1
|
Zhang J, Wei X, Xie Y, Peng S, Yang P, Chen Y, Huang X, Wu J, Hong L, Guo Z, Huang X, Lin Z, Zhi F, Liu S, Xiang L, Lin J, Li A, Wang J. Long non-coding RNA-MIR181A1HG acts as an oncogene and contributes to invasion and metastasis in gastric cancer. Oncogene 2025; 44:1517-1529. [PMID: 40044982 PMCID: PMC12075001 DOI: 10.1038/s41388-025-03323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 05/15/2025]
Abstract
Dysregulation of long non-coding RNAs (lncRNA) plays an essential role in cancer development and progression. However, their functions and mechanisms of action in gastric cancer (GC) remain largely unknown. Gene expression in GC was evaluated using quantitative real-time PCR, western blotting, immunofluorescence, immunohistochemistry, and RNA in situ hybridization. The impact of MIR181A1HG on GC cells was explored in vitro and in vivo using cell proliferation, migration, invasion assays and animal models. Biotinylated RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays were performed to evaluate the molecular interactions. LncRNA-MIR181A1HG was upregulated in GC and associated with malignant progression. MIR181A1HG physically interacts with ELAVL1 to regulate epithelial-mesenchymal transition (EMT) in GC cells. MIR181A1HG intron-derived miR-181a-5p/miR-181b-5p triggers MIR181A1HG transcription through binding to and destabilizing SOCS3 messenger RNA. Specifically, SOCS3 interacts with NFATC2 and downregulated SOCS3 enhances the NFATC2-mediated transcriptional activation of the MIR181A1HG promoter. Collectively, MIR181A1HG, activated by miR-181a-5p/miR-181b-5p-SOCS3-NFATC2 positive feedback loop, contributes to GC progression through stabilizing ELAVL1. MIR181A1HG expression correlates positively with ELAVL1, miR-181a-5p, miR-181b-5p, and NFATC2 and negatively with SOCS3 in fresh GC samples. These data demonstrate that MIR181A1HG plays an important role in tumor progression by promoting invasion, metastasis, and EMT, indicating its potential as a prognostic biomarker in GC.
Collapse
Affiliation(s)
- Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiangyang Wei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanci Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siyang Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yidong Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaodong Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieke Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zheng Guo
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518000, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510000, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Li Xiang
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Jianjiao Lin
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
2
|
Tran ET, Patel RA, Chariyamane A, Ray RB. Long non-coding RNAs as therapeutic targets in head and neck squamous cell carcinoma and clinical application. FEBS Open Bio 2025. [PMID: 40231344 DOI: 10.1002/2211-5463.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major global health burden, often associated with poor prognosis and limited therapeutic options. Long non-coding RNAs (lncRNAs), a diverse group of non-coding RNA molecules > 200 nucleotides in length, have emerged as critical regulators in the pathogenesis of HNSCC. This review summarizes the mechanisms through which certain lncRNAs regulate chromatin modification, mRNA splicing, and interactions with RNA-binding proteins and contribute to the development and progression of HNSCC. Interaction of lncRNAs with key oncogenic pathways, such as PI3K/AKT and Wnt/β-catenin, highlights their importance in tumor progression. The role of lncRNAs, such as ELDR, MALAT1, NEAT1, HOTAIR, and UCA1, which promote cell proliferation, metastasis, immune evasion, and therapy resistance is discussed. Moreover, several lncRNAs are being evaluated in clinical trials for their potential as biomarkers, reflecting their clinical significance. We further address the challenges and opportunities for targeting lncRNA therapeutically, highlighting the promise of lncRNA-based interventions for personalized cancer treatment. Gaining insight into the function of lncRNAs in HNSCC could pave the way for novel therapeutic strategies to potentially improve patient outcomes.
