1
|
Thomas R, Zhang D, Cronkite CA, Thomas R, Singh SK, Bronk LF, Morales RF, Duman JG, Grosshans DR. Subcellular functions of tau mediate repair response and synaptic homeostasis in injury. Mol Psychiatry 2025:10.1038/s41380-025-03029-6. [PMID: 40269186 DOI: 10.1038/s41380-025-03029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Injury responses in terminally differentiated cells such as neurons are tightly regulated by pathways aiding homeostatic maintenance. Cancer patients subjected to neuronal injury in brain radiation experience cognitive declines similar to those seen in primary neurodegenerative diseases. Numerous studies have investigated the effect of radiation in proliferating cells of the brain, yet the impact in differentiated, post-mitotic neurons, especially the structural and functional alterations remain largely elusive. We identified that microtubule-associated tau is a critical player in neuronal injury response via compartmentalized functions in both repair-centric and synaptic regulatory pathways. Ionizing radiation-induced injury acutely induces an increase in phosphorylated tau in the nucleus where it directly interacts with histone 2AX (H2AX), a DNA damage repair (DDR) marker. Loss of tau significantly reduced H2AX phosphorylation after irradiation, indicating that tau may play an important role in the neuronal DDR response. We also observed that loss of tau increases eukaryotic elongation factor levels, a positive regulator of protein translation after irradiation. This initial response cascades into a significant increase in synaptic proteins, resulting in disrupted homeostasis. Downstream, the novel object recognition test showed a decrease in learning and memory in tau-knockout mice after irradiation, and electroencephalographic activity contained increased delta and theta band oscillations, often seen in dementia patients. Our findings demonstrate tau's previously undefined, multifunctional role in acute responses to injury, ranging from DDR response in the nucleus to synaptic function within neurons. Such knowledge is vital to develop therapeutic strategies targeting neuronal injury in cognitive decline for at risk and vulnerable populations.
Collapse
Affiliation(s)
- Riya Thomas
- MD Anderson-UT Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Die Zhang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher A Cronkite
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rintu Thomas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sanjay K Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence F Bronk
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rodrigo F Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA). Universidad Bernardo O'Higgins, Santiago, Chile
| | - Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Zimmermann D, Kress M, Nagy I. Established and emerging roles of protein kinases in regulating primary sensory neurons in injury-and inflammation-associated pain. Expert Opin Ther Targets 2025; 29:267-280. [PMID: 40200157 DOI: 10.1080/14728222.2025.2489540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/06/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION Recent seminal neuroscience research has significantly increased our knowledge on cellular and molecular responses of various cells in the pain pathway to peripheral nerve injuries and inflammatory processes. Transcriptomic and epigenetic analysis of primary sensory neurons (PSNs) in animal models of peripheral injuries revealed new insights into altered gene expression profiles and epigenetic modifications, which, via increasing spinal nociceptive input, lead to the development of pain. Among the various classes of molecules involved in driving differential gene expression, protein kinases, the enzymes that catalyze the phosphorylation of molecules, are emerging to control histone modification and chromatin remodeling needed for the alteration in transcriptional activity. AREAS COVERED Here, we focused on how protein kinases contribute to transcriptomic changes and pathways of induced reprogramming within PSNs upon peripheral nerve injury and inflammation. We conducted systematic literature search across multiple databases, including PubMed, NIH ClinicalTrials.gov portal and GEOData from 1980 to 2024 and compared protein kinase expression frequencies between publicly available RNA sequencing datasets of PSNs and investigated differences in protein kinase expression levels after peripheral nerve injury. EXPERT OPINION Novel findings support a new concept that protein kinases constitute regulatory hubs of reprogramming of PSNs, which offers novel analgesic approaches.
