1
|
Qiu J, Gu H, Wang S, Ji F, He C, Jiang C, Shi J, Liu X, Shen G, Lee YW, Xu J. A diverse Fusarium community is responsible for contamination of rice with a variety of Fusarium toxins. Food Res Int 2024; 195:114987. [PMID: 39277249 DOI: 10.1016/j.foodres.2024.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Rice plays an important role in the daily diet in China and therefore its quality and safety have been of great concern. However, few systematic studies have investigated Fusarium community and toxins in rice grains. Here, we collected 1381 rice samples from Jiangsu Province in eastern China and found a higher frequency of zearalenone (ZEN), deoxynivalenol (DON), fumonisins (FBs), and beauvericin (BEA). The positive samples were individually contaminated with a minimum of one and a maximum of ten toxins. Fusarium was isolated and identified as the major fungus, which exhibited temporal and geographical distribution. The most prevalent species complexes within this genus were Fusarium incarnatum-equiseti species complex (FIESC), Fusarium fujikuroi species complex (FFSC), and Fusarium sambucinum species complex (FSAMSC). Nevertheless, the amplicon sequence analysis revealed a low relative abundance of Fusarium in the rice panicles, and the fungal community exhibited an irregular change along with the symptom's emergence. In vitro toxigenic profiles of Fusarium strains showed significant complexity and specificity depending on the type and content. FIESC strains were non-pathogenic to wheat heads and weakly pathogenic to maize ears, respectively, accumulating lower amounts of toxins than F. asiaticum and F. fujikuroi. There was no significant variation in the ability to cause panicle blight in rice among the various species tested. Our study provides detailed information about the contamination of Fusarium toxins and community in rice after harvest. This information is valuable for understanding the relationship between Fusarium and rice and for developing effective control strategies.
Collapse
Affiliation(s)
- Jianbo Qiu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hui Gu
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shufang Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Ji
- College of Tea and Food Science and Technology, Jiangsu Vocational College Agriculture and Forestry, Zhenjiang 212400, China
| | - Can He
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Can Jiang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianrong Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanghui Shen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yin-Won Lee
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianhong Xu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Wang B, Wang S, He D, Zhou Y, Qiu J, Gao T, Lee YW, Shi J, Xu J, Liu X. Metconazole inhibits fungal growth and toxin production in major Fusarium species that cause rice panicle blight. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106092. [PMID: 39277404 DOI: 10.1016/j.pestbp.2024.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024]
Abstract
Rice panicle blight (RPB) caused by various Fusarium spp. is an emerging disease in the major rice-growing regions of China. Epidemics of this disease cause significant yield loss and reduce grain quality by contaminating panicles with different Fusarium toxins. However, there is currently no registered fungicide for the control of RPB in China. The 14α-demethylation inhibitor (DMI) fungicide metconazole has been shown to be effective against several Fusarium spp. that cause wheat head blight, wheat crown rot and maize ear rot. In this study, we investigated the specific activity of metconazole against six Fusarium spp. that cause RPB. Metconazole significantly inhibited mycelial growth, conidium formation, germination, germ tube elongation and major toxin production in Fusarium strains collected from major rice-growing regions in China, as well as disrupting cell membrane function by inhibiting ergosterol biosynthesis. Greenhouse experiments indicated a significant reduction in blight occurrence and toxin accumulation in rice panicles treated with metconazole. Overall, our study demonstrated the potential of metconazole for managing RPB and toxin contamination, as well as providing insight into its bioactivities and modes of action of metconazole against distinct Fusarium spp.
