dental pulp, highlighting specific key functions of pulp pathology. This systematized review aims to provide an understanding of the role of the different microRNAs detected in the pulp and their effects on the expression of the different target genes that are involved during pulp inflammation.
Collapse
|
36
|
Wang X, Sun H, Hu Z, Mei P, Wu Y, Zhu M. NUTM2A-AS1 silencing alleviates LPS-induced apoptosis and inflammation in dental pulp cells through targeting let-7c-5p/HMGB1 axis. Int Immunopharmacol 2021; 96:107497. [PMID: 33831808 DOI: 10.1016/j.intimp.2021.107497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) NUTM2A antisense RNA 1 (NUTM2A-AS1) has been reported to be abnormally up-regulated in pulpitis tissues. However, the function of NUTM2A-AS1 in pulpitis remains unclear. The aim of this study was to investigate the role and working mechanism of NUTM2A-AS1 in pulpitis using lipopolysaccharide (LPS)-treated human dental pulp cells (HDPCs). METHODS 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and lactate dehydrogenase (LDH) release detection assay were conducted to analyze the viability of HDPCs. Cell inflammatory response was analyzed through measuring the protein levels of interleukin-6 (IL-6) and IL-8. Western blot assay and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to measure protein expression and RNA expression, respectively. Bioinformatic database StarBase was used to predict the possible targets of NUTM2A-AS1 and let-7c-5p, and dual-luciferase reporter assay was conducted to verify these intermolecular interactions. RESULTS LPS stimulation restrained cell viability and induced cell apoptosis and inflammation of HDPCs. LPS exposure up-regulated the expression of NUTM2A-AS1 and High-Mobility Group Box 1 (HMGB1) and down-regulated the level of let-7c-5p. LPS-induced injury in HDPCs was partly attenuated by the silencing of NUTM2A-AS1 or HMGB1. Let-7c-5p was confirmed as a direct target of NUTM2A-AS1, and let-7c-5p bound to the 3' untranslated region (3'UTR) of HMGB1 messenger RNA (mRNA) in HDPCs. HMGB1 overexpression largely overturned NUTM2A-AS1 silencing-mediated effects in LPS-induced HDPCs. CONCLUSION NUTM2A-AS1 knockdown attenuated LPS-induced damage in HDPCs partly through targeting let-7c-5p/HMGB1 axis.
Collapse
Affiliation(s)
- Xuechun Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Huijun Sun
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhekai Hu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Peng Mei
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yanqi Wu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Min Zhu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
37
|
Zhang R, Liu P, Zhang X, Ye Y, Yu J. Lin28A promotes the proliferation and stemness of lung cancer cells via the activation of mitogen-activated protein kinase pathway dependent on microRNA let-7c. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:982. [PMID: 34277782 PMCID: PMC8267304 DOI: 10.21037/atm-21-2124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
Background Among patients with lung cancer, metastatic and relapsed cases account for the largest proportion of disease-associated deaths. Tumor metastasis and relapse are believed to originate from cancer stem cells (CSCs), which have the capacity to be highly proliferative and invasive. In our previous studies, we established a conditional basement membrane extract-based (BME-based) 3-dimensional (3D) culture system to mimic the tumor growth environment in vivo and further amplified lung cancer stem cells (LCSCs) in our system. However, the molecular mechanisms of LCSC amplification and development in our 3D culture system have not been fully uncovered. Method We established the conditional 3D culture system to amplify LCSCs in other lung cancer cell lines, followed by examining the expression of Lin28A and let-7 microRNAs in them. We also explored the expression of Lin28A and let-7 microRNAs in LCSCs from clinical lung cancer tissue samples and even analyzed the correlation of Lin28A/let-7c and patients’ survival outcomes. We further constructed A549 cells either knockdown of Lin28A or overexpression of let-7c, followed by investigating stemness marker gene expression, and stemness phenotypes including mammosphere culture, cell migration and invasion in vitro, as well as tumorigenicity in vivo. Results Here, we observed that Lin28A/let-7c was dysregulated in LCSCs in both the 3D culture system and lung cancer tissues. Further, the abnormal expression of Lin28A/let-7c was correlated with poor survival outcomes. Via the construction of A549 cells with let-7c over-expression, we found that let-7c inhibited the maintenance of LCSC properties, while the results of Lin28A knockdown showed that Lin28A played a critical role in the enrichment and proliferation of LCSCs via mitogen-activated protein kinase (MAPK) signaling pathway. Importantly, we found that LCSCs with knockdown of Lin28A or over-expression of let-7c exhibited inhibited carcinogenesis and disrupted expansion in vivo. Conclusions Our study uncovered the functions and mechanisms of the Lin28A/let-7c/MAPK signaling pathway in promoting the proliferation and cancer stemness of LCSCs, which might be a potential therapeutic target for reducing and even eliminating LCSCs in the future.