Collapse
Affiliation(s)
- Ellen T Tran
- Department of Pathology, Saint Louis University, MO, USA
| | - Ruchi A Patel
- Department of Pathology, Saint Louis University, MO, USA
| | | | - Ratna B Ray
- Department of Pathology, Saint Louis University, MO, USA
| |
Collapse
|
3
|
Suliman M, Saleh RO, Chandra M, Rasool KH, Jabir M, Jawad SF, Hasan TF, Singh M, Singh M, Singh A. Macrophage-derived lncRNAs in cancer: regulators of tumor progression and therapeutic targets. Med Oncol 2025; 42:91. [PMID: 40048034 DOI: 10.1007/s12032-025-02643-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Macrophages are key tumor microenvironment (TME) regulators, exhibiting remarkable plasticity that enables them to either suppress or promote cancer progression. Emerging evidence highlights the critical role of macrophage-derived long non-coding RNAs (lncRNAs) in shaping tumor immunity, influencing macrophage polarization, immune evasion, angiogenesis, metastasis, and therapy resistance. This review comprehensively elucidates the functional roles of M1- and M2-associated lncRNAs, detailing their molecular mechanisms and impact on cancer pathogenesis. In summary, elucidating the roles of lncRNAs derived from macrophages in cancer progression offers new avenues for therapeutic strategies, significantly improving patient outcomes in the fight against the disease. Further research into the functional significance of these lncRNAs and the development of targeted therapies is essential to harness their potential fully in clinical applications. We further explore their potential as biomarkers for cancer prognosis and therapeutic targets for modulating macrophage activity to enhance anti-cancer immunity. Targeting macrophage-derived lncRNAs represents a promising avenue for precision oncology, offering novel strategies to reshape the TME and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Thikra F Hasan
- College of Health & Medical Technology, Uruk University, Baghdad, Iraq
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
4
|
Rab SO, Zwamel AH, Oghenemaro EF, Chandra M, Kaur I, Rani B, Abbot V, Kumar MR, Ullah MI, Kumar A. Cell death-associated lncRNAs in cancer immunopathogenesis: An exploration of molecular mechanisms and signaling pathways. Exp Cell Res 2025; 446:114439. [PMID: 39947388 DOI: 10.1016/j.yexcr.2025.114439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
Cancer remains one of the foremost causes of mortality worldwide, highlighting the urgent need for novel therapeutic targets due to the insufficient efficacy and adverse side effects associated with existing cancer treatments. Long non-coding RNAs (lncRNAs), defined as RNA transcripts longer than 200 nucleotides, have emerged as pivotal regulators in the initiation and progression of various malignancies. In oncology, programmed cell death (PCD) serves as the primary mechanism for tumor cell elimination, comprising processes such as apoptosis, pyroptosis, autophagy, and ferroptosis. Recent studies have elucidated a substantial relationship between lncRNAs and these PCD pathways, indicating that lncRNAs can modulate the apoptotic and non-apoptotic death mechanisms. This regulation may influence not only the dynamics of cancer progression but also the therapeutic response to clinical interventions. This review delves into the intricate role of lncRNAs within the context of PCD in cancer, unveiling the underlying pathogenic mechanisms while proposing innovative strategies for cancer therapy. Additionally, it discusses the potential therapeutic implications of targeting lncRNAs in PCD and related signaling pathways, aiming to enhance treatment outcomes for patients facing cancer.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Aljouf, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| |
Collapse
|
5
|
Moras B, Sissi C. Unravelling the Regulatory Roles of lncRNAs in Melanoma: From Mechanistic Insights to Target Selection. Int J Mol Sci 2025; 26:2126. [PMID: 40076754 PMCID: PMC11900516 DOI: 10.3390/ijms26052126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Melanoma is the deadliest form of skin cancer, and its treatment poses significant challenges due to its aggressive nature and resistance to conventional therapies. Long non-coding RNAs (lncRNAs) represent a new frontier in the search for suitable targets to control melanoma progression and invasiveness. Indeed, lncRNAs exploit a wide range of regulatory functions along chromatin remodeling, gene transcription, post-transcription, transduction, and post-transduction to ultimately tune multiple cellular processes. The understanding of this intricate and flexible regulatory network orchestrated by lncRNAs in pathological conditions can strategically support the rational identification of promising targets, ultimately speeding up the setup of new therapeutics to integrate the currently available approaches. Here, the most recent findings on lncRNAs involved in melanoma will be analyzed. In particular, the functional links between their mechanisms of action and some frequently underestimated features, like their different subcellular localizations, will be highlighted.
Collapse
Affiliation(s)
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| |
Collapse
|
6
|
Coradduzza D, Cruciani S, Di Lorenzo B, De Miglio MR, Zinellu A, Maioli M, Medici S, Erre GL, Carru C. Plasma Humanin and Non-Coding RNAs as Biomarkers of Endothelial Dysfunction in Rheumatoid Arthritis: A Pilot Study. Noncoding RNA 2025; 11:5. [PMID: 39846683 PMCID: PMC11755443 DOI: 10.3390/ncrna11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder associated with an increased risk of cardiovascular disease (CVD), largely driven by peripheral endothelial dysfunction (ED). Humanin, a mitochondrial-derived peptide, has been suggested to play a protective role in endothelial function. However, the relationship between Humanin levels and ED in RA, as well as the interaction between Humanin and non-coding RNAs such as Long Non-Coding RNA GAS5, microRNA-21 (miR-21), and microRNA-103 (miR-103), remains unclear. Objective: This study aimed to investigate the relationship between circulating Humanin levels, non-coding RNAs (GAS5, miR-21, miR-103), and endothelial dysfunction (ED) in patients with RA. Additionally, we explored the correlation between Humanin expression and specific non-coding RNAs (GAS5, miR-21, and miR-103) to better understand their potential role in vascular health. Methods: Peripheral ED was assessed using flow-mediated pulse amplitude tonometry, with Ln-RHI values <0.51 indicating dysfunction. Humanin levels, GAS5, miR-21, and miR-103 were measured in RA patients. Univariate and multivariate analyses were conducted to determine the relationship between these biomarkers and ED. Kaplan-Meier survival analysis and ROC curve analysis were used to assess the prognostic value of Humanin. Results: Higher Humanin levels were significantly associated with better endothelial function (OR = 0.9774, p = 0.0196). Kaplan-Meier analysis demonstrated that higher Humanin levels correlated with improved survival (p < 0.0001). The non-coding RNAs (GAS5, miR-21, and miR-103) did not show significant associations with ED. Conclusions: Humanin is a potential protective biomarker for endothelial dysfunction and survival in RA patients. Further research is needed to explore the interaction between Humanin and non-coding RNAs in the context of vascular health.
