1
|
Diehl C, Soberón V, Baygün S, Chu Y, Mandelbaum J, Kraus L, Engleitner T, Rudelius M, Fangazio M, Daniel C, Bortoluzzi S, Helmrath S, Singroul P, Gölling V, Osorio Barrios F, Seyhan G, Oßwald L, Kober-Hasslacher M, Zeng T, Öllinger R, Afzali AM, Korn T, Honarpisheh M, Lech M, Ul Ain Q, Pircher J, Imširović V, Jelenčić V, Wensveen FM, Passerini V, Bärthel S, Bhagat G, Dominguez-Sola D, Saur D, Steiger K, Rad R, Pasqualucci L, Weigert O, Schmidt-Supprian M. Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis. Immunity 2025; 58:124-142.e15. [PMID: 39729992 DOI: 10.1016/j.immuni.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
B cell immunity carries the inherent risk of deviating into autoimmunity and malignancy, which are both strongly associated with genetic variants or alterations that increase immune signaling. Here, we investigated the interplay of autoimmunity and lymphoma risk factors centered around the archetypal negative immune regulator TNFAIP3/A20 in mice. Counterintuitively, B cells with moderately elevated sensitivity to stimulation caused fatal autoimmune pathology, while those with high sensitivity did not. We resolved this apparent paradox by identifying a rheostat-like cytotoxic T cell checkpoint. Cytotoxicity was instructed by and directed against B cells with high intrinsic hyperresponsiveness, while less reactive cells were spared. Removing T cell control restored a linear relationship between intrinsic B cell reactivity and lethal lymphoproliferation, lymphomagenesis, and autoinflammation. We thus identify powerful T cell-mediated negative feedback control of inherited and acquired B cell pathogenicity and define a permissive window for autoimmunity to emerge.
Collapse
Affiliation(s)
- Carina Diehl
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Valeria Soberón
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Seren Baygün
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Yuanyuan Chu
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Jonathan Mandelbaum
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Laura Kraus
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Marco Fangazio
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Christoph Daniel
- Department of Nephropathology, Faculty of Medicine, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sabrina Bortoluzzi
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Sabine Helmrath
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Pankaj Singroul
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Vanessa Gölling
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Francisco Osorio Barrios
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Gönül Seyhan
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Lena Oßwald
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; Department of Medicine III, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Maike Kober-Hasslacher
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Theodor Zeng
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ali M Afzali
- Institute for Experimental Neuroimmunology, Department of Neurology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Department of Neurology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Mohsen Honarpisheh
- Renal Division, Department of Medicine IV, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Maciej Lech
- Renal Division, Department of Medicine IV, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Qurrat Ul Ain
- Department of Medicine I, Faculty of Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Joachim Pircher
- Department of Medicine I, Faculty of Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany; Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany
| | - Vanna Imširović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Verena Passerini
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Faculty of Medicine, Department of Medicine III, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Stefanie Bärthel
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Govind Bhagat
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - David Dominguez-Sola
- Departments of Oncological Sciences and Pathology, Tisch Cancer Institute, Lipschultz Precision Immunology Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Oliver Weigert
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Faculty of Medicine, Department of Medicine III, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany.
| |
Collapse
|
2
|
Yang Y, Chen Q, Zhong W. The role of cytokines in the pathogenesis of SAPHO syndrome. Front Immunol 2024; 15:1427784. [PMID: 39286247 PMCID: PMC11402674 DOI: 10.3389/fimmu.2024.1427784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/09/2024] [Indexed: 09/19/2024] Open
Abstract
SAPHO syndrome is a complex inflammatory disorder affecting the skin and bones, characterized by osteomyelitis, acne, and pustulosis. Cytokines play a pivotal role in the pathogenesis of SAPHO syndrome, especially in inflammatory responses and immune regulation. This article reviews the cytokines involved in the pathogenesis of SAPHO syndrome, such as tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), IL-6, IL-10, and transforming growth factor-β (TGF-β), and discusses their potential as intervention points for treatment. These findings elucidate the intricate immune regulatory network of SAPHO syndrome and provide a theoretical foundation for the development of new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yi Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Qianzhu Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Weiyang Zhong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Huang J, Li X, Zhu Q, Wang M, Xie Z, Zhao T. Imbalance of Th17 cells, Treg cells and associated cytokines in patients with systemic lupus erythematosus: a meta-analysis. Front Immunol 2024; 15:1425847. [PMID: 39086480 PMCID: PMC11288813 DOI: 10.3389/fimmu.2024.1425847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This article aims to investigate the changes of T helper 17 (Th17) cells, regulatory T (Treg) cells and their associated cytokines in patients with systemic lupus erythematosus (SLE). Methods Multiple databases were investigated to identify articles that explored Th17 cells, Treg cells and relevant cytokines in SLE patients. A random effects model was used for calculating pooled standardized mean differences. Stata version 15.0 was utilized to conduct the meta-analysis. Results The levels of Th17 cells, IL-17, IL-6, IL-21 and IL-10 were higher in SLE patients than in healthy controls (HCs), but the TGF-β levels were lower. The percentage of Treg cells was lower than HCs in SLE individuals older than 33. Among studies that had 93% or lower females, the percentage of Th17 cells was greater in patients than in HCs. However, the percentage of Treg cells was lower when the proportion of females was less than 90%. Patients with lupus nephritis or active SLE had an increased proportion of Th17 cells and a decreased proportion of Treg cells. Conclusions The increased level of Th17 cells and related cytokines could be the main reason for the elevated Th17/Treg ratio in SLE. The percentages of Th17 and Treg cells were associated with gender, age, disease activity and kidney function. Furthermore, the reduced proportions of Treg cells may primarily result in a rise in the Th17/Treg ratio in older or active SLE patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero, identifier CRD42023454937.
Collapse
Affiliation(s)
- Jinge Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaolong Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingmiao Zhu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meijiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Xia Y, Inoue K, Zheng T, Qin Y, Zhao B. Reciprocal suppression between TGFβ signaling and TNF stimulation finetunes the macrophage inflammatory response. FASEB J 2024; 38:e23704. [PMID: 38884155 PMCID: PMC11602219 DOI: 10.1096/fj.202302230r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024]
Abstract
Inflammation plays a crucial role in the development of various disease conditions or is closely associated with them. Inflammatory cytokines like TNF often engage in interactions with other cytokines and growth factors, including TGFβ, to orchestrate inflammatory process. Basal/endogenous TGFβ signaling is a universal presence, yet the precise way TNF communicates with TGFβ signaling to regulate inflammation and influence inflammatory levels in macrophages has remained elusive. To address this question, this study utilized genetic approaches and a combination of molecular and cellular methods, including conditional TGFβ receptor knockout mice, human cells, RNAseq, ATACseq and Cut & Run-seq. The results reveal that the TGFβ signaling functions as a vital homeostatic pathway, curtailing uncontrolled inflammation in macrophages in response to TNF. Conversely, TNF employs two previously unrecognized mechanisms to suppress the TGFβ signaling. These mechanisms encompass epigenetic inhibition and RBP-J-mediated inhibition of the TGFβ signaling pathway by TNF. These mechanisms empower TNF to diminish the antagonistic influence exerted by the TGFβ signaling pathway, ultimately enhancing TNF's capacity to induce heightened levels of inflammation. This reciprocal suppression dynamic between TNF and the TGFβ signaling pathway holds unique physiopathological significance, as it serves as a crucial "braking" mechanism. The balance between TNF levels and the activity of the endogenous TGFβ signaling pathway plays a pivotal role in determining the overall extent of inflammation. The potential for therapeutically augmenting the TGFβ signaling pathway presents an intriguing avenue for countering the impact of TNF and, consequently, developing innovative strategies for inflammation control.
Collapse
Affiliation(s)
- Yuhan Xia
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ting Zheng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yongli Qin
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
5
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Hourani T, Eivazitork M, Balendran T, Mc Lee K, Hamilton JA, Zhu HJ, Iaria J, Morokoff AP, Luwor RB, Achuthan AA. Signaling pathways underlying TGF-β mediated suppression of IL-12A gene expression in monocytes. Mol Immunol 2024; 166:101-109. [PMID: 38278031 DOI: 10.1016/j.molimm.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic cytokine essential for multiple biological processes, including the regulation of inflammatory and immune responses. One of the important functions of TGF-β is the suppression of the proinflammatory cytokine interleukin-12 (IL-12), which is crucial for mounting an anti-tumorigenic response. Although the regulation of the IL-12p40 subunit (encoded by the IL-12B gene) of IL-12 has been extensively investigated, the knowledge of IL-12p35 (encoded by IL-12A gene) subunit regulation is relatively limited. This study investigates the molecular regulation of IL-12A by TGF-β-activated signaling pathways in THP-1 monocytes. Our study identifies a complex regulation of IL-12A gene expression by TGF-β, which involves multiple cellular signaling pathways, such as Smad2/3, NF-κB, p38 and JNK1/2. Pharmacological inhibition of NF-κB signaling decreased IL-12A expression, while blocking the Smad2/3 signaling pathway by overexpression of Smad7 and inhibiting JNK1/2 signaling with a pharmacological inhibitor, SP600125, increased its expression. The elucidated signaling pathways that regulate IL-12A gene expression potentially provide new therapeutic targets to increase IL-12 levels in the tumor microenvironment.