Collapse
Affiliation(s)
- Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
38
|
Qiao EQ, Yang HJ, Zhang XP. Screening of miRNAs associated with lymph node metastasis in Her-2-positive breast cancer and their relationship with prognosis. J Zhejiang Univ Sci B 2021; 21:495-508. [PMID: 32478495 DOI: 10.1631/jzus.b1900584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to identify some biomarkers for predicting lymph node metastasis and prognosis of human epidermal growth factor receptor 2 (Her-2)-positive breast cancer (BC). We analyzed correlations between microRNAs (miRNAs) and the prognosis of patients with BC based on data collected from The Cancer Genome Atlas (TCGA) database. The expression levels of miR-455, miR-143, and miR-99a were measured in clinical samples of Her-2-positive BC patients with different degrees of lymph node metastasis. We investigated the impacts of overexpressed miR-455 on the proliferation and invasiveness of MDA-MB-453 cells and measured its effects on the expression of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of miR-455 was significantly and positively correlated to the prognosis and overall survival (OS) of the BC (P=0.028), according to TCGA information. The expression level of miR-455 was positively correlated with OS and relapse-free survival (RFS) of patients with Her-2-positive BC, and was negatively correlated with the number of metastatic lymph nodes (P<0.05). Transwell assay suggested that MDA-MB-453 cells became much less invasive (P<0.01) after being transfected with miR-455 mimics. During the qRT-PCR, the expression level of MALAT1 declined significantly after transfection (P<0.01). Overexpressed miR-455 significantly inhibited the proliferation and migration of MDA-MB-453 cells and the expression of MALAT1. We conclude that miR-455 may be a useful potential biomarker for forecasting lymph node metastasis and the prognosis of Her-2-positive BC patients. miR-455 may play an important role in lymph node metastasis of BC by interacting with MALAT1.
Collapse
Affiliation(s)
- En-Qi Qiao
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Hong-Jian Yang
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Xi-Ping Zhang
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| |
Collapse
|
39
|
Cao Y, Li P, Zhang G, Kang L, Zhou T, Wu J, Wang Y, Wang Y, Chen X, Guan H. MicroRNA Let-7c-5p-Mediated Regulation of ERCC6 Disrupts Autophagic Flux in Age-Related Cataract via the Binding to VCP. Curr Eye Res 2021; 46:1353-1362. [PMID: 33703976 DOI: 10.1080/02713683.2021.1900273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: DNA damage contributes to the pathogenesis of age-related cataract (ARC) and is repaired through the nucleotide excision repair (NER) pathway, which includes ERCC6. Evidence has demonstrated that defective autophagy leads to lens organelle degradation and cataract. This study aimed to investigate the effects of ERCC6 on autophagy and determine its mechanisms in ARC.Methods: The clinical case-control study comprised 30 patients with ARC and 30 age-matched controls who received transparent lens extraction. Transmission electron microscopy was used to assess the ultrastructure of autophagic vesicles in lens anterior capsule tissues and lens epithelial cell line (SRA01/04). Real-time polymerase chain reaction and western blot analyses were performed to measure relative gene expression levels. Gene expression levels and localization were assessed by immunofluorescence. A coimmunoprecipitation assay was used to investigate the relationship between CSB which encoded by ERCC6 and VCP. ERCC6-siRNA and let-7 c-5p mimic were used to alter the expression of ERCC6 and let-7 c-5p.Results: Autophagy induction occurred in lens anterior capsule tissues of patients with ARC and in UVB-induced SRA01/04 cells, where the number of LC3B puncta was increased. Consistent with this result, the expression of beclin1 (BECN1) and LC3B, in addition to that of p62, was increased. Additionally, ERCC6 expression decreased, and silencing ERCC6 induced increases in the expression of BECN1, LC3B and p62. Moreover, CSB interacted with VCP, and let-7 c-5p induced dysregulation of autophagy by targeting ERCC6.Conclusion: In ARC, Let-7 c-5p-mediated downregulation of ERCC6 might prevent the degradation of autophagic vacuoles. CSB binds to VCP, inducing autophagosomes to combine with lysosomes and be degraded.