Collapse
Affiliation(s)
- Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (S.C.); (B.D.L.); (A.Z.); (M.M.); (C.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (S.C.); (B.D.L.); (A.Z.); (M.M.); (C.C.)
| | - Biagio Di Lorenzo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (S.C.); (B.D.L.); (A.Z.); (M.M.); (C.C.)
| | - Maria Rosaria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.R.D.M.); (G.L.E.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (S.C.); (B.D.L.); (A.Z.); (M.M.); (C.C.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (S.C.); (B.D.L.); (A.Z.); (M.M.); (C.C.)
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Gian Luca Erre
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.R.D.M.); (G.L.E.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (S.C.); (B.D.L.); (A.Z.); (M.M.); (C.C.)
| |
Collapse
|
7
|
Hsu CY, Hisham Ateya N, Felix Oghenemaro E, Nathiya D, Kaur P, Hjazi A, Eldesoqui M, Yumashev A, Kadhim Abosaoda M, Adnan Abdulrahman M. Correlation between lncRNAs with human molecular chaperons in cancer immunopathogenesis and drug resistance. Int Immunopharmacol 2024; 143:113309. [PMID: 39405942 DOI: 10.1016/j.intimp.2024.113309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024]
Abstract
The development of cancer immunology heavily relies on the interaction between long non-coding RNAs (lncRNAs) and molecular chaperones. By participating in gene regulation, lncRNAs interact with molecular chaperones, which play a critical role in protein folding and stress responses, to influence oncogenic pathways. This interaction has an impact on both the immune cells within the tumor microenvironment and the tumor cells themselves. Understanding these mechanisms provides valuable insights into innovative approaches for diagnosis and treatment. Targeting the lncRNA-chaperone axis has the potential to strengthen anti-tumor immunity and enhance cancer treatment outcomes. Further research is necessary to uncover specific associations, identify biomarkers, and develop personalized therapies aimed at disrupting this axis, which could potentially revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA.
| | - Nabaa Hisham Ateya
- Biotechnology Department, College of Applied Science, Fallujah University, Iraq.
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Abraka, Delta State, Nigeria.
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Doctor of Medicine, Professor. Sechenov First Moscow State Medical University, Russia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq; College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Pharmacy, the Islamic University of Babylon, Babylon, Iraq.
| | | |
Collapse
|
8
|
Ali A, Azmat U, Ji Z, Khatoon A, Murtaza B, Akbar K, Irshad U, Raza R, Su Z. Beyond Genes: Epiregulomes as Molecular Commanders in Innate Immunity. Int Immunopharmacol 2024; 142:113149. [PMID: 39278059 DOI: 10.1016/j.intimp.2024.113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The natural fastest way to deal with pathogens or danger signals is the innate immune system. This system prevents too much inflammation and tissue damage and efficiently eliminates pathogens. The epiregulome is the chromatin structure influenced by epigenetic factors and linked to cis-regulatory elements (CREs). The epiregulome helps to end the inflammatory response and also assists innate immune cells to show specific action by making cell-specific gene expression patterns. This inspection unfolds two concepts: (1) how epiregulomes are shaped by switching the expression levels of genes, manoeuvre enzyme activity and earmark of chromatin modifiers on specific genes; during and after the infection, and (2) how the expression of specific genes (aids in prompt management of innate cell growth, or the reaction to aggravation and illness) command by epiregulomes that formed during the above process. In this review, the consequences of intrinsic immuno-metabolic remodelling on epiregulomes and potential difficulties in identifying the master epiregulome that regulates innate immunity and inflammation have been discussed.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, China.
| | - Urooj Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Science and Technology, Dalian, China
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Urooj Irshad
- Department Biological Sciences, Faculty of Sciences, Superior University Lahore, Punjab, Pakistan
| | - Rameen Raza
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, China.
| |
Collapse
|
9
|
Nath P, Bhuyan K, Bhattacharyya DK, Barah P. ETENLNC: An end to end lncRNA identification and analysis framework to facilitate construction of known and novel lncRNA regulatory networks. Comput Biol Chem 2024; 112:108140. [PMID: 38996755 DOI: 10.1016/j.compbiolchem.2024.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in the regulation of gene expression and maintenance of genomic integrity through various interactions with DNA, RNA, and proteins. The availability of large-scale sequence data from various high-throughput platforms has opened possibilities to identify, predict, and functionally annotate lncRNAs. As a result, there is a growing demand for an integrative computational framework capable of identifying known lncRNAs, predicting novel lncRNAs, and inferring the downstream regulatory interactions of lncRNAs at the genome-scale. We present ETENLNC (End-To-End-Novel-Long-NonCoding), a user-friendly, integrative, open-source, scalable, and modular computational framework for identifying and analyzing lncRNAs from raw RNA-Seq data. ETENLNC employs six stringent filtration steps to identify novel lncRNAs, performs differential expression analysis of mRNA and lncRNA transcripts, and predicts regulatory interactions between lncRNAs, mRNAs, miRNAs, and proteins. We benchmarked ETENLNC against six existing tools and optimized it for desktop workstations and high-performance computing environments using data from three different species. ETENLNC is freely available on GitHub: https://github.com/EvolOMICS-TU/ETENLNC.
