1
|
Qian X, Jiang Y, Yang Y, Zhang Y, Xu N, Xu B, Pei K, Yu Z, Wu W. Recent advances of miR-23 in human diseases and growth development. Noncoding RNA Res 2025; 11:220-233. [PMID: 39896346 PMCID: PMC11787465 DOI: 10.1016/j.ncrna.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 02/04/2025] Open
Abstract
MicroRNA (miRNA) is broadly manifested in eukaryotes and serves as a critical function in biological development and disease occurrence. With the rapid advancement of experimental research tools, researchers have discovered functional correlations among different miRNA isoforms and clusters within the same miRNA family. As a highly conserved member in the miR-23-27-24 cluster, miR-23 exhibits different isoforms and participates in various essential development. Although the miR-23-27-24 cluster has overlapping target sites, their differential expression can demonstrate independent biological functions. Furthermore, the untapped effects of miR-23 on organisms, whether as a functional cluster or a single regulator, has not been systematically elucidated yet. In this review article, we analyze the genomic location of miR-23 and its sequence variances among its isoforms or family members while summarizing its regulatory functions in metabolic diseases, immune responses, cardiovascular diseases, cancer, organ development as well as nervous system function. This review highlights the significant role of miR-23 as a biomarker for disease diagnosis and a key regulatory factor in pathogenesis, which can help us comprehend the diverse functions of miRNAs and provide a theoretical reference for the functional differences among miRNA isoforms.
Collapse
Affiliation(s)
- Xu Qian
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yadi Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yukun Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Na Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Pei
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
2
|
Yu H, Zhao Y, Cheng R, Wang M, Hu X, Zhang X, Teng X, He H, Han Z, Han X, Wang Z, Liu B, Zhang Y, Wu Q. Silencing of maternally expressed RNAs in Dlk1-Dio3 domain causes fatal vascular injury in the fetal liver. Cell Mol Life Sci 2024; 81:429. [PMID: 39382697 PMCID: PMC11465015 DOI: 10.1007/s00018-024-05462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The mammalian imprinted Dlk1-Dio3 domain contains multiple lncRNAs, mRNAs, the largest miRNA cluster in the genome and four differentially methylated regions (DMRs), and deletion of maternally expressed RNA within this locus results in embryonic lethality, but the mechanism by which this occurs is not clear. Here, we optimized the model of maternally expressed RNAs transcription termination in the domain and found that the cause of embryonic death was apoptosis in the embryo, particularly in the liver. We generated a mouse model of maternally expressed RNAs silencing in the Dlk1-Dio3 domain by inserting a 3 × polyA termination sequence into the Gtl2 locus. By analyzing RNA-seq data of mouse embryos combined with histological analysis, we found that silencing of maternally expressed RNAs in the domain activated apoptosis, causing vascular rupture of the fetal liver, resulting in hemorrhage and injury. Mechanistically, termination of Gtl2 transcription results in the silencing of maternally expressed RNAs and activation of paternally expressed genes in the interval, and it is the gene itself rather than the IG-DMR and Gtl2-DMR that causes the aforementioned phenotypes. In conclusion, these findings illuminate a novel mechanism by which the silencing of maternally expressed RNAs within Dlk1-Dio3 domain leads to hepatic hemorrhage and embryonic death through the activation of apoptosis.
