1
|
Li Y, Qu S, Zuo J, Long H, Cao F, Jiang F. Progress on the functions and mechanisms of natural products in anti-glioma therapy. Chin J Nat Med 2025; 23:541-559. [PMID: 40383611 DOI: 10.1016/s1875-5364(25)60815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 01/14/2025] [Indexed: 05/20/2025]
Abstract
Glioma, the most prevalent primary tumor of the central nervous system (CNS), is also the most lethal primary malignant tumor. Currently, there are limited chemotherapeutics available for glioma treatment, necessitating further research to identify and develop new chemotherapeutic agents. A significant approach to discovering anti-glioma drugs involves isolating antitumor active ingredients from natural products (NPs) and optimizing their structures. Additionally, targeted drug delivery systems (TDDSs) are employed to enhance drug solubility and stability and overcome the blood-brain barrier (BBB). TDDSs can penetrate deep into the brain, increase drug concentration and retention time in the CNS, and improve the targeting efficiency of NPs, thereby reducing adverse effects and enhancing anti-glioma efficacy. This paper reviews the research progress of anti-glioma activities of NPs, including alkaloids, polyphenols, flavonoids, terpenoids, saponins, quinones, and their synthetic derivatives over the past decade. The review also summarizes anti-glioma mechanisms, such as suppression of related protein expression, regulation of reactive oxygen species (ROS) levels, control of apoptosis signaling pathways, reduction of matrix metalloproteinases (MMPs) expression, blocking of vascular endothelial growth factor (VEGF), and reversal of immunosuppression. Furthermore, the functions and advantages of NP-based TDDSs in anti-glioma therapy are examined. The key information presented in this review will be valuable for the research and development of NP-based anti-glioma drugs and related TDDSs.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuhui Qu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiayi Zuo
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haoping Long
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Topal O, Topal BG, Baş Y, Ongan B, Sadi G, Aslan E, Yavaş BD, Pektaş MB. Impact of Juglone, a PIN1 İnhibitor, on Oral Carcinogenesis Induced by 4-Nitroquinoline-1-Oxide (4NQO) in Rat Model. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1192. [PMID: 39202474 PMCID: PMC11356210 DOI: 10.3390/medicina60081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: PIN1 is overexpressed in several human cancers, including prostate cancer, breast cancer, and oral squamous carcinomas. Juglone (J), derived from walnut, was reported to selectively inhibit PIN1 by modifying its sulfhydryl groups. In this study, the potential effects of juglone, also known as PIN1 inhibitor, on oral cancer and carcinogenesis were investigated at the molecular level. Materials and Methods: 4-Nitroquinoline N-oxide (4-NQO) was used to create an oral cancer model in animals. Wistar rats were divided into five groups: Control, NQO, Juglone, NQO+J, and NQO+J*. The control group received the basal diet and tap water throughout the experiment. The NQO group received 4-NQO for 8 weeks in drinking water only. The Juglone group was administered intraperitoneally in a juglone solution for 10 weeks (1 mg/kg/day). The NQO+J group received 4-NQO in drinking water for 8 weeks, starting 1 week after the cessation of 4-NQO treatment. They were then administered intraperitoneally in a juglone solution for 10 weeks. (1 mg/kg/day). NQO+J* group: received 4 NQO for 8 weeks in drinking water and administered intraperitoneally in a juglone solution for 10 weeks (1 mg/kg/day). They were sacrificed at the end of the 22-week experimental period. The tongue tissues of the rats were isolated after the experiment, morphological changes were investigated by histological examinations, and the molecular apoptotic process was investigated by rt-qPCR and western blot. Results: Histological results indicate that tumors are formed in the tongue tissue with 4-NQO, and juglone treatment largely corrects the epithelial changes that developed with 4-NQO. It has been determined that apoptotic factors p53, Bax, and caspases are induced by the effect of juglone, while antiapoptotic factors such as Bcl-2 are suppressed. However, it was observed that the positive effects were more pronounced in rats given juglone together with 4-NQO. Conclusions: The use of PIN1 inhibitors such as juglone in place of existing therapeutic approaches might be a promising and novel approach to the preservation and treatment of oral cancer and carcinogenesis. However, further research is required to investigate the practical application of such inhibitors.
Collapse
Affiliation(s)
- Olgun Topal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey; (O.T.); (Y.B.); (B.O.)
| | - Burcu Güçyetmez Topal
- Department of Pedodontics, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey;
| | - Yunus Baş
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey; (O.T.); (Y.B.); (B.O.)
| | - Bünyamin Ongan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey; (O.T.); (Y.B.); (B.O.)