Collapse
Affiliation(s)
- David Zimmermann
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Istvan Nagy
- Department of Surgery and Cancer, Nociception group, Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London, UK
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Hazelett DJ. Rethinking GWAS: how lessons from genetic screens and artificial intelligence could reveal biological mechanisms. Bioinformatics 2025; 41:btaf153. [PMID: 40198231 PMCID: PMC12014097 DOI: 10.1093/bioinformatics/btaf153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025] Open
Abstract
MOTIVATION Modern single-cell omics data are key to unraveling the complex mechanisms underlying risk for complex diseases revealed by genome-wide association studies (GWAS). Phenotypic screens in model organisms have several important parallels to GWAS which the author explores in this essay. RESULTS The author provides the historical context of such screens, comparing and contrasting similarities to association studies, and how these screens in model organisms can teach us what to look for. Then the author considers how the results of GWAS might be exhaustively interrogated to interpret the biological mechanisms underpinning disease processes. Finally, the author proposes a general framework for tackling this problem computationally, and explore the data, mechanisms, and technology (both existing and yet to be invented) that are necessary to complete the task. AVAILABILITY AND IMPLEMENTATION There are no data or code associated with this article.
Collapse
Affiliation(s)
- Dennis J Hazelett
- Department of Computational Biomedicine at Cedars-Sinai Medical Center, West Hollywood, CA 90069, United States
- Cancer Prevention and Control—Samuel Oschin Cancer Center, Los Angeles, CA 90048, United States
| |
Collapse
|
4
|
Quillin AL, Karloff DB, Ayele TM, Flores TF, Chen G, McEachin ZT, Valdez-Sinon AN, Heemstra JM. Imaging and Tracking RNA in Live Mammalian Cells via Fluorogenic Photoaffinity Labeling. ACS Chem Biol 2025; 20:707-720. [PMID: 39953970 PMCID: PMC11952673 DOI: 10.1021/acschembio.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Cellular RNA labeling using light-up aptamers that bind to and activate fluorogenic molecules has gained interest in recent years as an alternative to protein-based RNA labeling approaches. Aptamer-based systems are genetically encodable and cover the entire visible spectrum. However, the inherently temporary nature of the noncovalent aptamer-fluorogen interaction limits the utility of these systems in that imaging does not withstand dye washout, and dye dissociation can compromise RNA tracking. We propose that these limitations can be averted through covalent RNA labeling. Here, we describe a photoaffinity approach in which the aptamer ligand is functionalized with a photoactivatable diazirine reactive group such that irradiation with UV light results in covalent attachment to the RNA of interest. In addition to the robustness of the covalent linkage, this approach benefits from the ability to achieve spatiotemporal control over RNA labeling. To demonstrate this approach, we incorporated a photoaffinity linker into malachite green and fused a single copy of the malachite green aptamer to a Cajal body-associated small nuclear RNA of interest as well as a cytoplasmic mRNA. We observed improved sensitivity for live cell imaging of the target RNA upon UV irradiation and demonstrated visualization of RNA dynamics over a time scale of minutes. The covalent attachment uniquely enables these time-resolved experiments, whereas in noncovalent approaches, the dye molecule can be transferred between different RNA molecules, compromising tracking. We envision future applications of this method for a wide range of investigations into the cellular localization, dynamics, and protein-binding properties of cellular RNAs.
Collapse
Affiliation(s)
| | - Diane B. Karloff
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Tewoderos M. Ayele
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Tatiana F. Flores
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| | - Gerry Chen
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30363, United States
| | - Zachary T. McEachin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Arielle N. Valdez-Sinon
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| |
Collapse
|
5
|
Lakis V, Chan NL, Lyons R, Blackburn N, Nguyen TH, Chang C, Masel A, West NP, Boyle GM, Patch AM, Gill AJ, Nones K. Spatial Transcriptomics Reveals Novel Mechanisms Involved in Perineural Invasion in Pancreatic Ductal Adenocarcinomas. Cancers (Basel) 2025; 17:852. [PMID: 40075699 PMCID: PMC11899704 DOI: 10.3390/cancers17050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a high incidence of perineural invasion (PNI), a pathological feature of the cancer invasion of nerves. PNI is associated with a poor prognosis, local recurrence and cancer pain. It has been suggested that interactions between nerves and the tumor microenvironment (TME) play a role in PDAC tumorigenesis. METHODS Here, we used Nanostring GeoMx Digital Spatial Profiler to analyze the whole transcriptome of both cancer and nerve cells in the microenvironment of PNI and non-PNI foci from 13 PDAC patients. CONCLUSIONS We identified previously reported pathways involved in PNI, including Axonal Guidance and ROBO-SLIT Signaling. Spatial transcriptomics highlighted the role of PNI foci in influencing the immune landscape of the TME and similarities between PNI and nerve injury response. This study revealed that endocannabinoid and polyamine metabolism may contribute to PNI, cancer growth and cancer pain. Key members of these pathways can be targeted, offering potential novel research avenues for exploring new cancer treatment and/or pain management options in PDAC.