Collapse
Affiliation(s)
- Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Yue Zhao
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Rui Cheng
- State Key Laboratory for Conservation and Utilization of Bio-Resource and School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Mengyun Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Hu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Ximeijia Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiangqi Teng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiao Han
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Ziwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Bingjing Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
3
|
Wu Z, Yang X, Yuan Z, Guo Y, Wang X, Qu L. Identification of a novel histone acetylation-related long non-coding RNA model combined with qRT-PCR experiments for prognosis and therapy in gastric cancer. Heliyon 2024; 10:e36615. [PMID: 39263162 PMCID: PMC11387370 DOI: 10.1016/j.heliyon.2024.e36615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Gastric cancer (GC) is considered a global health crisis due to the scarcity of early diagnostic methods. Numerous studies have substantiated the involvement of histone acetylation imbalance in the progression of diverse tumor types. The potential roles of long non-coding RNA (lncRNA) in improving prognostic, predictive as well as therapeutic approaches in cancers have made it a major hotspot in recent years. Nevertheless, existent studies have never concerned the prognostic and clinical value of histone acetylation-related lncRNAs (HARlncs) in GC. Based on the aforementioned rationale, we developed a prognostic model incorporating four HARlncs-AC114730.1, AL445250.1, LINC01778, and AL163953.1-which demonstrated potential as an independent predictor of prognosis. Subsequently, GC patients were stratified into high-risk and low-risk groups. The low-risk group exhibited significantly higher overall survival (OS) compared to the high-risk group. Based on the analyses of the tumor microenvironment (TME) and immune responses, significant differences were observed between the two risk groups in terms of immune cell infiltration, immune checkpoint (ICP) expression, and other TME alterations. Furthermore, the sensitivity of GC patients to some chemotherapeutic drugs and the discrepant biological behaviors of three tumor clusters were studied in this model. In summary, we developed an effective HARlncs model with the objective of offering novel prognostic prediction methods and identifying potential therapeutic targets for GC patients.
Collapse
Affiliation(s)
- Zhixuan Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yangyang Guo
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, China
- Department of Thyroid and Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Liangchen Qu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, China
| |
Collapse
|
4
|
Wang L, Wang P, Liu B, Zhang H, Wei CC, Xiong M, Luo G, Wang M. LncRNA MEG3 Inhibits the Epithelial-mesenchymal Transition of Bladder Cancer Cells through the Snail/E-cadherin Axis. Curr Med Sci 2024; 44:726-734. [PMID: 38990449 DOI: 10.1007/s11596-024-2895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/28/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of the long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in the epithelial-mesenchymal transition (EMT) of bladder cancer cells and the potential mechanisms. METHODS Cell invasion, migration, and wound healing assays were conducted to assess the effects of MEG3 on the invasive and migratory capabilities of bladder cancer cells. The expression levels of E-cadherin were measured using Western blotting, RT-qPCR, and dual luciferase reporter assays. RNA immunoprecipitation and pull-down assays were performed to investigate the interactions between MEG3 and its downstream targets. RESULTS MEG3 suppressed the invasion and migration of bladder cancer cells and modulated the transcription of E-cadherin. The binding of MEG3 to the zinc finger region of the transcription factor Snail prevented its ability to transcriptionally repress E-cadherin. Additionally, MEG3 suppressed the phosphorylation of extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and P38, thereby decreasing the expression of Snail and stimulating the expression of E-cadherin. CONCLUSION MEG3 plays a vital role in suppressing the EMT in bladder cancer cells, indicating its potential as a promising therapeutic target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bing Liu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Cheng Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Luo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Askari A, Darabi MR, Eslami S, Jamali E, Sharifi G, Ghafouri-Fard S, Dilmaghani NA. Expression analysis of necroptosis related genes and lncRNAs in patients with pituitary neuroendocrine tumors. Pathol Res Pract 2024; 258:155332. [PMID: 38696856 DOI: 10.1016/j.prp.2024.155332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Necroptosis can either be the cause of tumorigenesis or it can impede its process. Recently, it has been proved that long non-coding RNAs (lncRNAs) have different crucial roles at cellular level, especially on cell death. Regarding the important role of necroptosis and lncRNAs in the pathogenesis of different cancers, especially pituitary adenomas (PAs), we assessed expression levels of two necroptosis related genes, namely TRADD and BIRC2, in addition to three related lncRNAs, namely FLVCR1-DT, MAGI2-AS3, and NEAT1 in PAs compared with adjacent normal tissues (ANTs). TRADD had no significant difference between two groups; however, BIRC2, FLVCR1-DT, MAGI2-AS3, and NEAT1 were upregulated in PAs compared to ANTs (Expression ratios [95% CI] = 2.3 [1.47-3.6], 2.13 [1.02-4.44], 3.01 [1.76-5.16] and 2.47 [1.37-4.45], respectively). When taking into account different types of PAs, significant upregulation of BIRC2, MAGI2-AS3 and NEAT1 was recorded in non-functioning PAs compared with corresponding ANTs (Expression ratios [95% CI] =1.9 [1.04-3.43], 2.69 [1.26-5.72] and 2.22 [0.98-5.01], respectively). Additionally, higher levels of BIRC2 were associated with higher flow of CSF (P value=0.048). Moreover, higher Knosp classified tumors had lower levels of BIRC2 (P value=0.001). Finally, lower levels of MAGI2-AS3 were associated with larger tumor size (P value=0.006). NEAT1 expression was correlated with FLVCR1-DT and TRADD. TRADD expression was correlated with FLVCR1-DT. Additional correlation was observed between expression of BIRC2 and MAGI2-AS3. In sum, this study provides evidence that dysregulated levels of studied genes could contribute to the pathogenesis of pituitary tumors.