Collapse
Affiliation(s)
- Yu Cao
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ying Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
40
|
Nelson SR, Roche S, Cotter M, Garcia PA, Reitmeier D, Zollbrecht E, O'Neill F, Clynes M, Doolan P, Mehta JP, Swan N, Larkin A, Walsh N. Genomic Profiling and Functional Analysis of let-7c miRNA-mRNA Interactions Identify SOX13 to Be Involved in Invasion and Progression of Pancreatic Cancer. JOURNAL OF ONCOLOGY 2020; 2020:2951921. [PMID: 33424970 PMCID: PMC7775161 DOI: 10.1155/2020/2951921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic cancer is a devastating disease; its lethality is related to rapid growth and tendency to invade adjacent organs and metastasize at an early stage. OBJECTIVE The aim of this study was to identify miRNAs and their gene targets involved in the invasive phenotype in pancreatic cancer to better understand the biological behaviour and the rapid progression of this disease. METHODS miRNA profiling was performed in isogenic matched high invasive and low-invasive subclones derived from the MiaPaCa-2 cell line and validated in a panel of pancreatic cancer cell lines, tumour, and normal pancreas. Online miRNA target prediction algorithms and gene expression arrays were used to predict the target genes of the differentially expressed miRNAs. miRNAs and potential target genes were subjected to overexpression and knockdown approaches and downstream functional assays to determine their pathological role in pancreatic cancer. RESULTS Differential expression analysis revealed 10 significantly dysregulated miRNAs associated with invasive capacity (Student's t-tests; P value <0.05; fold change = ±2). The expression of top upregulated miR-135b and downregulated let-7c miRNAs correlated with the invasive abilities of eight pancreatic cancer cell lines and displayed differential expression in pancreatic cancer and adjacent normal tissue specimens. Ectopic overexpression of let-7c decreased proliferation, invasion, and colony formation. Integrated analysis of miRNA-mRNA using in silico algorithms and experimental validation databases identified four putative gene targets of let-7c. One of these targets, SOX13, was found to be upregulated in PDAC tumour compared with normal tissue in TCGA and an independent data set by qPCR and immunohistochemistry. RNAi knockdown of SOX13 reduced the invasion and colony formation ability of pancreatic cancer cells. CONCLUSION The identification of key miRNA-mRNA gene interactions and networks provide potential diagnostic and therapeutic strategies for better treatment options for pancreatic cancer patients.
