1
|
Bermúdez R, Sánchez Vilas J, Retuerto R. Species-specific functional trait responses in two species coexisting along a shore-to-inland dune gradient. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1162-1174. [PMID: 39250313 DOI: 10.1111/plb.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Coastal dunes are characterised by strong gradients of abiotic stress, typically increasing in severity from inland areas towards the shoreline. Thus, dune gradients represent unique opportunities to study intraspecific responses to environmental changes and to investigate which factors drive community change. This study aims to examine functional trait variation in two coexisting species in response to environmental changes along a dune gradient in NW Spain. Trait convergence was also investigated and compared between both ends of the gradient. We measured functional leaf traits related to plant efficiency in the use of light, water and nutrients, also possible stressors (salt content and pH) and availability of limiting resources (water and nutrients) in the soil. Most soil variables showed changes following a non-directional gradient. Differences in soil variables were site specific and depended on growth of the study species. Structural and functional traits depended on species and/or plant position on the gradient, except for effective quantum yield of PSII and leaf δ15N. The pattern of variation was mostly directional for reflectance indices related to leaf physiology. Multivariate analyses showed significant interspecific differences in the set of traits they exhibited along positions in the gradient. Species also differed in the combination of traits selected under given environmental conditions. Coexisting species display a specific set of traits that reflects different strategies to environmental stress. Our study highlights the overly simplistic nature of some previous studies that assume dune gradients are monotonically directional, without considering that these gradients may be differentially modified by species activity.
Collapse
Affiliation(s)
- R Bermúdez
- Department Forest Resources, University of Minnesota, St Paul, MN, USA
| | - J Sánchez Vilas
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
- Department of Functional Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - R Retuerto
- Department of Functional Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Amaral DT, Bonatelli IAS, Romeiro-Brito M, Telhe MC, Moraes EM, Zappi DC, Taylor NP, Franco FF. Comparative transcriptome analysis reveals lineage- and environment-specific adaptations in cacti from the Brazilian Atlantic Forest. PLANTA 2024; 260:4. [PMID: 38775846 DOI: 10.1007/s00425-024-04442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Natural selection influenced adaptive divergence between Cereus fernambucensis and Cereus insularis, revealing key genes governing abiotic stress responses and supporting neoteny in C. insularis. Uncovering the molecular mechanisms driving adaptive divergence in traits related to habitat adaptation remains a central challenge. In this study, we focused on the cactus clade, which includes Cereus sericifer F.Ritter, Cereus fernambucensis Lem., and Cereus insularis Hemsley. These allopatric species inhabit distinct relatively drier regions within the Brazilian Atlantic Forest, each facing unique abiotic conditions. We leveraged whole transcriptome data and abiotic variables datasets to explore lineage-specific and environment-specific adaptations in these species. Employing comparative phylogenetic methods, we identified genes under positive selection (PSG) and examined their association with non-synonymous genetic variants and abiotic attributes through a PhyloGWAS approach. Our analysis unveiled signatures of selection in all studied lineages, with C. fernambucensis northern populations and C. insularis showing the most PSGs. These PSGs predominantly govern abiotic stress regulation, encompassing heat tolerance, UV stress response, and soil salinity adaptation. Our exclusive observation of gene expression tied to early developmental stages in C. insularis supports the hypothesis of neoteny in this species. We also identified genes associated with abiotic variables in independent lineages, suggesting their role as environmental filters on genetic diversity. Overall, our findings suggest that natural selection played a pivotal role in the geographic range of these species in response to environmental and biogeographic transitions.
Collapse
Affiliation(s)
- Danilo T Amaral
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Isabel A S Bonatelli
- Departamento de Ecologia e Biologia Evolutiva, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Monique Romeiro-Brito
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Milena C Telhe
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil
| | - Evandro M Moraes
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil
| | - Daniela Cristina Zappi
- Programa de Pós-Graduação em Botânica, Instituto de Ciências Biológicas, Universidade de Brasília (UNB), Brasília, Brazil
| | - Nigel Paul Taylor
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil
| | - Fernando F Franco
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil.
| |
Collapse
|
3
|
Ievinsh G. Halophytic Clonal Plant Species: Important Functional Aspects for Existence in Heterogeneous Saline Habitats. PLANTS (BASEL, SWITZERLAND) 2023; 12:1728. [PMID: 37111952 PMCID: PMC10144567 DOI: 10.3390/plants12081728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Plant modularity-related traits are important ecological determinants of vegetation composition, dynamics, and resilience. While simple changes in plant biomass resulting from salt treatments are usually considered a sufficient indicator for resistance vs. susceptibility to salinity, plants with a clonal growth pattern show complex responses to changes in environmental conditions. Due to physiological integration, clonal plants often have adaptive advantages in highly heterogeneous or disturbed habitats. Although halophytes native to various heterogeneous habitats have been extensively studied, no special attention has been paid to the peculiarities of salt tolerance mechanisms of clonal halophytes. Therefore, the aim of the present review is to identify probable and possible halophytic plant species belonging to different types of clonal growth and to analyze available scientific information on responses to salinity in these species. Examples, including halophytes with different types of clonal growth, will be analyzed, such as based on differences in the degree of physiological integration, ramet persistence, rate of clonal expansion, salinity-induced clonality, etc.
