1
|
Identification of CXCR4 Upregulation in Diffuse Large B-Cell Lymphoma Associated with Prognostic Significance and Clinicopathological Characteristics. DISEASE MARKERS 2022; 2022:3276925. [PMID: 35774848 PMCID: PMC9239773 DOI: 10.1155/2022/3276925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022]
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignant lymphoma with distinct characteristics. Patients with treatment failure after the standard immunochemotherapy have worse prognosis, which implies the necessity to uncover novel targets. The C-X-C chemokine receptor 4 (CXCR4) overexpression has been identified in several hematopoietic malignancies. However, the expression signatures and prognostic significance of CXCR4 in DLBCL associated with clinicopathological features remain unclear. Methods Gene expression profiles of DLBCL were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then, a meta-analysis with an integrated bioinformatic analysis was performed to assess the relationship between CXCR4 expression and clinicopathological features of DLBCL. Finally, experimental verification including immunohistochemical (IHC) staining and real-time quantitative PCR (qPCR) was carried out using patient samples. In vitro cell line viability tests were conducted using CXCR4 inhibitor WZ811. Results DLBCL patients with activated B-cell-like (ABC) subtype have higher expression level of CXCR4 with worse survival. Differential expressed genes in the CXCR4-upregulation group were enriched in canonical pathways associated with oncogenesis. DLBCL with CXCR4 upregulation had lower degree of CD8+ T cell infiltration. TIMER analysis demonstrated that the CXCR4 expression was positively correlated with the expression of CD5, MYC, NOTCH1, PDCD1, CD274, mTOR, FOXO1, and hnRNPA2B1 in DLBCL. IHC study in patient samples showed the positive correlation between CXCR4 and nongerminal center B-cell (non-GCB) subtype and mTOR expression. Meanwhile, quantitative polymerase chain reaction results revealed that high CXCR4 mRNA level was correlated to double-hit DLBCL. Finally, cell viability test showed that WZ811 exerted antiproliferation effect in DLBCL cell lines in a dose-dependent manner. Conclusion CXCR4 was upregulated in ABC-DLBCL associated with worse prognosis. Our analysis predicted CXCR4 as a potential target for DLBCL treatment, which may serve as an inhibitor both on BCR signaling and nuclear export warranting further investigation in clinical trials.
Collapse
|
2
|
Rubio-Jurado B, Sosa-Quintero LS, Carrasco-Martinez IL, Norato-Delgado A, Garcia-Luna E, Guzmán-Silahua S, Riebeling-Navarro C, Nava-Zavala AH. New biomarkers in non-Hodgkin lymphoma and acute leukemias. Adv Clin Chem 2020; 96:19-53. [PMID: 32362319 DOI: 10.1016/bs.acc.2019.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomarkers play a critical role in the medical care of patients with cancer, including in early detection of the disease, diagnostic accuracy, risk stratification, treatment, and follow-up. Biomarkers in hematological malignancies can support the redefinition of the diagnosis and adjustments in the treatment plan. Biomarkers can be classified into 4 categories: (1) protein antigens, (2) cytogenetic abnormalities, (3) genetic polymorphisms, and (4) gene expression. Efforts in genomics, proteomics, and metabolomics to observe new biomarkers that contribute to the development of clinical medicine with greater precision in the strategies that improve prevention, diagnosis, and treatment of patients with malignant hematological disease. New biomarkers should accomplish several issues such as the biological plausibility, methodology used, analytical validation, intellectual property registry, and legal framework of application. This knowledge should be transferred to health professionals who can carry out the process of its implementation in clinical practice.