Collapse
Affiliation(s)
- Shannon R. Nelson
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Sandra Roche
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Maura Cotter
- Histopathology Department, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Pablo Anton Garcia
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Daniela Reitmeier
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Elisabeth Zollbrecht
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Jai P. Mehta
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Niall Swan
- Histopathology Department, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - AnneMarie Larkin
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
41
|
Dyamenahalli K, Garg G, Shupp JW, Kuprys PV, Choudhry MA, Kovacs EJ. Inhalation Injury: Unmet Clinical Needs and Future Research. J Burn Care Res 2020; 40:570-584. [PMID: 31214710 DOI: 10.1093/jbcr/irz055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary and systemic insults from inhalation injury can complicate the care of burn patients and contribute to significant morbidity and mortality. However, recent progress in diagnosis and treatment of inhalation injury has not kept pace with the care of cutaneous thermal injury. There are many challenges unique to inhalation injury that have slowed advancement, including deficiencies in our understanding of its pathophysiology, the relative difficulty and subjectivity of bronchoscopic diagnosis, the lack of diagnostic biomarkers, the necessarily urgent manner in which decisions are made about intubation, and the lack of universal recommendations for the application of mucolytics, anticoagulants, bronchodilators, modified ventilator strategies, and other measures. This review represents a summary of critical shortcomings in our understanding and management of inhalation injury identified by the American Burn Association's working group on Cutaneous Thermal Injury and Inhalation Injury in 2018. It addresses our current understanding of the diagnosis, pathophysiology, and treatment of inhalation injury and highlights topics in need of additional research, including 1) airway repair mechanisms; 2) the airway microbiome in health and after injury; and 3) candidate biomarkers of inhalation injury.
Collapse
Affiliation(s)
- Kiran Dyamenahalli
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado School of Medicine, Aurora
| | - Gaurav Garg
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| | - Jeffrey W Shupp
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| | - Paulius V Kuprys
- Department of Surgery, Burn & Shock Trauma Research Institute, Health Sciences Division, Loyola University, Maywood, Illinois
| | - Mashkoor A Choudhry
- Department of Surgery, Burn & Shock Trauma Research Institute, Health Sciences Division, Loyola University, Maywood, Illinois
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado School of Medicine, Aurora
| |
Collapse
|
42
|
Wang Z, Xiu D, Jiang J, Liu G. Long non-coding RNA XIST binding to let-7c-5p contributes to rheumatoid arthritis through its effects on proliferation and differentiation of osteoblasts via regulation of STAT3. J Clin Lab Anal 2020; 34:e23496. [PMID: 32881056 PMCID: PMC7676202 DOI: 10.1002/jcla.23496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA), a chronic autoimmune disease, affects around 1% population worldwide, with the life quality of patients severely reduced. In this study, it is intended to explore the role of long non-coding RNA X-inactive specific transcript (lncRNA XIST) in RA and the underlying mechanisms associated with let-7c-5p and signal transducer and activator of transcription 3 (STAT3). METHODS LncRNA XIST, let-7c-5p, and STAT3 expressions were determined in RA and normal cartilage tissues, and their relationship was analyzed in osteoblasts. The regulatory effects of lncRNA XIST in RA were investigated when XIST expression was upregulated or downregulated in osteoblasts. TNF-α, IL-2, IL-6, alkaline phosphatase (ALP), osteocalcin, TGF-β1, and IGF1 were measured in vivo in RA rats. RESULTS LncRNA XIST and STAT3 were expressed at high levels and let-7c-5p expressed at a low level in RA cartilage tissues. LncRNA XIST silencing or let-7c-5p enhancement led to decreased levels of TNF-α, IL-2, and IL-6, suggestive of suppressed inflammatory response, and increased levels of ALP, osteocalcin, TGF-β1, and IGF-1 as well as reduced damage in cartilage tissues. CONCLUSION LncRNA XIST downregulation could promote proliferation and differentiation of osteoblasts in RA, serving as a future therapeutic target for RA.