Collapse
Affiliation(s)
- Vanessa Lakis
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
| | - Noni L Chan
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia; (N.L.C.); (A.J.G.)
| | - Ruth Lyons
- Australian Pancreatic Cancer Genome Initiative (APGI), Kinghorn Cancer Centre, Sydney, NSW 2010, Australia; (R.L.); (N.B.)
| | - Nicola Blackburn
- Australian Pancreatic Cancer Genome Initiative (APGI), Kinghorn Cancer Centre, Sydney, NSW 2010, Australia; (R.L.); (N.B.)
| | - Tam Hong Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
| | - Crystal Chang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
| | - Andrew Masel
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
| | - Nicholas P. West
- Griffith Health, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Glen M. Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4000, Australia
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
| | - Anthony J. Gill
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia; (N.L.C.); (A.J.G.)
- Australian Pancreatic Cancer Genome Initiative (APGI), Kinghorn Cancer Centre, Sydney, NSW 2010, Australia; (R.L.); (N.B.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; (V.L.); (T.H.N.); (C.C.); (A.M.); (G.M.B.); (A.-M.P.)
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Faculty of Health, Medicine and Behavioural Sciences/PA Southside Clinical Unit, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
6
|
Ghahremani PT, BaniArdalan S, Alehossein P, Parveen A, Jorjani M, Brown CM, Geldenhuys WJ, Huber JD, Ishrat T, Nasoohi S. Poststroke hyperglycemia dysregulates cap-dependent translation in neural cells. Life Sci 2025; 361:123336. [PMID: 39719167 DOI: 10.1016/j.lfs.2024.123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
AIMS Post stroke hyperglycemia has been shown to deter functional recovery. Earlier findings have indicated the cap-dependent translation regulator 4E-BP1 is detrimentally upregulated in hyperglycemic conditions. The present study aims to test the hypothesis that hyperglycemic ischemic reperfusion injury (I/R) affects normal protein translation poststroke. METHODS Rat primary cortical neurons (PCNs) were exposed to oxygen glucose deprivation (OGD) followed by increasing glucose concentration (0, 5, 10, 25 mM) at reoxygenation. In vivo, adult rats were subjected to two hours transient distal middle cerebral artery occlusion (t-dMCAO) and hyperglycemic reperfusion. KEY FINDINGS In PCN cultures, high glucose levels impaired normal neurite growth at 24 h I/R where it drastically depressed S6 ribosomal protein phosphorylation at serine 235/236 residues in 40S ribosomal subunit. This concurred with substantial hypoxia inducible factor-1α (HIF-1α) destabilization and sustained vascular endothelial growth factor (VEGF). Our immunoblotting findings indicated HIF-1α stabilization and AMPK activation rely on glucose availability. Incremental glucose concentrations above the physiological levels, induced a shift towards 4E-BP1, eIF-4E hypo-phosphorylated forms leading to reduced eIF-4E availability and efficacy, as the key to recruit the 40S ribosomal subunit to the 5' end of mRNA. In vivo, immunostaining of t-dMCAO rat brains showed remarkable decrease in phosphorylated 4E-BP1 and particularly s6 ribosomal protein in the marginal cortical tissue of hyperglycemic compared to normoglycemic animals. SIGNIFICANCE These findings suggest a remarkable association between hyperglycemic I/R injury with dysregulated cap-dependent translation poststroke. Further loss/gain of function experiment may elucidate the potential therapeutic targets in regulation of HIF-1α/translation in hyperglycemic I/R injury.