Collapse
Affiliation(s)
- Benjamín Rubio-Jurado
- Departamento Clínico de Hematologia, Division Onco-Hematologia, UMAE, Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico; Unidad de Investigación Biomédica 02, UMAE HE, CMNO, IMSS, Guadalajara, Jalisco, Mexico; Extensión, Consulting and Research Division, Universidad de Monterrey, San Pedro Garza Garcia, Mexico
| | - Lluvia Sugey Sosa-Quintero
- Departamento Clínico de Hematologia, Division Onco-Hematologia, UMAE, Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Ivette Lenina Carrasco-Martinez
- Departamento Clínico de Hematologia, Division Onco-Hematologia, UMAE, Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Armando Norato-Delgado
- Servicio de Hematologia, HGZ No. 21, IMSS, Cerro de Picachos 852, Col Jardines oriente, Tepatitlán, Jalisco, Mexico
| | - Eduardo Garcia-Luna
- Vice-Rector, División de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Sandra Guzmán-Silahua
- Unidad de Investigación Biomédica 02, UMAE HE, CMNO, IMSS, Guadalajara, Jalisco, Mexico
| | - Carlos Riebeling-Navarro
- Unidad de Investigación en Epidemiología Clínica, UMAE, Hospital de Pediatría CMNS-XXI, IMSS/UNAM, Mexico City, Mexico
| | - Arnulfo Hernan Nava-Zavala
- Unidad de Investigación Biomédica 02, UMAE HE, CMNO, IMSS, Guadalajara, Jalisco, Mexico; Programa Internacional, Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, Mexico; Departamento de Inmunologia y Reumatologia, Hospital General de Occidente, Secretaria de Salud Jalisco, Zapopan, Jalisco, Mexico.
| |
Collapse
|
3
|
Pansy K, Feichtinger J, Ehall B, Uhl B, Sedej M, Roula D, Pursche B, Wolf A, Zoidl M, Steinbauer E, Gruber V, Greinix HT, Prochazka KT, Thallinger GG, Heinemann A, Beham-Schmid C, Neumeister P, Wrodnigg TM, Fechter K, Deutsch AJ. The CXCR4-CXCL12-Axis Is of Prognostic Relevance in DLBCL and Its Antagonists Exert Pro-Apoptotic Effects In Vitro. Int J Mol Sci 2019; 20:E4740. [PMID: 31554271 PMCID: PMC6801866 DOI: 10.3390/ijms20194740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022] Open
Abstract
In tumor cells of more than 20 different cancer types, the CXCR4-CXCL12-axis is involved in multiple key processes including proliferation, survival, migration, invasion, and metastasis. Since data on this axis in diffuse large B cell lymphoma (DLBCL) are inconsistent and limited, we comprehensively studied the CXCR4-CXCL12-axis in our DLBCL cohort as well as the effects of CXCR4 antagonists on lymphoma cell lines in vitro. In DLBCL, we observed a 140-fold higher CXCR4 expression compared to non-neoplastic controls, which was associated with poor clinical outcome. In corresponding bone marrow biopsies, we observed a correlation of CXCL12 expression and lymphoma infiltration rate as well as a reduction of CXCR4 expression in remission of bone marrow involvement after treatment. Additionally, we investigated the effects of three CXCR4 antagonists in vitro. Therefore, we used AMD3100 (Plerixafor), AMD070 (Mavorixafor), and WKI, the niacin derivative of AMD070, which we synthesized. WK1 demonstrated stronger pro-apoptotic effects than AMD070 in vitro and induced expression of pro-apoptotic genes of the BCL2-family in CXCR4-positive lymphoma cell lines. Finally, WK1 treatment resulted in the reduced expression of JNK-, ERK1/2- and NF-κB/BCR-target genes. These data indicate that the CXCR4-CXCL12-axis impacts the pathogenesis of DLBCL and represents a potential therapeutic target in aggressive lymphomas.
Collapse
MESH Headings
- Aminoquinolines
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Benzimidazoles
- Biomarkers
- Butylamines
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Exons
- Female
- Gene Expression
- Heterocyclic Compounds, 1-Ring/pharmacology
- Humans
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Mutation
- Neoplasm Staging
- Prognosis
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Katrin Pansy
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria.
| | - Barbara Ehall
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Barbara Uhl
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Miriam Sedej
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria.
| | - David Roula
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria.
| | - Beata Pursche
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Axel Wolf
- Division of General Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036 Graz, Austria.
| | - Manuel Zoidl
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9/4, 8010 Graz, Austria.
| | - Elisabeth Steinbauer
- Diagnostic & Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Verena Gruber
- Diagnostic & Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Hildegard T Greinix
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Katharina T Prochazka
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Gerhard G Thallinger
- Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14/V, 8010 Graz, Austria.
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, 8010 Graz, Austria.