Collapse
Affiliation(s)
- Tetiana Hourani
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mahtab Eivazitork
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kevin Mc Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Josephine Iaria
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia; Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; Federation University, Ballarat, VIC 3350, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
7
|
Tang YY, Wang DC, Chen YY, Xu WD, Huang AF. Th1-related transcription factors and cytokines in systemic lupus erythematosus. Front Immunol 2023; 14:1305590. [PMID: 38164134 PMCID: PMC10757975 DOI: 10.3389/fimmu.2023.1305590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory disorder related to immunity dysfunction. The Th1 cell family including Th1 cells, transcription factor T-bet, and related cytokines IFNγ, TNFα, IL-2, IL-18, TGF-β, and IL-12 have been widely discussed in autoimmunity, such as SLE. In this review, we will comprehensively discuss the expression profile of the Th1 cell family in both SLE patients and animal models and clarify how the family members are involved in lupus development. Interestingly, T-bet-related age-associated B cells (ABCs) and low-dose IL-2 treatment in lupus were emergently discussed as well. Collection of the evidence will better understand the roles of the Th1 cell family in lupus pathogenesis, especially targeting IL-2 in lupus.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - You-Yue Chen
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Wahadat MJ, van Tilburg SJ, Mueller YM, de Wit H, Van Helden-Meeuwsen CG, Langerak AW, Gruijters MJ, Mubarak A, Verkaaik M, Katsikis PD, Versnel MA, Kamphuis S. Targeted multiomics in childhood-onset SLE reveal distinct biological phenotypes associated with disease activity: results from an explorative study. Lupus Sci Med 2023; 10:10/1/e000799. [PMID: 37012057 PMCID: PMC10083882 DOI: 10.1136/lupus-2022-000799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/10/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVE To combine targeted transcriptomic and proteomic data in an unsupervised hierarchical clustering method to stratify patients with childhood-onset SLE (cSLE) into similar biological phenotypes, and study the immunological cellular landscape that characterises the clusters. METHODS Targeted whole blood gene expression and serum cytokines were determined in patients with cSLE, preselected on disease activity state (at diagnosis, Low Lupus Disease Activity State (LLDAS), flare). Unsupervised hierarchical clustering, agnostic to disease characteristics, was used to identify clusters with distinct biological phenotypes. Disease activity was scored by clinical SELENA-SLEDAI (Safety of Estrogens in Systemic Lupus Erythematosus National Assessment-Systemic Lupus Erythematosus Disease Activity Index). High-dimensional 40-colour flow cytometry was used to identify immune cell subsets. RESULTS Three unique clusters were identified, each characterised by a set of differentially expressed genes and cytokines, and by disease activity state: cluster 1 contained primarily patients in LLDAS, cluster 2 contained mainly treatment-naïve patients at diagnosis and cluster 3 contained a mixed group of patients, namely in LLDAS, at diagnosis and disease flare. The biological phenotypes did not reflect previous organ system involvement and over time, patients could move from one cluster to another. Healthy controls clustered together in cluster 1. Specific immune cell subsets, including CD11c+ B cells, conventional dendritic cells, plasmablasts and early effector CD4+ T cells, differed between the clusters. CONCLUSION Using a targeted multiomic approach, we clustered patients into distinct biological phenotypes that are related to disease activity state but not to organ system involvement. This supports a new concept where choice of treatment and tapering strategies are not solely based on clinical phenotype but includes measuring novel biological parameters.
Collapse
Affiliation(s)
- Mohamed Javad Wahadat
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
- Department of Paediatric Rheumatology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Yvonne M Mueller
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Harm de Wit
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Anton W Langerak
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Marike J Gruijters
- Department of Paediatric Rheumatology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Amani Mubarak
- Department of Paediatric Rheumatology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marleen Verkaaik
- Department of Paediatric Rheumatology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Marjan A Versnel
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Sylvia Kamphuis
- Department of Paediatric Rheumatology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Chen N, Dai Y, He J, Zhou M, Sun H, Lin L, Gao F, Lin H, Yan Q. The association between C509T, T869C, G915C gene polymorphisms of transforming growth factor-β1 and systemic lupus erythematosus risk: A meta-analysis. Medicine (Baltimore) 2023; 102:e33321. [PMID: 36930071 PMCID: PMC10019118 DOI: 10.1097/md.0000000000033321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The relationship between transforming growth factor-β1 (TGF- β1) gene polymorphisms and systemic lupus erythematosus (SLE) has been reported in many studies, but there were still controversies with regard to their conclusions. METHODS Relevant documents were retrieved from 5 electronic databases such as PubMed, Embase, Cochrane Library, Wanfang, and China national knowledge infrastructure. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were used to assess the relationship between TGF-β1 genetic variation and SLE. RESULTS The present meta-analysis included 12 case-control studies with 1308 SLE patients and 1714 healthy controls. The results of the combined analyses showed that TGF-β1 C509T polymorphism showed no association with SLE risk (TC vs CC: OR = 1.16, 95% CI = 0.91-1.48, PHeterogeneity (PH) = 0.579; TT vs CC: OR = 1.15, 95% CI = 0.63-2.09, PH = 0.003; T vs C: OR = 1.08, 95% CI = 0.8-1.45, PH = 0.003; TC/TT vs CC: OR = 1.17, 95% CI = 0.93-1.46, PH = 0.133; and TT vs TC/CC: OR = 1.06, 95% CI = 0.64-1.76, PH = 0.004). TGF-β1 G915C and T869C polymorphisms were not linked with SLE risk. Moreover, subgroup analysis stratified by ethnicity and Hardy-Weinberg equilibrium revealed no significant correlation of TGF-β1 T869C, C509T, G915C polymorphisms with SLE risk. CONCLUSION TGF-β1 T869C, C509T, G915C polymorphisms might not be associated with the development of SLE.
Collapse
Affiliation(s)
- Ning Chen
- Department of Infectious Diseases, South Branch of Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yijun Dai
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Juanjuan He
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Meng Zhou
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong Sun
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ling Lin
- Department of Infectious Diseases, South Branch of Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Fei Gao
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - He Lin
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qing Yan
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Ali HN, Alubaidi GT, Gorial FI, Jasim IA. Disturbance in Serum Levels of IL-17 and TGF-β1 and in Gene Expression of ROR-γt and FOX-P3 Is Associated with Pathogenicity of Systematic Lupus Erythematosus. Prague Med Rep 2022; 123:166-180. [PMID: 36107445 DOI: 10.14712/23362936.2022.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
To investigate the disturbance in serum levels of interleukin-17 (IL-17) and transforming growth factor-beta1 (TGF-β1) and gene expression of retinoic acid-related orphan receptor-gamma t (ROR-γt) and forkhead box-P3 (FOX-P3) in patients with systemic lupus erythematosus (SLE) and to study their association with disease pathogenicity and activity. Newly diagnosed active patients with SLE (n=88) and healthy volunteers (n=70) were included. Serum IL-17 and TGF-β1 were measured using enzyme-linked immunosorbent assay. Gene-expression profiles of ROR-γt and FOX-P3 were screened using real-time polymerase chain reaction. The IL-17/TGF-β1 and ROR-γt/FOX-P3 levels were also calculated. The mean age of the patients was 30.96±8.25 years; they were 82 women and 6 men. Of the patients, 11.4% manifested mild disease while 88.6% had severe disease. The serum level of TGF-β1 was significantly lower (70.2±34.9 vs. 200.23±124.77 pg/ml), while both IL-17 (614.7±317.5 vs. 279.76±110.65 pg/ml) and IL-17/TGF-β1 (18.5±30.1 vs. 1.66±0.9) levels were significantly higher, in patients than in controls (p<0.0001). The gene-expression level of FOX-P3 (0.6±0.8 vs. 13.68±39.35) was reported to be lower, while ROR-γt (3.9±3.5 vs. 1.99±2.09) and ROR-γt/FOX-P3 (18.6±21.1 vs. 7.63±17.19) levels were significantly higher, in patients than in controls (p<0.0001). Disturbance in serum levels of IL-17 and TGF-β1 in T helper-17 and T-regulatory cells proliferation was highlighted through an imbalance in the gene expression of FOX-P3 and ROR-γt, as both are signature genes for the two cell types, respectively. These findings underscore the critical role of IL-17 and TGF-β1 in SLE development, rendering them potential targets for developing novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Hanaa N Ali
- Microbiology Unit, Emam Ali Hospital, Baghdad, Iraq
| | - Ghassaq T Alubaidi
- Medical Research Unit, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Faiq I Gorial
- Rheumatology Unit, Department of Medicine, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Ilham A Jasim
- Medical Research Unit, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
11
|
Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun 2022; 132:102870. [PMID: 35872102 DOI: 10.1016/j.jaut.2022.102870] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of immune tolerance and sustained production of autoantibodies. Multiple and profound T cell abnormalities in SLE are intertwined with disease expression. Both numerical and functional disturbances have been reported in main CD4+ T helper cell subsets including Th1, Th2, Th17, regulatory, and follicular helper cells. SLE CD4+ T cells are known to provide help to B cells, produce excessive IL-17 but insufficient IL-2, and infiltrate tissues. In the absence of sufficient amounts of IL-2, regulatory T cells, do not function properly to constrain inflammation. A complicated series of early signaling defects and aberrant activation of kinases and phosphatases result in complex cell phenotypes by altering the metabolic profile and the epigenetic landscape. All main metabolic pathways including glycolysis, glutaminolysis and oxidative phosphorylation are altered in T cells from lupus prone mice and patients with SLE. SLE CD8+ cytotoxic T cells display reduced cytolytic activity which accounts for higher rates of infection and the sustenance of autoimmunity. Further, CD8+ T cells in the context of rheumatic diseases lose the expression of CD8, acquire IL-17+CD4-CD8- double negative T (DNT) cell phenotype and infiltrate tissues. Herein we present an update on these T cell abnormalities along with underlying mechanisms and discuss how these advances can be exploited therapeutically. Novel strategies to correct these aberrations in T cells show promise for SLE treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Xia Y, Inoue K, Du Y, Baker SJ, Reddy EP, Greenblatt MB, Zhao B. TGFβ reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis. Nat Commun 2022; 13:3920. [PMID: 35798734 PMCID: PMC9263175 DOI: 10.1038/s41467-022-31475-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/20/2022] [Indexed: 01/12/2023] Open
Abstract
It is well-established that receptor activator of NF-κB ligand (RANKL) is the inducer of physiological osteoclast differentiation. However, the specific drivers and mechanisms driving inflammatory osteoclast differentiation under pathological conditions remain obscure. This is especially true given that inflammatory cytokines such as tumor necrosis factor (TNF) demonstrate little to no ability to directly drive osteoclast differentiation. Here, we found that transforming growth factor β (TGFβ) priming enables TNF to effectively induce osteoclastogenesis, independently of the canonical RANKL pathway. Lack of TGFβ signaling in macrophages suppresses inflammatory, but not basal, osteoclastogenesis and bone resorption in vivo. Mechanistically, TGFβ priming reprograms the macrophage response to TNF by remodeling chromatin accessibility and histone modifications, and enables TNF to induce a previously unrecognized non-canonical osteoclastogenic program, which includes suppression of the TNF-induced IRF1-IFNβ-IFN-stimulated-gene axis, IRF8 degradation and B-Myb induction. These mechanisms are active in rheumatoid arthritis, in which TGFβ level is elevated and correlates with osteoclast activity. Our findings identify a TGFβ/TNF-driven inflammatory osteoclastogenic program, and may lead to development of selective treatments for inflammatory osteolysis.