Collapse
Affiliation(s)
| | - Soha BaniArdalan
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arshi Parveen
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Masoumeh Jorjani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
7
|
Olivares-Abril J, Joha J, Lee JY, Davis I. Optimization of hybridization chain reaction for imaging single RNA molecules in Drosophila larvae. Fly (Austin) 2024; 18:2409968. [PMID: 39351922 PMCID: PMC11446410 DOI: 10.1080/19336934.2024.2409968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
In situ hybridization techniques are powerful methods for exploring gene expression in a wide range of biological contexts, providing spatial information that is most often lost in traditional biochemical techniques. However, many in situ hybridization methods are costly and time-inefficient, particularly for screening-based projects that follow on from single-cell RNA sequencing data, which rely on of tens of custom-synthetized probes against each specific RNA of interest. Here we provide an optimized pipeline for Hybridization Chain Reaction (HCR)-based RNA visualization, including an open-source code for optimized probe design. Our method achieves high specificity and sensitivity with the option of multiplexing using only five pairs of probes, which greatly lowers the cost and time of the experiment. These features of our HCR protocol are particularly useful and convenient for projects involving screening several genes at medium throughput, especially as the method include an amplification step, which makes the signal readily visible at low magnification imaging.
Collapse
Affiliation(s)
| | - Jana Joha
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jeffrey Y Lee
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Ilan Davis
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Yu Z, Guan Y, Xia T, Li X, Liu M, Huo Y, Wang Z, Liu Z, Luo Y, Yan W, Sun L, Wu W, Shen B, Zhang Y. Overcoming Low mRNA Expression in White Matter: A Protocol for RNA Extraction From the Optic Nerve in Large Animals for Transcriptomic Analysis. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 39540862 PMCID: PMC11572753 DOI: 10.1167/iovs.65.13.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose White matter (WM) abnormalities are associated with various central nervous system (CNS) disorders, and the optic nerve provides a unique opportunity to study WM pathology. Large animal models offer a more suitable platform for preclinical testing of novel therapeutic strategies for optic neuropathy due to their similarities to humans in size and relevant anatomy. Transcriptomic analyses of optic nerve tissue are essential for understanding the underlying pathological mechanisms. However, extracting high-quality RNA from the optic nerve in large animals remains challenging. Methods We utilized in situ hybridization and single-nucleus RNA sequencing (snRNA-seq) to examine mRNA expression in WM cells and gray matter (GM) cells. Results We discovered that mRNA expression levels in WM cells were only 15% to 66% of those in GM neurons. To overcome the low mRNA yield, we developed a specialized RNA extraction protocol for the intra-canalicular optic nerve in large animal models, achieving an RNA integrity number (RIN) of 6.8 ± 0.06. For single-cell transcriptomics (scRNA-seq), we obtained a cell density of 1.0 × 105 cells/µL, cell viability of 93% ± 1.84%, and an agglomeration rate of 5.37% ± 0.75%. This approach is also applicable for postmortem human optic nerve with a RIN of 8.3 ± 0.3 using snRNA-seq. Conclusions We first discovered that the mRNA expression in the WM was significantly lower than that in the GM. Our RNA extraction protocol from large animal models enhances transparency and reproducibility in transcriptomic studies of optic nerve and other WM tissues.
Collapse
Affiliation(s)
- Zhonghao Yu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Guan
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tian Xia
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuanwen Li
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Mingyue Liu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yujia Huo
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhuowei Wang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhirong Liu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuting Luo
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wentao Yan
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lanfang Sun
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Baoguo Shen
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yikui Zhang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Nishisaka H, Tomohiro T, Fukuzumi K, Fukao A, Funakami Y, Fujiwara T. Deciphering the Akt1-HuD interaction in HuD-mediated neuronal differentiation. Biochimie 2024; 221:20-26. [PMID: 38244852 DOI: 10.1016/j.biochi.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The RNA-binding protein HuD/ELAVL4 is essential for neuronal development and synaptic plasticity by governing various post-transcriptional processes of target mRNAs, including stability, translation, and localization. We previously showed that the linker region and poly(A)-binding domain of HuD play a pivotal role in promoting translation and inducing neurite outgrowth. In addition, we found that HuD interacts exclusively with the active form of Akt1, through the linker region. Although this interaction is essential for neurite outgrowth, HuD is not a substrate for Akt1, raising questions about the dynamics between HuD-mediated translational stimulation and its association with active Akt1. Here, we demonstrate that active Akt1 interacts with the cap-binding complex via HuD. We identify key amino acids in linker region of HuD responsible for Akt1 interaction, leading to the generation of two point-mutated HuD variants: one that is incapable of binding to Akt1 and another that can interact with Akt1 regardless of its phosphorylation status. In vitro translation assays using these mutants reveal that HuD-mediated translation stimulation is independent of its binding to Akt1. In addition, it is evident that the interaction between HuD and active Akt1 is essential for HuD-induced neurite outgrowth, whereas a HuD mutant capable of binding to any form of Akt1 leads to aberrant neurite development. Collectively, our results revisit the understanding of the HuD-Akt1 interaction in translation and suggest that this interaction contributes to HuD-mediated neurite outgrowth via a unique molecular mechanism distinct from translation regulation.