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria.
| | - Christine Beham-Schmid
- Diagnostic & Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Peter Neumeister
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Tanja M Wrodnigg
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9/4, 8010 Graz, Austria.
| | - Karoline Fechter
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Alexander Ja Deutsch
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| |
Collapse
|
4
|
Du H, Gao L, Luan J, Zhang H, Xiao T. C-X-C Chemokine Receptor 4 in Diffuse Large B Cell Lymphoma: Achievements and Challenges. Acta Haematol 2019; 142:64-70. [PMID: 31096215 DOI: 10.1159/000497430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/02/2019] [Indexed: 12/24/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL), an aggressive cancer of the B cells, is the most common subtype of non-Hodgkin lymphoma (NHL) worldwide. In China, the cases of DLBCL increase yearly. C-X-C chemokine receptor 4 (CXCR4) has been implicated in the migration and trafficking of malignant B cells in several hematological malignancies, and only a few reports have been published on the role of CXCR4 in the metastasis of DLBCL. This review summarizes the relevant perspectives on the functional mechanism, prognostic significance, and therapeutic applications of the CXCL12/CXCR4 axis in DLBCL, in particular DLBCL with bone marrow involvement.
Collapse
Affiliation(s)
- Hui Du
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China,
| | - Lei Gao
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Jing Luan
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Hangfan Zhang
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Taiwu Xiao
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
5
|
Huang Q, Liu F, Shen J. The significance of chemokines in diffuse large B-cell lymphoma: a systematic review and future insights. Future Oncol 2019; 15:1385-1395. [PMID: 30880459 DOI: 10.2217/fon-2018-0514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the progress made in molecular and clinical research, patients with diffuse large B-cell lymphoma (DLBCL) still have a bad prognosis. Recently, chemokines/chemokine receptors have become the subject of interest in relation to DLBCL. Studies have demonstrated the important role of chemokines/chemokine receptors in the communication between DLBCL cells and tumor microenvironment. Studies have also reported the ability of chemokines/chemokine receptors in promoting the proliferation and invasion of DLBCL cells. Here, we summarize the data on mechanisms of DLBCL supporting the involvement of chemokine/chemokine receptor changes. We focus on the available evidence regarding chemokines/chemokine receptors as biomarkers and therapeutic targets for DLBCL.
Collapse
Affiliation(s)
- Qian Huang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Feifei Liu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jianzhen Shen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
6
|
Zhong W, Zhu Z, Xu X, Zhang H, Xiong H, Li Q, Wei Y. Human bone marrow-derived mesenchymal stem cells promote the growth and drug-resistance of diffuse large B-cell lymphoma by secreting IL-6 and elevating IL-17A levels. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:73. [PMID: 30755239 PMCID: PMC6373150 DOI: 10.1186/s13046-019-1081-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/06/2019] [Indexed: 02/08/2023]
Abstract
Background The drug-resistance and relapse of diffuse large B-cell lymphoma (DLBCL), which are related to mesenchymal stem cells (MSCs), have become increasingly common. However, the underlying mechanisms remain elusive. Methods CCK 8 assay, colony formation assay, and xenograft mouse model were used to investigate the effects of hBMSCs on DLBCL growth. Immunohistochemistry, qRT-PCR, and ELISA were used to study the expressions of IL-6 and IL-17A. Flow cytometry was used to analyze Th17 cells and Treg cells expressions. Western blot analysis, microarray analysis, and bioinformatics analysis were used to analyze the pathways of IL-6 or IL-17A mediated DLBCL growth. Results HBMSCs promoted DLBCL growth by secreting IL-6 in vitro and in vivo and simultaneously upregulating IL-17A in vitro. IL-6 and IL-17A synergistically promoted the growth and drug-resistance of DLBCL cells by protecting them from spontaneous or drug-induced apoptosis in vitro. IL-6 or IL-17A activated the JAK2/STAT3 pathway or upregulated cyclin D2 via activation of PI3K/Akt signaling in vitro, respectively. Conclusions The present results indicated that hBMSCs might have a “dual effect” on promoting DLBCL progression and drug-resistance by secreting IL-6 and upregulating IL-17A. IL-6, IL-17A, p-STAT3, p-Akt or cyclin D2 may be potential molecular targets for overcoming drug-resistance in patients with relapsed or refractory DLBCL.