| | - Gökhan Sadi
- Department of Biology, K.O. Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey;
| | - Esra Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey;
| | - Betül Demirciler Yavaş
- Private Practice, Traditional and Complementary Treatment Center, 03200 Afyonkarahisar, Turkey;
| | - Mehmet Bilgehan Pektaş
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
3
|
Zhong J, Hua Y, Zou S, Wang B. Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway. PLoS One 2024; 19:e0299921. [PMID: 38814975 PMCID: PMC11139338 DOI: 10.1371/journal.pone.0299921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/16/2024] [Indexed: 06/01/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide, and oxidative stress plays a crucial role in its development. Juglone, a naturally occurring naphthoquinone in J. mandshurica, exhibits significant cytotoxic activity against various cancer cell lines. However, whether the anticancer activity of juglone is associated with oxidative stress remains unexplored. In this study, mouse Lewis lung cancer (LLC) and human non-small cell lung cancer A549 cells were used to explore the anticancer mechanisms of juglone. Juglone inhibited LLC and A549 cells viability, with IC50 values of 10.78 μM and 9.47 μM, respectively, for 24 h, and substantially suppressed the migration and invasion of these two lung cancer cells. Additionally, juglone arrested the cell cycle, induced apoptosis, increased the cleavage of caspase 3 and the protein expression of Bax and Cyt c, and decreased the protein expression of Bcl-2 and caspase-3. Furthermore, juglone treatment considerably increased intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, but suppressed glutathione peroxidase 4 (GPX4) and superoxide dismutase (SOD) activities. It also inhibited the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which was attenuated by 1,3-diCQA (an activator of PI3K/Akt). Moreover, N-acetylcysteine (a ROS scavenger) partially reversed the positive effects of juglone in terms of migration, invasion, ROS production, apoptosis, and PI3K/Akt pathway-associated protein expression. Finally, in tumor-bearing nude mouse models, juglone inhibited tumor growth without any apparent toxicity and significantly induced apoptosis in NSCLC cells. Collectively, our findings suggest that juglone triggers apoptosis via the ROS-mediated PI3K/Akt pathway. Therefore, juglone may serve as a potential therapeutic agent for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jian Zhong
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yongzhi Hua
- Digestive Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Shuting Zou
- Digestive Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Bo Wang
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
4
|
Guo F, Ling G, Qiu J, Li J, Gan Y, Yu Y, Tang J, Mo L, Piao H. Juglone induces ferroptosis in glioblastoma cells by inhibiting the Nrf2-GPX4 axis through the phosphorylation of p38MAPK. Chin Med 2024; 19:52. [PMID: 38520025 PMCID: PMC10958923 DOI: 10.1186/s13020-024-00920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Ferroptosis, a non-apoptotic form of cell death induced by accumulation of free iron ions and lipid peroxidation, its importance for cancer treatment is gradually being recognized. Research on the anti-cancer mechanism of juglone is accumulating. However, the specific mechanism by which it directs glioblastoma (GBM) to death is unknown. METHODS We used in vitro and in vivo experiments to explore the anti-GBM effect generated by juglone through the ferroptosis pathway. RESULTS Juglone mainly causes cell death by inducing ferroptosis. Mechanistically, juglone can significantly activate the phosphorylation of p38MAPK. According to transcriptome sequencing and protein interaction analysis, the Nrf2-GPX4 signaling pathway is identified as the primary pathway through which juglone mediates ferroptosis. In vitro and in vivo experiments further verified that juglone induces the ferroptosis of GBM by activating the phosphorylation of p38MAPK and negatively regulating the Nrf2-GPX4 signaling pathway. CONCLUSION Juglone induces ferroptosis and inhibits the growth of GBM by targeting the Nrf2/Gpx4 signaling pathway and thus holds promise as a novel ferroptosis inducer or anti-GBM drug.
Collapse
Affiliation(s)
- Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, China
- Graduate School, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Guoyuan Ling
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, China
- Graduate School, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jianting Qiu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110042, Liaoning, China
| | - Jicheng Li
- Graduate School, China Medical University, Shenyang, 110042, Liaoning, China
| | - Yu Gan
- Graduate School, China Medical University, Shenyang, 110042, Liaoning, China
| | - YingYing Yu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110042, Liaoning, China
| | - Jiamei Tang
- Graduate School, China Medical University, Shenyang, 110042, Liaoning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110801, Liaoning, China.
| |
Collapse
|
5
|
Shah VM, Rizvi S, Smith A, Tsuda M, Krieger M, Pelz C, MacPherson K, Eng J, Chin K, Munks MW, Daniel CJ, Al-Fatease A, Yardimci GG, Langer EM, Brody JR, Sheppard BC, Alani AWG, Sears RC. Micelle-Formulated Juglone Effectively Targets Pancreatic Cancer and Remodels the Tumor Microenvironment. Pharmaceutics 2023; 15:2651. [PMID: 38139993 PMCID: PMC10747591 DOI: 10.3390/pharmaceutics15122651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic cancer remains a formidable challenge due to limited treatment options and its aggressive nature. In recent years, the naturally occurring anticancer compound juglone has emerged as a potential therapeutic candidate, showing promising results in inhibiting tumor growth and inducing cancer cell apoptosis. However, concerns over its toxicity have hampered juglone's clinical application. To address this issue, we have explored the use of polymeric micelles as a delivery system for juglone in pancreatic cancer treatment. These micelles, formulated using Poloxamer 407 and D-α-Tocopherol polyethylene glycol 1000 succinate, offer an innovative solution to enhance juglone's therapeutic potential while minimizing toxicity. In-vitro studies have demonstrated that micelle-formulated juglone (JM) effectively decreases proliferation and migration and increases apoptosis in pancreatic cancer cell lines. Importantly, in-vivo, JM exhibited no toxicity, allowing for increased dosing frequency compared to free drug administration. In mice, JM significantly reduced tumor growth in subcutaneous xenograft and orthotopic pancreatic cancer models. Beyond its direct antitumor effects, JM treatment also influenced the tumor microenvironment. In immunocompetent mice, JM increased immune cell infiltration and decreased stromal deposition and activation markers, suggesting an immunomodulatory role. To understand JM's mechanism of action, we conducted RNA sequencing and subsequent differential expression analysis on tumors that were treated with JM. The administration of JM treatment reduced the expression levels of the oncogenic protein MYC, thereby emphasizing its potential as a focused, therapeutic intervention. In conclusion, the polymeric micelles-mediated delivery of juglone holds excellent promise in pancreatic cancer therapy. This approach offers improved drug delivery, reduced toxicity, and enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Vidhi M. Shah