Collapse
Affiliation(s)
- Prangan Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | - Kaveri Bhuyan
- Department of Computer Science and Engineering, Tezpur University, Assam 784028, India; Department of Electrical Engineering, Tezpur University, Assam 784028, India
| | | | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India.
| |
Collapse
|
10
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
11
|
Yang D, Li C, Kong Y, Pei Y, Miao B, Dai G, Ding P, Shi P, Wang Z, Pei R. Deciphering the Temporal-Spatial Interactive Heterogeneity of Long Non-Coding RNAs and RNA-Binding Proteins in Living Cells at Single-Cell Resolution. J Am Chem Soc 2024. [PMID: 39016781 DOI: 10.1021/jacs.4c05205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The investigation of long noncoding RNAs (lncRNAs) and RNA binding proteins (RBPs) interactions in living cell holds great significance for elucidating their critical roles in a variety of biological activities, but limited techniques are available to profile the temporal-spatial dynamic heterogeneity. Here, we introduced a molecular beacon-functionalized nanoneedle array designed for spatially resolved profiling of lncRNA-RBP interactions (Nano-SpatiaLR). A nanoneedle array modified with a molecular beacon is employed to selectively isolate specific intracellular lncRNAs and their associated RBPs without affecting cell viability. The RBPs are then in situ analyzed with a fluorescent labeled antibody and colocalized with lncRNA signals to get a quantitative measurement of their dynamic interactions. Additionally, leveraging the spatial distribution and nanoscale modality of the nanoneedle array, this technique provides the spatial heterogeneity information on cellular lncRNA-RBPs interaction at single cell resolution. In this study, we tracked the temporal-spatial interactive heterogeneity dynamics of lncRNA-RBPs interaction within living cells across different biological progresses. Our findings demonstrated that the interactions between lncRNA HOTAIR and RBPs EZH2 and LSD1 undergo significant changes in response to drug treatments, particularly in tumor cells. Moreover, these interactions become more intensified as tumor cells aggregate during the proliferation process.
Collapse
Affiliation(s)
- Deyuan Yang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Cheng Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yutong Kong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yian Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Duke Kunshan University Kunshan 215316, China
| | - Bing Miao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Gaole Dai
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Pi Ding
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Peng Shi
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong 999077, China
- Department of Biomedical Engineering, City University of Hong Kong Kowloon, Shatin, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518000, China
| | - Zixun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
12
|
Khan A, Mohammed A, Zhang X. Antiviral Shrimp lncRNA06 Possesses Anti-Tumor Activity by Inducing Apoptosis of Human Gastric Cancer Stem Cells in a Cross-Species Manner. Mar Drugs 2024; 22:221. [PMID: 38786611 PMCID: PMC11123040 DOI: 10.3390/md22050221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Virus infection causes the metabolic disorder of host cells, whereas the metabolic disorder of cells is one of the major causes of tumorigenesis, suggesting that antiviral molecules might possess anti-tumor activities by regulating cell metabolism. As the key regulators of gene expression, long non-coding RNAs (lncRNAs) play vital roles in the regulation of cell metabolism. However, the influence of antiviral lncRNAs on tumorigenesis has not been explored. To address this issue, the antiviral and anti-tumor capacities of shrimp lncRNAs were characterized in this study. The results revealed that shrimp lncRNA06, having antiviral activity in shrimp, could suppress the tumorigenesis of human gastric cancer stem cells (GCSCs) via triggering apoptosis of GCSCs in a cross-species manner. Shrimp lncRNA06 could sponge human miR-17-5p to suppress the stemness of GCSCs via the miR-17-5p-p21 axis. At the same time, shrimp lncRNA06 could bind to ATP synthase subunit beta (ATP5F1B) to enhance the stability of the ATP5F1B protein in GCSCs, thus suppressing the tumorigenesis of GCSCs. The in vivo data demonstrated that shrimp lncRNA06 promoted apoptosis and inhibited the stemness of GCSCs through interactions with ATP5F1B and miR-17-5p, leading to the suppression of the tumorigenesis of GCSCs. Therefore, our findings highlighted that antiviral lncRNAs possessed anti-tumor capacities and that antiviral lncRNAs could be the anti-tumor reservoir for the treatment of human cancers.
Collapse
Affiliation(s)
- Ahmad Khan
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, China; (A.K.); (A.M.)
- Government Post Graduate College Miran Shah, Miran Shah 28200, Pakistan
| | - Anas Mohammed
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, China; (A.K.); (A.M.)