Collapse
Affiliation(s)
- Arian Askari
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Darabi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Elena Jamali
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Rahmani F, Mohammed Al-Asady A, Hanaie R, Zandigohar M, Faridnejad H, Payazdan M, Safavi P, Ryzhikov M, Hassanian SM. Interplay between lncRNA/miRNA and Wnt/ß-catenin signaling in brain cancer tumorigenesis. EXCLI JOURNAL 2023; 22:1211-1222. [PMID: 38204968 PMCID: PMC10776877 DOI: 10.17179/excli2023-6490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Brain cancers are among the most aggressive malignancies with high mortality and morbidity worldwide. The pathogenesis of brain cancers is a very complicated process involving various genetic mutations affecting several oncogenic signaling pathways like Wnt/β-catenin axis. Uncontrolled activation of this oncogenic signaling is associated with decreased survival rate and poor prognosis in cancer patients. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were shown to play important roles in regulating cell proliferation, differentiation, and apoptosis by regulating the expression of their target genes. Aberrant expression of these non-coding RNAs (ncRNAs) was reported in many human cancers, including glioblastoma, medulloblastoma, meningioma, and pituitary adenoma. Multiple lncRNAs were shown to participate in brain tumor pathogenesis by targeting Wnt signaling regulatory miRNAs. SNHG7/miR-5095, PCAT6/miR-139-3p, SNHG6/miR-944, SNHG1/ miR-556-5p, SNHG17/ miR-506-3p, LINC00702/miR-4652-3p, DLGAP1-AS1/miR-515-5p, HOTAIR/miR-1, HOTAIR/miR-206, CRNDE/miR-29c-3p, AGAP2-AS1/ miR-15a/b-5p, CLRN1-AS1/miR-217, MEG3/miR-23b-3p, and GAS5/miR-27a-5p are identified lncRNA/miRNA pairs that are involved in this process. Therefore, recognition of the expression profile and regulatory role of ncRNAs on the Wnt signaling may offer a novel approach to the diagnosis, prognosis, and treatment of human cancers. This review summarizes previous data on the modulatory role of lncRNAs/miRNAs on the Wnt/β-catenin pathway implicated in tumor growth, EMT, metastasis, and chemoresistance in brain cancers.
