1
|
Sabzali S, Pazhouhnia S, Shahzamani K, Sedeh PA. Role of phage therapy in acute gastroenteritis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2025; 30:2. [PMID: 40200968 PMCID: PMC11974603 DOI: 10.4103/jrms.jrms_464_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 04/10/2025]
Abstract
The gut ecosystem, comprising the gut microbiota and its interactions, plays a crucial role in human health and disease. This complex ecosystem involves a diverse array of microorganisms such as viruses, fungi, and bacteria, collectively known as the gut microbiota. These microorganisms contribute to various functions, including nutrient metabolism and immune modulation, thereby impacting human health. Dysbiosis, or an imbalance in the gut microbiota, has been associated with the pathogenesis of several diseases, ranging from intestinal disorders such as inflammatory bowel disease to extra-intestinal conditions such as metabolic and neurological disorders. The implications of dysbiosis in the gut ecosystem are far-reaching, affecting not only gastrointestinal health but also contributing to the development and progression of conditions such as autoimmune gastritis and gastric cancer. Furthermore, the burden of antimicrobial use and subsequent side effects, including antibiotic resistance, poses additional challenges in managing gastrointestinal diseases. In light of these complexities, investigating the role of bacteriophages as regulators of the gut ecosystem and their potential clinical applications presents a promising opportunity to tackle antibiotic resistance and fight infectious diseases.
Collapse
Affiliation(s)
- Somaieh Sabzali
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | - Setareh Pazhouhnia
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Kiana Shahzamani
- Hepatitis Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Peyman Adibi Sedeh
- Gastroenterology and Hepatology Research Center, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Haghighi FH, Farsiani H. Is Lactococcus lactis a Suitable Candidate for Use as a Vaccine Delivery System Against Helicobacter pylori? Curr Microbiol 2024; 82:30. [PMID: 39643816 DOI: 10.1007/s00284-024-03994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Helicobacter pylori was described in 1979. This bacterium, which thrives in the harsh conditions of the stomach, is typically acquired during childhood and can remain colonized for life. Approximately, 90% of the global population is affected, and H. pylori is linked to various conditions, including gastritis, peptic ulcers, lymphoproliferative gastric lymphoma, and even gastric cancer. Currently, antibiotics are the primary treatment method, but the associated challenges of antibiotic use have led to the consideration of oral vaccination as a viable preventive measure against this infection. However, the stomach's harsh environment characterized by its acidic conditions and numerous proteolytic enzymes poses significant obstacles to the development and effectiveness of oral vaccines. To address these challenges, researchers have proposed and evaluated several delivery systems. One of the most promising options is the use of probiotics. Among the various probiotics, Lactococcus lactis stands out as a suitable candidate for oral vaccine delivery against H. pylori due to the advancements in genetic engineering that have been applied to it. This review article discusses the limitations of current treatment strategies and rationalizes the shift toward vaccination, particularly oral vaccination for this infection. It also explores the advantages and challenges of using probiotic bacteria, with a focus on L. lactis as a delivery system. Ultimately, despite the existing challenges, L. lactis continues to be recognized as a promising delivery system. Nonetheless, further research is essential to fully assess its effectiveness and address the challenges associated with this approach.
Collapse
Affiliation(s)
- Faria Hasanzadeh Haghighi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| |
Collapse
|
3
|
dos Santos Pereira E, de Oliveira Raphaelli C, Massaut KB, Ribeiro JA, Soares Vitola HR, Pieniz S, Fiorentini ÂM. Probiotics: Therapeutic Strategy on the Prevention and Treatment of
Inflammatory Diseases: Obesity, Type 2 Diabetes Mellitus and Celiac
Disease. CURRENT NUTRITION & FOOD SCIENCE 2024; 20:1112-1125. [DOI: 10.2174/0115734013252358231016181809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 01/03/2025]
Abstract
Background:
Recent evidence demonstrates the fundamental role of the gut microbiota
in inflammatory diseases, and several mechanisms of action of probiotics in improvement of inflammatory
parameters.
Objective:
The objective of this review was to relate the consumption of probiotic bacteria and its
effects on inflammatory diseases, including obesity, type II diabetes and celiac disease.
Methods:
A search was carried out in English, between the years 2011 and 2022, for research articles
and clinical trials with humans and in vivo studies. Research showed improvement in cardiovascular
risk markers, and improvement in insulin sensitivity, lipid profile and plasma atherogenic
index, in obesity with the use of probiotics. In type II diabetes, decreased levels of fasting glucose,
glycated hemoglobin, insulin and glycemic index, and increased levels of peptide 1, superoxide
dismutase and glutathione peroxidase were observed.
Results:
In addition to cellular protection of the islets of Langerhans and positive alteration of TNF-
α and IL-1β markers. Improvement in the condition of patients with celiac disease was observed,
since the neutralization of the imbalance in serotonin levels was observed, reducing the expression
of genes of interest and also, a decrease in cytokines.
Conclusion:
Therefore, the use of probiotics should be encouraged.
Collapse
Affiliation(s)
| | | | - Khadija Bezerra Massaut
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Jardel Araújo Ribeiro
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | | | - Simone Pieniz
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Ângela Maria Fiorentini
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| |
Collapse
|
4
|
Lee J, Jo J, Wan J, Seo H, Han SW, Shin YJ, Kim DH. In Vitro Evaluation of Probiotic Properties and Anti-Pathogenic Effects of Lactobacillus and Bifidobacterium Strains as Potential Probiotics. Foods 2024; 13:2301. [PMID: 39063385 PMCID: PMC11276478 DOI: 10.3390/foods13142301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Probiotics restore gut microbial balance, thereby providing health-promoting effects to the host. They have long been suggested for managing intestinal disorders caused by pathogens and for improving gut health. This study evaluated the probiotic properties and anti-pathogenic effects of specific probiotic strains against the intestinal pathogens Staphylococcus aureus and Escherichia coli. The tested strains-Lactiplantibacillus plantarum LC27, Limosilactobacillus reuteri NK33, Lacticaseibacillus rhamnosus NK210, Bifidobacterium longum NK46, and Bifidobacterium bifidum NK175-were able to survive harsh conditions simulating gastric and intestinal fluids. These strains exhibited good auto-aggregation abilities (41.8-92.3%) and ideal hydrophobicity (30.9-85.6% and 38.3-96.1% for xylene and chloroform, respectively), along with the ability to co-aggregate with S. aureus (40.6-68.2%) and E. coli (38.6-75.2%), indicating significant adhesion levels to Caco-2 cells. Furthermore, these strains' cell-free supernatants (CFSs) demonstrated antimicrobial and antibiofilm activity against S. aureus and E. coli. Additionally, these strains inhibited gas production by E. coli through fermentative activity. These findings suggest that the strains tested in this study have potential as novel probiotics to enhance gut health.