Collapse
Affiliation(s)
- Bingbing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Shuang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Dan He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; Collage of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunyun Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; Collage of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianbo Qiu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Tao Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianrong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Jianhong Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; Collage of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; Collage of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Bao Y, Jia F, Lin Y, Song G, Li M, Xu R, Wang H, Zhang F, Guo J. Unveiling the Mechanism of Phenamacril Resistance in F. graminearum: Computational and Experimental Insights into the C423A Mutation in FgMyoI. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15653-15661. [PMID: 38959424 DOI: 10.1021/acs.jafc.4c03467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Phenamacril (PHA) is a highly selective fungicide for controlling fusarium head blight (FHB) mainly caused by F. graminearum and F. asiaticum. However, the C423A mutation in myosin I of F. graminearum (FgMyoI) leads to natural resistance to PHA. Here, based on the computational approaches and biochemical validation, we elucidate the atomic-level mechanism behind the natural resistance of F. graminearum to the fungicide PHA due to the C423A mutation in FgMyoI. The mutation leads to a rearrangement of pocket residues, resulting in increased size and flexibility of the binding pocket, which impairs the stable binding of PHA. MST experiments confirm that the mutant protein FgMyoIC423A exhibits significantly reduced affinity for PHA compared to wild-type FgMyoI and the nonresistant C423K mutant. This decreased binding affinity likely underlies the development of PHA resistance in F. graminearum. Conversely, the nonresistant C423K mutant retains sensitivity to PHA due to the introduction of a strong hydrogen bond donor, which facilitates stable binding of PHA in the pocket. These findings shed light on the molecular basis of PHA resistance and provide new directions for the creation of new myosin inhibitors.
Collapse
Affiliation(s)
- Yiqiong Bao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangying Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohong Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengrong Li
- School of Physics and Astronomy & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ran Xu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Hancheng Wang
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao 999078, China
| |
Collapse
|
4
|
Gonya S, Kallmerten P, Dinapoli P. Are Infants and Children at Risk of Adverse Health Effects from Dietary Deoxynivalenol Exposure? An Integrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:808. [PMID: 38929054 PMCID: PMC11204095 DOI: 10.3390/ijerph21060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Deoxynivalenol (DON) is a foodborne mycotoxin produced by Fusarium molds that commonly infect cereal grains. It is a potent protein synthesis inhibitor that can significantly impact humans' gastrointestinal, immune, and nervous systems and can alter the microbiome landscape. Low-dose, chronic exposure to DON has been found to stimulate the immune system, inhibit protein synthesis, and cause appetite suppression, potentially leading to growth failure in children. At higher doses, DON has been shown to cause immune suppression, nausea, vomiting, abdominal pain, headache, diarrhea, gastroenteritis, the malabsorption of nutrients, intestinal hemorrhaging, dizziness, and fever. A provisional maximum tolerable daily intake (PMTDI) limit of 1 µg/kg/body weight has been established to protect humans, underscoring the potential health risks associated with DON intake. While the adverse effects of dietary DON exposure have been established, healthcare communities have not adequately investigated or addressed this threat to child health, possibly due to the assumption that current regulatory exposure limits protect the public appropriately. This integrative review investigated whether current dietary DON exposure rates in infants and children regularly exceed PMTDI limits, placing them at risk of negative health effects. On a global scale, the routine contamination of cereal grains, bakery products, pasta, and human milk with DON could lead to intake levels above PMTDI limits. Furthermore, evidence suggests that other food commodities, such as soy, coffee, tea, dried spices, nuts, certain seed oils, animal milk, and various water reservoirs, can be intermittently contaminated, further amplifying the scope of the issue. Better mitigation strategies and global measures are needed to safeguard vulnerable youth from this harmful toxicant.