Collapse
Affiliation(s)
- Zong‐Qiang Wang
- Medical DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Dian‐Hui Xiu
- Department of RadiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jin‐Lan Jiang
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunChina
- Scientific Research CenterChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Gui‐Feng Liu
- Department of RadiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
43
|
Sang K, Yi T, Huang X, Pan C, Zhou J, Yu L. MiR-370-5p inhibits the progression of breast cancer via targeting LUC7L3. J Recept Signal Transduct Res 2020; 41:442-450. [PMID: 32972267 DOI: 10.1080/10799893.2020.1819319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Breast cancer is one of the most common malignancies and one of the leading causes of cancer-induced mortality among women. Over the past decades, the occurrence of breast cancer has been a significant increase. As documented in numerous researches, microRNAs (miRNAs) play vital roles in a wide range of biological processes associated with the occurrence and development of breast cancer. Nevertheless, the role of miR-370-5p in breast cancer remains obscure, and the possible molecular regulatory mechanism needs to be further explored. In this study, our results delineated that miR-370-5p was downregulated in breast cancer tissues and cell lines. Besides, miR-370-5p overexpression suppressed cell proliferation and invasion in breast cancer. MiR-370-5p downregulation exerted an opposite result. In addition, LUC7L3 was identified as a target gene for miR-370-5p. Similar with the results induced by miR-370-5p overexpression, LUC7L3 knockdown attenuated the proliferation and invasion ability of breast cancer cells. Moreover, the alternation of LUC7L3 expression reversed the regulatory effects of miR-370-5p on cell phenotypes in breast cancer. Overall, miR-370-5p may exert antitumor effect on breast cancer. Hence, miR-370-5p may serve as a novel therapeutic marker for the treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Kai Sang
- Department of Breast Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Tongbo Yi
- Department of Breast Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Xinxin Huang
- Department of Pediatrics, Taizhou Fourth People's Hospital, Taizhou, China
| | - Chi Pan
- Department of Breast Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Jian Zhou
- Department of Breast Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Lei Yu
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou, China
| |
Collapse
|
44
|
|
45
|
Li XF, Shen WZ, Jin X, Ren P, Zhang J. Let-7c regulated epithelial-mesenchymal transition leads to osimertinib resistance in NSCLC cells with EGFR T790M mutations. Sci Rep 2020; 10:11236. [PMID: 32641854 PMCID: PMC7343825 DOI: 10.1038/s41598-020-67908-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) have shown promise against non-small cell lung cancers (NSCLCs) in clinics but the utility is often short-lived because of T790M mutations in EGFR that help evade TKIs’ action. Osimertinib is the third and latest generation TKI that targets EGFRs with T790M mutations. However, there are already reports on acquired resistance against Osimertinib. Recent work has revealed the role that miRNAs, particularly tumor suppressor let-7c, play in the invasiveness and acquired resistance of NSCLCs, but the mechanistic details, particularly in Osimertinib resistance, remain elusive. Using two cells lines, H1975 (endogenous T790M mutation) and HCC827-T790M (with acquired T790M mutation), we found that let-7c is a regulator of EMT, as well as it affects CSC phenotype. In both the cell lines, transfection with pre-let-7c led to reversal of EMT as studied through EMT markers e-cadherin and ZEB1. This resulted in reduced proliferation and invasion. Conversely, reduced expression of let-7c through anti-let-7c transfections significantly increased proliferation and invasion of lung cancer cells. Expression of let-7c was functionally relevant as EMT correlated with resistance to Osimertinib. High let-7c expression reversed EMT and made cells sensitive to Osimertinib, and vice versa. WNT1 and TCF-4 were found to be two targets of let-7c which were epigenetic suppressed by let-7c through increased methylation. In vivo, pre-let-7c inhibited while anti-let-7c potentiated tumor growth and WNT1 and TCF-4 were downregulated in xenografts with pre-let-7c. Silencing of both WNT1 and TCF-4 resulted in potentiation of Osimertinib action. Our results suggest an important role of let-7c in regulating EMT and the resulting Osimertinib resistance in T790M NSCLCs. More clinical studies need to be performed to fully understand the translational relevance of this novel mechanism.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Wei-Zhang Shen
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Xin Jin
- Department of Oncology and Hematology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Chaoyang, Changchun, 130021, Jilin, People's Republic of China.