Collapse
Affiliation(s)
- Yuhan Xia
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yong Du
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Stacey J Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew B Greenblatt
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
13
|
Kailashiya J, Kailashiya V, Singh U. CTLA4 gene polymorphism and its association with disease occurrence, clinical manifestations, serum markers and cytokine levels in SLE patients from North India. Indian J Dermatol 2022; 67:311. [DOI: 10.4103/ijd.ijd_82_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Raymond WD, Hamdorf M, Furfaro M, Eilertsen GO, Nossent JC. Smoking associates with increased BAFF and decreased interferon-γ levels in patients with systemic lupus erythematosus. Lupus Sci Med 2021; 8:8/1/e000537. [PMID: 34725185 PMCID: PMC8562512 DOI: 10.1136/lupus-2021-000537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022]
Abstract
Objective In SLE, smoking increases the burden of cutaneous disease and organ damage, and leads to premature mortality. However, the effect of smoking on disease manifestations and cytokine levels of patients with SLE is unclear. This study compared characteristics of patients with SLE across smoking status, and determined the association of smoking with serum cytokine levels. Method A cross-sectional study of patients with SLE (n=99) during a research visit in which smoking status was ascertained. Smoking status was compared across classification criteria (American College of Rheumatology Classification Criteria for SLE (ACR97)), disease activity (SLE Disease Activity Index), autoantibody levels, accrued damage (Systemic Lupus International Collaborating Clinics/ACR Damage Index), and circulating concentrations of serum interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-10, IL-12, IL-17, B cell-activating factor (BAFF), tumour necrosis factor-alpha, transforming growth factor beta 1 (TGF-β1), macrophage inflammatory protein 1 alpha (MIP-1α), MIP-1β and monocyte chemoattractant protein 1. Linear regression models determined the association between smoking and cytokine levels, adjusting for age and sex, clinical characteristics (model 1), and anti-inflammatory (IL-4, IL-10 and TGF- β1) and regulatory (IL-1β) cytokines (model 2). Results Among patients with SLE (97.9% ANA+; mean 48.48 years old; 86.9% female; mean 10 years of disease duration), 35.4% (n=35 of 99) were smoking (an average of 7 cigarettes/day for 24 years). Smokers had increased odds of prevalent ACR97 malar rash (OR 3.40, 95% CI 1.23 to 9.34) and mucosal ulcers (OR 3.31, 95% CI 1.36 to 8.05). Smokers had more arthritis (OR 3.19, 95% CI 1.19 to 8.60), migraine (OR 2.82, 95% CI 1.07 to 7.44), Raynaud’s phenomenon (OR 5.15, 95% CI 1.95 to 13.56) and increased non-steroidal anti-inflammatory drug use (OR 6.88, 95% CI 1.99 to 23.72). Smoking associated with 27% increased BAFF levels (95% CI 6% to 48%) and 42% decreased IFN-γ levels (95% CI −79% to −5%) in model 2. Conclusion In patients with SLE, smoking independently associated with increased BAFF and decreased IFN-γ levels, and an increased frequency of arthritis, migraine and Raynaud’s phenomenon. Smoking cessation is advisable to reduce systemic inflammation, reduce disease activity and improve host defence.
Collapse
Affiliation(s)
- Warren David Raymond
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia
| | - Matthew Hamdorf
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia
| | - Michael Furfaro
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia
| | | | - Johannes Cornelis Nossent
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia.,Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| |
Collapse
|
15
|
Girimaji N, Nada R, Sharma A, Bharati J, Rathi M. Complete Remission of Lupus Nephritis Following Chemoradiotherapy of Carcinoma Cervix: An Association. Indian J Nephrol 2021; 31:402-405. [PMID: 34584360 PMCID: PMC8443106 DOI: 10.4103/ijn.ijn_267_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is associated with a higher incidence of solid organ malignancies, including cervical carcinoma, creating a paradox in their management in the context of autoimmunity. We present a case of 45-year-old female presented with mucocutaneous, musculoskeletal symptoms of SLE. Renal biopsy showed class IV lupus nephritis (LN); modified NIH activity score: 8/24, chronicity score: 6/12. Post NIH regimen induction, she achieved partial remission; further developed proteinuric relapse which was re-induced with mycophenolate mofetil (MMF) to which she failed to respond. Subsequently diagnosed with carcinoma cervix stage IIB, she received four cycles of concurrent cisplatin-based chemoradiotherapy. MMF was stopped; low dose steroids continued. Following this, the patient achieved complete remission (CR) of LN and is in remission for 5 years. This is an unexpected association between chemoradiotherapy of cervical carcinoma and CR of class IV LN, allowing long-term discontinuation of immunosuppression.
Collapse
Affiliation(s)
- Niveditha Girimaji
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Joyita Bharati
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Rathi
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
16
|
Stadtlober NP, Flauzino T, Santos LFDRF, Iriyoda TMV, Costa NT, Lozovoy MAB, Reiche EMV, Simão ANC. TGFB1 +869 T > C (rs1800470) variant is independently associated with susceptibility, laboratory activity, and TGF-β1 in patients with systemic lupus erythematosus. Autoimmunity 2021; 54:569-575. [PMID: 34519592 DOI: 10.1080/08916934.2021.1975680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this study was to evaluate the association of the +869 T > C (rs1800470) and -509 C > T (rs1800469) TGFB1 variants, individually or in haplotypes structure, with susceptibility, autoantibodies, disease activity, and TGF-β1 plasma levels in patients with systemic lupus erythematosus (SLE). The study included 203 patients with SLE and 165 healthy controls. TGFB1 variants were determined by real-time polymerase chain reaction (qPCR). Plasma levels of TGF-β1 were determined using immunofluorimetric assay. The TGFB1 + 869 CC genotype was associated with SLE susceptibility (OR: 1.710, 95%CI: 1.020-2.866, p = 0.042) and with reduction of C4 (p = 0.040) and TGF-β1 levels (p = 0.044). In addition, patients with TGFB1 + 869 TC and CC genotypes and positive anti-dsDNA had lower TGF-β1 levels than those with TT (p = 0.004). TGFB1 -509 TT genotype was associated with reduced levels of C4 (p = 0.032). There was no association between haplotypes and clinical and laboratory parameters. Our data demonstrated that the TGFB1 + 869 T > C variant could be used as a genetic marker for SLE susceptibility and both variants as predictors of laboratory activity. This is the first study to demonstrate that TGF-β1 levels could be modulated by the interaction between TGFB1 + 869 C allele, in homozygosity, or heterozygosity, and the presence of anti-dsDNA.
Collapse
Affiliation(s)
| | - Tamires Flauzino
- Laboratory of Research in Applied Immunology, State University of Londrina, Londrina, Brazil
| | | | | | | | - Marcell Alysson Batisti Lozovoy
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, State University of Londrina, Londrina, Brazil
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, State University of Londrina, Londrina, Brazil
| | - Andréa Name Colado Simão
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, State University of Londrina, Londrina, Brazil
| |
Collapse
|
17
|
Bishop EL, Gudgeon N, Dimeloe S. Control of T Cell Metabolism by Cytokines and Hormones. Front Immunol 2021; 12:653605. [PMID: 33927722 PMCID: PMC8076900 DOI: 10.3389/fimmu.2021.653605] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Dynamic, coordinated changes in metabolic pathway activity underpin the protective and inflammatory activity of T cells, through provision of energy and biosynthetic precursors for effector functions, as well as direct effects of metabolic enzymes, intermediates and end-products on signaling pathways and transcriptional mechanisms. Consequently, it has become increasingly clear that the metabolic status of the tissue microenvironment directly influences T cell activity, with changes in nutrient and/or metabolite abundance leading to dysfunctional T cell metabolism and interlinked immune function. Emerging evidence now indicates that additional signals are integrated by T cells to determine their overall metabolic phenotype, including those arising from interaction with cytokines and hormones in their environment. The impact of these on T cell metabolism, the mechanisms involved and the pathological implications are discussed in this review article.
Collapse
Affiliation(s)
| | | | - Sarah Dimeloe
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Zheng F, Yu X, Tang D, Hong X, Zhang X, Liu D, Dai Y. The identification of circular RNAs from peripheral blood mononuclear cells in systemic lupus erythematosus. BMC Med Genomics 2021; 14:70. [PMID: 33750387 PMCID: PMC7941743 DOI: 10.1186/s12920-021-00919-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/23/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The diagnosis of systemic lupus erythematosus (SLE) is complicated. This study explores the expression of circular RNAs (circRNAs), which are closed non-coding RNAs in which the 5' and 3' ends are covalently linked and which work by sponging microRNAs. CircRNAs were extracted from peripheral blood mononuclear cells (PBMCs) of SLE patients to identify novel circRNA species that might be used for SLE diagnosis. METHODS Microarray was applied to screening circRNAs changes in PBMCs obtained from SLE patients (n = 10) and healthy participants (n = 10), paired for age and sex. We then verified the selected circRNAs in PBMCs using quantitative reverse transcription-polymerase chain reaction amplification (qRT-PCR) in another cohort, including ten paired SLE patients and healthy participants. The correlation between the differential circRNAs and clinical pathology of SLE were analyzed. RESULTS 182 up-regulated and 563 significantly down-regulated circRNAs in PBMCs of patients with SLE were identified. Besides, the qRT-PCR results were consistent with the microarray results. The correlation analysis revealed that has_circRNA_100236, has_circRNA_102489, and has_circRNA_101413 were correlated with positive anti-dsDNA, thrombocytopenia, and positive IgG, respectively. Lastly, their miRNAs targets and the binding sites were predicted. CONCLUSION We identified some dysregulated circRNAs in PBMCs from SLE patients, and these circRNAs may be developed as the novel biomarkers for the diagnosis of SLE.