Collapse
Affiliation(s)
- Susan Gonya
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| | | | - Pamela Dinapoli
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
5
|
Ma J, Gao C, Lin M, Sun Z, Zhao Y, Li X, Zhao T, Xu X, Sun W. Control of Fusarium Head Blight of Wheat with Bacillus velezensis E2 and Potential Mechanisms of Action. J Fungi (Basel) 2024; 10:390. [PMID: 38921376 PMCID: PMC11204721 DOI: 10.3390/jof10060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Wheat plants are impacted by Fusarium head blight (FHB) infection, which poses a huge threat to wheat growth, development, storage and food safety. In this study, a fungal strain was isolated from diseased wheat plants and identified as Fusarium asiaticum F1, known to be a member of the Fusarium graminearum species complex, agents causally responsible for FHB. In order to control this disease, new alternatives need to be developed for the use of antagonistic bacteria. Bacillus velezensis E2 (B. velezensis E2), isolated from a previous investigation in our laboratory, showed a notable inhibitory effect on F. asiaticum F1 growth and deoxynivalenol (DON) synthesis in grains. The spore germination of F. asiaticum F1 was significantly reduced and the spores showed vesicular structures when treated with B. velezensis E2. Observations using scanning electron microscopy (SEM) showed that the hyphae of F. asiaticum F1 were shrunken and broken when treated with B. velezensis E2. The RNA-seq results of F1 hyphae treated with B. velezensis E2 showed that differentially expressed genes (DEGs), which were involved in multiple metabolic pathways such as toxin synthesis, autophagy process and glycan synthesis, especially the genes associated with DON synthesis, were significantly downregulated. In summary, those results showed that B. velezensis E2 could inhibit F. asiaticum F1 growth and reduce the gene expression of DON synthesis caused by F1. This study provides new insights and antagonistic mechanisms for the biological control of FHB during wheat growth, development and storage.
Collapse
Affiliation(s)
- Jianing Ma
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (J.M.); (C.G.); (M.L.); (Y.Z.); (X.L.); (T.Z.); (X.X.)
| | - Chen Gao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (J.M.); (C.G.); (M.L.); (Y.Z.); (X.L.); (T.Z.); (X.X.)
| | - Meiwei Lin
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (J.M.); (C.G.); (M.L.); (Y.Z.); (X.L.); (T.Z.); (X.X.)
| | - Zhenzhong Sun
- Jiangsu Suhe Socialized Agriculture Service Co., Ltd., Nanjing 210012, China;
| | - Yuhao Zhao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (J.M.); (C.G.); (M.L.); (Y.Z.); (X.L.); (T.Z.); (X.X.)
| | - Xin Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (J.M.); (C.G.); (M.L.); (Y.Z.); (X.L.); (T.Z.); (X.X.)
| | - Tianyuan Zhao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (J.M.); (C.G.); (M.L.); (Y.Z.); (X.L.); (T.Z.); (X.X.)
| | - Xingang Xu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (J.M.); (C.G.); (M.L.); (Y.Z.); (X.L.); (T.Z.); (X.X.)
| | - Weihong Sun
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (J.M.); (C.G.); (M.L.); (Y.Z.); (X.L.); (T.Z.); (X.X.)
| |
Collapse
|
6
|
Meng J, Li R, Huang Q, Guo D, Fan K, Zhang J, Zhu X, Wang M, Chen X, Nie D, Cao C, Zhao Z, Han Z. Survey and toxigenic abilities of Aspergillus, Fusarium, and Alternaria fungi from wheat and paddy grains in Shanghai, China. FRONTIERS IN PLANT SCIENCE 2023; 14:1202738. [PMID: 37560029 PMCID: PMC10407302 DOI: 10.3389/fpls.2023.1202738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
A systematic study was carried out on 638 wheat and paddy grains (including fresh and stored samples) collected in 2021 from Shanghai, China, to identify the major mycobiota and their toxigenic abilities. A total of 349 fungi, namely, 252 Fusarium, 53 Aspergillus, and 44 Alternaria, were characterized by morphological and molecular identification. Fusarium and Aspergillus were more frequently isolated in paddy with Fusarium sambucinum species complex and Aspergillus section flavi as the predominant species, respectively. The genus Alternaria was the most frequently isolated fungal species in wheat. The toxin-producing potentials of the identified fungi were further evaluated in vitro. Deoxynevalenol (DON) was produced by 34.5% of Fusarium isolates and zearalenone (ZEN) was produced by 47.6% of them, and one isolate also processed the abilities for fumonisin B1 (FB1), B2 (FB2), and B3 (FB3) productions. Aflatoxin B1 (AFB1), B2 (AFB2), and G1 (AFG1) were only generated by Aspergillus section flavi, with the production rate of 65.5%, 27.6%, and 13.8%, respectively. Alternariol (AOH) was the most prevalent Alternaria toxin, which could be produced by 95.5% of the isolates, followed by alternariol monomethyl ether (AME) (72.7%), altenuene (ALT) (52.3%), tenuazonic acid (TeA) (45.5%), tentoxin (TEN) (29.5%), and altenusin (ALS) (4.5%). A combinational analysis of mycobiota and toxigenic ability allowed us to provide comprehensive information about the production mechanisms of mycotoxins in wheat and paddy in a specific geographic area, and will be helpful for developing efficient prevention and control programs.