Collapse
Affiliation(s)
- Jaekoo Lee
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Jaehyun Jo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Jungho Wan
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Hanseul Seo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Seung-Won Han
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
5
|
Goswami M, Bose PD. Gut microbial dysbiosis in the pathogenesis of leukemia: an immune-based perspective. Exp Hematol 2024; 133:104211. [PMID: 38527589 DOI: 10.1016/j.exphem.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Leukemias are a set of clonal hematopoietic malignant diseases that develop in the bone marrow. Several factors influence leukemia development and progression. Among these, the gut microbiota is a major factor influencing a wide array of its processes. The gut microbial composition is linked to the risk of tumor development and the host's ability to respond to treatment, mostly due to the immune-modulatory effects of their metabolites. Despite such strong evidence, its role in the development of hematologic malignancies still requires attention of investigators worldwide. In this review, we make an effort to discuss the role of host gut microbiota-immune crosstalk in leukemia development and progression. Additionally, we highlight certain recently developed strategies to modify the gut microbial composition that may help to overcome dysbiosis in leukemia patients in the near future.
Collapse
Affiliation(s)
- Mayuri Goswami
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India.
| |
Collapse
|
6
|
Chang YH, Yanckello LM, Chlipala GE, Green SJ, Aware C, Runge A, Xing X, Chen A, Wenger K, Flemister A, Wan C, Lin AL. Prebiotic inulin enhances gut microbial metabolism and anti-inflammation in apolipoprotein E4 mice with sex-specific implications. Sci Rep 2023; 13:15116. [PMID: 37704738 PMCID: PMC10499887 DOI: 10.1038/s41598-023-42381-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023] Open
Abstract
Gut dysbiosis has been identified as a crucial factor of Alzheimer's disease (AD) development for apolipoprotein E4 (APOE4) carriers. Inulin has shown the potential to mitigate dysbiosis. However, it remains unclear whether the dietary response varies depending on sex. In the study, we fed 4-month-old APOE4 mice with inulin for 16 weeks and performed shotgun metagenomic sequencing to determine changes in microbiome diversity, taxonomy, and functional gene pathways. We also formed the same experiments with APOE3 mice to identify whether there are APOE-genotype dependent responses to inulin. We found that APOE4 female mice fed with inulin had restored alpha diversity, significantly reduced Escherichia coli and inflammation-associated pathway responses. However, compared with APOE4 male mice, they had less metabolic responses, including the levels of short-chain fatty acids-producing bacteria and the associated kinases, especially those related to acetate and Erysipelotrichaceae. These diet- and sex- effects were less pronounced in the APOE3 mice, indicating that different APOE variants also play a significant role. The findings provide insights into the higher susceptibility of APOE4 females to AD, potentially due to inefficient energy production, and imply the importance of considering precision nutrition for mitigating dysbiosis and AD risk in the future.
Collapse
Affiliation(s)
- Ya-Hsuan Chang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
| | - Lucille M Yanckello
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - George E Chlipala
- Research Informatics Core, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, 60612, USA
| | - Chetan Aware
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
| | - Amelia Runge
- Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Xin Xing
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
- Department of Computer Science, University of Kentucky, Lexington, KY, 40506, USA
| | - Anna Chen
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Kathryn Wenger
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Abeoseh Flemister
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
| | - Caixia Wan
- Department of Biological and Biomedical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Ai-Ling Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA.
- Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
7
|
Barone M, Ramayo-Caldas Y, Estellé J, Tambosco K, Chadi S, Maillard F, Gallopin M, Planchais J, Chain F, Kropp C, Rios-Covian D, Sokol H, Brigidi P, Langella P, Martín R. Gut barrier-microbiota imbalances in early life lead to higher sensitivity to inflammation in a murine model of C-section delivery. MICROBIOME 2023; 11:140. [PMID: 37394428 PMCID: PMC10316582 DOI: 10.1186/s40168-023-01584-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Most interactions between the host and its microbiota occur at the gut barrier, and primary colonizers are essential in the gut barrier maturation in the early life. The mother-offspring transmission of microorganisms is the most important factor influencing microbial colonization in mammals, and C-section delivery (CSD) is an important disruptive factor of this transfer. Recently, the deregulation of symbiotic host-microbe interactions in early life has been shown to alter the maturation of the immune system, predisposing the host to gut barrier dysfunction and inflammation. The main goal of this study is to decipher the role of the early-life gut microbiota-barrier alterations and its links with later-life risks of intestinal inflammation in a murine model of CSD. RESULTS The higher sensitivity to chemically induced inflammation in CSD mice is related to excessive exposure to a too diverse microbiota too early in life. This early microbial stimulus has short-term consequences on the host homeostasis. It switches the pup's immune response to an inflammatory context and alters the epithelium structure and the mucus-producing cells, disrupting gut homeostasis. This presence of a too diverse microbiota in the very early life involves a disproportionate short-chain fatty acids ratio and an excessive antigen exposure across the vulnerable gut barrier in the first days of life, before the gut closure. Besides, as shown by microbiota transfer experiments, the microbiota is causal in the high sensitivity of CSD mice to chemical-induced colitis and in most of the phenotypical parameters found altered in early life. Finally, supplementation with lactobacilli, the main bacterial group impacted by CSD in mice, reverts the higher sensitivity to inflammation in ex-germ-free mice colonized by CSD pups' microbiota. CONCLUSIONS Early-life gut microbiota-host crosstalk alterations related to CSD could be the linchpin behind the phenotypic effects that lead to increased susceptibility to an induced inflammation later in life in mice. Video Abstract.