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
46
|
Wang L, Li J, Li Y, Pang LB. Hsa-let-7c exerts an anti-tumor function by negatively regulating ANP32E in lung adenocarcinoma. Tissue Cell 2020; 65:101372. [PMID: 32746998 DOI: 10.1016/j.tice.2020.101372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/12/2020] [Accepted: 05/03/2020] [Indexed: 11/29/2022]
Abstract
We attempted to investigate the relationship between hsa-let-7c and ANP32E, as well as their influence on the cells phenotype of lung adenocarcinoma. Expression of hsa-let-7c and prognostic values were assessed by bioinformatics analysis based on TCGA database. Quantitative real-time PCR and western blot was employed to measure relative expression of hsa-let-7c or ANP32E. The targeting relationship between let-7c and ANP32E was predicted by biological software and validated by dual luciferase reporter assay. With gene transfection technology, cell proliferation, invasion and migration were appraised by cell counting Kit-8, clone formation and Transwell assays. The results showed that hsa-let-7c was downregulated in lung adenocarcinoma. Downregulation of hsa-let-7c notably led to a poor survival. ANP32E was forecasted and confirmed as a directly target of hsa-let-7c, and was upregulated in lung adenocarcinoma. Furthermore, upregulation of ANP32E had a significant correlation with unsatisfactory survival. Meanwhile, the levels of ANP32E were negatively regulated by hsa-let-7c. Upregulation of hsa-let-7c remarkably suppressed the Calu-3 cell proliferation, invasion and migration, while ANP32E overexpression plasmids rescued the downtrend. Inversely, hsa-let-7c silencing in NCI-H209 cells presented the opposite outcomes. Collectively, hsa-let-7c shows an anti-tumor effect in lung adenocarcinoma by targeting ANP32E and is expected to be a potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pulmonary and Critical Care Medicine, Shandong Jining NO.1 People's Hospital, Jining, Shandong 272001, PR China
| | - Jun Li
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital, Cheeloo Colleage of Medicine, Shandong University, Jinan, Shandong 250013, PR China
| | - Yan Li
- Jining Center for Disease Control and Prevention, Jining, Shandong 272000, PR China
| | - Long-Bin Pang
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital, Cheeloo Colleage of Medicine, Shandong University, Jinan, Shandong 250013, PR China.
| |
Collapse
|
47
|
Hu Y, Gu X, Duan Y, Shen Y, Xie X. Bioinformatics analysis of prognosis-related long non-coding RNAs in invasive breast carcinoma. Oncol Lett 2020; 20:113-122. [PMID: 32565939 PMCID: PMC7285808 DOI: 10.3892/ol.2020.11558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most common types of cancer among women worldwide and needs more sensitive prognostic biomarkers to improve its treatment. In the present study, differentially expressed long non-coding RNAs (lncRNAs) in invasive breast carcinoma from The Cancer Genome Atlas and cBioPortal database were investigated, identifying 292 differentially expressed lncRNAs in 1,100 cases. By analyzing the overall survival rate, 10 lncRNAs were significantly correlated with poor prognosis. To explore the underlying molecular mechanisms of the 10 prognosis-related lncRNAs, bioinformatic methods were used to predict the potential target miRNAs, mRNAs and proteins, and to construct a lncRNA-miRNA-mRNA regulatory network and lncRNA-protein interaction network. Finally, the functions of the target genes and proteins were insvestigated using Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The results showed that these 10 lncRNAs could be novel prognostic markers for invasive breast carcinoma and the present study aimed to provide novel insight into the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Yin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Yong Shen
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
48
|
Dong Y, Xiao Y, Shi Q, Jiang C. Dysregulated lncRNA-miRNA-mRNA Network Reveals Patient Survival-Associated Modules and RNA Binding Proteins in Invasive Breast Carcinoma. Front Genet 2020; 10:1284. [PMID: 32010179 PMCID: PMC6975227 DOI: 10.3389/fgene.2019.01284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most common cancer in women, but few biomarkers are effective in clinic. Previous studies have shown the important roles of non-coding RNAs in diagnosis, prognosis, and therapy selection for breast cancer and have suggested the significance of integrating molecules at different levels to interpret the mechanism of breast cancer. Here, we collected transcriptome data including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA for ~1,200 samples, including 1079 invasive breast carcinoma samples and 104 normal samples, from The Cancer Genome Atlas (TCGA) project. We identified differentially expressed lncRNAs, miRNAs, and mRNAs that distinguished invasive carcinoma samples from normal samples. We further constructed an integrated dysregulated network consisting of differentially expressed lncRNAs, miRNAs, and mRNAs and found housekeeping and cancer-related functions. Moreover, 58 RNA binding proteins (RBPs) involved in biological processes that are essential to maintain cell survival were found in the dysregulated network, and 10 were correlated with overall survival. In addition, we identified two modules that stratify patients into high- and low-risk subgroups. The expression patterns of these two modules were significantly different in invasive carcinoma versus normal samples, and some molecules were high-confidence biomarkers of breast cancer. Together, these data demonstrated an important clinical application for improving outcome prediction for invasive breast cancers.