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
| | - Syed Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 South Moody Avenue, Portland, OR 97201, USA
| | - Alexander Smith
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
| | - Motoyuki Tsuda
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Madeline Krieger
- Cancer Early Detection Advanced Research Center, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carl Pelz
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Kevin MacPherson
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jenny Eng
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Koei Chin
- Cancer Early Detection Advanced Research Center, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael W. Munks
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
| | - Colin J. Daniel
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Adel Al-Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Galip Gürkan Yardimci
- Cancer Early Detection Advanced Research Center, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ellen M. Langer
- Cancer Early Detection Advanced Research Center, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jonathan R. Brody
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Surgery, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Brett C. Sheppard
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Surgery, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Adam WG. Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 South Moody Avenue, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Rosalie C. Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
6
|
Şenol N, Şahin M, Şahin U. Protective effect of juglone on electric field-induced apoptosis and inflammation in liver and kidney tissue in rats. Res Vet Sci 2023; 164:104987. [PMID: 37659348 DOI: 10.1016/j.rvsc.2023.104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/23/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Electric field (EF) has been shown to cause tissue damage mainly through oxidative stress, inflammation, and apoptosis. Thus, juglone (5-hydroxy-1,4-naphthoquinone) (JUG), which has antioxidant and antiapoptotic properties, is thought to be effective against electric field-induced damage. We aimed to investigate whether 50 Hz alternating current (AC) triggers inflammation and apoptosis in rat liver and kidney tissues and evaluate the JUG supplement's estimated protective effect. Twenty-four adult male wistar albino rats were divided into control, EF and EF + JUG groups, each containing eight rats. The EF and EF + JUG groups were exposed to EF while no EF exposure and JUG were applied to the control group. At the end of the experiment, liver and kidney tissues were collected for histological (H&E, caspase-3 and TNF-α for immunohistochemical staining), and genetics (SOCS, caspase-3 and TNF-α, PCR analyses). After routine histological procedures, sections stained with H&E showed significant changes in liver and kidney tissues in the EF group compared to the control group (p < 0.05). Significant protective effects were observed in the building volumes and histopathology in the EF + JUG group (p < 0.05). Our gene expression results increased the expression of caspase-3 and TNF-α in the EF group (p < 0.001). Juglone increased SOCS expression (p < 0.001). These findings were consistent with the anti-apoptotic and anti-inflammatory effects of JUG treatment. We reasoned that exposure to EF damaged rat liver and kidney tissues and administration of JUG alleviated the complications caused by 50 Hz EF.
Collapse
Affiliation(s)
- Nurgül Şenol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Süleyman Demirel, Isparta, Türkiye
| | - Melda Şahin
- Department of Bioengineering, Institute of Science, University of Süleyman Demirel, Isparta, Türkiye.
| | - Uğur Şahin
- Department of Chemistry, Faculty of Art and Science, University of Süleyman Demirel, Isparta, Türkiye; Genetic Research Unit, Innovative Technologies Application and Research Center, University of Süleyman Demirel, Isparta, Türkiye
| |
Collapse
|
7
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
8
|
Hosseini Adarmanabadi SMH, Karami Gilavand H, Taherkhani A, Sadat Rafiei SK, Shahrokhi M, Faaliat S, Biabani M, Abil E, Ansari A, Sheikh Z, Poudineh M, Khalaji A, ShojaeiBaghini M, Koorangi A, Deravi N. Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neurosci Rep 2023; 14:1-20. [PMID: 36507190 PMCID: PMC9727645 DOI: 10.1016/j.ibneur.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Global and regional trends of population aging spotlight major public health concerns. As one of the most common adverse prognostic factors, advanced age is associated with a remarkable incidence risk of many non-communicable diseases, affecting major organ systems of the human body. Age-dependent factors and molecular processes can change the nervous system's normal function and lead to neurodegenerative disorders. Oxidative stress results from of a shift toward reactive oxygen species (ROS) production in the equilibrium between ROS generation and the antioxidant defense system. Oxidative stress and neuroinflammation caused by Amyloid-ß protein deposition in the human brain are the most likely pathogenesis of Alzheimer's disease (AD). Walnut extracts could reduce Amyloid-ß fibrillation and aggregation, indicating their beneficial effects on memory and cognition. Walnut can also improve movement disabilities in Parkinson's disease due to their antioxidant and neuroprotective effect by reducing ROS and nitric oxide (NO) generation and suppressing oxidative stress. It is noteworthy that Walnut compounds have potential antiproliferative effects on Glioblastoma (the most aggressive primary cerebral neoplasm). This effective therapeutic agent can stimulate apoptosis of glioma cells in response to oxidative stress, concurrent with preventing angiogenesis and migration of tumor cells, improving the quality of life and life expectancy of patients with glioblastoma. Antioxidant Phenolic compounds of the Walnut kernel could explain the significant anti-convulsion ability of Walnut to provide good prevention and treatment for epileptic seizures. Moreover, the anti-inflammatory effect of Walnut oil could be beneficial in treating multiple sclerosis. In this study, we review the pharmaceutical properties of Walnut in age-related neurological disorders.