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, China; (A.K.); (A.M.)
| |
Collapse
|
13
|
Al-Hawary SIS, Rodrigues P, Bangali H, Hassan ZF, Elawady A. The role of long noncoding RNA DGCR5 in cancers: Focus on molecular targets. Cell Biochem Funct 2024; 42:e3949. [PMID: 38379219 DOI: 10.1002/cbf.3949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Long noncoding RNAs (lncRNAs) are major components of cellular transcripts that are emerging as important players in various biological pathways. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis, and therapy. Studies have shown that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) with high specificity and accuracy has the potential to become biomarkers in cancers. LncRNA DGCR5 can be noninvasively extracted from body fluids, tissues, and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Now, the underlying mechanisms of lncRNAs such as DGCR5 were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. The DGCR5 lacks an appropriate animal model, which is necessary to gain greater knowledge of their functions. While some studies on the uses of DGCR5 have been carried out, the small sample size makes them unreliable. In this review, we presented a compilation of recent publications addressing the potential of lncRNA DGCR5 that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
14
|
Kar S, Mukherjee R, Guha S, Talukdar D, Das G, Murmu N. Modulating the acetylation of α-tubulin by LncRNAs and microRNAs helps in the progression of cancer. Cell Biochem Funct 2024; 42:e3953. [PMID: 38414166 DOI: 10.1002/cbf.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Malignant tumor cells go through morphological and gene expression alterations, including rearrangement of cytoskeleton proteins that promote invasion and metastasis. Microtubules form a major cytoskeleton component that plays a significant role in regulating multiple cellular activities and function depending on the presence of posttranslational modification (PTM). Acetylation is a type of PTM that generally occurs in the lysine 40 region of α-tubulin and is known to be critically associated with cancer metastasis. Current evidence demonstrates that noncoding RNAs, such as long noncoding RNA (lncRNA) and microRNA (or miRNA), which are correlated with gene regulation modulate the expression of acetylated tubulin in the development and metastasis of cancer. This review provides an overview about the role of lncRNA and miRNA in regulation of tubulin acetylation in various types of cancer.
Collapse
Affiliation(s)
- Sneha Kar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Subhabrata Guha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Debojit Talukdar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
15
|
Teixeira LCR, Mamede I, Luizon MR, Gomes KB. Role of long non-coding RNAs in the pathophysiology of Alzheimer's disease and other dementias. Mol Biol Rep 2024; 51:270. [PMID: 38302810 DOI: 10.1007/s11033-023-09178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Dementia is the term used to describe a group of cognitive disorders characterized by a decline in memory, thinking, and reasoning abilities that interfere with daily life activities. Examples of dementia include Alzheimer's Disease (AD), Frontotemporal dementia (FTD), Amyotrophic lateral sclerosis (ALS), Vascular dementia (VaD) and Progressive supranuclear palsy (PSP). AD is the most common form of dementia. The hallmark pathology of AD includes formation of β-amyloid (Aβ) oligomers and tau hyperphosphorylation in the brain, which induces neuroinflammation, oxidative stress, synaptic dysfunction, and neuronal apoptosis. Emerging studies have associated long non-coding RNAs (lncRNAs) with the pathogenesis and progression of the neurodegenerative diseases. LncRNAs are defined as RNAs longer than 200 nucleotides that lack the ability to encode functional proteins. LncRNAs play crucial roles in numerous biological functions for their ability to interact with different molecules, such as proteins and microRNAs, and subsequently regulate the expression of their target genes at transcriptional and post-transcriptional levels. In this narrative review, we report the function and mechanisms of action of lncRNAs found to be deregulated in different types of dementia, with the focus on AD. Finally, we discuss the emerging role of lncRNAs as biomarkers of dementias.
Collapse
Affiliation(s)
- Lívia Cristina Ribeiro Teixeira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Izabela Mamede
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
16
|
Huang H, Liang X, Wu W, Yuan T, Chen Z, Wang L, Wu Z, Zhang T, Yang K, Wen K. FOXP3-regulated lncRNA NONHSAT136151 promotes colorectal cancer progression by disrupting QKI interaction with target mRNAs. J Cell Mol Med 2024; 28:e18068. [PMID: 38041531 PMCID: PMC10826441 DOI: 10.1111/jcmm.18068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
The role of lncRNAs in the pathogenesis of cancer, including colorectal cancer (CRC), has repeatedly been demonstrated. However, very few lncRNAs have been well annotated functionally. Our study identified a novel lncRNA upregulated in CRC, NONHSAT136151, which was correlated with clinical progression. In functional assays, NONHSAT136151 significantly enhanced CRC cell proliferation, migration and invasion. Mechanistically, NONHSAT136151 interacted with RNA-binding protein (RBP) QKI (Quaking) to interfere with QKI binding to target mRNAs and regulate their expression. As well, FOXP3 may be causally related to the dysregulation of NONHSAT136151 in CRC cells through its transcriptional activity. In conclusion, our findings identified a novel lncRNA regulated by FOXP3 participates in CRC progression through interacting with QKI, indicating a novel lncRNA-RBP interaction mechanism is involved in CRC pathogenesis.
Collapse
Affiliation(s)
- Handong Huang
- Soochow University Medical CollegeSuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiaoxiang Liang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Weizheng Wu
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Tao Yuan
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhengquan Chen
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lin Wang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhenyu Wu
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Tao Zhang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Kai Yang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Kunming Wen
- Soochow University Medical CollegeSuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
17
|
Du J, Su Y, Gao J, Tai Y. The expression and function of long noncoding RNAs in hepatocellular carcinoma. CANCER INNOVATION 2023; 2:488-499. [PMID: 38125766 PMCID: PMC10730004 DOI: 10.1002/cai2.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 12/23/2023]
Abstract
With the deepening of the genome project study, attention on noncoding RNAs is increasing. Long noncoding RNAs (lncRNAs) have become a new research hotspot. A growing number of studies have revealed that lncRNAs are involved in tumorigenesis and tumor suppressor pathways. Aberrant expressions of lncRNAs have been found in a variety of human tumors including hepatocellular carcinoma (HCC). In this review, we provide a brief introduction to lncRNA and highlight recent research on the functions and clinical significance of lncRNAs in HCC.