Collapse
Affiliation(s)
- Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ruijiao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dehua Guo
- Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jingya Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xueting Zhu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Min Wang
- Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Xinyue Chen
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chen Cao
- Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Zhang TW, Wu DL, Li WD, Hao ZH, Wu XL, Xing YJ, Shi JR, Li Y, Dong F. Occurrence of Fusarium mycotoxins in freshly harvested highland barley (qingke) grains from Tibet, China. Mycotoxin Res 2023:10.1007/s12550-023-00487-1. [PMID: 37237114 DOI: 10.1007/s12550-023-00487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Highland barley, also called "qingke" in Tibetan, is mainly cultivated in the Tibetan Plateau of China and has been used as a major staple food for Tibetans. Recently, Fusarium head blight (FHB) of qingke was frequently observed around the Brahmaputra River in Tibet. Considering the importance of qingke for Tibetans, the assessment of Fusarium mycotoxin contamination is essential for food safety. In this study, a total of 150 freshly harvested qingke grain samples were obtained from three regions around the Brahmaputra River in Tibet (China) in 2020. The samples were investigated for the occurrence of 20 Fusarium mycotoxins using high-performance liquid chromatography-tandem mass spectrometry (HPLC‒MS/MS). The most frequently occurring mycotoxin was enniatin B (ENB) (46%), followed by enniatin B1 (ENB1) (14.7%), zearalenone (ZEN) (6.0%), enniatin A1 (ENA1) (3.3%), enniatin A (ENA) (1.3%), beauvericin (BEA) (0.7%), and nivalenol (NIV) (0.7%). Due to the increase in altitude, the cumulative precipitation level and average temperature decreased from the downstream to the upstream of the Brahmaputra River; this directly correlated to the contamination level of ENB in qingke, which gradually decreased from downstream to upstream. In addition, the level of ENB in qingke obtained from qingke-rape rotation was significantly lower than that from qingke-wheat and qingke-qingke rotations (p < 0.05). These results disseminated the occurrence of Fusarium mycotoxins and provided further understanding of the effect of environmental factors and crop rotation on Fusarium mycotoxins.
Collapse
Affiliation(s)
- T W Zhang
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - D L Wu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - W D Li
- College of Food Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, People's Republic of China
| | - Z H Hao
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - X L Wu
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China
| | - Y J Xing
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - J R Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Y Li
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, People's Republic of China.
- College of Food Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, People's Republic of China.