Collapse
Affiliation(s)
| | - Helia Karami Gilavand
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Taherkhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Kiarash Sadat Rafiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Faaliat
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Biabani
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elaheh Abil
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Akram Ansari
- Laboratory Science, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Zahra Sheikh
- Student Research Committee, School of medicine, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Mahdie ShojaeiBaghini
- Medical Informatics, Research Center, Institute for Futures Studies in Health, Kerman, Iran
| | - Amirhosein Koorangi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Barciszewska AM, Belter A, Gawrońska I, Giel-Pietraszuk M, Naskręt-Barciszewska MZ. Juglone in Combination with Temozolomide Shows a Promising Epigenetic Therapeutic Effect on the Glioblastoma Cell Line. Int J Mol Sci 2023; 24:ijms24086998. [PMID: 37108161 PMCID: PMC10138991 DOI: 10.3390/ijms24086998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor and one of the human malignancies with the highest mortality. Standard approaches for GBM, including gross total resection, radiotherapy, and chemotherapy, cannot destroy all the cancer cells, and despite advances in its treatment, the prognosis for GBM remains poor. The problem is that we still do not understand what triggers GBM. Until now, the most successful chemotherapy with temozolomide for brain gliomas is not effective, and therefore new therapeutic strategies for GBM are needed. We found that juglone (J), which exhibits cytotoxic, anti-proliferative, and anti-invasive effects on various cells, could be a promising agent for GBM therapy. In this paper, we present the effects of juglone alone and in combination with temozolomide on glioblastoma cells. In addition to the analysis of cell viability and the cell cycle, we looked at the epigenetics effects of these compounds on cancer cells. We showed that juglone induces strong oxidative stress, as identified by a high increase in the amount of 8-oxo-dG, and decreases m5C in the DNA of cancer cells. In combination with TMZ, juglone modulates the level of both marker compounds. Our results strongly suggest that a combination of juglone and temozolomide can be applied for better GBM treatment.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
- Department of Neurosurgery and Neurotraumatology, Heliodor Swiecicki Clinical Hospital, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Iwona Gawrońska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | | |
Collapse
|
10
|
Chu Z, Yang J, Zheng W, Sun J, Wang W, Qian H. Recent advances on modulation of H2O2 in tumor microenvironment for enhanced cancer therapeutic efficacy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Fan H, Xie X, Kuang X, Du J, Peng F. MicroRNAs, Key Regulators in Glioma Progression as Potential Therapeutic Targets for Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1799-1825. [PMID: 36121713 DOI: 10.1142/s0192415x22500768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gliomas are tumors of the primary central nervous system associated with poor prognosis and high mortality. The 5-year survival rate of patients with gliomas received surgery combined with chemotherapy or radiotherapy does not exceed 5%. Although temozolomide is commonly used in the treatment of gliomas, the development of resistance limits its use. MicroRNAs are non-coding RNAs involved in numerous processes of glioma cells, such as proliferation, migration and apoptosis. MicroRNAs regulate cell cycle, PI3K/AKT signal pathway, and target apoptosis-related genes (e.g., BCL6), angiogenesis-related genes (e.g., VEGF) and other related genes to suppress gliomas. Evidence illustrates that microRNAs can regulate the sensitivity of gliomas to temozolomide, cisplatin, and carmustine, thereby enhancing the efficacy of these agents. Moreover, traditional Chinese medicine (e.g., tanshinone IIA, xanthohumol, and curcumin) exert antiglioma effects by regulating the expression of microRNAs, and then microRNAs inhibit gliomas through influencing the process of tumors by targeting certain genes. In this paper, the mechanisms through which microRNAs regulate the sensitivity of gliomas to therapeutic drugs are described, and traditional Chinese medicine that can suppress gliomas through microRNAs are discussed. This review aims to provide new insights into the traditional Chinese medicine treatment of gliomas.
Collapse
Affiliation(s)
- Huali Fan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xi Kuang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
12
|
Jahanban-Esfahlan A, Davaran S, Dastmalchi S. Preparation and Antiproliferative Activity Evaluation of Juglone-Loaded BSA Nanoparticles. Adv Pharm Bull 2022; 12:818-827. [PMID: 36415643 PMCID: PMC9675913 DOI: 10.34172/apb.2022.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/11/2021] [Accepted: 12/31/2021] [Indexed: 06/16/2024] Open
Abstract
Purpose: Today, the discovery of novel and effective chemotherapeutic compounds is the main challenge in cancer therapy. In recent years, the anti-tumoral activity of natural naphthoquinone juglone (JUG), present in different parts of walnut trees, has received considerable interest. The purpose of the current study was to prepare and evaluate the in vitro antiproliferative activity of JUG-loaded bovine serum albumin nanoparticles (JUG-BSA NPs). Methods: BSA NPs and JUG-BSA NPs were prepared using the desolvation technique. The NPs were characterized for their particle size (PS), zeta potential (ZP), drug loading (DL) capacity and encapsulation efficiency (EE). The anti-proliferative activity of JUG-BSA NPs was evaluated on A431 and HT29 cancer cell lines using cellular uptake and MTT assays. Results: The PS and ZP values of JUG-BSA NPs were 85 ± 6.55 nm and -29.6 mV, respectively. The DL capacity and EE were 3.7% to 5% and 50.4% to 94.6%, respectively. The cytotoxicity of JUG-BSA NPs was significantly less on both cultured A431 and HT29 cells at the studied concentrations when compared to free JUG. However, the effect was not very substantial, particularly at high levels. Conclusion: In conclusion, BSA NPs can be used as a suitable and safe carrier for the delivery of JUG, a cytotoxic hydrophobic natural compound.
Collapse
Affiliation(s)
| | - Soodabeh Davaran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, POBOX: 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
13
|
Narayanan P, Farghadani R, Nyamathulla S, Rajarajeswaran J, Thirugnanasampandan R, Bhuwaneswari G. Natural quinones induce ROS-mediated apoptosis and inhibit cell migration in PANC-1 human pancreatic cancer cell line. J Biochem Mol Toxicol 2022; 36:e23008. [PMID: 35253318 DOI: 10.1002/jbt.23008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer is one of the most devastating of all malignancies with poor prognosis and high mortality rates worldwide. Thymoquinone, plumbagin and juglone, which are naturally occurring quinones, have been reported for their promising anticancer effect on different cancer cells. However, their mechanism of action and antimetastatic effects are largely unknown against the human pancreatic cancer cell line (PANC-1). In this study, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay revealed a dose-dependent decrease of viability in quinone-treated PANC-1 cells. In addition, the assessment of changes in cells has demonstrated an occurrence of typical apoptotic morphology in treated PANC-1 cells compared with control. Besides this, the apoptosis induction was further quantitatively confirmed through flow cytometry analysis. Furthermore, thymoquinone, plumbagin and juglone were evaluated for their influence on reactive oxygen species (ROS) generation through 2,7-dichlorofluorescein diacetate (DCFDA) staining and they dramatically increased the intracellular ROS level in treated PANC-1 cells, suggesting the critical role of ROS in their apoptosis induction. This study also demonstrated the wound healing potential of these compounds and inhibited PANC-1 cell migration in a time-dependent manner compared with control. This inhibition was correlated with reduced expression of matrix metalloproteinase-9 (MMP-9) in juglone-treated cells detected through gelatin zymography. In conclusion, thymoquinone, plumbagin and juglone significantly inhibited cell growth and induced ROS-mediated apoptosis in PANC-1 cells. In addition, they could be potent antimetastatic agents due to their anti-migratory effect against PANC-1 human pancreatic cancer cells.