Collapse
Affiliation(s)
- Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
4
|
Haj-Amor Z, Araya T, Kim DG, Bouri S, Lee J, Ghiloufi W, Yang Y, Kang H, Jhariya MK, Banerjee A, Lal R. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156946. [PMID: 35768029 DOI: 10.1016/j.scitotenv.2022.156946] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Significant research has been conducted on the effects of soil salinity issue on agricultural productivity. However, limited consideration has been given to its critical effects on soil biogeochemistry (e.g., soil microorganisms, soil organic carbon and greenhouse gas (GHG) emissions), land desertification, and biodiversity loss. This article is based on synthesis of information in 238 articles published between 1989 and 2022 on these effects of soil salinity. Principal findings are as follows: (1) salinity affects microbial community composition and soil enzyme activities due to changes in osmotic pressure and ion effects; (2) soil salinity reduces soil organic carbon (SOC) content and alters GHG emissions, which is a serious issue under intensifying agriculture and global warming scenarios; (3) soil salinity can reduce crop yield up to 58 %; (4) soil salinity, even at low levels, can cause profound alteration in soil biodiversity; (5) due to severe soil salinity, some soils are reaching critical desertification status; (6) innovate mitigation strategies of soil salinity need to be approached in a way that should support the United Nations Sustainable Development Goals (UN-SDGs). Knowledge gaps still exist mainly in the effects of salinity especially, responses of GHG emissions and biodiversity. Previous experiences quantifying soil salinity effects remained small-scale, and inappropriate research methods were sometimes applied for investigating soil salinity effects. Therefore, further studies are urgently required to improve our understanding on the effects of salinity, address salinity effects in larger-scale, and develop innovative research methods.
Collapse
Affiliation(s)
- Zied Haj-Amor
- Department of Agronomy, University of Fort Hare, Private Bag X134, Alice 5700, South Africa.
| | - Tesfay Araya
- Department of Soil, Crop and Climate Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Dong-Gill Kim
- Wondo Genet College of Forest and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia
| | - Salem Bouri
- Water, Energy, and Environment Laboratory, National Engineering School of Sfax, 3038 Sfax, Tunisia
| | - Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea; Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Wahida Ghiloufi
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Yerang Yang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Manoj Kumar Jhariya
- Department of Farm Forestry, University Teaching Department, Sant Gahira Guru Vishwavidyalaya (Formerly, Sarguja University), Sarguja, Ambikapur 497001, India
| | - Arnab Banerjee
- Department of Environmental Science, University Teaching Department, Sant Gahira Guru Vishwavidyalaya, Surguja (Formerly Sarguja Vishwavidyalaya, Ambikapur), Chattisgarh, India
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Fois M, Farris E, Calvia G, Campus G, Fenu G, Porceddu M, Bacchetta G. The Endemic Vascular Flora of Sardinia: A Dynamic Checklist with an Overview of Biogeography and Conservation Status. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050601. [PMID: 35270071 PMCID: PMC8912449 DOI: 10.3390/plants11050601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 06/01/2023]
Abstract
The vascular flora of Sardinia has been investigated for more than 250 years, with particular attention to the endemic component due to their phylogeographic and conservation interest. However, continuous changes in the floristic composition through natural processes, anthropogenic drivers or modified taxonomical attributions require constant updating. We checked all available literature, web sources, field, and unpublished data from the authors and acknowledged external experts to compile an updated checklist of vascular plants endemic to Sardinia. Life and chorological forms as well as the conservation status of the updated taxa list were reported. Sardinia hosts 341 taxa (15% of the total native flora) endemic to the Tyrrhenian Islands and other limited continental territories; 195 of these (8% of the total native flora) are exclusive to Sardinia. Asteraceae (50 taxa) and Plumbaginaceae (42 taxa) are the most representative families, while the most frequent life forms are hemicryptophytes (118 taxa) and chamaephytes (106 taxa). The global conservation status, available for 201 taxa, indicates that most endemics are under the 'Critically Endangered' (25 taxa), 'Endangered' (31 taxa), or 'Least Concern' (90 taxa) IUCN categories. This research provides an updated basis for future biosystematics, taxonomic, biogeographical, and ecological studies and in supporting more integrated and efficient policy tools.
Collapse
Affiliation(s)
- Mauro Fois
- Centre for the Conservation of Biodiversity (CCB), Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 11-13, 09123 Cagliari, Italy; (M.F.); (G.C.); (G.F.); (M.P.); (G.B.)
| | - Emmanuele Farris
- Department of Chemistry and Farmacy, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy
| | - Giacomo Calvia
- Centre for the Conservation of Biodiversity (CCB), Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 11-13, 09123 Cagliari, Italy; (M.F.); (G.C.); (G.F.); (M.P.); (G.B.)
| | - Giuliano Campus
- Independent Researcher, Via G. Rossini 69, 09045 Quartu Sant’Elena, Italy;
| | - Giuseppe Fenu
- Centre for the Conservation of Biodiversity (CCB), Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 11-13, 09123 Cagliari, Italy; (M.F.); (G.C.); (G.F.); (M.P.); (G.B.)
| | - Marco Porceddu
- Centre for the Conservation of Biodiversity (CCB), Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 11-13, 09123 Cagliari, Italy; (M.F.); (G.C.); (G.F.); (M.P.); (G.B.)
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale S. Ignazio da Laconi, 9-11, 09123 Cagliari, Italy
| | - Gianluigi Bacchetta
- Centre for the Conservation of Biodiversity (CCB), Department of Life and Environmental Sciences, University of Cagliari, Viale S. Ignazio da Laconi 11-13, 09123 Cagliari, Italy; (M.F.); (G.C.); (G.F.); (M.P.); (G.B.)
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale S. Ignazio da Laconi, 9-11, 09123 Cagliari, Italy
| |
Collapse
|