Collapse
Affiliation(s)
- Farzad Rahmani
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Medical Sciences Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Hanaie
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Zandigohar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Mahya Payazdan
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Pegah Safavi
- Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mikhail Ryzhikov
- Saint Louis University, School of Medicine, Saint Louis, MO, USA
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Medical Sciences Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Wang L, Xu D. Regulation of long noncoding RNAs in the pathogenesis and clinical implications of pituitary adenomas. Immun Inflamm Dis 2023; 11:e1047. [PMID: 37904679 PMCID: PMC10571498 DOI: 10.1002/iid3.1047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Pituitary adenoma (PA) is a type of tumor that develops in the sella turcica and is one of the most frequent intracranial tumors. It belongs to a type of adenoma derived from a single clone of cells in the pituitary gland. PA ranks third among all intracranial tumors, following only gliomas and meningioma. The average prevalence rate is approximately 15% at autopsy and 22.5% at radiological examinations. OBJECTIVE AND SIGNIFICANCE Most PAs are benign and non-invasive adenomas that can be removed surgically or controlled with medication. However, approximately 35% of them show invasion into nearby anatomical structures and cannot be completely resected. 0.1%~0.2% of PA cases eventually develop into pituitary carcinomas. Additionally, PA may cause severe morbidity due to mass effects and the disorder of pituitary hormone secretion. Therefore, there is an urgent need to clarify the pathological mechanism of PA, improve the accuracy of diagnosis, and develop targeted therapies. RESEARCH STATUS Although current knowledge about the pathogenesis of PA remains limited, epigenetic modulation of PA has been increasingly implicated. Long non-coding RNAs (lncRNAs) are known to regulate gene expression post-transcriptionally and exert substantial roles in the initiation, progression, or suppression of various tumors. Accumulating evidence has shown close relationships between lncRNA dysregulation and PA development. CONCLUSIONS This review highlights recent progress in the study of lncRNAs in PA pathogenesis and their potential as diagnostic/prognostic biomarkers or therapeutic targets for PA patients.
Collapse
Affiliation(s)
- Ling Wang
- Department of EndocrinologyLiangzhou HospitalWuweiGansuChina
| | - Dingkai Xu
- Department of NeurosurgeryLiangzhou HospitalWuweiGansuChina
| |
Collapse
|
8
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
9
|
Wu W, Cao L, Jia Y, Xiao Y, Zhang X, Gui S. Emerging Roles of miRNA, lncRNA, circRNA, and Their Cross-Talk in Pituitary Adenoma. Cells 2022; 11:cells11182920. [PMID: 36139495 PMCID: PMC9496700 DOI: 10.3390/cells11182920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pituitary adenoma (PA) is a common intracranial tumor without specific biomarkers for diagnosis and treatment. Non-coding RNAs (ncRNAs), including microRNAs (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA), regulate a variety of cellular processes, such as cell proliferation, differentiation, and apoptosis. Increasing studies have shown that the dysregulation of ncRNAs, especially the cross-talk between lncRNA/circRNA and miRNA, is related to the pathogenesis, diagnosis, and prognosis of PA. Therefore, ncRNAs can be considered as promising biomarkers for PA. In this review, we summarize the roles of ncRNAs from different specimens (i.e., tissues, biofluids, cells, and exosomes) in multiple subtypes of PA and highlight important advances in understanding the contribution of the cross-talk between ncRNAs (e.g., competing endogenous RNAs) to PA disease.
Collapse
Affiliation(s)
- Wentao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Forth West Ring, Beijing 100070, China
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Forth West Ring, Beijing 100070, China
| | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Forth West Ring, Beijing 100070, China
| | - Youchao Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Forth West Ring, Beijing 100070, China
| | - Xu Zhang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230032, China
- Correspondence: (X.Z.); (S.G.)
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Forth West Ring, Beijing 100070, China
- Correspondence: (X.Z.); (S.G.)