Collapse
Affiliation(s)
- M. Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Y. Ramayo-Caldas
- INRAE, AgroParisTech, GABI, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - J. Estellé
- INRAE, AgroParisTech, GABI, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - K. Tambosco
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - S. Chadi
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - F. Maillard
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - M. Gallopin
- CNRS, CEA, l’Institut de Biologie Intégrative de La Cellule (I2BC), Paris-Saclay University, 91405 Orsay, France
| | - J. Planchais
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - F. Chain
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - C. Kropp
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - D. Rios-Covian
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - H. Sokol
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Gastroenterology Department, Centre de Recherche Saint-Antoine, Centre de Recherche Saint-Antoine, CRSA, AP-HP, INSERM, Saint Antoine Hospital, Sorbonne Université, 75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - P. Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - P. Langella
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - R. Martín
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| |
Collapse
|
8
|
Stein RA, Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. MICROLIFE 2023; 4:uqad032. [PMID: 37441522 PMCID: PMC10335734 DOI: 10.1093/femsml/uqad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Adult humans harbor at least as many microbial cells as eukaryotic ones. The largest compartment of this diverse microbial population, the gut microbiota, encompasses the collection of bacteria, archaea, viruses, and eukaryotic organisms that populate the gastrointestinal tract, and represents a complex and dynamic ecosystem that has been increasingly implicated in health and disease. The gut microbiota carries ∼100-to-150-times more genes than the human genome and is intimately involved in development, homeostasis, and disease. Of the several microbial metabolites that have been studied, short-chain fatty acids emerge as a group of molecules that shape gene expression in several types of eukaryotic cells by multiple mechanisms, which include DNA methylation changes, histone post-translational modifications, and microRNA-mediated gene silencing. Butyric acid, one of the most extensively studied short-chain fatty acids, reaches higher concentrations in the colonic lumen, where it provides a source of energy for healthy colonocytes, and its concentrations decrease towards the bottom of the colonic crypts, where stem cells reside. The lower butyric acid concentration in the colonic crypts allows undifferentiated cells, such as stem cells, to progress through the cell cycle, pointing towards the importance of the crypts in providing them with a protective niche. In cancerous colonocytes, which metabolize relatively little butyric acid and mostly rely on glycolysis, butyric acid preferentially acts as a histone deacetylase inhibitor, leading to decreased cell proliferation and increased apoptosis. A better understanding of the interface between the gut microbiota metabolites and epigenetic changes in eukaryotic cells promises to unravel in more detail processes that occur physiologically and as part of disease, help develop novel biomarkers, and identify new therapeutic modalities.
Collapse
Affiliation(s)
- Richard A Stein
- Corresponding author. Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA. Tel: +1-917-684-9438; E-mail: ;
| | - Leise Riber
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
9
|
Inhibition of Escherichia coli nitroreductase by the constituents in Syzygium aromaticum. Chin J Nat Med 2022; 20:506-517. [DOI: 10.1016/s1875-5364(22)60163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/23/2022]
|
10
|
Alamoudi MU, Hosie S, Shindler AE, Wood JL, Franks AE, Hill-Yardin EL. Comparing the Gut Microbiome in Autism and Preclinical Models: A Systematic Review. Front Cell Infect Microbiol 2022; 12:905841. [PMID: 35846755 PMCID: PMC9286068 DOI: 10.3389/fcimb.2022.905841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022] Open
Abstract
Many individuals diagnosed with autism spectrum disorder (ASD) experience gastrointestinal (GI) dysfunction and show microbial dysbiosis. Variation in gut microbial populations is associated with increased risk for GI symptoms such as chronic constipation and diarrhoea, which decrease quality of life. Several preclinical models of autism also demonstrate microbial dysbiosis. Given that much pre-clinical research is conducted in mouse models, it is important to understand the similarities and differences between the gut microbiome in humans and these models in the context of autism. We conducted a systematic review of the literature using PubMed, ProQuest and Scopus databases to compare microbiome profiles of patients with autism and transgenic (NL3R451C, Shank3 KO, 15q dup), phenotype-first (BTBR) and environmental (Poly I:C, Maternal Inflammation Activation (MIA), valproate) mouse models of autism. Overall, we report changes in fecal microbial communities relevant to ASD based on both clinical and preclinical studies. Here, we identify an overlapping cluster of genera that are modified in both fecal samples from individuals with ASD and mouse models of autism. Specifically, we describe an increased abundance of Bilophila, Clostridium, Dorea and Lactobacillus and a decrease in Blautia genera in both humans and rodents relevant to this disorder. Studies in both humans and mice highlighted multidirectional changes in abundance (i.e. in some cases increased abundance whereas other reports showed decreases) for several genera including Akkermansia, Bacteroides, Bifidobacterium, Parabacteroides and Prevotella, suggesting that these genera may be susceptible to modification in autism. Identification of these microbial profiles may assist in characterising underlying biological mechanisms involving host-microbe interactions and provide future therapeutic targets for improving gut health in autism.
Collapse
Affiliation(s)
- Mohammed U. Alamoudi
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Suzanne Hosie
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
| | - Anya E. Shindler
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Jennifer L. Wood
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Ashley E. Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
- *Correspondence: Elisa L. Hill-Yardin,
| |
Collapse
|
11
|
Time-Series Clustering of lncRNA-mRNA Expression during the Adipogenic Transdifferentiation of Porcine Skeletal Muscle Satellite Cells. Curr Issues Mol Biol 2022; 44:2038-2053. [PMID: 35678667 PMCID: PMC9164044 DOI: 10.3390/cimb44050138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle satellite cells (SMSCs), which are multifunctional muscle-derived stem cells, can differentiate into adipocytes. Long-chain non-coding RNA (lncRNA) has diverse biological functions, including the regulation of gene expression, chromosome silencing, and nuclear transport. However, the regulatory roles and mechanism of lncRNA during adipogenic transdifferentiation in muscle cells have not been thoroughly investigated. Here, porcine SMSCs were isolated, cultured, and induced for adipogenic differentiation. The expressions of lncRNA and mRNA at different time points during transdifferentiation were analysed using RNA-seq analysis. In total, 1005 lncRNAs and 7671 mRNAs showed significant changes in expression at differential differentiation stages. Time-series expression analysis showed that the differentially expressed (DE) lncRNAs and mRNAs were clustered into 5 and 11 different profiles with different changes, respectively. GO, KEGG, and REACTOME enrichment analyses revealed that DE mRNAs with increased expressions during the trans-differentiation were mainly enriched in the pathways for lipid metabolism and fat cell differentiation. The genes with decreased expressions were mainly enriched in the regulation of cell cycle and genetic information processing. In addition, 1883 DE mRNAs were regulated by 193 DE lncRNAs, and these genes were related to the controlling in cell cycle mainly. Notably, three genes in the fatty acid binding protein (FABP) family significantly and continuously increased during trans-differentiation, and 15, 13, and 11 lncRNAs may target FABP3, FABP4, and FABP5 genes by cis- or trans-regulation, respectively. In conclusion, these studies identify a set of new potential regulator for adipogenesis and cell fate and help us in better understanding the molecular mechanisms of trans-differentiation.