Collapse
Affiliation(s)
- Prasad Narayanan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Shaik Nyamathulla
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jayakumar Rajarajeswaran
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India
| | - R Thirugnanasampandan
- Postgraduate and Research Department of Botany, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India
| | - Gunasekaran Bhuwaneswari
- Postgraduate and Research Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India
| |
Collapse
|
14
|
Bouzari B, Mohammadi S, Bokov DO, Krasnyuk II, Hosseini-Fard SR, Hajibaba M, Mirzaei R, Karampoor S. Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed Pharmacother 2022; 148:112760. [PMID: 35228062 DOI: 10.1016/j.biopha.2022.112760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GB) is a highly aggressive cancer of the central nervous system, occurring in the brain or spinal cord. Many factors such as angiogenesis are associated with GB development. Angiogenesis is a procedure by which the pre-existing blood vessels create new vessels that play an essential role in health and disease, including tumors. Also, angiogenesis is one of the significant factors thought to be responsible for treatment resistance in many tumors, including GB. Hence, an improved understanding of the molecular processes underlying GB angiogenesis will pave the way for developing potential new treatments. Recently, it has been found that microRNAs (miRNAs) and exosomal miRNAs have a crucial role in inducing or inhibiting the angiogenesis process in GB development. A better knowledge of the miRNA's regulation pathway in the angiogenesis process in cancer offers unique mechanistic insight into the mechanism of tumor-associated neovascularization. Because of advancements in miRNA characterization and delivery methods, miRNAs can also be employed in clinical settings as potential biomarkers for anti-angiogenic treatment response as well as therapies targeting tumor angiogenesis. The recent finding and insights about miRNAs' angioregulatory role and exosomal miRNAs in GB are provided throughout the review. Also, we discuss the new concept of miRNAs-based therapies for GB in the future.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shabahang Mohammadi
- ENT and Head and Neck Research Center and Department, Firoozgar General Hospital, The Five Senses Health Institute, Iran
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ivan Ivanovich Krasnyuk
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed Pharmacother 2022; 148:112785. [PMID: 35272138 DOI: 10.1016/j.biopha.2022.112785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Juglone (5 - hydroxy - 1, 4 - naphthalene diketone) is a kind of natural naphthoquinone, present in the roots, leaves, nut-hulls, bark and wood of walnut trees. Recent studies have found that Juglone has special significance in the treatment of cancer, which plays a significant role in the resistance of cancer cell proliferation, induction of cancer cell apoptosis, induction of autophagy, anti-angiogenesis and inhibition of cancer cell migration and invasion, etc. Additionally, its derivatives also play a tumor suppressive effect. In conclusion, Juglone and its derivatives have been identified as effective anticancer drugs. This paper reviews action mechanisms of Juglone and its derivatives in cancer treatment.
Collapse
|
16
|
A System Bioinformatics Approach Predicts the Molecular Mechanism Underlying the Course of Action of Radix Salviae Reverses GBM Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1218969. [PMID: 35154340 PMCID: PMC8825271 DOI: 10.1155/2021/1218969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Objective This study used in vitro techniques to investigate the therapeutic effect of Radix Salviae on human glioblastoma and decode its underlying molecular mechanism. Methods The active components and targets of the Radix Salviae were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). The targets of human glioblastoma were obtained from the GeneCards Database. The Radix Salviae-mediated antiglioblastoma was evaluated by Gene Ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Finally, mechanism of action of Radix Salviae against human glioblastoma was deduced by molecular docking and experiments. Results We screened 66 active ingredients and 45 targets of the Radix Salviae. The enrichment analysis based on the targets mentioned above suggested a possible role in protein phosphorylation, cell transcription, apoptosis, and inflammatory factor signaling pathways. Further study demonstrated that cryptotanshinone, an essential component of Radix Salviae, played a significant role in killing human glioblastoma cells and protecting the body by inhibiting the AKT, IKB, and STAT3 signaling pathways. Conclusions Radix Salviae could inhibit the proliferation and invasion of human glioblastoma by regulating STAT3, Akt, and IKB signaling pathways. Radix Salviae has potential therapeutic value in the future for human glioblastoma.