Collapse
Affiliation(s)
| | - Takumi Tomohiro
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Kako Fukuzumi
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Akira Fukao
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | | | | |
Collapse
|
10
|
Xiao W, Halabi R, Lin CH, Nazim M, Yeom KH, Black DL. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons. Genes Dev 2024; 38:294-307. [PMID: 38688681 PMCID: PMC11146593 DOI: 10.1101/gad.351557.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5' region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Reem Halabi
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Mohammad Nazim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA;
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
11
|
Snyder K, Dixon CE, Henchir J, Gorse K, Vagni VA, Janesko-Feldman K, Kochanek PM, Jackson TC. Gene knockout of RNA binding motif 5 in the brain alters RIMS2 protein homeostasis in the cerebellum and Hippocampus and exacerbates behavioral deficits after a TBI in mice. Exp Neurol 2024; 374:114690. [PMID: 38218585 PMCID: PMC11178365 DOI: 10.1016/j.expneurol.2024.114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
RNA binding motif 5 (RBM5) is a tumor suppressor in cancer but its role in the brain is unclear. We used conditional gene knockout (KO) mice to test if RBM5 inhibition in the brain affects chronic cortical brain tissue survival or function after a controlled cortical impact (CCI) traumatic brain injury (TBI). RBM5 KO decreased baseline contralateral hemispheric volume (p < 0.0001) and exacerbated ipsilateral tissue loss at 21 d after CCI in male mice vs. wild type (WT) (p = 0.0019). CCI injury, but not RBM5 KO, impaired beam balance performance (0-5d post-injury) and swim speed on the Morris Water Maze (MWM) (19-20d) (p < 0.0001). RBM5 KO was associated with mild learning impairment in female mice (p = 0.0426), reflected as a modest increase in escape latency early in training (14-18d post-injury). However, KO did not affect spatial memory at 19d post-injury in male or in female mice but it was impaired by CCI in females (p = 0.0061). RBM5 KO was associated with impaired visual function in male mice on the visible platform test at 20d post-injury (p = 0.0256). To explore signaling disturbances in KOs related to behavior, we first cross-referenced known brain-specific RBM5-regulated gene targets with genes in the curated RetNet database that impact vision. We then performed a secondary literature search on RBM5-regulated genes with a putative role in hippocampal function. Regulating synaptic membrane exocytosis 2 (RIMS) 2 was identified as a gene of interest because it regulates both vision and hippocampal function. Immunoprecipitation and western blot confirmed protein expression of a novel ~170 kDa RIMS2 variant in the cerebellum, and in the hippocampus, it was significantly increased in KO vs WT (p < 0.0001), and in a sex-dependent manner (p = 0.0390). Furthermore, male KOs had decreased total canonical RIMS2 levels in the cerebellum (p = 0.0027) and hippocampus (p < 0.0001), whereas female KOs had increased total RIMS1 levels in the cerebellum (p = 0.0389). In summary, RBM5 modulates brain function in mammals. Future work is needed to test if RBM5 dependent regulation of RIMS2 splicing effects vision and cognition, and to verify potential sex differences on behavior in a larger cohort of mice.