Collapse
|
12
|
Pagani IS, Poudel G, Wardill HR. A Gut Instinct on Leukaemia: A New Mechanistic Hypothesis for Microbiota-Immune Crosstalk in Disease Progression and Relapse. Microorganisms 2022; 10:microorganisms10040713. [PMID: 35456764 PMCID: PMC9029211 DOI: 10.3390/microorganisms10040713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Despite significant advances in the treatment of Chronic Myeloid and Acute Lymphoblastic Leukaemia (CML and ALL, respectively), disease progression and relapse remain a major problem. Growing evidence indicates the loss of immune surveillance of residual leukaemic cells as one of the main contributors to disease recurrence and relapse. More recently, there was an appreciation for how the host’s gut microbiota predisposes to relapse given its potent immunomodulatory capacity. This is especially compelling in haematological malignancies where changes in the gut microbiota have been identified after treatment, persisting in some patients for years after the completion of treatment. In this hypothesis-generating review, we discuss the interaction between the gut microbiota and treatment responses, and its capacity to influence the risk of relapse in both CML and ALL We hypothesize that the gut microbiota contributes to the creation of an immunosuppressive microenvironment, which promotes tumour progression and relapse.
Collapse
Affiliation(s)
- Ilaria S. Pagani
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Correspondence:
| | - Govinda Poudel
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide 5000, Australia
| | - Hannah R. Wardill
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
13
|
Zuppi M, Hendrickson HL, O’Sullivan JM, Vatanen T. Phages in the Gut Ecosystem. Front Cell Infect Microbiol 2022; 11:822562. [PMID: 35059329 PMCID: PMC8764184 DOI: 10.3389/fcimb.2021.822562] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Phages, short for bacteriophages, are viruses that specifically infect bacteria and are the most abundant biological entities on earth found in every explored environment, from the deep sea to the Sahara Desert. Phages are abundant within the human biome and are gaining increasing recognition as potential modulators of the gut ecosystem. For example, they have been connected to gastrointestinal diseases and the treatment efficacy of Fecal Microbiota Transplant. The ability of phages to modulate the human gut microbiome has been attributed to the predation of bacteria or the promotion of bacterial survival by the transfer of genes that enhance bacterial fitness upon infection. In addition, phages have been shown to interact with the human immune system with variable outcomes. Despite the increasing evidence supporting the importance of phages in the gut ecosystem, the extent of their influence on the shape of the gut ecosystem is yet to be fully understood. Here, we discuss evidence for phage modulation of the gut microbiome, postulating that phages are pivotal contributors to the gut ecosystem dynamics. We therefore propose novel research questions to further elucidate the role(s) that they have within the human ecosystem and its impact on our health and well-being.
Collapse
Affiliation(s)
- Michele Zuppi
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Heather L. Hendrickson
- The School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Justin M. O’Sullivan
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
| | - Tommi Vatanen
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
14
|
Teng T, Clarke G, Maes M, Jiang Y, Wang J, Li X, Yin B, Xiang Y, Fan L, Liu X, Wang J, Liu S, Huang Y, Licinio J, Zhou X, Xie P. Biogeography of the large intestinal mucosal and luminal microbiome in cynomolgus macaques with depressive-like behavior. Mol Psychiatry 2022; 27:1059-1067. [PMID: 34719692 PMCID: PMC9054659 DOI: 10.1038/s41380-021-01366-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Most previous studies in the pathophysiology of major depressive disorder (MDD) focused on fecal samples, which limit the identification of the gut mucosal and luminal microbiome in depression. Here, we address this knowledge gap. Male cynomolgus macaques (Macaca fascicularis) were randomly assigned to a chronic unpredictable mild stress (CUMS) group, or to an unstressed control group. Behavioral tests were completed in both groups. At endpoint, microbe composition of paired mucosal and luminal samples from cecum, ascending, transverse, and descending colons were determined by 16S ribosomal RNA gene sequencing. The levels of 34 metabolites involved in carbohydrate or energy metabolism in luminal samples were measured by targeted metabolomics profiling. CUMS macaques demonstrated significantly more depressive-like behaviors than controls. We found differences in mucosal and luminal microbial composition between the two groups, which were characterized by Firmicutes and Bacteriodetes at the phylum level, as well as Prevotellaceae and Lachnospiraceae at the family level. The majority of discriminative microbes correlated with the depressive-like behavioral phenotype. In addition, we found 27 significantly different microbiome community functions between the two groups in mucosa, and one in lumen, which were mainly involved in carbohydrate and energy metabolism. A total of nine metabolites involved in these pathways were depleted in CUMS animals. Together, CUMS macaques with depressive-like behaviors associated with distinct alterations of covarying microbiota, carbohydrate and energy metabolism in mucosa and lumen. Further studies should focus on the mucosal and luminal microbiome to provide a deeper spatiotemporal perspective of microbial alterations in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Teng Teng
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- grid.7872.a0000000123318773Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael Maes
- grid.7922.e0000 0001 0244 7875Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.35371.330000 0001 0726 0380Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria ,grid.1021.20000 0001 0526 7079School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC Australia
| | - Yuanliang Jiang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Fan
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shouhuan Liu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunqing Huang
- Shanghai Applied Protein Technology Co., Ltd, Shanghai, China
| | - Julio Licinio
- grid.411023.50000 0000 9159 4457Department of Psychiatry and Behavioral Sciences, College of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY USA ,grid.411023.50000 0000 9159 4457Department of Neuroscience & Physiology, College of Medicine, SUNY Upstate Medical University, Syracuse, NY USA