Collapse
|
17
|
Zheng F, Li Y, Zhang F, Sun Y, Zheng C, Luo Z, Wang YL, Aschner M, Zheng H, Lin L, Cai P, Shao W, Guo Z, Zheng M, Zhou XZ, Lu KP, Wu S, Li H. Cobalt induces neurodegenerative damages through Pin1 inactivation in mice and human neuroglioma cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126378. [PMID: 34175703 DOI: 10.1016/j.jhazmat.2021.126378] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Cobalt is a hazardous material that has harmful effects on neurotoxicity. Excessive exposure to cobalt or inactivation of the unique proline isomerase Pin1 contributes to age-dependent neurodegeneration. However, nothing is known about the role of Pin1 in cobalt-induced neurodegeneration. Here we find that out of several hazardous materials, only cobalt dose-dependently decreased Pin1 expression and alterations in its substrates, including cis and trans phosphorylated Tau in human neuronal cells, concomitant with neurotoxicity. Cobalt-induced neurotoxicity was aggravated by Pin1 genetic or chemical inhibition, but rescued by Pin1 upregulation. Furthermore, less than 4 μg/l of blood cobalt induced dose- and age-dependent Pin1 downregulation in murine brains, ensuing neurodegenerative changes. These defects were corroborated by changes in Pin1 substrates, including cis and trans phosphorylated Tau, amyloid precursor protein, β amyloid and GSK3β. Moreover, blood Pin1 was downregulated in human hip replacement patients with median blood cobalt level of 2.514 μg/l, which is significantly less than the safety threshold of 10 μg/l, suggesting an early role Pin1 played in neurodegenerative damages. Thus, Pin1 inactivation by cobalt contributes to age-dependent neurodegeneration, revealing that cobalt is a hazardous material triggering AD-like neurodegenerative damages.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yuqing Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fengshun Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yi Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Chunyan Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhousong Luo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Hong Zheng
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
| | - Liqiong Lin
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
| | - Ping Cai
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Min Zheng
- Institute for Translational Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
18
|
Aili Y, Maimaitiming N, Mahemuti Y, Qin H, Wang Y, Wang Z. The Role of Exosomal miRNAs in Glioma: Biological Function and Clinical Application. Front Oncol 2021; 11:686369. [PMID: 34540663 PMCID: PMC8442992 DOI: 10.3389/fonc.2021.686369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Gliomas are complex and heterogeneous central nervous system tumors with poor prognosis. Despite the increasing development of aggressive combination therapies, the prognosis of glioma is generally unsatisfactory. Exosomal microRNA (miRNA) has been successfully used in other diseases as a reliable biomarker and even therapeutic target. Recent studies show that exosomal miRNA plays an important role in glioma occurrence, development, invasion, metastasis, and treatment resistance. However, the association of exosomal miRNA between glioma has not been systemically characterized. This will provide a theoretical basis for us to further explore the relationship between exosomal miRNAs and glioma and also has a positive clinical significance in the innovative diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | | | - Yusufu Mahemuti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hu Qin
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
19
|
Li J, Mo C, Guo Y, Zhang B, Feng X, Si Q, Wu X, Zhao Z, Gong L, He D, Shao J. Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. Theranostics 2021; 11:3348-3358. [PMID: 33537091 PMCID: PMC7847688 DOI: 10.7150/thno.45889] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Pin1 belongs to the peptidyl-prolyl cis-trans isomerases (PPIases) superfamily and catalyzes the cis-trans conversion of proline in target substrates to modulate diverse cellular functions including cell cycle progression, cell motility, and apoptosis. Dysregulation of Pin1 has wide-ranging influences on the fate of cells; therefore, it is closely related to the occurrence and development of various diseases. This review summarizes the current knowledge of Pin1 in disease pathogenesis.
Collapse
Affiliation(s)
- Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yifan Guo
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Bowen Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Xiao Feng
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Qiuyue Si
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiaobo Wu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Zhe Zhao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Campora M, Francesconi V, Schenone S, Tasso B, Tonelli M. Journey on Naphthoquinone and Anthraquinone Derivatives: New Insights in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:33. [PMID: 33466332 PMCID: PMC7824805 DOI: 10.3390/ph14010033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD imposes neuronal death by the intricate interplay of different neurochemical factors, which continue to inspire the medicinal chemist as molecular targets for the development of new agents for the treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario. Within the wide variety of reported molecules, this review summarizes and offers a global overview of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more relevant chemical features and structure-activity relationship studies will be discussed with a view to providing the perspective for the design of viable drugs for the treatment of AD. In particular, cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be described, as a chance for these molecules to exhibit significant potential on the road to therapeutics for AD.
Collapse
Affiliation(s)
| | | | | | | | - Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (M.C.); (V.F.); (S.S.); (B.T.)
| |
Collapse
|
21
|
Nakatsu Y, Matsunaga Y, Ueda K, Yamamotoya T, Inoue Y, Inoue MK, Mizuno Y, Kushiyama A, Ono H, Fujishiro M, Ito H, Okabe T, Asano T. Development of Pin1 Inhibitors and their Potential as Therapeutic Agents. Curr Med Chem 2020; 27:3314-3329. [PMID: 30394205 DOI: 10.2174/0929867325666181105120911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022]
Abstract
The prolyl isomerase Pin1 is a unique enzyme, which isomerizes the cis-trans conformation between pSer/pThr and proline and thereby regulates the function, stability and/or subcellular distribution of its target proteins. Such regulations by Pin1 are involved in numerous physiological functions as well as the pathogenic mechanisms underlying various diseases. Notably, Pin1 deficiency or inactivation is a potential cause of Alzheimer's disease, since Pin1 induces the degradation of Tau. In contrast, Pin1 overexpression is highly correlated with the degree of malignancy of cancers, as Pin1 controls a number of oncogenes and tumor suppressors. Accordingly, Pin1 inhibitors as anti-cancer drugs have been developed. Interestingly, recent intensive studies have demonstrated Pin1 to be responsible for the onset or development of nonalcoholic steatosis, obesity, atherosclerosis, lung fibrosis, heart failure and so on, all of which have been experimentally induced in Pin1 deficient mice. In this review, we discuss the possible applications of Pin1 inhibitors to a variety of diseases including malignant tumors and also introduce the recent advances in Pin1 inhibitor research, which have been reported.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yasuka Matsunaga