Collapse
Affiliation(s)
- Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Zhigang Zhu
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xin Xu
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jinan, 272067, Shandong, China
| | - Huabao Xiong
- Immunology Institute, Mount Sinai School of Medicine, NY10029, New York, 5674, USA
| | - Qingshan Li
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Rd No.1, Yuexiu District, Guangzhou, 510180, Guangdong, China.
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Rd No.1, Yuexiu District, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
7
|
Laursen MB, Reinholdt L, Schönherz AA, Due H, Jespersen DS, Grubach L, Ettrup MS, Røge R, Falgreen S, Sørensen S, Bødker JS, Schmitz A, Johnsen HE, Bøgsted M, Dybkær K. High CXCR4 expression impairs rituximab response and the prognosis of R-CHOP-treated diffuse large B-cell lymphoma patients. Oncotarget 2019; 10:717-731. [PMID: 30774774 PMCID: PMC6366826 DOI: 10.18632/oncotarget.26588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022] Open
Abstract
Survival of diffuse large B-cell lymphoma (DLBCL) patients has improved by inclusion of rituximab. Refractory/recurrent disease caused by treatment resistance is, however, a major problem. Determinants of rituximab sensitivity are not fully understood, but effect of rituximab are enhanced by antagonizing cell surface receptor CXCR4. In a two-step strategy, we tested the hypothesis that prognostic value of CXCR4 in DLBCL relates to rituximab treatment, due to a hampering effect of CXCR4 on the response of DLBCL cells to rituximab. First, by investigating the prognostic impact of CXCR4 mRNA expression separately for CHOP (n=181) and R-CHOP (n=233) cohorts and, second, by assessing the interaction between CXCR4 and rituximab in DLBCL cell lines. High CXCR4 expression level was significantly associated with poor outcome only for R-CHOP-treated patients, independent of IPI score, CD20 expression, ABC/GCB and B-cell-associated gene signature (BAGS) classifications. s. For responsive cell lines, inverse correlation was observed between rituximab sensitivity and CXCR4 surface expression, rituximab induced upregulation of surface-expressed CXCR4, and growth-inhibitory effect of rituximab increased by plerixafor, supporting negative impact of CXCR4 on rituximab function. In conclusion, CXCR4 is a promising independent prognostic marker for R-CHOP-treated DLBCL patients, possibly due to inverse correlation between CXCR4 expression and rituximab sensitivity.
Collapse
Affiliation(s)
| | - Linn Reinholdt
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Hanne Due
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Lykke Grubach
- Department of Hematopathology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Rasmus Røge
- Department of Hematopathology, Aalborg University Hospital, Aalborg, Denmark
| | - Steffen Falgreen
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - Suzette Sørensen
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark.,Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Julie Støve Bødker
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Alexander Schmitz
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Hans E Johnsen
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Martin Bøgsted
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Karen Dybkær
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Hiemcke-Jiwa LS, Leguit RJ, Jiwa NM, Huibers MMH, Minnema MC. CXCR4 mutations in lymphoplasmacytic lymphoma lead to altered CXCR4 expression. Br J Haematol 2018; 185:966-969. [PMID: 30408147 DOI: 10.1111/bjh.15670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura S Hiemcke-Jiwa
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Roos J Leguit
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - N Mehdi Jiwa
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Manon M H Huibers
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Monique C Minnema
- Department of Haematology, University Medical Centre, Utrecht Cancer Centre, Utrecht, the Netherlands
| |
Collapse
|
9
|
Xu ZZ, Shen JK, Zhao SQ, Li JM. Clinical significance of chemokine receptor CXCR4 and mammalian target of rapamycin (mTOR) expression in patients with diffuse large B-cell lymphoma. Leuk Lymphoma 2017; 59:1451-1460. [PMID: 28952842 DOI: 10.1080/10428194.2017.1379077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To assess the relevance of C-X-C chemokine receptor type 4 (CXCR4) and mammalian target of rapamycin (mTOR) to large-B-cell lymphoma (DLBCL), levels of protein expression were measured in 56 DLBCL patients who had received rituximab-based therapy. Of these, 34 were positive for CXCR4 expression (60.7%) and 31 for mTOR (55.4%). CXCR4 expression was positively correlated with mTOR expression (r = 0.602; p = .000). CXCR4 expression was significantly associated with high lactate dehydrogenase (LDH) level (p = .009), high IPI score (p = .030) and non-GCB subtype (p = .006). Furthermore, the expression levels of CXCR4 and mTOR were negatively correlated with the chance of remission (p < .05). Kaplan-Meier analysis indicated significantly shorter progression-free survival (PFS) and overall survival (OS) in patients positive for CXCR4 and mTOR expression. The combination therapy with CXCR4 inhibitor WZ811 and mTOR inhibitor everolimus showed syncergistic effect in DLBCL cell lines. These results suggest that the expression of CXCR4 and mTOR may be suitable as biomarkers of the prognosis of DLBCL and for development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zi-Zhen Xu