Collapse
Affiliation(s)
- Jingli Du
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Yue Su
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Jianzhi Gao
- Department of OncologyZhuozhou Hospital, ZhuozhouHebeiChina
| | - Yanhong Tai
- Department of PathologyThe 5th Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
18
|
Goswami B, Nag S, Ray PS. Fates and functions of RNA-binding proteins under stress. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1825. [PMID: 38014833 DOI: 10.1002/wrna.1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Exposure to stress activates a well-orchestrated set of changes in gene expression programs that allow the cell to cope with and adapt to the stress, or undergo programmed cell death. RNA-protein interactions, mediating all aspects of post-transcriptional regulation of gene expression, play crucial roles in cellular stress responses. RNA-binding proteins (RBPs), which interact with sequence/structural elements in RNAs to control the steps of RNA metabolism, have therefore emerged as central regulators of post-transcriptional responses to stress. Following exposure to a variety of stresses, the dynamic alterations in the RNA-protein interactome enable cells to respond to intracellular or extracellular perturbations by causing changes in mRNA splicing, polyadenylation, stability, translation, and localization. As RBPs play a central role in determining the cellular proteome both qualitatively and quantitatively, it has become increasingly evident that their abundance, availability, and functions are also highly regulated in response to stress. Exposure to stress initiates a series of signaling cascades that converge on post-translational modifications (PTMs) of RBPs, resulting in changes in their subcellular localization, association with stress granules, extracellular export, proteasomal degradation, and RNA-binding activities. These alterations in the fate and function of RBPs directly impact their post-transcriptional regulatory roles in cells under stress. Adopting the ubiquitous RBP HuR as a prototype, three scenarios illustrating the changes in nuclear-cytoplasmic localization, RNA-binding activity, export and degradation of HuR in response to inflammation, genotoxic stress, and heat shock depict the complex and interlinked regulatory mechanisms that control the fate and functions of RBPs under stress. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Binita Goswami
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| | - Sharanya Nag
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| |
Collapse
|
19
|
Singh M, Kumar S. Effect of single nucleotide polymorphisms on the structure of long noncoding RNAs and their interaction with RNA binding proteins. Biosystems 2023; 233:105021. [PMID: 37703988 DOI: 10.1016/j.biosystems.2023.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Long non-coding RNAs (lncRNA) are emerging as a new class of regulatory RNAs with remarkable potential to be utilized as therapeutic targets against many human diseases. Several genome-wide association studies (GWAS) have catalogued Single Nucleotide Polymorphisms (SNPs) present in the noncoding regions of the genome from where lncRNAs originate. In this study, we have selected 67 lncRNAs with GWAS-tagged SNPs and have also investigated their role in affecting the local secondary structures. Majority of the SNPs lead to changes in the secondary structure of lncRNAs to a different extent by altering the base pairing patterns. These structural changes in lncRNA are also manifested in form of alteration in the binding site for RNA binding proteins (RBPs) along with affecting their binding efficacies. Ultimately, these structural modifications may influence the transcriptional and post-transcriptional pathways of these RNAs, leading to the causation of diseases. Hence, it is important to understand the possible underlying mechanism of RBPs in association with GWAS-tagged SNPs in human diseases.
Collapse
Affiliation(s)
- Mandakini Singh
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
20
|
Zhao X, Su F, Guo Q, Tao X, Wang H, Wang H, Li Q, Zhang W. Preeclampsia-associated lncRNA FEZF1-AS1 regulates cell proliferation and apoptosis in placental trophoblast cells through the ELAVL1/NOC2L axis. Cell Div 2023; 18:17. [PMID: 37872600 PMCID: PMC10591422 DOI: 10.1186/s13008-023-00101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND LncRNAs have been shown to be involved in and control the biological processes of multiple diseases, including preeclampsia (PE). The impairment of trophoblast cell proliferation is recognized as a significant anomaly contributing to the development of PE. LncRNA FEZF1-AS1 was found downregulated in placental tissues of PE patients. However, the precise regulatory mechanism of FEZF1-AS1 in placental trophoblast proliferation and apoptosis remains unclear. RESULTS In this study, we conducted an investigation into the expression levels of FEZF1-AS1 and NOC2L in placental tissues obtained from patients diagnosed with PE. Subsequently, we employed CCK-8 and EdU assays to quantify cell proliferation, while TUNEL staining and western blot for apoptosis-related protein detection to assess apoptosis. Furthermore, the interactions between FEZF1-AS1 and ELAVL1, as well as NOC2L and ELAVL1, were confirmed through the implementation of RIP and RNA pull-down assays. We found a downregulation of lncRNA FEZF1-AS1 and NOC2L in placental tissues of PE patients. Overexpression of FEZF1-AS1 or NOC2L resulted in increased cell proliferation and inhibition of apoptosis, whereas knockdown of FEZF1-AS1 or NOC2L had the opposite effect. In addition, lncRNA FEZF1-AS1 stabilized NOC2L mRNA expression by interacting with ELAVL1. Moreover, partial reversal of the effects of FEZF1-AS1 overexpression on cell proliferation and apoptosis was observed upon suppression of ELAVL1 or NOC2L. CONCLUSIONS PE related lncRNA FEZF1-AS1 could regulate apoptosis and proliferation of placental trophoblast cells through the ELAVL1/NOC2L axis.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, No.29, Longtan Road, Taian, 271000, Shandong, People's Republic of China.