| | - F Dong
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
8
|
Shakeel Q, Mubeen M, Sohail MA, Ali S, Iftikhar Y, Tahir Bajwa R, Aqueel MA, Upadhyay SK, Divvela PK, Zhou L. An explanation of the mystifying bakanae disease narrative for tomorrow's rice. Front Microbiol 2023; 14:1153437. [PMID: 37143531 PMCID: PMC10151534 DOI: 10.3389/fmicb.2023.1153437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023] Open
Abstract
Rice production is severely hampered by the bakanae disease (Fusarium fujikuroi), formerly recognized as Fusarium moniliforme. F. moniliforme was called the F. fujikuroi species complex (FFSC) because it was later discovered that it had some separate species. The FFSC's constituents are also well recognized for producing phytohormones, which include auxins, cytokinin, and gibberellins (GAs). The normal symptoms of bakanae disease in rice are exacerbated by GAs. The members of the FFSC are responsible for the production of fumonisin (FUM), fusarins, fusaric acid, moniliformin, and beauvericin. These are harmful to both human and animal health. This disease is common around the world and causes significant yield losses. Numerous secondary metabolites, including the plant hormone gibberellin, which causes classic bakanae symptoms, are produced by F. fujikuroi. The strategies for managing bakanae, including the utilization of host resistance, chemical compounds, biocontrol agents, natural goods, and physical approaches, have been reviewed in this study. Bakanae disease is still not entirely preventable, despite the adoption of many different tactics that have been used to manage it. The benefits and drawbacks of these diverse approaches are discussed by the authors. The mechanisms of action of the main fungicides as well as the strategies for resistance to them are outlined. The information compiled in this study will contribute to a better understanding of the bakanae disease and the development of a more effective management plan for it.
Collapse
Affiliation(s)
- Qaiser Shakeel
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sajjad Ali
- Department of Entomology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Rabia Tahir Bajwa
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Anjum Aqueel
- Department of Entomology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sudhir K. Upadhyay
- Department of Environmental Science, VBS Purvanchal University, Jaunpur, Uttar Pradesh, India
| | | | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Dong F, Chen X, Lei X, Wu D, Zhang Y, Lee YW, Mokoena MP, Olaniran AO, Li Y, Shen G, Liu X, Xu JH, Shi JR. Effect of Crop Rotation on Fusarium Mycotoxins and Fusarium Species in Cereals in Sichuan Province (China). PLANT DISEASE 2023; 107:1060-1066. [PMID: 36122196 DOI: 10.1094/pdis-01-22-0024-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study was performed to evaluate the effect of crop rotation on Fusarium mycotoxins and species in cereals in Sichuan Province. A total of 311 cereal samples were randomly collected and analyzed from 2018 to 2019 in Sichuan Province. The results of mycotoxin analysis showed that the major trichothecene mycotoxins in Sichuan Province were nivalenol (NIV) and deoxynivalenol (DON), and the mean concentration of total trichothecenes (including NIV, fusarenone X [4ANIV], DON, 3-acetyldeoxynivalenol [3ADON], and 15-acetyldeoxynivalenol [15ADON]) in wheat was significantly higher than that in maize and rice. The concentration of total trichothecenes in the succeeding crops was significantly higher than that in the previous crops. In addition, wheat grown after maize had reduced incidence and concentration of trichothecene mycotoxins compared with that grown after rice, and ratooning rice grown after rice had increased incidence and concentration of trichothecene mycotoxins. Our data indicated that Fusarium asiaticum with the NIV chemotype was predominant in wheat and rice samples, while the number of the NIV chemotypes of F. asiaticum and Fusarium meridionale and the 15ADON chemotype of Fusarium graminearum in maize were almost the same. Although the composition of Fusarium species was affected by crop rotations, there were no differences when comparing the same crop rotation except for the maize-wheat rotation. Moreover, the same species and chemotype of Fusarium strains originated from different crops in various rotations, but there were no significant differences in pathogenicity in wheat and rice. These results contribute to the knowledge of the effect of crop rotation on Fusarium mycotoxins and species affecting cereals in Sichuan Province, which may lead to improved strategies for control of Fusarium mycotoxins and fungal disease in China.