Collapse
Affiliation(s)
- Fengping Zheng
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, People's Republic of China
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Xiangqi Yu
- Department of Nephrology, Yueyang First People's Hospital, Yueyang, Hunan, 414000, People's Republic of China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, People's Republic of China.
| | - Yong Dai
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, People's Republic of China.
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| |
Collapse
|
19
|
Du Y, Xie C, Ravikumar S, Orme J, Li L, Zhou XJ, Mohan C. Heightened Crescentic Glomerulonephritis in Immune Challenged 129sv Mice Is TGF-β/Smad3 Dependent. Int J Mol Sci 2021; 22:2059. [PMID: 33669690 PMCID: PMC7922100 DOI: 10.3390/ijms22042059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
The 129sv mouse strain is particularly sensitive to experimental immune-mediated nephritis. Previous studies have indicated that transforming growth factor-β (TGF-β) plays a critical role in both immune modulation and tissue fibrogenesis in various diseases and that its biological activities are exerted via the SMAD family. In this study, we aimed to determine whether TGF-β/SMAD signaling is essential for the development of immune-mediated nephritis in 129sv mice. Relative to C57BL/6J control mice with anti-glomeruli basement membrane (GBM) nephritis, 129sv mice with anti-GBM nephritis exhibited increased renal collagen deposition. Additionally, higher mRNA levels of pro-collagen and collagen IV, higher serum levels of active and total TGF-β1, and increased TGF-β1, TGF-βIIR, and phosphorylated SMAD expression were detected in these mice. Deletion of Smad3 in 129sv mice ameliorated anti-GBM induced nephritis, including crescentic glomerulonephritis. Collectively, these findings indicate that the heightened experimental nephritis and fibrotic disease in the 129sv strain of mice are regulated by SMAD3, which could be a potential therapeutic target for immune-mediated nephritis.
Collapse
Affiliation(s)
- Yong Du
- The Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, USA;
- The Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-0000, USA; (C.X.); (S.R.); (J.O.); (L.L.); (X.J.Z.)
| | - Chun Xie
- The Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-0000, USA; (C.X.); (S.R.); (J.O.); (L.L.); (X.J.Z.)
| | - Sneha Ravikumar
- The Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-0000, USA; (C.X.); (S.R.); (J.O.); (L.L.); (X.J.Z.)
| | - Jacob Orme
- The Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-0000, USA; (C.X.); (S.R.); (J.O.); (L.L.); (X.J.Z.)
| | - Li Li
- The Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-0000, USA; (C.X.); (S.R.); (J.O.); (L.L.); (X.J.Z.)
| | - Xin J Zhou
- The Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-0000, USA; (C.X.); (S.R.); (J.O.); (L.L.); (X.J.Z.)
| | - Chandra Mohan
- The Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, USA;
- The Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-0000, USA; (C.X.); (S.R.); (J.O.); (L.L.); (X.J.Z.)
| |
Collapse
|
20
|
Sisto M, Ribatti D, Lisi S. Organ Fibrosis and Autoimmunity: The Role of Inflammation in TGFβ-Dependent EMT. Biomolecules 2021; 11:biom11020310. [PMID: 33670735 PMCID: PMC7922523 DOI: 10.3390/biom11020310] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances in our understanding of the molecular pathways that control the link of inflammation with organ fibrosis and autoimmune diseases point to the epithelial to mesenchymal transition (EMT) as the common association in the progression of these diseases characterized by an intense inflammatory response. EMT, a process in which epithelial cells are gradually transformed to mesenchymal cells, is a major contributor to the pathogenesis of fibrosis. Importantly, the chronic inflammatory microenvironment has emerged as a decisive factor in the induction of pathological EMT. Transforming growth factor-β (TGF-β), a multifunctional cytokine, plays a crucial role in the induction of fibrosis, often associated with chronic phases of inflammatory diseases, contributing to marked fibrotic changes that severely impair normal tissue architecture and function. The understanding of molecular mechanisms underlying EMT-dependent fibrosis has both a basic and a translational relevance, since it may be useful to design therapies aimed at counteracting organ deterioration and failure. To this end, we reviewed the recent literature to better elucidate the molecular response to inflammatory/fibrogenic signals in autoimmune diseases in order to further the specific regulation of EMT-dependent fibrosis in more targeted therapies.
Collapse
|
21
|
Horwitz DA, Liu A, Bickerton S, Castaldo G, Matarese G, Fahmy TM, La Cava A. Anti-CD2 Antibody-Coated Nanoparticles Containing IL-2 Induce NK Cells That Protect Lupus Mice via a TGF-β-Dependent Mechanism. Front Immunol 2020; 11:583338. [PMID: 33391260 PMCID: PMC7772200 DOI: 10.3389/fimmu.2020.583338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
We recently reported that the treatment with nanoparticles (NPs) loaded with tolerogenic cytokines suppressed the manifestations of lupus-like disease induced by the transfer of donor CD4+ T cells from DBA/2 mice into (C57BL/6 × DBA/2)F1 (BDF1) mice. Although the protective effects were ascribed to the induction of adaptive CD4+ and CD8+ T regulatory cells, the results suggested that another population of immune cells could be involved. Here we report that NK cells critically contribute to the protection from lupus-like disease conferred by NPs to BDF1 mice, and that this effect is TGF-β-dependent.
Collapse
Affiliation(s)
- David A. Horwitz
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- General Nanotherapeutics, LLC, Santa Monica, CA, United States
| | - Aijing Liu
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Sean Bickerton
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Federico II University of Naples, Naples, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Federico II University of Naples, Naples, Italy
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Tarek M. Fahmy
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Department of Immunobiology, Yale University, New Haven, CT, United States
| | - Antonio La Cava
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
SCUBE3 Is Likely a Susceptibility Gene for Systemic Lupus Erythematosus for Chinese Populations. J Immunol Res 2020; 2020:8897936. [PMID: 33274247 PMCID: PMC7683159 DOI: 10.1155/2020/8897936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/02/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a complex autoimmune disease with strong genetic disposition with more than 100 susceptibility genes identified until now. However, our knowledge on SLE genetic background is still limited. The present study was aimed at evaluating the role of single nucleotide polymorphisms (SNPs) in SCUBE3, a TGF-β signaling activator, with SLE susceptibility in Chinese populations. Methods A total of 2801 individuals (490 cases and 493 controls from GWAS cohort and 1003 cases and 815 controls from our cohort) were enrolled, and SNPs located 10 kb up- and downstream of SCUBE3 (chr6:35182190-35218609) were included in the genetic association study. Multiple layers of bioinformatics were conducted, and the levels of SCUBE3 expression were confirmed. Results Of the 31 SNPs in SCUBE3 tested, 24 SNPs were significantly associated with SLE at p ≤ 0.05. The top locus was rs1888822 with p = 8.74∗10−6 in the discovery cohort and was confirmed by the replication cohort with p = 0.012. Additionally, the levels of SCUBE3 mRNA expression were significantly lower in patients with SLE comparing with healthy controls (p = 4.28∗10−4). Further expression data from ArrayExpress showed that the expression of SCUBE3 was also lower in CD3+ T cells and B cells from patients with SLE. Conclusions Our research revealed that variants in SCUBE3, which encode SCUBE3 as a TGF-β signaling activator, can be considered as a new genetic susceptibility factor for systemic lupus erythematosus. And the reduced mRNA expression of SCUBE3 was first reported in patients with SLE.
Collapse
|
23
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
24
|
De los Santos MI, Bacos DM, Bernal SD. WITHDRAWN: A novel bifunctional T regulatory cell engaging (BiTE) TGF-β1/PD-L1 fusion protein with therapeutic potential for autoimmune diseases. J Transl Autoimmun 2020. [DOI: 10.1016/j.jtauto.2020.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
25
|
Muhammad Yusoff F, Wong KK, Mohd Redzwan N. Th1, Th2, and Th17 cytokines in systemic lupus erythematosus. Autoimmunity 2019; 53:8-20. [PMID: 31771364 DOI: 10.1080/08916934.2019.1693545] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the breakdown of immune tolerance leading to excessive inflammation and tissue damage. Imbalance in the levels of cytokines represents one of the multifactorial causes of SLE pathogenesis and it contributes to disease severity. Deregulated levels of T helper type 1 (Th1), type 2 (Th2), and type 17 (Th17) cytokines have been associated with autoimmune inflammation. Growing evidence has shown deregulated levels of Th1, Th2, and Th17 cytokines in SLE patients compared to healthy controls associated with disease activity and severity. In this review, we describe and discuss the levels of Th1, Th2, and Th17 cytokines in SLE patients, and clinical trials involving Th1, Th2, and Th17 cytokines in SLE patients. In particular, with the exception of IL-2, IL-4, and TGF-β1, the levels of Th1, Th2, and Th17 cytokines are increased in SLE patients associated with disease severity. Current phase II or III studies involve therapeutic antibodies targeting IFN-α and type I IFN receptor, while low-dose IL-2 therapy is assessed in phase II clinical trials.