| |
Collapse
|
10
|
The Long Noncoding RNA MEG3 Retains Epithelial-Mesenchymal Transition by Sponging miR-146b-5p to Regulate SLFN5 Expression in Breast Cancer Cells. J Immunol Res 2022; 2022:1824166. [PMID: 36033389 PMCID: PMC9411926 DOI: 10.1155/2022/1824166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
More and more studies have shown that long noncoding RNAs (lncRNAs) play essential roles in malignant tumors. The lncRNA MEG3 serves as a crucial molecule in breast cancer development, but the specific molecular mechanism needs to be further explored. We previously reported that Schlafen family member 5 (SLFN5) inhibits breast cancer malignant development by regulating epithelial-mesenchymal transition (EMT), invasion, and proliferation/apoptosis. Herein, we demonstrated that MEG3 was downregulated in pan-cancers and correlated with SLFN5 expression positively in breast cancer by bioinformatics analysis of TCGA and UCSC Xena data. Intervention with MEG3 positively affected SLFN5 expression in breast cancer cells. MEG3 repressed EMT and migration/invasion, similar to our previously reported functions of SLFN5 in breast cancer. Through bioinformatics analysis of starBase and LncBase data, 12 miRNAs were found to regulate both SLFN5 and MEG3, in which miR-146b-5p was confirmed to be regulated by MEG3 using MEG3 siRNA and overexpression method. MiR-146b-5p could bind to both SLFN5 3′UTR and MEG3, and inhibit their expression in a competing endogenous RNA mechanism, assayed by luciferase reporter and RNA pull down methods. Therefore, we conclude that MEG3 positively modulates SLFN5 expression by sponging miR-146b-5p and inhibits breast cancer development.
Collapse
|
11
|
The FOXO family of transcription factors: key molecular players in gastric cancer. J Mol Med (Berl) 2022; 100:997-1015. [PMID: 35680690 DOI: 10.1007/s00109-022-02219-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death with an oncological origin. Despite its decline in incidence and mortality in recent years, GC remains a global public problem that seriously threatens patients' health and lives. The forkhead box O proteins (FOXOs) are a family of evolutionarily conserved transcription factors (TFs) with crucial roles in cell fate decisions. In mammals, the FOXO family consists of four members FOXO1, 3a, 4, and 6. FOXOs play crucial roles in a variety of biological processes, such as development, metabolism, and stem cell maintenance, by regulating the expression of their target genes in space and time. An accumulating amount of evidence has shown that the dysregulation of FOXOs is involved in GC progression by affecting multiple cellular processes, including proliferation, apoptosis, invasion, metastasis, cell cycle progression, carcinogenesis, and resistance to chemotherapeutic drugs. In this review, we systematically summarize the recent findings on the regulatory mechanisms of FOXO family expression and activity and elucidate its roles in GC progression. Moreover, we also highlight the clinical implications of FOXOs in GC treatment.
Collapse
|
12
|
Zheng AC, Wang EJ, Aghi MK. Recent advancements in the molecular biology of pituitary adenomas. Expert Rev Endocrinol Metab 2022; 17:293-304. [PMID: 35702013 DOI: 10.1080/17446651.2022.2082942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pituitary adenomas are a common and diverse group of intracranial tumors arising from the anterior pituitary that are usually slow-growing and benign, but still pose a significant healthcare burden to patients. Additionally, they are increasing in both incidence and prevalence, leading to a need for better understanding of molecular changes in the development of these tumors. AREAS COVERED A PubMed literature search was conducted using the terms 'pituitary adenoma' in combination with keywords related to secretory subtype: lactotroph, somatotroph, corticotroph, gonadotroph and null cell, in addition to their transcription factor expression: PIT1, TPIT, and SF-1. Articles resulting from this search were analyzed, as well as relevant articles cited as their references. In this review, we highlight recent advances in the genetic and epigenetic characterization of individual pituitary adenoma subtypes and the effect it may have on guiding future clinical treatment of these tumors. EXPERT OPINION Understanding the molecular biology of pituitary adenomas is a fundamental step toward advancing the treatment of these tumors. Yet crucial knowledge gaps exist in our understanding of the underlying molecular biology of pituitary adenomas which can potentially be addressed by turning to differentially activated molecular pathways in tumor relative to normal gland.