Collapse
Affiliation(s)
- Fei Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Xiangxiang Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xinyu Lei
- Institute of Quality Standard and Testing Technology for Agro-products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, P.R. China
| | - Deliang Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Yifan Zhang
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy and Animal Husbandry Sciences, Lhasa 850032, P.R. China
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Mduduzi P Mokoena
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Ademola O Olaniran
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Ying Li
- Institution of Agricultural Product Quality Standard and Testing Research, Tibet Academy and Animal Husbandry Sciences, Lhasa 850032, P.R. China
| | - Guanghui Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Hong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Rong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
10
|
Troestch J, Reyes S, Vega A. Determination of Mycotoxin Contamination Levels in Rice and Dietary Exposure Assessment. J Toxicol 2022; 2022:3596768. [PMID: 36091100 PMCID: PMC9463030 DOI: 10.1155/2022/3596768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The contamination by aflatoxins, ochratoxin A, and zearalenone of samples of paddy and polished rice stored in silos located in Chiriquí, Panama, was evaluated. A total of 23 samples were extracted using immunoaffinity columns and analyzed by high-performance liquid chromatography (HPLC) with a fluorescence detector (FLD) and post-column photochemical derivatization. For the method used, the detection limits were lower than 0.25 μg/Kg for aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A and 9.35 μg/Kg for zearalenone; the limits of quantification were between 0.25 and 18.75 μg/Kg, respectively. Of the samples analyzed, all of the paddy rice samples were positive for at least one of the mycotoxins studied, zearalenone being the one found with the highest incidence (90.91%); for the polished rice samples, the mycotoxin with the highest incidence was zearalenone (50%), although in concentrations lower than those established in European legislation (100 μg/Kg). The estimate of the daily zearalenone intake according to the concentrations found was always less than 0.07 μg/Kg/bw. This is the first report on the determination of 6 mycotoxins in rice grains from Panama by the HPLC-FLD methodology. Considering the high incidence of mycotoxins in the analyzed rice samples, regular control in the production process is recommended to improve quality and ascertain its safety.
Collapse
Affiliation(s)
- Jose Troestch
- Centro de Investigación en Recursos Naturales, Universidad Autónoma de Chiriquí, David 0427, Chiriquí, Panama
| | - Stephany Reyes
- Centro de Investigación en Recursos Naturales, Universidad Autónoma de Chiriquí, David 0427, Chiriquí, Panama
| | - Aracelly Vega
- Centro de Investigación en Recursos Naturales, Universidad Autónoma de Chiriquí, David 0427, Chiriquí, Panama
| |
Collapse
|
11
|
Zhai C, Yu Y, Han J, Hu J, He D, Zhang H, Shi J, Mohamed SR, Dawood DH, Wang G, Xu J. Isolation, Characterization, and Application of Clostridium sporogenes F39 to Degrade Zearalenone under Anaerobic Conditions. Foods 2022; 11:foods11091194. [PMID: 35563917 PMCID: PMC9103434 DOI: 10.3390/foods11091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022] Open
Abstract
Zearalenone (ZEN) is produced by Fusarium spp. and is widely found in moldy wheat, corn, and other grains. ZEN has a strong toxicity and causes reproductive and immune disorders and estrogenic syndrome in animals and humans. Biodegradation has been demonstrated as an efficient way to control the hazardous effect of ZEN. A promising way to apply biodegradation in feed is to introduce anaerobic ZEN-degrading microorganisms, which can function during the digestion process in animal intestines. The aim of this study was to isolate anaerobic ZEN-degrading bacteria from anaerobic environments. A strain named F39 was isolated from animal intestinal contents and had a ZEN-degradation rate of 87.35% in 48 h to form trace amount of α- and β-zearalenol. Based on the morphological and physiological properties and phylogenetic analysis of 16S rRNA and rpoB gene sequences, F39 was identified as Clostridium sporogenes. The optimum temperature for the growth of F39 was 37 °C, the optimum pH was 7.0, and the most suitable carbon source was beef extract, while the optimal conditions for the degradation of ZEN were as follows: 35 °C, pH 7.0, and GAM medium. ZEN was degraded by F39 with a high efficiency in the concentration range of 1–15 mg/L. The bioactive factors responsible for ZEN degradation were mainly distributed intracellularly. F39 can degrade most of the ZEN present, but a small amount is broken down into two secondary metabolites, α- and β-zearalenol, and the toxicity of the degradation products is reduced. With an efficiency of 49%, F39 can more effectively degrade ZEN in wheat-based feedstuffs than in other feedstuff, and the degradation efficiency was pH related. To the best of our knowledge, this is the first report of Clostridium sporogenes F39’s ability to maintain the biodegradation potentials.