Collapse
Affiliation(s)
- Kara Snyder
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| | - C Edward Dixon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Jeremy Henchir
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Kiersten Gorse
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| | - Vincent A Vagni
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Travis C Jackson
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| |
Collapse
|
12
|
Mofatteh M, Mashayekhi MS, Arfaie S, Chen Y, Malhotra AK, Skandalakis GP, Alvi MA, Afshari FT, Meshkat S, Lin F, Abdulla E, Anand A, Liao X, McIntyre RS, Santaguida C, Weber MH, Fehlings MG. Anxiety and Depression in Pediatric-Onset Traumatic Spinal Cord Injury: A Systematic Review. World Neurosurg 2024; 184:267-282.e5. [PMID: 38143027 DOI: 10.1016/j.wneu.2023.12.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Traumatic spinal cord injury (TSCI) is a debilitating neurological condition with significant long-term consequences on the mental health and well-being of affected individuals. We aimed to investigate anxiety and depression in individuals with pediatric-onset TSCI. METHODS PubMed, Scopus, and Web of Science databases were searched from inception to December 20th, 2022 following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, and studies were included according to the eligibility criteria. RESULTS A total of 1013 articles were screened, and 18 studies with 4234 individuals were included in the final review. Of these, 1613 individuals (38.1%) had paraplegia, whereas 1658 (39.2%) had tetraplegia. A total of 1831 participants (43.2%) had complete TSCI, whereas 1024 (24.2%) had incomplete TSCI. The most common etiology of TSCI with 1545 people (36.5%) was motor vehicle accidents. The youngest mean age at the time of injury was 5.92 ± 4.92 years, whereas the oldest was 14.6 ± 2.8 years. Patient Health Questionnaire-9 was the most common psychological assessment used in 9 studies (50.0%). Various risk factors, including pain in 4 studies (22.2%), reduced sleep quality, reduced functional independence, illicit drug use, incomplete injury, hospitalization, reduced quality of life, and duration of injury in 2 (11.1%) studies, each, were associated with elevated anxiety and depression. CONCLUSIONS Different biopsychosocial risk factors contribute to elevated rates of anxiety and depression among individuals with pediatric-onset TSCI. Individuals at risk of developing anxiety and depression should be identified, and targeted support should be provided. Future large-scale studies with long-term follow-up are required to validate and extend these findings.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK; Neuro International Collaboration (NIC), London, UK.
| | - Mohammad Sadegh Mashayekhi
- Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada; Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Neuro International Collaboration (NIC), Ottawa, Ontario, Canada
| | - Saman Arfaie
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA; Neuro International Collaboration (NIC), Montreal, Quebec, Canada
| | - Yimin Chen
- Department of Neurology, Foshan Sanshui District People's Hospital, Foshan, China; Neuro International Collaboration (NIC), Foshan, China
| | - Armaan K Malhotra
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Neuro International Collaboration (NIC), Toronto, Ontario, Canada
| | - Georgios P Skandalakis
- First Department of Neurosurgery, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mohammed Ali Alvi
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Neuro International Collaboration (NIC), Toronto, Ontario, Canada; Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Fardad T Afshari
- Department of Neurosurgery, Birmingham Children's Hospital, Birmingham, UK
| | - Shakila Meshkat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Famu Lin
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Ebtesam Abdulla
- Department of Neurosurgery, Salmaniya Medical Complex, Manama, Bahrain
| | - Ayush Anand
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Xuxing Liao
- Department of Neurosurgery, Foshan Sanshui District People's Hospital, Foshan, China; Department of Surgery of Cerebrovascular Diseases, Foshan First People's Hospital, Foshan, China
| | - Roger S McIntyre
- Neuro International Collaboration (NIC), Toronto, Ontario, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Carlo Santaguida
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Michael H Weber
- Division of Orthopaedic Surgery, McGill University, Montreal, Quebec, Canada; The Research Institute of the McGill University Health Centre, Injury, Repair and Recovery Program, Montreal, Quebec, Canada; Montreal General Hospital, Montreal, Quebec, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery and Spinal Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Grosshans D, Thomas R, Zhang D, Cronkite C, Thomas R, Singh S, Bronk L, Morales R, Duman J. Subcellular functions of tau mediates repair response and synaptic homeostasis in injury. RESEARCH SQUARE 2024:rs.3.rs-3897741. [PMID: 38464175 PMCID: PMC10925419 DOI: 10.21203/rs.3.rs-3897741/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Injury responses in terminally differentiated cells such as neurons is tightly regulated by pathways aiding homeostatic maintenance. Cancer patients subjected to neuronal