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Chen Z, Ruan J, Li D, Wang M, Han Z, Qiu W, Wu G. The Role of Intestinal Bacteria and Gut-Brain Axis in Hepatic Encephalopathy. Front Cell Infect Microbiol 2021; 10:595759. [PMID: 33553004 PMCID: PMC7859631 DOI: 10.3389/fcimb.2020.595759] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disorder that occurs in patients with liver insufficiency. However, its pathogenesis has not been fully elucidated. Pharmacotherapy is the main therapeutic option for HE. It targets the pathogenesis of HE by reducing ammonia levels, improving neurotransmitter signal transduction, and modulating intestinal microbiota. Compared to healthy individuals, the intestinal microbiota of patients with liver disease is significantly different and is associated with the occurrence of HE. Moreover, intestinal microbiota is closely associated with multiple links in the pathogenesis of HE, including the theory of ammonia intoxication, bile acid circulation, GABA-ergic tone hypothesis, and neuroinflammation, which contribute to cognitive and motor disorders in patients. Restoring the homeostasis of intestinal bacteria or providing specific probiotics has significant effects on neurological disorders in HE. Therefore, this review aims at elucidating the potential microbial mechanisms and metabolic effects in the progression of HE through the gut-brain axis and its potential role as a therapeutic target in HE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guobin Wu
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
16
|
Aljahdali NH, Sanad YM, Han J, Foley SL. Current knowledge and perspectives of potential impacts of Salmonella enterica on the profile of the gut microbiota. BMC Microbiol 2020; 20:353. [PMID: 33203384 PMCID: PMC7673091 DOI: 10.1186/s12866-020-02008-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
In the past decade, the initial studies of the gut microbiota started focusing on the correlation of the composition of the gut microbiota and the health or diseases of the host, and there are extensive literature reviews pertaining to this theme. However, little is known about the association between the microbiota, the host, and pathogenic bacteria, such as Salmonella enterica, which is among the most important foodborne pathogens and identified as the source of multiple outbreaks linked to contaminated foods causing salmonellosis. Secretion systems, flagella, fimbriae, endotoxins, and exotoxins are factors that play the most important roles in the successful infection of the host cell by Salmonella. Infections with S. enterica, which is a threat to human health, can alter the genomic, taxonomic, and functional traits of the gut microbiota. The purpose of this review is to outline the state of knowledge on the impacts of S. enterica on the intestinal microbiota and highlight the need to identify the gut bacteria that could contribute to salmonellosis.
Collapse
Affiliation(s)
- Nesreen H Aljahdali
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.,Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Yasser M Sanad
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.,Department of Agriculture, University of Arkansas, Pine Bluff, AR, USA.,Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
17
|
Gómez-Gallego C, García-Mantrana I, Martínez-Costa C, Salminen S, Isolauri E, Collado MC. The Microbiota and Malnutrition: Impact of Nutritional Status During Early Life. Annu Rev Nutr 2020; 39:267-290. [PMID: 31433738 DOI: 10.1146/annurev-nutr-082117-051716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
According to the developmental origins of health and disease hypothesis, our health is determined by events experienced in utero and during early infancy. Indeed, both our prenatal and postnatal nutrition conditions have an impact on the initial architecture and activity of our microbiota. Recent evidence has underlined the importance of the composition of the early gut microbiota in relation to malnutrition, whether it be undernutrition or overnutrition, that is, in terms of both stunted and overweight development. It remains unclear how early microbial contact is linked to the risk of disease, as well as whether alterations in the microbiome underlie the pathogenesis of malnutrition or are merely the end result of it, which indicates that thequestion of causality must urgently be answered. This review provides information on the complex interaction between the microbiota and nutrition during the first 1,000 days of life, taking into account the impact of both undernutrition and overnutrition on the microbiota and on infants' health outcomes in the short- and long-term.
Collapse
Affiliation(s)
- Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70210 Kuopio, Finland; .,Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| | - Izaskun García-Mantrana
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain; ,
| | - Cecilia Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, 46010 Valencia, Spain.,Pediatric Gastroenterology and Nutrition Section, Hospital Clinico Universitario Valencia, INCLIVA,46010 Valencia, Spain;
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| | - Erika Isolauri
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, FI-20500 Turku, Finland; .,Department of Clinical Sciences, Faculty of Medicine, University of Turku, FI-20014 Turku, Finland
| | - M Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain; , .,Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| |
Collapse
|
18
|
Interaction between Bifidobacterium bifidum and Listeria monocytogenes enhances antioxidant activity through oxidoreductase system. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Intestinal cytotoxicity induced by Escherichia coli is fully prevented by red wine polyphenol extract: Mechanistic insights in epithelial cells. Chem Biol Interact 2019; 310:108711. [DOI: 10.1016/j.cbi.2019.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/08/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
|
20
|
Viana F, Paz LC, Methling K, Damgaard CF, Lalk M, Schramm A, Lund MB. Distinct effects of the nephridial symbionts Verminephrobacter and Candidatus Nephrothrix on reproduction and maturation of its earthworm host Eisenia andrei. FEMS Microbiol Ecol 2019; 94:4768062. [PMID: 29272384 DOI: 10.1093/femsec/fix178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/18/2017] [Indexed: 01/27/2023] Open
Abstract
Verminephrobacter, the most common specific symbionts in the nephridia (excretory organs) of lumbricid earthworms, have been shown to improve reproduction of the garden earthworm Aporrectodea tuberculata under nutrient limitation. It is unknown how general this beneficial trait is in the Verminephrobacter-earthworm symbiosis, whether other nephridial symbionts also affect host fitness and what the mechanism of the fitness increase is. Here we report beneficial effects of Verminephrobacter and Candidatus Nephrothrix on life history traits of the compost worm Eisenia andrei, which in addition to these two symbionts also hosts Agromyces-like bacteria in its mixed nephridial community: while growth was identical between control, Verminephrobacter-free and aposymbiotic worms, control worms produced significantly more cocoons and offspring than both Verminephrobacter-free and aposymbiotic worms, confirming the reproductive benefit of Verminephrobacter in a second host with different ecology and feeding behavior. Furthermore, worms with Verminephrobacter and Ca. Nephrothrix, or with only Ca. Nephrothrix present, reached sexual maturity significantly earlier than aposymbiotic worms; this is the first evidence for a beneficial role of Ca. Nephrothrix in earthworms. Riboflavin content in cocoons and whole earthworms was unaffected by the presence or absence of nephridial symbionts, suggesting that nutritional supplementation with this vitamin does not play a major role in this symbiosis.