Collapse
Affiliation(s)
- Allison C Zheng
- Department of Neurosurgery; University of California at San Francisco (UCSF) San Francisco, CA, USA
| | - Elaina J Wang
- Department of Neurosurgery; Warren Alpert Medical School of Brown University Providence, RI, USA
| | - Manish K Aghi
- Department of Neurosurgery; University of California at San Francisco (UCSF) San Francisco, CA, USA
| |
Collapse
|
13
|
Wang Y, Xie T, Liu H, Yu X. LncRNA HLA-F-AS1 Enhances the Migration, Invasion and Apoptosis of Glioblastoma Cells by Targeting lncRNA MEG3. Cancer Manag Res 2021; 13:9139-9145. [PMID: 34934358 PMCID: PMC8678538 DOI: 10.2147/cmar.s322351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies revealed the oncogenic role of long non-coding RNA (lncRNA) HLA-F-AS1 in colon cancer and breast cancer, while its role in other cancers is unclear. We predicted the direct interaction between HLA-F-AS1 and MEG3, which is a tumor suppressor lncRNA. We then assessed the interaction between HLA-F-AS1 and MEG3 in glioblastoma (GBM). Methods The expression levels of HLA-F-AS1 and MEG3 in GBM and paired non-tumor tissues from 60 GBM patients were analyzed by RT-qPCR. Overexpression of HLA-F-AS1 and MEG3 was achieved in GBM cells to explore the interaction between them. The direct interaction between them was confirmed by RNA pull-down assay. The roles of HLA-F-AS1 and MEG3 in cell invasion, migration and apoptosis were explored by Transwell assays and cell apoptosis assay. Results HLA-F-AS1 was highly expressed, and MEG3 was downregulated in GBM. Overexpression of HLA-F-AS1 reduced the expression levels of MEG3 while overexpression of MEG3 did not alter the expression of HLA-F-AS1. HLA-F-AS1 increased cell migration and invasion, but decreased cell apoptosis. MEG3 played opposite roles and reduced the effects of HLA-F-AS1 on cell behaviors. Conclusion HLA-F-AS1 may sponge MEG3 in GBM cells to promote cell invasion and migration, and to suppress cell apoptosis.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Neurosurgery, Hanchuan People's Hospital, Hanchuan City, People's Republic of China
| | - Teng Xie
- Department of Neurosurgery, Hanchuan People's Hospital, Hanchuan City, People's Republic of China
| | - Huaming Liu
- Department of Neurosurgery, Hanchuan People's Hospital, Hanchuan City, People's Republic of China
| | - Xiaoping Yu
- Department of Neurosurgery, Hanchuan People's Hospital, Hanchuan City, People's Republic of China
| |
Collapse
|
14
|
Ghafouri-Fard S, Abak A, Hussen BM, Taheri M, Sharifi G. The Emerging Role of Non-Coding RNAs in Pituitary Gland Tumors and Meningioma. Cancers (Basel) 2021; 13:cancers13235987. [PMID: 34885097 PMCID: PMC8656547 DOI: 10.3390/cancers13235987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are non-coding transcripts which are involved in the pathogenesis of pituitary gland tumors. LncRNAs that participate in the pathogenesis of pituitary gland tumors mainly serve as sponges for miRNAs. CLRN1-AS1/miR-217, XIST/miR-424-5p, H19/miR-93a, LINC00473/miR-502-3p, SNHG7/miR-449a, MEG8/miR-454-3p, MEG3/miR-23b-3p, MEG3/miR-376B-3P, SNHG6/miR-944, PCAT6/miR-139-3p, lncRNA-m433s1/miR-433, TUG1/miR-187-3p, SNHG1/miR-187-3p, SNHG1/miR-302, SNHG1/miR-372, SNHG1/miR-373, and SNHG1/miR-520 are identified lncRNA/miRNA pairs that are involved in this process. Hsa_circ_0001368 and circOMA1 are two examples of circRNAs that contribute to the pathogenesis of pituitary gland tumors. Meanwhile, SNHG1, LINC00702, LINC00460, and MEG3 have been found to partake in the pathogenesis of meningioma. In the current review, we describe the role of non-coding RNAs in two types of brain tumors, i.e., pituitary tumors and meningioma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq;
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
- Correspondence: (M.T.); (G.S.)
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran
- Correspondence: (M.T.); (G.S.)
| |
Collapse
|