| | - Fengyun Su
- Department of Pharmacy, The Second Affiliated Hospital Of Shandong First Medical University, Taian, 271000, Shandong, People's Republic of China
| | - Qing Guo
- Intensive Care Unit, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, 271000, Shandong, People's Republic of China
| | - Xiuhong Tao
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, No.29, Longtan Road, Taian, 271000, Shandong, People's Republic of China
| | - Huifeng Wang
- Department of Ultrasound, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, 271000, Shandong, People's Republic of China
| | - Hongling Wang
- Department of Ultrasound, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, 271000, Shandong, People's Republic of China
| | - Qinwen Li
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, No.29, Longtan Road, Taian, 271000, Shandong, People's Republic of China
| | - Wangmeng Zhang
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, No.29, Longtan Road, Taian, 271000, Shandong, People's Republic of China
| |
Collapse
|
21
|
Braga EA, Fridman MV, Burdennyy AM, Loginov VI, Dmitriev AA, Pronina IV, Morozov SG. Various LncRNA Mechanisms in Gene Regulation Involving miRNAs or RNA-Binding Proteins in Non-Small-Cell Lung Cancer: Main Signaling Pathways and Networks. Int J Mol Sci 2023; 24:13617. [PMID: 37686426 PMCID: PMC10487663 DOI: 10.3390/ijms241713617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in the pathogenesis of non-small-cell lung cancer (NSCLC). A competing binding of lncRNAs and mRNAs with microRNAs (miRNAs) is one of the most common mechanisms of gene regulation by lncRNAs in NSCLC, which has been extensively researched in the last two decades. However, alternative mechanisms that do not depend on miRNAs have also been reported. Among them, the most intriguing mechanism is mediated by RNA-binding proteins (RBPs) such as IGF2BP1/2/3, YTHDF1, HuR, and FBL, which increase the stability of target mRNAs. IGF2BP2 and YTHDF1 may also be involved in m6A modification of lncRNAs or target mRNAs. Some lncRNAs, such as DLGAP1-AS2, MALAT1, MNX1-AS1, and SNHG12, are involved in several mechanisms depending on the target: lncRNA/miRNA/mRNA interactome and through RBP. The target protein sets selected here were then analyzed using the DAVID database to identify the pathways overrepresented by KEGG, Wikipathways, and the Reactome pathway. Using the STRING website, we assessed interactions between the target proteins and built networks. Our analysis revealed that the JAK-STAT and Hippo signaling pathways, cytokine pathways, the VEGFA-VEGFR2 pathway, mechanisms of cell cycle regulation, and neovascularization are the most relevant to the effect of lncRNA on NSCLC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| |
Collapse
|
22
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Mutlu Icduygu F, Akgun E, Ozgoz A, Hekimler Ozturk K, Sengul D, Alp E. Upregulation and the clinical significance of KCNQ1OT1 and HAGLROS lncRNAs in papillary thyroid cancer: An observational study. Medicine (Baltimore) 2023; 102:e34379. [PMID: 37478216 PMCID: PMC10662889 DOI: 10.1097/md.0000000000034379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in regulating gene expression. Changes in their expression have been associated with many types of cancer, including thyroid cancer. This study aimed to investigate how changes in the expression of potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) and HAGLR opposite strand lncRNA (HAGLROS) lncRNAs correlate with the development and clinicopathological characteristics of papillary thyroid cancer (PTC). Reverse transcription-quantitative polymerase chain reaction was used to investigate the expression of lncRNAs in both tumor and adjacent normal thyroid tissue samples of the patients. Expressions of KCNQ1OT1 and HAGLROS were upregulated in the patients tumor samples compared to the adjacent normal thyroid samples. KCNQ1OT1 expression was linked to microcarcinoma and gender, while HAGLROS expression was linked to microcarcinoma and tumor size. When only microcarcinoma samples were evaluated, KCNQ1OT1 expression was higher in tumor tissues compared to normal tissues; however, no significant difference was observed in HAGLROS expression. Our data suggests that high expressions of KCNQ1OT1 and HAGLROS might contribute to the development of PTC and disease progression, and both lncRNAs may be potential therapeutic targets in PTC patients.