Collapse
Affiliation(s)
- Congning Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (Y.Y.); (H.Z.); (J.S.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.H.); (D.H.)
| | - Yangguang Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (Y.Y.); (H.Z.); (J.S.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.H.); (D.H.)
| | - Jun Han
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.H.); (D.H.)
| | - Junqiang Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.H.); (D.H.)
| | - Dan He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.H.); (D.H.)
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (Y.Y.); (H.Z.); (J.S.)
| | - Jianrong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (Y.Y.); (H.Z.); (J.S.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.H.); (D.H.)
| | - Sherif Ramzy Mohamed
- Food Industries and Nutrition Research Institute, Food Toxicology and Contaminants Department, National Research Centre, Tahreer St., Dokki, Giza 12411, Egypt;
| | - Dawood H. Dawood
- Department of Agriculture Chemistry, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.H.); (D.H.)
- Correspondence: (G.W.); (J.X.)
| | - Jianhong Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Z.); (Y.Y.); (H.Z.); (J.S.)
- Correspondence: (G.W.); (J.X.)
| |
Collapse
|
12
|
Dong F, Li Y, Chen X, Wu J, Wang S, Zhang X, Ma G, Lee YW, Mokoena MP, Olaniran AO, Xu JH, Shi JR. Analysis of the Fusarium graminearum Species Complex from Gramineous Weeds Near Wheat Fields in Jiangsu Province, China. PLANT DISEASE 2021; 105:3269-3275. [PMID: 33847508 DOI: 10.1094/pdis-11-20-2376-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Several weed species are known as alternative hosts of the Fusarium graminearum species complex (FGSC), and their epidemiological significance in Fusarium head blight (FHB) has been investigated; however, scant information is available regarding FGSC occurrence in weeds near Chinese wheat fields. To evaluate the potential role of gramineous weeds surrounding wheat fields in FHB, 306 FGSC isolates were obtained from 210 gramineous weed samples in 2018 in Jiangsu Province. Among them, 289 were Fusarium asiaticum, and the remainder were F. graminearum. Trichothecene genotype and mycotoxin analyses revealed that 74.3% of the F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype, and the remainder were the nivalenol (NIV) chemotype. Additionally, 82.4% of F. graminearum isolates were the 15-acetyldeoxynivalenol (15ADON) chemotype, and the remainder were the NIV chemotype. FHB severity and trichothecene analysis indicated that F. asiaticum isolates with the 3ADON chemotype were more aggressive than those with the NIV chemotype in wheat. 3ADON and NIV chemotypes of F. asiaticum isolated from weeds and wheat showed no significant differences in pathogenicity in wheat. All selected F. asiaticum isolates produced perithecia, with little difference between the 3ADON and NIV chemotypes. These results highlight the epidemiology of the FGSC isolated from weeds near wheat fields, with implications for reducing FHB inoculum in China.