Collapse
Affiliation(s)
- Flávia Viana
- Section for Microbiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Laura-Carlota Paz
- Section for Microbiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Karen Methling
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
| | - Christian F Damgaard
- Section for Plant and Insect Ecology, Department of Bioscience, Aarhus University, 8600 Silkeborg, Denmark
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
| | - Andreas Schramm
- Section for Microbiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Marie B Lund
- Section for Microbiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
21
|
Zhang Y, Zhang B, Dong L, Chang P. Potential of Omega-3 Polyunsaturated Fatty Acids in Managing Chemotherapy- or Radiotherapy-Related Intestinal Microbial Dysbiosis. Adv Nutr 2019; 10:133-147. [PMID: 30566596 PMCID: PMC6370266 DOI: 10.1093/advances/nmy076] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy- or radiotherapy-related intestinal microbial dysbiosis is one of the main causes of intestinal mucositis. Cases of bacterial translocation into peripheral blood and subsequent sepsis occur as a result of dysfunction in the intestinal barrier. Evidence from recent studies depicts the characteristics of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis, which creates an imbalance between beneficial and harmful bacteria in the gut. Decreases in beneficial bacteria can lead to a weakening of the resistance of the gut to harmful bacteria, resulting in robust activation of proinflammatory signaling pathways. For example, lipopolysaccharide (LPS)-producing bacteria activate the nuclear transcription factor-κB signaling pathway through binding with Toll-like receptor 4 on stressed epithelial cells, subsequently leading to secretion of proinflammatory cytokines. Nevertheless, various studies have found that the omega-3 (n-3) polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid and eicosapentaenoic acid can reverse intestinal microbial dysbiosis by increasing beneficial bacteria species, including Lactobacillus, Bifidobacterium, and butyrate-producing bacteria, such as Roseburia and Coprococcus. In addition, the n-3 PUFAs decrease the proportions of LPS-producing and mucolytic bacteria in the gut, and they can reduce inflammation as well as oxidative stress. Importantly, the n-3 PUFAs also exert anticancer effects in colorectal cancers. In this review, we summarize the characteristics of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis and introduce the contributions of dysbiosis to the pathogenesis of intestinal mucositis. Next, we discuss how n-3 PUFAs could alleviate chemotherapy- or radiotherapy-related intestinal microbial dysbiosis. This review provides new insights into the clinical administration of n-3 PUFAs for the management of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, ChangChun, China
| | - Boyan Zhang
- Orthopedic Medical Center, The Second Hospital of Jilin University, ChangChun, China
| | - Lihua Dong
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, ChangChun, China,Address correspondence to LD (e-mail: )
| | - Pengyu Chang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, ChangChun, China,Address correspondence to PC (e-mail: )
| |
Collapse
|
22
|
Martín R, Chain F, Miquel S, Motta JP, Vergnolle N, Sokol H, Langella P. Using murine colitis models to analyze probiotics-host interactions. FEMS Microbiol Rev 2018; 41:S49-S70. [PMID: 28830096 DOI: 10.1093/femsre/fux035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
Probiotics are defined as 'live microorganisms which when administered in adequate amounts confer a health benefit on the host'. So, to consider a microorganism as a probiotic, a demonstrable beneficial effect on the health host should be shown as well as an adequate defined safety status and the capacity to survive transit through the gastrointestinal tract and to storage conditions. In this review, we present an overview of the murine colitis models currently employed to test the beneficial effect of the probiotic strains as well as an overview of the probiotics already tested. Our aim is to highlight both the importance of the adequate selection of the animal model to test the potential probiotic strains and of the value of the knowledge generated by these in vivo tests.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florian Chain
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sylvie Miquel
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Paul Motta
- Department of Biological Science, Inflammation Research Network, University of Calgary, AB T3E 4N1, Canada.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Harry Sokol
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Sorbonne University - Université Pierre et Marie Curie (UPMC), 75252 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Equipe de Recherche Labélisée (ERL) 1157, Avenir Team Gut Microbiota and Immunity, 75012 Paris, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique - Hopitaux de Paris, UPMC, 75012 Paris, France
| | - Philippe Langella
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
23
|
Barone M, Chain F, Sokol H, Brigidi P, Bermúdez-Humarán LG, Langella P, Martín R. A Versatile New Model of Chemically Induced Chronic Colitis Using an Outbred Murine Strain. Front Microbiol 2018; 9:565. [PMID: 29636738 PMCID: PMC5881104 DOI: 10.3389/fmicb.2018.00565] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023] Open
Abstract
Murine colitis models are crucial tools for understanding intestinal homeostasis and inflammation. However, most current models utilize a highly inbred strain of mice, and often only one sex is employed to limit bias. This targeted approach, which in itself is biased, means that murine genetic diversity and sex-related differences are ignored, making it even more difficult to extend findings to humans, who are highly heterogeneous. Furthermore, most models do not examine the chronic form of colitis, an important fact taking into account the chronic nature of the inflammatory bowel diseases (IBD). Here, we attempted to create a more realistic murine colitis model by addressing these three issues. Using chemically induced chronic colon inflammation in an outbred strain of mice (RjOrl:SWISS [CD-1]), we (i) mimicked the relapsing nature of the disease, (ii) better represented normal genetic variability, and (iii) employed both female and male mice. Colitis was induced by intrarectal administration of dinitrobenzene sulfonic acid (DNBS). After a recovery period and 3 days before the mice were euthanized, colitis was reactivated by a second administration of DNBS. Protocol length was 24 days. Colitis severity was assessed using body mass, macroscopic scores, and histological scores. Myeloperoxidase (MPO) activity, cytokine levels, and lymphocyte populations were also characterized. Our results show that the intrarectal administration of DNBS effectively causes colitis in both female and male CD-1 mice in a dose-dependent manner, as reflected by loss of body mass, macroscopic scores and histological scores. Furthermore, colon cytokine levels and mesenteric lymph node characteristics indicate that this model involves immune system activation. Although some variables were sex-specific, most of the results support including both females and males in the model. Our ultimate goal is to make this model available to researchers for testing candidate anti-inflammatory agents, such as classical or next-generation probiotics; we also aim for the results to be more easily transferrable to human trials.