Collapse
Affiliation(s)
- Farhana Muhammad Yusoff
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| |
Collapse
|
26
|
Abstract
Dysregulation of lymphocyte function, accumulation of autoantibodies and defective clearance of circulating immune complexes and apoptotic cells are hallmarks of systemic lupus erythematosus (SLE). Moreover, it is now evident that an intricate interplay between the adaptive and innate immune systems contributes to the pathogenesis of SLE, ultimately resulting in chronic inflammation and organ damage. Platelets circulate in the blood and are chiefly recognized for their role in the prevention of bleeding and promotion of haemostasis; however, accumulating evidence points to a role for platelets in both adaptive and innate immunity. Through a broad repertoire of receptors, platelets respond promptly to immune complexes, complement and damage-associated molecular patterns, and represent a major reservoir of immunomodulatory molecules in the circulation. Furthermore, evidence suggests that platelets are activated in patients with SLE, and that they could contribute to the circulatory autoantigenic load through the release of microparticles and mitochondrial antigens. Herein, we highlight how platelets contribute to the immune response and review evidence implicating platelets in the pathogenesis of SLE.
Collapse
|
27
|
Mesenchymal Stem Cells in Homeostasis and Systemic Diseases: Hypothesis, Evidences, and Therapeutic Opportunities. Int J Mol Sci 2019; 20:ijms20153738. [PMID: 31370159 PMCID: PMC6696100 DOI: 10.3390/ijms20153738] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are present in all organs and tissues, playing a well-known function in tissue regeneration. However, there is also evidence indicating a broader role of MSCs in tissue homeostasis. In vivo studies have shown MSC paracrine mechanisms displaying proliferative, immunoregulatory, anti-oxidative, or angiogenic activity. In addition, recent studies also demonstrate that depletion and/or dysfunction of MSCs are associated with several systemic diseases, such as lupus, diabetes, psoriasis, and rheumatoid arthritis, as well as with aging and frailty syndrome. In this review, we hypothesize about the role of MSCs as keepers of tissue homeostasis as well as modulators in a variety of inflammatory and degenerative systemic diseases. This scenario opens the possibility for the use of secretome-derived products from MSCs as new therapeutic agents in order to restore tissue homeostasis, instead of the classical paradigm "one disease, one drug".
Collapse
|
28
|
Raymond WD, Eilertsen GØ, Shanmugakumar S, Nossent JC. The Impact of Cytokines on the Health-Related Quality of Life in Patients with Systemic Lupus Erythematosus. J Clin Med 2019; 8:jcm8060857. [PMID: 31208069 PMCID: PMC6617124 DOI: 10.3390/jcm8060857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/07/2023] Open
Abstract
Introduction: Systemic lupus erythematosus (SLE) reduces the health-related quality of life (HRQoL), even during periods of disease quiescence. We investigated whether subclinical inflammation as reflected by cytokine levels is linked with reduced HRQoL. Methods: A cross-sectional study of SLE patients (n = 52, mean age 47.3, 86.5% female) who completed a Short Form Health Survey-36 (SF-36) questionnaire. The clinical and demographic data, scores for the disease activity (SLEDAI-2K), organ damage (SDI), and laboratory data were collected simultaneously. The autoantibody and cytokine levels (IFN-γ, IL-1β, IL-4, IL-6, IL-10, IL-12, IL-17, BAFF, TNF-α, TGF-β1, MIP-1α, MIP-1β and MCP-1 (levels in pg/mL) were quantified by sandwich ELISA. The comparisons and associations were assessed non-parametrically, and a multiple regression determined the effect sizes (ES) of the variables on the SF-36 domain and summary scores. Results: The SF-36 summary and domain scores for SLE patients were significantly (20–40%) lower than in a comparable control group, with the exception of the Mental Health scores (p = 0.06). SLE patients had a normal body mass index (BMI) (median, 24.2 kg/m2), a high rate of smoking (69.2%), and usage of social security benefits (90.4%). TGF-β1 (ES 0.06), IL-12 (ES −0.11), IFN-γ (ES 0.07) and MCP-1 (ES 0.06) influenced the SF-36 domain scores; and MCP-1 (ES 0.04) influenced the Mental Health Summary Score (MCS). Obvious manifestations, including patient visual analogue scale (VAS) (ES −2.84 to −6.29), alopecia (ES −14.89), malar rash (ES −14.26), and analgesic requirement (ES −19.38), independently influenced the SF-36 items; however, the SF-36 scores were not reflected by the physician VAS or disease activity (SLEDAI-2K). Conclusions: Cytokines had a minimal impact on HRQoL in SLE patients, especially compared to visible skin manifestations, central nervous system (CNS) damage, and pain. Better tools are needed to capture HRQoL in measures of disease activity.
Collapse
Affiliation(s)
- Warren David Raymond
- Rheumatology Group, School of Medicine, The University of Western Australia, Perth 6009, Australia.
| | - Gro Østli Eilertsen
- Molecular Inflammation Research Group, Department of Clinical Medicine, Arctic University, 9037 Tromsø, Norway.
| | - Sharanyaa Shanmugakumar
- Rheumatology Group, School of Medicine, The University of Western Australia, Perth 6009, Australia.
| | - Johannes Cornelis Nossent
- Rheumatology Group, School of Medicine, The University of Western Australia, Perth 6009, Australia.
- Molecular Inflammation Research Group, Department of Clinical Medicine, Arctic University, 9037 Tromsø, Norway.
- Department of Rheumatology, Sir Charles Gairdner Hospital, Perth 6009, Australia.
| |
Collapse
|
29
|
Ma WT, Gao F, Gu K, Chen DK. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol 2019; 10:1140. [PMID: 31178867 PMCID: PMC6543461 DOI: 10.3389/fimmu.2019.01140] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Monocytes (Mo) and macrophages (Mϕ) are key components of the innate immune system and are involved in regulation of the initiation, development, and resolution of many inflammatory disorders. In addition, these cells also play important immunoregulatory and tissue-repairing roles to decrease immune reactions and promote tissue regeneration. Several lines of evidence have suggested a causal link between the presence or activation of these cells and the development of autoimmune diseases. In addition, Mo or Mϕ infiltration in diseased tissues is a hallmark of several autoimmune diseases. However, the detailed contributions of these cells, whether they actually initiate disease or perpetuate disease progression, and whether their phenotype and functional alteration are merely epiphenomena are still unclear in many autoimmune diseases. Additionally, little is known about their heterogeneous populations in different autoimmune diseases. Elucidating the relevance of Mo and Mϕ in autoimmune diseases and the associated mechanisms could lead to the identification of more effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Gao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kui Gu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Valencia JC, Egbukichi N, Erwin-Cohen RA. Autoimmunity and Cancer, the Paradox Comorbidities Challenging Therapy in the Context of Preexisting Autoimmunity. J Interferon Cytokine Res 2018; 39:72-84. [PMID: 30562133 DOI: 10.1089/jir.2018.0060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Today, improvements in diagnostic and therapeutic options allow patients with autoimmune diseases (ADs) to live longer and have more active lives compared with patients receiving conventional anti-inflammatory therapy just two decades ago. Current therapies for ADs aim to inhibit immune cell activation and effector immune pathways, including those activated by cytokines and cytokine receptors. Understandably, such goals become more complicated in patients with long-term established ADs who develop parallel chronic or comorbid conditions, including life-threatening diseases, such as cancer. Compared with the general population, patients with ADs have an increased risk of developing hematological, lymphoproliferative disorders, and solid tumors. However, the aim of current cancer therapies is to activate the immune system to create autoimmune-like conditions and eliminate tumors. As such, their comorbid presentation creates a paradox on how malignancies must be addressed therapeutically in the context of autoimmunity. Because the physiopathology of malignancies is less understood in the context of autoimmunity than it is in the general population, we undertook this review to highlight the peculiarities and mechanisms governing immune cells in established ADs. Moreover, we examined the role of the autoimmune cytokine milieu in the development of immune-related adverse events during the implementation of conventional or immune-based therapy.
Collapse
Affiliation(s)
- Julio C Valencia
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Nkolika Egbukichi
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Rebecca A Erwin-Cohen
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
31
|
Raymond WD, Eilertsen GØ, Nossent J. Principal component analysis reveals disconnect between regulatory cytokines and disease activity in Systemic Lupus Erythematosus. Cytokine 2018; 114:67-73. [PMID: 30551949 DOI: 10.1016/j.cyto.2018.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Cytokine dysregulation contributes to inflammation and organ damage in Systemic Lupus Erythematosus (SLE). Principle Component Analysis (PCA) can determine which groups of cytokines have the most influence across disease activity states. MATERIAL AND METHOD A cross-sectional study of age- and gender-matched SLE patients (n = 100) and controls (n = 31). SLE patients had a median Systemic Lupus Erythematosus Disease Activity Index - 2000 (SLEDAI-2K) score of 6 (IQR 2, 11). IFN-γ, interleukin (IL)-1β, IL-4, IL-6, IL-10, IL-12, IL-17, BAFF, TNF-α, TGF-β1, MIP-1α, MIP-1β and MCP-1 levels were quantified by sandwich ELISA, and compared non-parametrically between groups. PCA was used to determine the principal components across controls, SLE patients in states of remission (SLEDAI-2K = 0), low disease activity (LDA = SLEDAI-2K from 1 ≤ x ≤ 4) or high disease activity (HDA = SLEDAI-2K > 4). RESULTS TGF-β1 (Rs -0.266, p = 0.005) and IL-1β (Rs -0.199, p = 0.004) inversely correlated, whereas BAFF correlated with increasing disease activity (Rs 0.465, p < 0.001). IL-1β, IL-4, IL-10, IL-12, IL-17, IFN-γ, MCP-1, and TNF-α were featured consistently in the PC1 of all study groups. PC1 changes from controls to SLE-HDA patients, included: the increased impact of IL-1β (from 0.58 to >0.95); increased impact of IL-6 in HDA (0.76); increased influence of MIP-1α (0.60) and MIP-1β (0.85); and the uncoupling of TGF-β1 (0.14). PC2 changes from healthy controls to the HDA state, included: the increased influence of BAFF (from -0.18 to 0.88); the oppositional effect of TGF-β1 (-0.36); and, the inclusion of MCP-1 (0.65). Levels of cytokine profiles were equivalent between controls and SLE patients (p > 0.18). BAFF was not associated with the cytokine profiles. TGF-β1 associated with Th1 (Rs 0.36), Th1 + Th17 (Rs 0.22), and inversely with Th17/Th2 (Rs -0.23) profiles. IL-1β associated with the proinflammatory (Rs 0.47), Th1 (Rs 0.55), Th2 (Rs 0.55), Th17 (Rs 0.51), Th1 + Th17 (Rs 0.56), Th2 + Treg (Rs 0.45), and inversely with the (Th1 + Th17 / Th2 + Treg) (Rs -0.22) and Th17/Th2 (Rs -0.27) profiles (all, p < 0.05). CONCLUSION Principal component analysis helped to describe the influence of complex cytokine interactions in SLE in a manner congruent with the wider literature. The typical univariate changes in BAFF and TGF-β1 levels with increasing levels of disease activity, were not the dominant factors (in PC1) in the PCA. The PCA demonstrated that IL-1β did not seem to change its regulatory function in SLE.