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Koji Ueda
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Takeshi Yamamotoya
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yuki Inoue
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Masa-Ki Inoue
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yu Mizuno
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Akifumi Kushiyama
- The Division of Diabetes and Metabolism, Institute for Adult Diseases, Asahi Life Foundation, Chuo-ku, Tokyo 103-0002, Japan
| | - Hiraku Ono
- Department of Clinical Cell Biology, Chiba University Graduate School of Medicine, Chiba City, Chiba 260-8677, Japan
| | - Midori Fujishiro
- The Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Hisanaka Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
22
|
Zhang J, Fan J. Prazosin inhibits the proliferation, migration and invasion, but promotes the apoptosis of U251 and U87 cells via the PI3K/AKT/mTOR signaling pathway. Exp Ther Med 2020; 20:1145-1152. [PMID: 32765662 DOI: 10.3892/etm.2020.8772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/24/2020] [Indexed: 11/06/2022] Open
Abstract
Prazosin, an α-adrenergic receptor antagonist, is used to treat mild to moderate hypertension. It has recently been discovered that α-adrenergic receptors may have potential antitumor properties. Therefore, in the present study, the effect of prazosin on human glioblastoma and the underlying mechanism were investigated. Human glioblastoma U251 and U87 cells were treated with different concentrations of prazosin, and a Cell Counting Kit-8 assay was performed to investigate the effects of prazosin on cell proliferation. Transwell migration and invasion assays were used to assess the effects of prazosin on cell migration and invasion. Prazosin-induced apoptosis in U251 and U87 cells was detected by flow cytometry, and the protein expression levels of anti-apoptotic proteins and proteins related to the PI3K/AKT/mTOR signaling pathway were detected by western blotting. The results suggested that following treatment with prazosin, the proliferation, migration and invasion of U251 and U81 cells were decreased. By contrast, U251 and U81 cell apoptosis, as well as the protein expression levels of Bax and active Caspase-3 were increased after prazosin treatment (P<0.05). Bcl-2 levels were also decreased after prazosin treatment (P<0.05). Additionally, the expression of phosphorylated (p)-AKT and p-mTOR, P70 and cyclin D1 were decreased in U251 and U81 cells following prazosin treatment (P<0.05). The present study suggested that prazosin may suppress glioblastoma progression by downregulating the activity of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, P.R. China
| | - Jiye Fan
- Department of Pharmacy, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, P.R. China.,College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, P.R. China
| |
Collapse
|
23
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
24
|
Synthesis of new N,S-acetal analogs derived from juglone with cytotoxic activity against Trypanossoma cruzi. J Bioenerg Biomembr 2020; 52:199-213. [PMID: 32418003 DOI: 10.1007/s10863-020-09834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
A series of 11 new N,S-acetal juglone derivatives were synthesized and evaluated against T. cruzi epimastigote forms. These compounds were obtained in good to moderate yields using a microwave irradiation protocol. Among all compounds, two N,S-acetal analogs, showed significant trypanocidal activity. Notably, one compound 11g exhibited selectivity index 10-fold higher than the reference drug benznidazole for epimastigote. The compound 11h was more effective for amastigote forms. Both prototypes exhibited S.I. higher than the benznidazole description. Thus, both compounds proving to be useful candidate molecules to further studies in infected animals.
Collapse
|
25
|
Yu JH, Im CY, Min SH. Function of PIN1 in Cancer Development and Its Inhibitors as Cancer Therapeutics. Front Cell Dev Biol 2020; 8:120. [PMID: 32258027 PMCID: PMC7089927 DOI: 10.3389/fcell.2020.00120] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Peptidyl-prolyl isomerase (PIN1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which results in the alteration of protein structure, function, and stability. The altered structure and function of these phosphorylated proteins regulated by PIN1 are closely related to cancer development. PIN1 is highly expressed in human cancers and promotes cancer as well as cancer stem cells by breaking the balance of oncogenes and tumor suppressors. In this review, we discuss the roles of PIN1 in cancer and PIN1-targeted small-molecule compounds.
Collapse
Affiliation(s)
- Ji Hoon Yu
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Chun Young Im
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| |
Collapse
|
26
|
Zhao X, Zhu W, Zhang R, Zhang M, Zhao J, Hou J, Zhang W. Targeted juglone blocks the invasion and metastasis of HPV-positive cervical cancer cells. J Pharmacol Sci 2019; 140:211-217. [PMID: 31445828 DOI: 10.1016/j.jphs.2019.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
|
27
|
Wang H, Zou C, Zhao W, Yu Y, Cui Y, Zhang H, E F, Qiu Z, Zou C, Gao X. Juglone eliminates MDSCs accumulation and enhances antitumor immunity. Int Immunopharmacol 2019; 73:118-127. [PMID: 31085459 DOI: 10.1016/j.intimp.2019.04.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/26/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) contribute to immune activity suppression and promote the tumor progression. Elimination of MDSCs is a promising cancer therapeutic strategy, and some chemotherapeutic agents have been reported to hamper tumor progression by suppressing MDSCs. Juglone has been showed to exert a direct cytotoxic effect on tumor cells. However, the effect of juglone on MDSCs and anti-tumor immune statue has remained unexplored. In our study, we observed that juglone suppressed tumor growth and metastasis markedly, and the tumor growth suppression in immunocompetent mice was more drastic than that in immunodeficient mice. Juglone reduced the accumulation of MDSCs and increased IFN-γ production by CD8+ T cells. Consistently, juglone affected myeloid cells differentiation and maturation, impairing the immunosuppressive functions of MDSCs. Moreover, juglone down-regulated the level of IL-1β which was mediating accumulation of MDSCs. In addition, juglone inhibited 5FU-induced liver injury in a colorectal carcinoma-bearing mice model. Thus, our work suggests that the anti-tumor effect of juglone is mediated, at least in part, by eliminating accumulation of MDSCs.
Collapse
Affiliation(s)
- Hefei Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Weiyang Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Yuan Yu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Yuqi Cui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - He Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Fang E
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Zini Qiu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin 150081, China.