Collapse
Affiliation(s)
- Fei Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
| | - Yunpeng Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xinyuan Chen
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jirong Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shufang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guizhen Ma
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Mduduzi P Mokoena
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
| | - Ademola O Olaniran
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
| | - Jian Hong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jian Rong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
13
|
Jiang H, Wu N, Jin S, Ahmed T, Wang H, Li B, Wu X, Bao Y, Liu F, Zhang JZ. Identification of Rice Seed-Derived Fusarium Spp. and Development of LAMP Assay against Fusarium Fujikuroi. Pathogens 2020; 10:pathogens10010001. [PMID: 33374990 PMCID: PMC7822049 DOI: 10.3390/pathogens10010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 01/04/2023] Open
Abstract
Fusarium species are important seedborne pathogens that cause rice bakanae disease (RBD). In this study, 421 strains were isolated from 25 rice samples collected from Zhejiang, Anhui, and Jiangxi provinces of China. Furthermore, 407 isolates were identified as F. fujikuroi (80.05% isolation frequency), F. proliferatum (8.31%), F. equiseti (5.94%), F. incarnatum (2.61%), F. andiyazi (0.95%), and F. asiaticum (0.48%) based on morphology and translation elongation factor 1-alpha (TEF1-α) gene. Phylogenetic analysis of combined sequences of the RNA polymerase II largest subunit (RPB1), RNA polymerase II second largest subunit (RPB2), TEF1-α gene, and ribosomal DNA (rDNA) internal transcribed spacer (ITS) showed that 17 representative strains were attributed to six species. Pathogenicity tests showed that representative isolates possessed varying ability to cause symptoms of bakanae on rice seedlings. Moreover, the seed germination assay revealed that six isolates had different effects, such as inhibition of seed germination, as well as seed and bud rot. The loop mediated isothermal amplification (LAMP)-based assay were developed for the detection of F. fujikuroi. According to sequences of desaturase-coding gene promoter, a species-specific marker desM231 was developed for the detection of F. fujikuroi. The LAMP assay using seeds collected from field was validated, and diagnostics developed are efficient, rapid, and sensitive.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.J.); (S.J.); (T.A.); (H.W.); (B.L.)
| | - Na Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.W.); (Y.B.); (F.L.)
| | - Shaomin Jin
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.J.); (S.J.); (T.A.); (H.W.); (B.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.J.); (S.J.); (T.A.); (H.W.); (B.L.)
| | - Hui Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.J.); (S.J.); (T.A.); (H.W.); (B.L.)
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.J.); (S.J.); (T.A.); (H.W.); (B.L.)
| | - Xiaobi Wu
- Agricultural and Rural Bureau of Cangnan County, Wenzhou 325000, China;
| | - Yidan Bao
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.W.); (Y.B.); (F.L.)
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.W.); (Y.B.); (F.L.)
| | - Jing-Ze Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (H.J.); (S.J.); (T.A.); (H.W.); (B.L.)
- Correspondence: ; Tel.: +86-571-8898-2267
| |
Collapse
|
14
|
Dong F, Zhang X, Xu JH, Shi JR, Lee YW, Chen XY, Li YP, Mokoena MP, Olaniran AO. Analysis of Fusarium graminearum Species Complex from Freshly Harvested Rice in Jiangsu Province (China). PLANT DISEASE 2020; 104:2138-2143. [PMID: 32539593 DOI: 10.1094/pdis-01-20-0084-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Members of Fusarium graminearum species complex (FGSC) are the major pathogens that cause Fusarium head blight (FHB) in cereals worldwide. Symptoms of FHB on rice, including dark staining or browning of rice glumes, were recently observed in Jiangsu Province, China. To improve our understanding of the pathogens involved, 201 FGSC isolates were obtained from freshly harvested rice samples and identified by phylogenetic analyses. Among the 201 FGSC isolates, 196 were F. asiaticum and the remaining 5 were F. graminearum. Trichothecene chemotype and chemical analyses showed that 68.4% of the F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype and the remainder were the nivalenol (NIV) chemotype. All of the F. graminearum isolates were the 15-acetyldeoxynivalenol chemotype. Pathogenicity assays showed that both the 3ADON and NIV chemotypes of F. asiaticum could infect wheat and rice spikes. FHB severity and trichothecene toxin analysis revealed that F. asiaticum with the NIV chemotype was less aggressive than that with the 3ADON chemotype in wheat, while the NIV-producing strains were more virulent than the 3ADON-producing strains in rice. F. asiaticum isolates with different chemotypes did not show significant differences in mycelial growth, sporulation, conidial dimensions, or perithecial production. These findings would provide useful information for developing management strategies for the control of FHB in China.
Collapse
Affiliation(s)
- Fei Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jian Hong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jian Rong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Xin Yuan Chen
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yun Peng Li
- Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
| | - Mduduzi P Mokoena
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
| | - Ademola O Olaniran
- School of Life Sciences, University of KwaZulu-Natal, Durban X54001, South Africa
| |
Collapse
|