Collapse
Affiliation(s)
- Fadime Mutlu Icduygu
- Department of Medical Genetics, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Egemen Akgun
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Asuman Ozgoz
- Department of Medical Genetics, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Kuyas Hekimler Ozturk
- Department of Medical Genetics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Demet Sengul
- Department of Pathology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Ebru Alp
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, Turkey
| |
Collapse
|
24
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
25
|
Zhan T, Cheng X, Zhu Q, Han Z, Zhu K, Tan J, Liu M, Chen W, Chen X, Chen X, Tian X, Huang X. LncRNA LOC105369504 inhibits tumor proliferation and metastasis in colorectal cancer by regulating PSPC1. Cell Death Discov 2023; 9:89. [PMID: 36894530 PMCID: PMC9998613 DOI: 10.1038/s41420-023-01384-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
There is growing evidence that long non-coding RNAs (lncRNAs) are significant contributors to the epigenetic mechanisms implicated in the emergence, progression and metastasis of the colorectal cancer (CRC), but many remain underexplored. A novel lncRNA LOC105369504, was identified to be a potential functional lncRNA by microarray analysis. In CRC, the expression of LOC105369504 was markedly decreased and resulted in distinct variations in proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) in vivo and in vitro. This study showed that LOC105369504 bound to the protein of paraspeckles compound 1 (PSPC1) directly and regulated its stability using the ubiquitin-proteasome pathway in CRC cells. The suppression of CRC by LOC105369504 could be reversed through PSPC1 overexpression.This study showed that in CRC, LOC105369504 was under-regulated and as a novel lncRNA, LOC105369504 exerted tumor suppressive activity to suppress the proliferation together with metastasis in CRC cells through the regulation of PSPC1. These results offer new perspectives on the lncRNA effect on the progression of CRC.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xueting Cheng
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Qingxi Zhu
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Zheng Han
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Kejing Zhu
- Department of Pharmacy, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Jie Tan
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Men Liu
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xiaoli Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xiaohong Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xia Tian
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China.
| | - Xiaodong Huang
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China.
| |
Collapse
|
26
|
Zhu JL, Xue WB, Jiang ZB, Feng W, Liu YC, Nie XY, Jin LY. Long noncoding RNA CDKN2B-AS1 silencing protects against esophageal cancer cell invasion and migration by inactivating the TFAP2A/FSCN1 axis. Kaohsiung J Med Sci 2022; 38:1144-1154. [PMID: 36161699 DOI: 10.1002/kjm2.12596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer (EC) is the most aggressive malignancy in the gastrointestinal tract. Long noncoding RNA cyclin-dependent kinase inhibitor 2 B antisense RNA 1 (CDKN2B-AS1) is implicated in EC development. However, the specific mechanisms involved remain poorly defined. Therefore, this research aimed to explore the mechanism of action of CDKN2B-AS1 in EC. Quantitative real-time polymerase chain reaction was conducted to measure CDKN2B-AS1 expression in EC cells and western blotting was utilized to evaluate transcription factor AP-2 alpha (TFAP2A) and fascin actin-bundling protein 1 (FSCN1) expression. After gain-of-function and loss-of-function assays, cell proliferation, migration, invasion, apoptosis, and apoptosis-related protein expression were assessed using cell counting kit-8, scratch tests, Transwell assays, flow cytometry, and western blotting, respectively. The binding relationship between CDKN2B-AS1 and TFAP2A was assessed by RNA immunoprecipitation and RNA pull-down assays. The binding relationship between TFAP2A and FSCN1 was evaluated using dual-luciferase reporter and chromatin immunoprecipitation assays. Tumor xenografts from nude mice were used for in vivo verification. CDKN2B-AS1, TFAP2A, and FSCN1 were upregulated in EC cells. Mechanistically, CDKN2B-AS1 transcriptionally activated FSCN1 by recruiting TFAP2A to the FSCN1 promoter. Silencing CDKN2B-AS1 or TFAP2A suppressed EC cell proliferative, migrating, and invasive properties and augmented apoptosis. TFAP2A was bound to CDKN2B-AS1 and the FSCN1 promoter. Overexpression of TFAP2A or FSCN1 abolished the effects of CDKN2B-AS1-silencing on EC cell function. CDKN2B-AS1 silencing curtailed tumorigenesis in nude mice, which was nullified by the upregulation of TFAP2A or FSCN1. Our findings demonstrated the antioncogenic effects of silencing CDKN2B-AS1 in EC through inactivation of the TFAP2A/FSCN1 axis.
Collapse
Affiliation(s)
- Jia-Liang Zhu
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wen-Bo Xue
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhi-Bin Jiang
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wei Feng
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yi-Cai Liu
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiong-Ying Nie
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Long-Yu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
27
|
Ramesh-Kumar D, Guil S. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol 2022; 86:18-31. [PMID: 35643219 DOI: 10.1016/j.semcancer.2022.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
RNA binding proteins that act at the post-transcriptional level display a richness of mechanisms to modulate the transcriptional output and respond to changing cellular conditions. The family of IGF2BP proteins recognize mRNAs modified by methylation and lengthen their lifecycle in the context of stable ribonucleoprotein particles to promote cancer progression. They are emerging as key 'reader' proteins in the epitranscriptomic field, driving the fate of bound substrates under physiological and disease conditions. Recent developments in the field include the recognition that noncoding substrates play crucial roles in mediating the pro-growth features of IGF2BP family, not only as regulated targets, but also as modulators of IGF2BP function themselves. In this review, we summarize the regulatory roles of IGF2BP proteins and link their molecular role as m6A modification readers to the cellular phenotype, thus providing a comprehensive insight into IGF2BP function.
Collapse
Affiliation(s)
- Deepthi Ramesh-Kumar
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain.
| |
Collapse
|