Collapse
Affiliation(s)
- Warren David Raymond
- Rheumatology Group, School of Medicine & Pharmacology, The University of Western Australia, Australia
| | - Gro Østli Eilertsen
- Molecular Inflammation Research Group, Department of Clinical Medicine, Artic University, Tromso, Norway
| | - Johannes Nossent
- Rheumatology Group, School of Medicine & Pharmacology, The University of Western Australia, Australia; Department of Rheumatology, Sir Charles Gairdner Hospital, Perth Western, Australia.
| |
Collapse
|
32
|
Kailashiya V, Singh U, Rana R, Singh NK, Dash D, Kailashiya J. Regulatory T Cells and Their Association with Serum Markers and Symptoms in Systemic Lupus Erythematosus and Rheumatoid Arthritis. Immunol Invest 2018; 48:64-78. [DOI: 10.1080/08820139.2018.1527852] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Usha Singh
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ranjan Rana
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nand Kumar Singh
- Division of Rheumatology of Department of Medicine, Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jyotsna Kailashiya
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
33
|
Rekik R, Smiti Khanfir M, Larbi T, Zamali I, Beldi-Ferchiou A, Kammoun O, Marzouki S, Hamzaoui S, Mrad S, Barbouche MR, Houman MH, Ben Ahmed M. Impaired TGF-β signaling in patients with active systemic lupus erythematosus is associated with an overexpression of IL-22. Cytokine 2018; 108:182-189. [PMID: 29684755 DOI: 10.1016/j.cyto.2018.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/15/2018] [Accepted: 04/07/2018] [Indexed: 12/29/2022]
Abstract
The mechanisms leading to the disruption of self-tolerance in systemic lupus erythematosus (SLE) remain elusive. Herein, we aimed to decipher the molecular basis of the impaired response of mononuclear cells to TGF-β1. The Smad3-pathway was explored on CD3+ lymphocytes in either active or non active SLE patients. An impaired transcription of TGF-β1 target genes was demonstrated in the CD3+ lymphocytes of active SLE patients confirming that the defect involves T cells and pointing to its extrinsic nature. We further demonstrate that the defect did not result from an impaired TGF-βRII expression or Smad2/3 phosphorylation suggesting that the mechanism lies downstream Smad2/3 translocation. Interestingly, the TGF-1 signaling defect did not correlate with an increased expression of soluble or membrane-bound IL-15. However, it was associated with an overexpression of IL-22. This suggests that an excessive activation of AhR pathway (through UV radiations, infections, etc.) could lead to the inhibition of immunosuppressive actions of TGF-β thus disrupting immune homeostasis in SLE. Collectively, our data suggest that the impaired response to TGF-β in SLE patients is associated with disease activity and provide new insights into the pathogenesis of SLE since it could establish the link between the environmental factors and the aberrancies of the immune system usually described in SLE.
Collapse
Affiliation(s)
- Raja Rekik
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Monia Smiti Khanfir
- Department of Internal Medicine, La Rabta Hospital, Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Thara Larbi
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia; Department of Internal Medicine, Mongi Slim Hospital, Tunis, Tunisia
| | - Imen Zamali
- Laboratory of Clinical Immunology, Tunis, Tunisia
| | - Asma Beldi-Ferchiou
- Department of Biological Hematology and Immunology, Assistance Publique Hôpiaux de Paris (AP-HP), Groupe Hospitalier Mondor, Créteil, France
| | - Ons Kammoun
- Laboratory of Clinical Immunology, Tunis, Tunisia
| | - Soumaya Marzouki
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Saloua Hamzaoui
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia; Department of Internal Medicine, Mongi Slim Hospital, Tunis, Tunisia
| | - Skander Mrad
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia; Department of Internal Medicine, Mongi Slim Hospital, Tunis, Tunisia
| | - Mohamed Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, 1002 Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed Habib Houman
- Department of Internal Medicine, La Rabta Hospital, Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Melika Ben Ahmed
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02, Institut Pasteur de Tunis, 1002 Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
34
|
Komai T, Okamura T, Inoue M, Yamamoto K, Fujio K. Reevaluation of Pluripotent Cytokine TGF-β3 in Immunity. Int J Mol Sci 2018; 19:ijms19082261. [PMID: 30071700 PMCID: PMC6121403 DOI: 10.3390/ijms19082261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/28/2018] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor (TGF)-βs are pluripotent cytokines with stimulatory and inhibitory properties for multiple types of immune cells. Analyses of genetic knockouts of each isoform of TGF-β have revealed differing expression patterns and distinct roles for the three mammalian isoforms of TGF-β. Considerable effort has been focused on understanding the molecular mechanisms of TGF-β1-mediated immune regulation, given its pivotal role in prohibiting systemic autoimmune disease. In recent years, functional similarities and differences between the TGF-β isoforms have delineated their distinct roles in the development of immunopathology and immune tolerance, with increased recent attention being focused on TGF-β3. In addition to the characteristic properties of each TGF-β isoform, recent progress has identified determinants of context-dependent functionality, including various cellular targets, cytokine concentrations, tissue microenvironments, and cytokine synergy, which combine to shape the physiological and pathophysiological roles of the TGF-βs in immunity. Controlling TGF-β production and signaling is being tested as a novel therapeutic strategy in multiple clinical trials for several human diseases. This review highlights advances in the understanding of the cellular sources, activation processes, contextual determinants, and immunological roles of TGF-β3 with comparisons to other TGF-β isoforms.
Collapse
Affiliation(s)
- Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo 153-8505, Japan.
| | - Mariko Inoue
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo 153-8505, Japan.
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Kanagawa 230-0045, Japan.
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
35
|
Serum Transforming Growth Factor-Beta 1 Level in Egyptian Systemic Lupus Erythematosus Patients. Arch Rheumatol 2018; 33:358-366. [PMID: 30632531 DOI: 10.5606/archrheumatol.2018.6405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives This study aims to assess the role of transforming growth factor-beta 1 (TGF-β1) in systemic lupus erythematosus (SLE). Patients and methods The study included 40 female SLE patients (mean age 25.5±6.2 years; range 15 to 39 years) diagnosed according to the American College of Rheumatology criteria and 30 female healthy controls (mean age 26.2±5.9 years; range 16 to 39 years). Disease activity was assessed using SLE Disease Activity Index. Patients were diagnosed with lupus nephritis if they met the criteria for renal disorder. SLE patients and controls were compared in terms of TGF-β1, low and high density lipoprotein, and triglyceride levels. Results Mean serum TGF-β1 level of patients with SLE was 1385.7±483.1 pg/mL, with a significant difference compared to control group (2079.6±125.4 pg/mL; p<0.001). TGF-β1 was statistically significantly correlated with SLE disease duration. However, there was no statistically significant correlation between TGF-β1 and erythrocyte sedimentation rate, C-reactive protein, 24-hour urinary protein, complement 3, serum cholesterol, low density lipoprotein, or serum triglyceride. TGF-β1 was statistically significantly correlated with discoid rash. There was a statistically significant correlation between SLE Disease Activity Index and serum cholesterol, and triglyceride. Conclusion Systemic lupus erythematosus patients had lower levels of TGF-β1, without any significant correlation with SLE Disease Activity Index or lipid profile. TGF-β1 had a significant correlation with discoid lupus.
Collapse
|
36
|
Zhu Y, Feng X. Genetic contribution to mesenchymal stem cell dysfunction in systemic lupus erythematosus. Stem Cell Res Ther 2018; 9:149. [PMID: 29793537 PMCID: PMC5968462 DOI: 10.1186/s13287-018-0898-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Allogeneic mesenchymal stem cell (MSC) transplantation has recently become a promising therapy for patients with systemic lupus erythematosus (SLE). MSCs are a kind of multipotent stem cell than can efficiently modulate both innate and adaptive immune responses, yet those from SLE patients themselves fail to maintain the balance of immune cells, which is partly due to the abnormal genetic background. Clarifying genetic factors associated with MSC dysfunction may be helpful to delineate SLE pathogenesis and provide new therapeutic targets. In this review, the scientific evidence on the genetic contribution to MSC dysfunction in SLE is summarized.
Collapse
Affiliation(s)
- Yantong Zhu
- Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
37
|
Katsuyama T, Tsokos GC, Moulton VR. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus. Front Immunol 2018; 9:1088. [PMID: 29868033 PMCID: PMC5967272 DOI: 10.3389/fimmu.2018.01088] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to "self" leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field.