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin 150081, China; Key Laboratory of Cardiovascular Medicine Research of Harbin Medical University, Ministry of Education, Harbin 150081, China.
| |
Collapse
|
28
|
Ahmad T, Suzuki YJ. Juglone in Oxidative Stress and Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8040091. [PMID: 30959841 PMCID: PMC6523217 DOI: 10.3390/antiox8040091] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Juglone (5-hydroxyl-1,4-naphthoquinone) is a phenolic compound found in walnuts. Because of the antioxidant capacities of phenolic compounds, juglone may serve to combat oxidative stress, thereby protecting against the development of various diseases and aging processes. However, being a quinone molecule, juglone could also act as a redox cycling agent and produce reactive oxygen species. Such prooxidant properties of juglone may confer health effects, such as by killing cancer cells. Further, recent studies revealed that juglone influences cell signaling. Notably, juglone is an inhibitor of Pin1 (peptidyl-prolyl cis/trans isomerase) that could regulate phosphorylation of Tau, implicating potential effects of juglone in Alzheimer’s disease. Juglone also activates mitogen-activated protein kinases that could promote cell survival, thereby protecting against conditions such as cardiac injury. This review describes recent advances in the understanding of the effects and roles of juglone in oxidative stress and cell signaling.
Collapse
Affiliation(s)
- Taseer Ahmad
- College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan.
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
29
|
Zhao X, Song X, Zhao J, Zhu W, Hou J, Wang Y, Zhang W. Juglone Inhibits Proliferation of HPV-Positive Cervical Cancer Cells Specifically. Biol Pharm Bull 2019; 42:475-480. [DOI: 10.1248/bpb.b18-00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xingyu Zhao
- Department of Biochemistry, Basic Medical College of Jilin Medical University
| | - Xiaoxing Song
- Department of Biochemistry, Basic Medical College of Jilin Medical University
| | - Jierui Zhao
- Department of Biochemistry, Basic Medical College of Jilin Medical University
| | - Wenhe Zhu
- Department of Biochemistry, Basic Medical College of Jilin Medical University
| | - Jiancheng Hou
- Department of Biochemistry, Basic Medical College of Jilin Medical University
| | - Yanchun Wang
- Department of Biochemistry, Basic Medical College of Jilin Medical University
| | - Wei Zhang
- Department of Biochemistry, Basic Medical College of Jilin Medical University
| |
Collapse
|
30
|
Sun SH, Luo Q, Hu K, Chen F, Gan FJ, Leng YX, Chen XM. Juglone Induces Michigan Cancer Foundation-7 Human Breast Cancer Cells Apoptosis through Bcl-2-Associated X protein/B-cell lymphoma/leukemia-2 Signal Way. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_604_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Abstract
Cell cycle progression is tightly controlled by many cell cycle-regulatory proteins that are in turn regulated by a family of cyclin-dependent kinases (CDKs) through protein phosphorylation. The peptidyl-prolyl cis/trans isomerase PIN1 provides a further post-phosphorylation modification and functional regulation of these CDK-phosphorylated proteins. PIN1 specifically binds the phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif of its target proteins and catalyzes the cis/trans isomerization on the pSer/Thr-Pro peptide bonds. Through this phosphorylation-dependent prolyl isomerization, PIN1 fine-tunes the functions of various cell cycle-regulatory proteins including retinoblastoma protein (Rb), cyclin D1, cyclin E, p27, Cdc25C, and Wee1. In this review, we discussed the essential roles of PIN1 in regulating cell cycle progression through modulating the functions of these cell cycle-regulatory proteins. Furthermore, the mechanisms underlying PIN1 overexpression in cancers were also explored. Finally, we examined and summarized the therapeutic potential of PIN1 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Eric Tse
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
32
|
Natural Products to Fight Cancer: A Focus on Juglans regia. Toxins (Basel) 2018; 10:toxins10110469. [PMID: 30441778 PMCID: PMC6266065 DOI: 10.3390/toxins10110469] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Even if cancer represents a burden for human society, an exhaustive cure has not been discovered yet. Low therapeutic index and resistance to pharmacotherapy are two of the major limits of antitumour treatments. Natural products represent an excellent library of bioactive molecules. Thus, tapping into the natural world may prove useful in identifying new therapeutic options with favourable pharmaco-toxicological profiles. Juglans regia, or common walnut, is a very resilient tree that has inhabited our planet for thousands of years. Many studies correlate walnut consumption to beneficial effects towards several chronic diseases, such as cancer, mainly due to the bioactive molecules stored in different parts of the plant. Among others, polyphenols, quinones, proteins, and essential fatty acids contribute to its pharmacologic activity. The present review aims to offer a comprehensive perspective about the antitumour potential of the most promising compounds stored in this plant, such as juglanin, juglone, and the ellagitannin-metabolites urolithins or deriving from walnut dietary intake. All molecules and a chronic intake of the fruit provide tangible anticancer effects. However, the scarcity of studies on humans does not allow results to be conclusive.
Collapse
|
33
|
The Multiple Roles of Peptidyl Prolyl Isomerases in Brain Cancer. Biomolecules 2018; 8:biom8040112. [PMID: 30314361 PMCID: PMC6316532 DOI: 10.3390/biom8040112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Peptidyl prolyl isomerases (PPIases) are broadly expressed enzymes that accelerate the cis-trans isomerization of proline peptide bonds. The most extensively studied PPIase family member is protein interacting with never in mitosis A1 (PIN1), which isomerizes phosphorylated serine/threonine–proline bonds. By catalyzing this specific cis-trans isomerization, PIN1 can alter the structure of its target proteins and modulate their activities in a number of different ways. Many proteins are targets of proline-directed phosphorylation and thus PIN1-mediated isomerization of proline bonds represents an important step in the regulation of a variety of cellular mechanisms. Numerous other proteins in addition to PIN1 are endowed with PPIase activity. These include other members of the parvulin family to which PIN1 belongs, such as PIN4, as well as several cyclophilins and FK506-binding proteins. Unlike PIN1, however, these other PPIases do not isomerize phosphorylated serine/threonine–proline bonds and have different substrate specificities. PIN1 and other PPIases are overexpressed in many types of cancer and have been implicated in various oncogenic processes. This review will discuss studies providing evidence for multiple roles of PIN1 and other PPIases in glioblastoma and medulloblastoma, the most frequent adult and pediatric primary brain tumors.
Collapse
|