- a Department of Laboratory Medicine , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jian-Kang Shen
- b Department of Surgery , Luwan Branch of Ruijin Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Shu-Qing Zhao
- c Department of Hematology , Luwan Branch of Ruijin Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun-Min Li
- d Department of Hematology , Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| |
Collapse
|
10
|
The role of G protein-coupled receptors in lymphoid malignancies. Cell Signal 2017; 39:95-107. [PMID: 28802842 DOI: 10.1016/j.cellsig.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
Abstract
B cell lymphoma consists of multiple individual diseases arising throughout the lifespan of B cell development. From pro-B cells in the bone marrow, through circulating mature memory B cells, each stage of B cell development is prone to oncogenic mutation and transformation, which can lead to a corresponding lymphoma. Therapies designed against individual types of lymphoma often target features that differ between malignant cells and the corresponding normal cells from which they arise. These genetic changes between tumor and normal cells can include oncogene activation, tumor suppressor gene repression and modified cell surface receptor expression. G protein-coupled receptors (GPCRs) are an important class of cell surface receptors that represent an ideal target for lymphoma therapeutics. GPCRs bind a wide range of ligands to relay extracellular signals through G protein-mediated signaling cascades. Each lymphoma subgroup expresses a unique pattern of GPCRs and efforts are underway to fully characterize these patterns at the genetic level. Aberrations such as overexpression, deletion and mutation of GPCRs have been characterized as having causative roles in lymphoma and such studies describing GPCRs in B cell lymphomas are summarized here.
Collapse
|
11
|
Stollberg S, Kämmerer D, Neubauer E, Schulz S, Simonitsch-Klupp I, Kiesewetter B, Raderer M, Lupp A. Differential somatostatin and CXCR4 chemokine receptor expression in MALT-type lymphoma of gastric and extragastric origin. J Cancer Res Clin Oncol 2016; 142:2239-47. [PMID: 27544389 DOI: 10.1007/s00432-016-2220-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE Whereas the different somatostatin receptor (SSTR) subtypes and the chemokine receptor CXCR4 are known to be expressed in a wide variety of human malignancies, comprehensive data are still lacking for MALT-type lymphomas. METHODS Overall, 55 cases of MALT-type lymphoma of both gastric and extragastric origin were evaluated for the SSTR subtype and CXCR4 expression by means of immunohistochemistry using novel monoclonal rabbit antibodies. The stainings were rated by means of the immunoreactive score and correlated with clinical data. RESULTS While the CXCR4 was detected in 92 % of the cases investigated, the SSTR subtypes were much less frequently present. The SSTR5 was expressed in about 50 % of the cases, followed by the SSTR3, the SSTR2A, the SSTR4 and the SSTR1, which were present in 35, 27, 18 or 2 %, respectively, of the tumors only. Gastric lymphomas displayed a significantly higher SSTR3, SSTR4 and SSTR5 expression than extragastric tumors. A correlation between CXCR4 and Ki-67 expression was seen in gastric lymphomas, whereas primarily in extragastric tumors SSTR5 negativity was associated with poor patient outcome. CONCLUSIONS The CXCR4 may serve as a promising target for diagnostics and therapy of MALT-type lymphomas, while the SSTRs appear not suitable in this respect.
Collapse
Affiliation(s)
- Susann Stollberg
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Daniel Kämmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Elisa Neubauer
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | | | | | - Markus Raderer
- Department of Internal Medicine I, University of Vienna, Vienna, Austria
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany.
| |
Collapse
|
12
|
Enciso J, Mayani H, Mendoza L, Pelayo R. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks. Front Physiol 2016; 7:349. [PMID: 27594840 PMCID: PMC4990565 DOI: 10.3389/fphys.2016.00349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/02/2016] [Indexed: 01/10/2023] Open
Abstract
Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells.