Collapse
Affiliation(s)
| | | | - Vaishali R. Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Scherlinger M, Guillotin V, Truchetet ME, Contin-Bordes C, Sisirak V, Duffau P, Lazaro E, Richez C, Blanco P. Systemic lupus erythematosus and systemic sclerosis: All roads lead to platelets. Autoimmun Rev 2018; 17:625-635. [PMID: 29635077 DOI: 10.1016/j.autrev.2018.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are two phenotypically distincts inflammatory systemic diseases. However, SLE and SSc share pathogenic features such as interferon signature, loss of tolerance against self-nuclear antigens and increased tissue damage such as fibrosis. Recently, platelets have emerged as a major actor in immunity including auto-immune diseases. Both SLE and SSc are characterized by strong platelet system activation, which is likely to be both the witness and culprit in their pathogenesis. Platelet activation pathways are multiple and sometimes redundant. They include immune complexes, Toll-like receptors activation, antiphospholipid antibodies and ischemia-reperfusion associated with Raynaud phenomenon. Once activated, platelet promote immune dysregulation by priming interferon production by immune cells, providing CD40L supporting B lymphocyte functions and providing a source of autoantigens. Platelets are actively implicated in SLE and SSc end-organ damage such as cardiovascular and renal disease and in the promotion of tissue fibrosis. Finally, after understanding the main pathogenic implications of platelet activation in both diseases, we discuss potential therapeutics targeting platelets.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Vivien Guillotin
- Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Marie-Elise Truchetet
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Cécile Contin-Bordes
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Pierre Duffau
- Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Estibaliz Lazaro
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Patrick Blanco
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Place Amélie Raba Léon, 33076 Bordeaux, France; Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
39
|
Wang T, Li Z, Li X, Chen L, Zhao H, Jiang C, Song L. Expression of CD19+CD24highCD38high B cells, IL-10 and IL-10R in peripheral blood from patients with systemic lupus erythematosus. Mol Med Rep 2017; 16:6326-6333. [DOI: 10.3892/mmr.2017.7381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
|
40
|
Sanjabi S, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022236. [PMID: 28108486 DOI: 10.1101/cshperspect.a022236] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-β alters immunity under various conditions. Under steady-state conditions, TGF-β regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-β inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-β controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-β plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California 94158.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Soyoung A Oh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
41
|
Yuan Y, Yang M, Wang K, Sun J, Song L, Diao X, Jiang Z, Cheng G, Wang X. Excessive activation of the TLR9/TGF-β1/PDGF-B pathway in the peripheral blood of patients with systemic lupus erythematosus. Arthritis Res Ther 2017; 19:70. [PMID: 28356164 PMCID: PMC5372299 DOI: 10.1186/s13075-017-1238-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Abstract
Background Our aim is to study the existence of the TLR9/TGF-β1/PDGF-B pathway in healthy humans and patients with systemic lupus erythematosus (SLE), and to explore its possible involvement in the pathogenesis of lupus nephritis (LN). Methods Protein levels of the cytokines were detected by ELISA. mRNA levels of the cytokines were analyzed by real-time PCR. MTT assay was used to test the proliferation of mesangial cells under different treatments. Results Compared to healthy controls (NControl = 56), levels of Toll-like receptor (TLR)9, transforming growth factor (TGF)-β1, and platelet-derived growth factor B (PDGF-B) were increased significantly in the peripheral blood of SLE patients (NSLE = 112). Significant correlations between the levels of TLR9, TGF-β1, and PDGF-B were observed in both healthy controls and SLE patients. The levels of TGF-β1 and PDGF-B were greatly enhanced by TLR9 activation in primary cell cultures. The proliferation of mesangial cells induced by the plasma of SLE patients was significantly higher than that induced by healthy controls; PDGF-B was involved in this process. The protein levels of PDGF-B homodimer correlated with the levels of urine protein in SLE patients with LN (NLN =38). Conclusions The TLR9/TGF-β1/PDGF-B pathway exists in humans and can be excessively activated in SLE patients. High levels of PDGF-B may result in overproliferation of mesangial cells in the kidney that are involved in the development of glomerulonephritis and LN. Further studies are necessary to identify TLR9, TGF-β1, and PDGF-B as new therapeutic targets to prevent the development of glomerulonephritis and LN. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1238-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Yuan
- Institute of Translational Medicine, the First Hospital, Jilin University, Changchun, 130061, China.,Department of Rheumatology and Immunology, the First Hospital, Jilin University, Changchun, 130021, China
| | - Mingyue Yang
- Institute of Translational Medicine, the First Hospital, Jilin University, Changchun, 130061, China
| | - Kuo Wang
- Institute of Translational Medicine, the First Hospital, Jilin University, Changchun, 130061, China
| | - Jing Sun
- Shanghai Wisdom Chemical Research Co. Ltd., Shanghai, 201203, China
| | - Lili Song
- Institute of Translational Medicine, the First Hospital, Jilin University, Changchun, 130061, China
| | - Xue Diao
- Institute of Translational Medicine, the First Hospital, Jilin University, Changchun, 130061, China
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, the First Hospital, Jilin University, Changchun, 130021, China.
| | - Genhong Cheng
- Institute of Translational Medicine, the First Hospital, Jilin University, Changchun, 130061, China. .,Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xiaosong Wang
- Institute of Translational Medicine, the First Hospital, Jilin University, Changchun, 130061, China.
| |
Collapse
|
42
|
Esmaeili SA, Mahmoudi M, Momtazi AA, Sahebkar A, Doulabi H, Rastin M. Tolerogenic probiotics: potential immunoregulators in Systemic Lupus Erythematosus. J Cell Physiol 2017; 232:1994-2007. [PMID: 27996081 DOI: 10.1002/jcp.25748] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022]
Abstract
Probiotics are commensal or nonpathogenic microbes that colonize the gastrointestinal tract and confer beneficial effects on the host through several mechanisms such as competitive exclusion, anti-bacterial effects, and modulation of immune responses. There is growing evidence supporting the immunomodulatory ability of some probiotics. Several experimental and clinical studies have been shown beneficial effect of some probiotic bacteria, particularly Lactobacillus and Bifidobacteria strains, on inflammatory and autoimmune diseases. Systemic lupus erythematosus (SLE) is an autoimmune disease that is mainly characterized by immune intolerance towards self-antigens. Some immunomodulatory probiotics have been found to regulate immune responses via tolerogenic mechanisms. Dendritic and T regulatory (Treg) cells, IL-6, IFN-γ, IL-17, and IL-23 can be considered as the most determinant dysregulated mediators in tolerogenic status. As demonstrated by documented experimental and clinical trials on inflammatory and autoimmune diseases, a number of probiotic bacterial strains can restore tolerance in host through modification of such dysregulated mediators. Since there are limited reports regarding to impact of probiotic supplementation in SLE patients, the preset review was aimed to suggest a number of probiotics bacteria, mainly from Bifidobacteria and Lactobacillus strains that are able to ameliorate immune responses. The aim was followed through literature survey on immunoregulatory probiotics that can restore tolerance and also modulate the important dysregulated pro/anti-inflammatory cytokines contributing to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Seyed-Alireza Esmaeili
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi
- Student Research Committee, Nanotechnology Research Center, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Doulabi
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rastin
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Morita K, Okamura T, Sumitomo S, Iwasaki Y, Fujio K, Yamamoto K. Emerging roles of Egr2 and Egr3 in the control of systemic autoimmunity. Rheumatology (Oxford) 2016; 55:ii76-ii81. [DOI: 10.1093/rheumatology/kew342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 08/23/2016] [Indexed: 01/04/2023] Open
|
44
|
Fuchs T, Kelly JA, Simon E, Sivils KL, Hermel E. The anti-inflammatory CASPASE-12 gene does not influence SLE phenotype in African-Americans. Immunol Lett 2016; 173:21-5. [DOI: 10.1016/j.imlet.2016.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 01/27/2023]
|
45
|
Cheng HB, Chen RY, Wu JP, Chen L, Liang YH, Pan HF, Pan ZF, Zhang QH, Li Q, Du TX, Lv YM, Shi JQ. Complement C4 induces regulatory T cells differentiation through dendritic cell in systemic lupus erythematosus. Cell Biosci 2015; 5:73. [PMID: 26705467 PMCID: PMC4690337 DOI: 10.1186/s13578-015-0052-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/28/2015] [Indexed: 01/08/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease. Complement component 4 (C4) has be proved to play a role in pathogenesis of SLE. In the present study, we investigated the effect of C4 on T cells differentiation. Methods Thirty SLE patients were included in this study. CD4+ T cells were isolated from healthy subjects, and dendritic cells (DCs) were isolated from healthy subjects or SLE patients. C4 was supplemented to co-incubate with T cells and DCs. Results Serum C4 concentration was positively correlated with regulatory T cell (Treg) percentage (R2 = 0.5907, p < 0.001) and TGFβ concentration (R2 = 0.5641, p < 0.001) in SLE patients. Different concentrations of C4 had no effect on T cells differentiation. Co-incubated T cells with DCs and C4 for 7 days, the Treg percentage and TGF-β concentration were significantly elevated. In addition, pre-treated DCs (from healthy subjects or SLE patients) with C4 and then co-incubated with T cells, the increases of Treg percentage and TGF-β concentration were also observed. Conclusion C4 takes part in T cells differentiation to Treg cells via DCs.