Collapse
Affiliation(s)
- Yu Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Qihui Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
49
|
Autin P, Blanquart C, Fradin D. Epigenetic Drugs for Cancer and microRNAs: A Focus on Histone Deacetylase Inhibitors. Cancers (Basel) 2019; 11:E1530. [PMID: 31658720 PMCID: PMC6827107 DOI: 10.3390/cancers11101530] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Over recent decades, it has become clear that epigenetic abnormalities are involved in the hallmarks of cancer. Histone modifications, such as acetylation, play a crucial role in cancer development and progression, by regulating gene expression, such as for oncogenes or tumor suppressor genes. Therefore, histone deacetylase inhibitors (HDACi) have recently shown efficacy against both hematological and solid cancers. Designed to target histone deacetylases (HDAC), these drugs can modify the expression pattern of numerous genes including those coding for micro-RNAs (miRNA). miRNAs are small non-coding RNAs that regulate gene expression by targeting messenger RNA. Current research has found that miRNAs from a tumor can be investigated in the tumor itself, as well as in patient body fluids. In this review, we summarized current knowledge about HDAC and HDACi in several cancers, and described their impact on miRNA expression. We discuss briefly how circulating miRNAs may be used as biomarkers of HDACi response and used to investigate response to treatment.
Collapse
Affiliation(s)
- Pierre Autin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Christophe Blanquart
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Delphine Fradin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| |
Collapse
|
50
|
Chen S, Xie C, Hu X. lncRNA SNHG6 functions as a ceRNA to up-regulate c-Myc expression via sponging let-7c-5p in hepatocellular carcinoma. Biochem Biophys Res Commun 2019; 519:901-908. [PMID: 31563323 DOI: 10.1016/j.bbrc.2019.09.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
Emerging evidence has revealed that dysregulation of lncRNAs correlate with the development and progression of hepatocellular carcinoma (HCC). In the present study, we globally investigated the expression of SNHG6 in 31 cancer type, and we found that SNHG6 was highly expressed in various cancers, especially in HCC. High expression of SNHG6 was associated with progression and poor prognosis in patients with HCC. Gain of function and loss of function assays showed that SNHG6 promoted HCC cell proliferation. Gene Set Enrichment Analysis (GSEA) and correlation analysis suggested that SNHG6 positively correlated with c-Myc and its downstream targets. Ectopic overexpression of SNHG6 markedly increased the expression of c-Myc and its downstream targets, whereas silencing SNHG6 had the opposite effect on the expression of c-Myc and its downstream targets. Mechanistic assays revealed that SNHG6 acted as a competing endogenous RNA (ceRNA) to sponge let-7c-5p and thereby modulating the depression of c-Myc by let-7c-5p. Taken together, SNHG6 promotes HCC cell proliferation via competitively binding let-7c-5p in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Siyuan Chen
- The First Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China.
| | - Chuping Xie
- The First Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China.
| | - Xiarong Hu
- The First Department of General Surgery, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China.
| |
Collapse
|