injury in brain radiation experience cognitive declines similar to those seen in primary neurodegenerative diseases. Numerous studies have investigated the effect of radiation in proliferating cells of the brain, yet the impact in differentiated, post-mitotic neurons, especially the structural and functional alterations remain largely elusive. We identified that microtubule-associated tau is a critical player in neuronal injury response via compartmentalized functions in both repair-centric and synaptic regulatory pathways. Ionizing radiation-induced injury acutely induces increase in phosphorylated tau in the nucleus and directly interacts with histone 2AX (H2AX), a DNA damage repair (DDR) marker. Loss of tau significantly reduced H2AX after irradiation, indicating that tau may play an important role in neuronal DDR response. We also observed that loss of tau increases eukaryotic elongation factor levels after irradiation, the latter being a positive regulator of protein translation. This cascades into a significant increase in synaptic proteins, resulting in disrupted homeostasis. Consequently, novel object recognition test showed decrease in learning and memory in tau-knockout mice after irradiation, and electroencephalographic activity showed increase in delta and theta band oscillations, often seen in dementia patients. Our findings demonstrate tau's previously undefined, multifunctional role in acute responses to injury, ranging from DDR response in the nucleus to synaptic function within a neuron. Such knowledge is vital to develop therapeutic strategies targeting neuronal injury in cognitive decline for at risk and vulnerable populations.
Collapse
|
14
|
Xiao W, Halabi R, Lin CH, Nazim M, Yeom KH, Black DL. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578240. [PMID: 38352368 PMCID: PMC10862813 DOI: 10.1101/2024.02.01.578240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Synaptic function is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear non-coding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 from neurons stimulated expression of particular pre- and post- synaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized to both axons and dendrites in puncta that co-stain with Staufen1 protein, similar to neuronal granules formed by locally translated mRNAs. Ribosome profiling of mouse cortical neurons identified ribosome footprints within a region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP coding sequence in mouse ES cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wildtype neurons, and showed enhancement of M1 expression after synaptic stimulation with KCL. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Reem Halabi
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Mohammad Nazim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
15
|
Carew JA, Cristofaro V, Goyal RK, Sullivan MP. Differential Myosin 5a splice variants in innervation of pelvic organs. Front Physiol 2023; 14:1304537. [PMID: 38148903 PMCID: PMC10749955 DOI: 10.3389/fphys.2023.1304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: Myosin proteins interact with filamentous actin and translate the chemical energy generated by ATP hydrolysis into a wide variety of mechanical functions in all cell types. The classic function of conventional myosins is mediation of muscle contraction, but myosins also participate in processes as diverse as exocytosis/endocytosis, membrane remodeling, and cytokinesis. Myosin 5a (Myo5a) is an unconventional motor protein well-suited to the processive transport of diverse molecular cargo within cells and interactions with multiprotein membrane complexes that facilitate exocytosis. Myo5a includes a region consisting of six small alternative exons which can undergo differential splicing. Neurons and skin melanocytes express characteristic splice variants of Myo5a, which are specialized for transport processes unique to those cell types. But less is known about the expression of Myo5a splice variants in other tissues, their cargos and interactive partners, and their regulation. Methods: In visceral organs, neurotransmission-induced contraction or relaxation of smooth muscle is mediated by Myo5a. Axons within urogenital organs and distal colon of rodents arise from cell bodies located in the major pelvic ganglion (MPG). However, in contrast to urogenital organs, the distal colon also contains soma of the enteric nervous system. Therefore, the rodent pelvic organs provide an opportunity to compare the expression of Myo5a splice variants, not only in different tissues innervated by the pelvic nerves, but also in different subcellular compartments of those nerves. This study examines the expression and distribution of Myo5a splice variants in the MPG, compared to the bladder, corpus cavernosum of the penis (CCP) and distal colon using immunohistochemistry and mRNA analyses. Results/discussion: We report detection of characteristic Myo5a variants in these tissues, with bladder and CCP displaying a similar variant pattern but one which differed from that of distal colon. In all three organs, Myo5a variants were distinct compared to the MPG, implying segregation of one variant within nerve soma and its exclusion from axons. The expression of distinct Myo5a variant arrays is likely to be adaptive, and to underlie specific functions fulfilled by Myo5a in those particular locations.