Collapse
Affiliation(s)
- Hong-Bin Cheng
- Teaching Hospital of Chengdu University of TCM, Chengdu, 610072 Sichuan China
| | - Rong-Yi Chen
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, No.57 Peoples Avenue South, Zhanjiang, 524001 Guangdong China
| | - Jing-Ping Wu
- Teaching Hospital of Chengdu University of TCM, Chengdu, 610072 Sichuan China
| | - Li Chen
- Laboratory Animal Center, Anhui Medical University, Hefei, 230032 Anhui China
| | - Yan-Hua Liang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032 Anhui China
| | - Zi-Feng Pan
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, No.57 Peoples Avenue South, Zhanjiang, 524001 Guangdong China
| | - Qing-Hua Zhang
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, No.57 Peoples Avenue South, Zhanjiang, 524001 Guangdong China
| | - Qing Li
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University Hefei, 678 Furong Road, Hefei, 230601 Anhui China
| | - Tian-Xi Du
- Laboratory Animal Center, Anhui Medical University, Hefei, 230032 Anhui China
| | - Yong-Mei Lv
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University Hefei, 678 Furong Road, Hefei, 230601 Anhui China
| | - Jian-Qiang Shi
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, No.57 Peoples Avenue South, Zhanjiang, 524001 Guangdong China
| |
Collapse
|
46
|
Jakiela B, Iwaniec T, Plutecka H, Celinska-Lowenhoff M, Dziedzina S, Musial J. Signs of impaired immunoregulation and enhanced effector T-cell responses in the primary antiphospholipid syndrome. Lupus 2015; 25:389-98. [PMID: 26657472 DOI: 10.1177/0961203315618267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We investigated whether primary antiphospholipid syndrome (PAPS) is characterized by a deficiency in immunoregulatory pathways, a phenomenon recently implicated in the pathogenesis of autoimmune diseases. METHODS Serum levels of immunoregulatory (e.g., IL-10 and TGF-β1) and proinflammatory (e.g., IL-17A) cytokines were measured in PAPS, systemic lupus erythematosus (SLE) with secondary APS (SAPS), or without APS, and in healthy controls (n = 40 in each group). In a subgroup of PAPS patients we also compared phenotype and function (flow cytometry) of regulatory T-cells (Treg) and cytokine production by effector T-cells. RESULTS Our major finding was decreased levels of TGF-β1 in PAPS and SAPS as compared to SLE without APS and controls. TGF-β1 was the lowest in PAPS patients showing high levels of aPL IgG with significant negative correlation with the titer. SLE patients were characterized by lower serum levels of IL-2 and increased IL-17A, as compared to the other groups. The numbers of circulating Treg cells and their phenotype (e.g., FoxP3 isoforms) were not disturbed in PAPS. However, surface expression of latency associated peptide (binds TGF-β) in activated FoxP3 + cells and in vitro production of TGF-β1 were decreased in PAPS patients with high titers of aPL IgG. Moreover, frequencies of cytokine producing effector T-helper cells (including Th17) were significantly elevated in this group. CONCLUSIONS PAPS patients with high titers of aPL IgG antibodies were characterized by decreased systemic levels of TGF-β1 and its impaired production in vitro, suggesting impaired immunoregulation and enhanced adaptive autoimmune responses leading to the production of aPL antibodies.
Collapse
Affiliation(s)
- B Jakiela
- Jagiellonian University Medical College, Department of Medicine, Krakow, Poland
| | - T Iwaniec
- Jagiellonian University Medical College, Department of Medicine, Krakow, Poland
| | - H Plutecka
- Jagiellonian University Medical College, Department of Medicine, Krakow, Poland
| | | | - S Dziedzina
- Jagiellonian University Medical College, Department of Medicine, Krakow, Poland
| | - J Musial
- Jagiellonian University Medical College, Department of Medicine, Krakow, Poland
| |
Collapse
|
47
|
Chong BF, Tseng LC, Hosler GA, Teske NM, Zhang S, Karp DR, Olsen NJ, Mohan C. A subset of CD163+ macrophages displays mixed polarizations in discoid lupus skin. Arthritis Res Ther 2015; 17:324. [PMID: 26568320 PMCID: PMC4644297 DOI: 10.1186/s13075-015-0839-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/27/2015] [Indexed: 01/05/2023] Open
Abstract
Introduction Lesional skin of patients with discoid lupus erythematosus (DLE) contains macrophages, whose polarization has yet to be investigated. To test our hypothesis that M1 macrophages would be increased in DLE skin, we examined transcriptome alterations in immune cell gene expression and macrophage features in DLE and normal skin by using gene expression and histochemical approaches. Methods Gene expression of RNA from DLE lesional and normal control skin was compared by microarrays and quantitative real-time polymerase chain reaction (RT-PCR). Both skin groups were analyzed for CD163 expression by immunohistochemistry. Double immunofluorescence studies were performed to characterize protein expression of CD163+ macrophages. Results DLE skin had twice as many upregulated genes than downregulated genes compared with normal skin. Gene set enrichment analysis comparing differentially expressed genes in DLE and normal skin with previously published gene sets associated with M1 and M2 macrophages showed strong overlap between upregulated genes in DLE skin and M1 macrophages. Quantitative RT-PCR showed that several M1 macrophage-associated genes—e.g., chemokine (C-X-C motif) ligand 10 (CXCL10), chemokine (C-C motif) ligand 5 (CCL5), and signal transducer and activator of transcription 1 (STAT1)—had amplified mRNA levels in DLE skin. CD163+ macrophages were increased near the epidermal-dermal junction and perivascular areas in DLE skin compared with normal skin. However, double immunofluorescence studies of CD163+ macrophages revealed minor co-expression of M1 (CXCL10, tumor necrosis factor-alpha, and CD127) and M2 (CD209 and transforming growth factor-beta) macrophage-related proteins in DLE skin. Conclusion Whereas a subset of CD163+ macrophages displays mixed polarizations in DLE skin, other immune cells such as T cells can contribute to the expression of these macrophage-related genes. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0839-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin F Chong
- Department of Dermatology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9069, USA.
| | - Lin-Chiang Tseng
- Department of Dermatology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9069, USA.
| | - Gregory A Hosler
- Department of Dermatology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9069, USA. .,ProPath, 1355 River Bend Drive, Dallas, 75247, TX, USA.
| | - Noelle M Teske
- Department of Dermatology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9069, USA.
| | - Song Zhang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, 75390, TX, USA.
| | - David R Karp
- Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, 75390-8884, TX, USA.
| | - Nancy J Olsen
- Department of Internal Medicine, Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Mail Code H038, Hershey, 17033-0850, PA, USA.
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, 500 University Drive, P.O. Box 850 3065 Cullen Street, Houston, 77204, TX, USA.
| |
Collapse
|
48
|
Metawie SA, ElRefai RM, ElAdle SS, Shahin RMH. Transforming growth factor-β1 in systemic lupus erythematosus patients and its relation to organ damage and disease activity. EGYPTIAN RHEUMATOLOGIST 2015. [DOI: 10.1016/j.ejr.2015.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Susianti H, Wijaya JW, Rastini A, Handono K, Gunawan A, Kalim H. Urinary Neutrophil Gelatinase-Associated Lipocalin to Monitor Lupus Nephritis Disease Activity. Biomark Insights 2015; 10:81-7. [PMID: 26396491 PMCID: PMC4562555 DOI: 10.4137/bmi.s27625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND This study was conducted to determine whether there is an association between urinary neutrophil gelatinase-associated lipocalin (uNGAL) and urinary transforming growth factor-β1 (uTGF-β1) with lupus nephritis (LN) disease activity. METHODS Urine samples from 18 LN patients were collected every month for six months then examined for uNGAL, uTGF-β1, and renal domain Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score. RESULTS The uNGAL levels were significantly different between active and inactive LN (P < 0.05). uTGF-β1 levels were not different between active and inactive LN (P < 0.05). There was a significant correlation between uNGAL levels and renal domain SLEDAI score (r = 0.417, P < 0.05). There was no correlation between uTGF-β1 levels and renal domain SLEDAI score (r = 0.031, P < 0.05). CONCLUSION uNGAL is better than uTGF-β1 for differentiation of active and inactive LN. uNGAL can be considered as a biomarker to monitor LN disease activity.
Collapse
Affiliation(s)
- Hani Susianti
- Department of Clinical Pathology, Medical Faculty of Brawijaya University, Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Jullyanny W Wijaya
- Department of Clinical Pathology, Medical Faculty of Brawijaya University, Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ati Rastini
- Department of Clinical Pathology, Medical Faculty of Brawijaya University, Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Kusworini Handono
- Department of Clinical Pathology, Medical Faculty of Brawijaya University, Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Atma Gunawan
- Department of Internal Medicine, Medical Faculty of Brawijaya University, Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Handono Kalim
- Department of Internal Medicine, Medical Faculty of Brawijaya University, Dr. Saiful Anwar General Hospital, Malang, Indonesia
| |
Collapse
|
50
|
Sester DP, Sagulenko V, Thygesen SJ, Cridland JA, Loi YS, Cridland SO, Masters SL, Genske U, Hornung V, Andoniou CE, Sweet MJ, Degli-Esposti MA, Schroder K, Stacey KJ. Deficient NLRP3 and AIM2 Inflammasome Function in Autoimmune NZB Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:1233-41. [PMID: 26116505 DOI: 10.4049/jimmunol.1402859] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/01/2015] [Indexed: 01/06/2023]
Abstract
Inflammasomes are protein complexes that promote caspase activation, resulting in processing of IL-1β and cell death, in response to infection and cellular stresses. Inflammasomes have been anticipated to contribute to autoimmunity. The New Zealand Black (NZB) mouse develops anti-erythrocyte Abs and is a model of autoimmune hemolytic anemia. These mice also develop anti-nuclear Abs typical of lupus. In this article, we show that NZB macrophages have deficient inflammasome responses to a DNA virus and fungal infection. Absent in melanoma 2 (AIM2) inflammasome responses are compromised in NZB by high expression of the AIM 2 antagonist protein p202, and consequently NZB cells had low IL-1β output in response to both transfected DNA and mouse CMV infection. Surprisingly, we also found that a second inflammasome system, mediated by the NLR family, pyrin domain containing 3 (NLRP3) initiating protein, was completely lacking in NZB cells. This was due to a point mutation in an intron of the Nlrp3 gene in NZB mice, which generates a novel splice acceptor site. This leads to incorporation of a pseudoexon with a premature stop codon. The lack of full-length NLRP3 protein results in NZB being effectively null for Nlrp3, with no production of bioactive IL-1β in response to NLRP3 stimuli, including infection with Candida albicans. Thus, this autoimmune strain harbors two inflammasome deficiencies, mediated through quite distinct mechanisms. We hypothesize that the inflammasome deficiencies in NZB alter the interaction of the host with both microflora and pathogens, promoting prolonged production of cytokines that contribute to development of autoantibodies.
Collapse
Affiliation(s)
- David P Sester
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia;
| | - Vitaliya Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Sara J Thygesen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Jasmyn A Cridland
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Yen Siew Loi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Simon O Cridland
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
| | - Ulrich Genske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Veit Hornung
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127, Bonn, Germany
| | - Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley 6009, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands 6009, Western Australia, Australia; and
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley 6009, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands 6009, Western Australia, Australia; and
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| |
Collapse
|