Collapse
Affiliation(s)
- Monica Barone
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Florian Chain
- Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Harry Sokol
- Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Sorbonne University - Université Pierre et Marie Curie, Paris, France.,Avenir Team Gut Microbiota and Immunity, Institut National de la Santé et de la Recherche Médicale, Equipe de Recherche Labélisée 1157, Paris, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris, UPMC, Paris, France
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luis G Bermúdez-Humarán
- Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rebeca Martín
- Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
24
|
Yadav R, Shukla P. An overview of advanced technologies for selection of probiotics and their expediency: A review. Crit Rev Food Sci Nutr 2017; 57:3233-3242. [DOI: 10.1080/10408398.2015.1108957] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ruby Yadav
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
25
|
Yang D, Wu X, Yu X, He L, Shah NP, Xu F. Mutual growth-promoting effect between Bifidobacterium bifidum WBBI03 and Listeria monocytogenes CMCC 54001. J Dairy Sci 2017; 100:3448-3462. [PMID: 28259400 DOI: 10.3168/jds.2016-11804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/16/2017] [Indexed: 01/12/2023]
Abstract
In this study, Bifidobacterium bifidum WBBI03 and Listeria monocytogenes CMCC 54001 were selected to detect the changes in their growth pattern after mutual interaction between them. The proteomic changes after the interaction between the 2 bacteria were detected by the isobaric tags for relative and absolute quantitation method. The proteins related to the biosynthesis and cell reproduction were selected, and their changes at the transcriptional level were monitored by fluorescent quantitative PCR. Also, 3 other types of probiotic organisms and opportunistic pathogens were used to verify the results mentioned above. The results showed that growing the 2 organisms together could promote the growth of each other, resulting in earlier entry into the logarithmic phase. The results also showed that the expression of these proteins mostly tended to be upregulated at the translational and transcriptional level. The increase in the expression of these proteins might help promote the growth and reproduction of B. bifidum WBBI03 and L. monocytogenes CMCC 54001. One aspect of the biological significance of their presence in the normal intestine may be that the opportunistic pathogens promote the growth of the probiotics.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China
| | - Xiaoli Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, P. R. China
| | - Xiaomin Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China
| | - Lihua He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China.
| | - Feng Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| |
Collapse
|
26
|
Vitetta L, Saltzman ET, Nikov T, Ibrahim I, Hall S. Modulating the Gut Micro-Environment in the Treatment of Intestinal Parasites. J Clin Med 2016; 5:jcm5110102. [PMID: 27854317 PMCID: PMC5126799 DOI: 10.3390/jcm5110102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023] Open
Abstract
The interactions of micro-organisms cohabitating with Homo sapiens spans millennia, with microbial communities living in a symbiotic relationship with the host. Interacting to regulate and maintain physiological functions and immunological tolerance, the microbial community is able to exert an influence on host health. An example of micro-organisms contributing to an intestinal disease state is exhibited by a biodiverse range of protozoan and bacterial species that damage the intestinal epithelia and are therefore implicated in the symptoms of diarrhea. As a contentious exemplar, Blastocystis hominis is a ubiquitous enteric protist that can adversely affect the intestines. The symptoms experienced are a consequence of the responses of the innate immune system triggered by the disruption of the intestinal barrier. The infiltration of the intestinal epithelial barrier involves a host of immune receptors, including toll like receptors and IgM/IgG/IgA antibodies as well as CD8+ T cells, macrophages, and neutrophils. Whilst the mechanisms of interactions between the intestinal microbiome and protozoan parasites remain incompletely understood, it is acknowledged that the intestinal microbiota is a key factor in the pathophysiology of parasitic infections. Modulating the intestinal environment through the administration of probiotics has been postulated as a possible therapeutic agent to control the proliferation of intestinal microbes through their capacity to induce competition for occupation of a common biotype. The ultimate goal of this mechanism is to prevent infections of the like of giardiasis and eliminate its symptoms. The differing types of probiotics (i.e., bacteria and yeast) modulate immunity by stimulating the host immune system. Early animal studies support the potential benefits of probiotic administration to prevent intestinal infections, with human clinical studies showing probiotics can reduce the number of parasites and the severity of symptoms. The early clinical indications endorse probiotics as adjuncts in the pharmaceutical treatment of protozoan infections. Currently, the bar is set low for the conduct of well-designed clinical studies that will translate the use of probiotics to ameliorate protozoan infections, therefore the requisite is for further clinical research.
Collapse
Affiliation(s)
- Luis Vitetta
- Sydney Medical School, The University of Sydney, Sydney 2006, NSW, Australia.
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| | - Emma Tali Saltzman
- Sydney Medical School, The University of Sydney, Sydney 2006, NSW, Australia.
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| | - Tessa Nikov
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| | | | - Sean Hall
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| |
Collapse
|
27
|
Rolny IS, Tiscornia I, Racedo SM, Pérez PF, Bollati-Fogolín M. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus. Benef Microbes 2016; 7:749-760. [PMID: 27459335 DOI: 10.3920/bm2015.0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection.
Collapse
Affiliation(s)
- I S Rolny
- 1 Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina
| | - I Tiscornia
- 2 Cell Biology Unit, Institut Pasteur de Montevideo, Calle Mataojo 2020, 11400 Montevideo, Uruguay.,3 Laboratorio de Biotecnología, Facultad de Ingeniería-Universidad ORT Uruguay, Cuareim 1451, 11100 Montevideo, Uruguay
| | - S M Racedo
- 4 Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - P F Pérez
- 1 Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina.,5 Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Calle 47 y 116, B1900AJI La Plata, Argentina
| | - M Bollati-Fogolín
- 2 Cell Biology Unit, Institut Pasteur de Montevideo, Calle Mataojo 2020, 11400 Montevideo, Uruguay
| |
Collapse
|
28
|
Miquel S, Lagrafeuille R, Souweine B, Forestier C. Anti-biofilm Activity as a Health Issue. Front Microbiol 2016; 7:592. [PMID: 27199924 PMCID: PMC4845594 DOI: 10.3389/fmicb.2016.00592] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health). Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients’ organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections.