Collapse
Affiliation(s)
- Jennifer Enciso
- Oncology Research Unit, Mexican Institute for Social SecurityMexico City, Mexico; Biochemistry Sciences Program, Universidad Nacional Autónoma de MexicoMexico City, Mexico
| | - Hector Mayani
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| |
Collapse
|
13
|
Reinholdt L, Laursen MB, Schmitz A, Bødker JS, Jakobsen LH, Bøgsted M, Johnsen HE, Dybkær K. The CXCR4 antagonist plerixafor enhances the effect of rituximab in diffuse large B-cell lymphoma cell lines. Biomark Res 2016; 4:12. [PMID: 27307990 PMCID: PMC4908729 DOI: 10.1186/s40364-016-0067-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease with variable clinical outcome, accounting for at least 25-30 % of adult non-Hodgkin lymphomas. Approximately one third of DLBCL patients are not cured by the currently used treatment regimen, R-CHOP. Hence, new treatment strategies are needed. Antagonizing the CXCR4 receptor might be promising since the CXCR4-CXCL12 axis is implicated in several aspects of tumor pathogenesis as well as in protection from chemotherapeutic response. In Burkitt lymphoma, the CXCR4 antagonist plerixafor has already been shown to enhance the therapeutic effect of rituximab, the immunotherapeutic agent of R-CHOP; but this is yet to be confirmed for DLBCL. We, therefore, investigated the effect of plerixafor on DLBCL cellular response to rituximab. Methods In this in vitro study, human DLBCL cell lines were treated with rituximab and/or plerixafor, concomitantly or in sequence. The trypan blue exclusion method and MTS-based assays were used to evaluate cellular proliferation, whereas flow cytometry was used for assessment of apoptosis status and CXCR4 surface expression level. Linear mixed effects models were used to assess statistical significance. Results We observed that simultaneous addition of plerixafor and rituximab resulted in a significant decrease in DLBCL cellular proliferation, compared to monotherapeutic response. The effect was dose-dependent, and concomitant administration was observed to be superior to sequential drug administration. Accordingly, the fraction of apoptotic/dead cells significantly increased following addition of plerixafor to rituximab treatment. Furthermore, exposure of DLBCL cells to plerixafor resulted in a significant decrease in CXCR4 fluorescence intensity. Conclusions Based on our results, implying that the anti-proliferative/pro-apoptotic effect of rituximab on DLBCL cells can be synergistically enhanced by the CXCR4 antagonist plerixafor, addition of plerixafor to the R-CHOP regimen can be suggested to improve treatment outcome for DLBCL patients. Electronic supplementary material The online version of this article (doi:10.1186/s40364-016-0067-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linn Reinholdt
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Maria Bach Laursen
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Alexander Schmitz
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Clinical Cancer Research Center, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Julie Støve Bødker
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Clinical Cancer Research Center, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Lasse Hjort Jakobsen
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Department of Clinical Medicine, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Clinical Cancer Research Center, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Department of Clinical Medicine, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Hans Erik Johnsen
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Clinical Cancer Research Center, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Department of Clinical Medicine, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| | - Karen Dybkær
- Department of Haematology, Aalborg University Hospital, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Clinical Cancer Research Center, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark ; Department of Clinical Medicine, Aalborg University, Sdr Skovvej 15, Aalborg, DK-9000 Denmark
| |
Collapse
|
14
|
[Clinical significance of NF-κB/p65 expression in patients with diffuse large B-cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:872-5. [PMID: 26477771 PMCID: PMC7364946 DOI: 10.3760/cma.j.issn.0253-2727.2015.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Ok CY, Xu-Monette ZY, Li L, Manyam GC, Montes-Moreno S, Tzankov A, Visco C, Dybkær K, Routbort MJ, Zhang L, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Parsons BM, Rao H, Møller MB, Winter JN, Piris MA, Wang SA, Medeiros LJ, Young KH. Evaluation of NF-κB subunit expression and signaling pathway activation demonstrates that p52 expression confers better outcome in germinal center B-cell-like diffuse large B-cell lymphoma in association with CD30 and BCL2 functions. Mod Pathol 2015; 28:1202-1213. [PMID: 26111978 DOI: 10.1038/modpathol.2015.76] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 12/12/2022]
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor with a well-described oncogenic role. Study for each of five NF-κB pathway subunits was only reported on small cohorts in diffuse large B-cell lymphoma (DLBCL). In this large cohort (n=533) of patients with de novo DLBCL, we evaluated the protein expression frequency, gene expression signature, and clinical implication for each of these five NF-κB subunits. Expression of p50, p52, p65, RELB, and c-Rel was 34%, 12%, 20%, 14%, and 23%, whereas p50/p65, p50/c-Rel, and p52/RELB expression was 11%, 11%, and 3%, respectively. NF-κB subunits were expressed in both germinal center B-cell-like (GCB) and activated B-cell-like (ABC) DLBCL, but p50 and p50/c-Rel were associated with ABC-DLBCL. p52, RELB, and p52/RELB expressions were associated with CD30 expression. p52 expression was negatively associated with BCL2 (B-cell lymphoma 2) expression and BCL2 rearrangement. Although p52 expression was associated with better progression-free survival (PFS) (P=0.0170), singular expression of the remaining NF-κB subunits alone did not show significant prognostic impact in the overall DLBCL cohort. Expression of p52/RELB was associated with better overall survival (OS) and PFS (P=0.0307 and P=0.0247). When cases were stratified into GCB- and ABC-DLBCL, p52 or p52/RELB dimer expression status was associated with better OS and PFS (P=0.0134 and P=0.0124) only within the GCB subtype. However, multivariate analysis did not show p52 expression to be an independent prognostic factor. Beneficial effect of p52 in GCB-DLBC appears to be its positive correlation with CD30 and negative correlation with BCL2 expression. Gene expression profiling (GEP) showed that p52(+) GCB-DLBCL was distinct from p52(-) GCB-DLBCL. Collectively, our data suggest that DLBCL patients with p52 expression might not benefit from therapy targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | - Mark J Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- Houston Methodist Hospital, Houston, TX, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - J Han van Krieken
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea
| | | | | | - Ben M Parsons
- Gundersen Lutheran Health System, La Crosse, WI, USA
| | - Huilan Rao
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel A Piris
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
16
|
Jiang N, Chen XL, Yang HW, Ma YR. Effects of nuclear factor κB expression on retinal neovascularization and apoptosis in a diabetic retinopathy rat model. Int J Ophthalmol 2015; 8:448-52. [PMID: 26085989 DOI: 10.3980/j.issn.2222-3959.2015.03.03] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/14/2015] [Indexed: 01/09/2023] Open
Abstract
AIM To investigate the expression and role of nuclear factor κB (NF-κB) in diabetic retinopathy (DR) and its relationship with neovascularization and retinal cell apoptosis. METHODS A total of 80 male Wistar rats were randomly assigned to control (4, 8, 12 and 16wk, n=10 in each group) and diabetes mellitus (DM) groups (4, 8, 12 and 16wk, n=10 in each group). A diabetic rat model was established by intraperitoneal injection of streptozotocin (60 mg/kg). After 4, 8, 12 and 16wk, rats were sacrificed. Retinal layers and retinal neovascularization growth were stained with hematoxylin-eosin and examined under light microscopy. Cell apoptosis in the retina was detected by TdT-mediated dUTP nick end labeling, and NF-κB distribution and expression in the retina was determined using immunohistochemistry. RESULTS DM model success rate up to 100%. Diabetes model at each time point after the experimental groupcompared with the control group, the blood glucose was significantly increased, decreased body weight, each time point showed significant differences compared with the control group (P<0.01). After 12wk other pathological changes in the retina of diabetic rats were observed; after 16wk, neovascularization were observed. After 1mo, retinal cell apoptosis was observed. Compared with the control group, NF-κB expression in the DM group significantly increased with disease duration. CONCLUSION With the prolonging of DM progression, the expression NF-κB increases. NF-κB may be related to retinal cell apoptosis and neovascularization.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Ophthalmology, the Affiliated Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiao-Long Chen
- Department of Ophthalmology, the Affiliated Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Hong-Wei Yang
- Department of Ophthalmology, the Affiliated Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu-Ru Ma
- Department of Ophthalmology, the Affiliated Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|