Collapse
Affiliation(s)
- Sylvie Miquel
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont Auvergne Clermont-Ferrand, France
| | - Rosyne Lagrafeuille
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont Auvergne Clermont-Ferrand, France
| | - Bertrand Souweine
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont AuvergneClermont-Ferrand, France; Service de Réanimation Médicale Polyvalente, CHU de Clermont-Ferrand, Clermont-FerrandFrance
| | - Christiane Forestier
- Laboratoire Microorganismes : Génome et Environnement - UMR, CNRS 6023, Université Clermont Auvergne Clermont-Ferrand, France
| |
Collapse
|
29
|
Martín R, Bermúdez-Humarán LG, Langella P. Gnotobiotic Rodents: An In Vivo Model for the Study of Microbe-Microbe Interactions. Front Microbiol 2016; 7:409. [PMID: 27065973 PMCID: PMC4814450 DOI: 10.3389/fmicb.2016.00409] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/14/2016] [Indexed: 02/01/2023] Open
Abstract
Germ-free rodents have no microorganisms living in or on them, allowing researchers to specifically control an animal's microbiota through the direct inoculation of bacteria of interest. This strategy has been widely used to decipher host-microbe interactions as well as the role of microorganisms in both (i) the development and function of the gut barrier (mainly the intestinal epithelium) and (ii) homeostasis and its effects on human health and disease. However, this in vivo model also offers a more realistic environment than an assay tube in which to study microbe-microbe interactions, without most of the confounding interactions present in the intestinal microbiota of conventionally raised mice. This review highlights the usefulness of controlled-microbiota mice in studying microbe-microbe interactions. To this end, we summarize current knowledge on germ-free animals as an experimental model for the study of the ecology and metabolism of intestinal bacteria as well as of microbe-microbe interactions.
Collapse
Affiliation(s)
- Rebeca Martín
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | | | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
30
|
Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis. Sci Rep 2016; 6:23214. [PMID: 26983596 PMCID: PMC4794715 DOI: 10.1038/srep23214] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/29/2016] [Indexed: 01/14/2023] Open
Abstract
In this study, we investigated the risk associated with suspension of probiotics administration in tilapia, an animal model that may mimic immune-compromised conditions in humans. Tilapias were fed for 14 days using a probiotics-supplemented diet, followed by a three-day suspension of probiotics treatment and a subsequent challenge by Aeromonas hydrophila. Unexpectedly, the suspension of a probiotic strain Lactobacillus plantarum JCM1149 significantly triggered susceptibility of the host to A. hydrophila. We further observed that suspension of JCM1149 resulted in host gut microbiota dysbiosis and the subsequent disorder in the intestinal metabolites (bile acids, amino acids, and glucose) and damage in the intestinal epithelium, giving rise to a condition similar to antibiotics-induced gut dysbiosis, which collectively impaired tilapia’s gut health and resistance to pathogenic challenges. Additionally, we determined that JCM1149 adhered relatively poorly to tilapia intestinal mucosa and was rapidly released from the gastrointestinal tract (GIT) after suspension, with the rapid loss of probiotic strain probably being the direct cause of gut dysbiosis. Finally, three other probiotic Lactobacillus strains with low intestinal mucosa binding activity showed similar rapid loss phenotype following administration suspension, and induced higher host susceptibility to infection, indicating that the risk is a generic phenomenon in Lactobacillus.
Collapse
|
31
|
Martín R, Miquel S, Chain F, Natividad JM, Jury J, Lu J, Sokol H, Theodorou V, Bercik P, Verdu EF, Langella P, Bermúdez-Humarán LG. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol 2015; 15:67. [PMID: 25888448 PMCID: PMC4391109 DOI: 10.1186/s12866-015-0400-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 03/02/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The human gut houses one of the most complex and abundant ecosystems composed of up to 10(13)-10(14) microorganisms. The importance of this intestinal microbiota is highlighted when a disruption of the intestinal ecosystem equilibrium appears (a phenomenon called dysbiosis) leading to an illness status, such as inflammatory bowel diseases (IBD). Indeed, the reduction of the commensal bacterium Faecalibacterium prausnitzii (one of the most prevalent intestinal bacterial species in healthy adults) has been correlated with several diseases, including IBD, and most importantly, it has been shown that this bacterium has anti-inflammatory and protective effects in pre-clinical models of colitis. Some dysbiosis disorders are characterized by functional and physiological alterations. Here, we report the beneficial effects of F. prausnitzii in the physiological changes induced by a chronic low-grade inflammation in a murine model. Chronic low-grade inflammation and gut dysfunction were induced in mice by two episodes of dinitro-benzene sulfonic acid (DNBS) instillations. Markers of inflammation, gut permeability, colonic serotonin and cytokine levels were studied. The effects of F. prausnitzii strain A2-165 and its culture supernatant (SN) were then investigated. RESULTS No significant differences were observed in classical inflammation markers confirming that inflammation was subclinical. However, gut permeability, colonic serotonin levels and the colonic levels of the cytokines IL-6, INF-γ, IL-4 and IL-22 were higher in DNBS-treated than in untreated mice. Importantly, mice treated with either F. prausnitzii or its SN exhibited significant decreases in intestinal permeability, tissue cytokines and serotonin levels. CONCLUSIONS Our results show that F. prausnitzii and its SN had beneficial effects on intestinal epithelial barrier impairment in a chronic low-grade inflammation model. These observations confirm the potential of this bacterium as a novel probiotic treatment in the management of gut dysfunction and low-grade inflammation.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Sylvie Miquel
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Florian Chain
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Jane M Natividad
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Jennifer Jury
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Harry Sokol
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,INSERM, Equipe AVENIR U1057 / UMR CNRS 7203, 75012, Paris, France. .,Department of Gastroenterology and Nutrition, AP-HP, Hôpital Saint-Antoine F-75012 and UPMC Univ Paris 06F-75005, Paris, France.
| | - Vassilia Theodorou
- INRA, Neuro-Gastroenterology and Nutrition Team, UMR 1331 Toxalim, F-31931, Toulouse, France.
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Philippe Langella
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main St West, H.Sc. 3N6, Hamilton, Ontario, Canada.
| | - Luis G Bermúdez-Humarán
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| |
Collapse
|
32
|
Konturek PC, Hess T. [Stool transplantation - gut bacteria as a novel therapeutic option]. MMW Fortschr Med 2015; 157:61-3. [PMID: 25743672 DOI: 10.1007/s15006-015-2703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Peter C Konturek
- Klinik für Innere Medizin II, Thüringen-Kliniken "Georgius Agricola" GmbH, Rainweg 68, D-07318, Saalfeld, Deutschland,
| | | |
Collapse
|