Collapse
Affiliation(s)
- Josephine A. Carew
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Vivian Cristofaro
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Raj K. Goyal
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Maryrose P. Sullivan
- Urology Research, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
16
|
徐 晨, 王 寅, 魏 东, 李 文, 钱 晔, 潘 新, 雷 大. [Advances of spatial omics in the individualized diagnosis and treatment of head and neck cancer]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2023; 37:729-733;739. [PMID: 37830120 PMCID: PMC10722126 DOI: 10.13201/j.issn.2096-7993.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 10/14/2023]
Abstract
Spatialomics is another research hotspot of biotechnology after single-cell sequencing technology, which can make up for the defect that single-cell sequencing technology can not obtain cell spatial distribution information. Spatialomics mainly studies the relative position of cells in tissue samples to reveal the effect of cell spatial distribution on diseases. In recent years, spatialomics has made new progress in the pathogenesis, target exploration, drug development and many other aspects of head and neck tumors. This paper summarizes the latest progress of spatialomics in the diagnosis and treatment of head and neck cancer.
Collapse
Affiliation(s)
- 晨阳 徐
- 山东大学齐鲁医院耳鼻咽喉科,国家卫生健康委员会耳鼻喉科学重点实验室(山东大学)(济南,250012)Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology[Shandong University], Jinan, 250012, China
| | - 寅 王
- 山东大学齐鲁医院耳鼻咽喉科,国家卫生健康委员会耳鼻喉科学重点实验室(山东大学)(济南,250012)Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology[Shandong University], Jinan, 250012, China
| | - 东敏 魏
- 山东大学齐鲁医院耳鼻咽喉科,国家卫生健康委员会耳鼻喉科学重点实验室(山东大学)(济南,250012)Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology[Shandong University], Jinan, 250012, China
| | - 文明 李
- 山东大学齐鲁医院耳鼻咽喉科,国家卫生健康委员会耳鼻喉科学重点实验室(山东大学)(济南,250012)Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology[Shandong University], Jinan, 250012, China
| | - 晔 钱
- 山东大学齐鲁医院耳鼻咽喉科,国家卫生健康委员会耳鼻喉科学重点实验室(山东大学)(济南,250012)Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology[Shandong University], Jinan, 250012, China
| | - 新良 潘
- 山东大学齐鲁医院耳鼻咽喉科,国家卫生健康委员会耳鼻喉科学重点实验室(山东大学)(济南,250012)Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology[Shandong University], Jinan, 250012, China
| | - 大鹏 雷
- 山东大学齐鲁医院耳鼻咽喉科,国家卫生健康委员会耳鼻喉科学重点实验室(山东大学)(济南,250012)Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology[Shandong University], Jinan, 250012, China
| |
Collapse
|
17
|
Quentin D, Schuhmacher JS, Klink BU, Lauer J, Shaikh TR, Huis In 't Veld PJ, Welp LM, Urlaub H, Zerial M, Raunser S. Structural basis of mRNA binding by the human FERRY Rab5 effector complex. Mol Cell 2023; 83:1856-1871.e9. [PMID: 37267906 DOI: 10.1016/j.molcel.2023.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/05/2022] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
The pentameric FERRY Rab5 effector complex is a molecular link between mRNA and early endosomes in mRNA intracellular distribution. Here, we determine the cryo-EM structure of human FERRY. It reveals a unique clamp-like architecture that bears no resemblance to any known structure of Rab effectors. A combination of functional and mutational studies reveals that while the Fy-2 C-terminal coiled-coil acts as binding region for Fy-1/3 and Rab5, both coiled-coils and Fy-5 concur to bind mRNA. Mutations causing truncations of Fy-2 in patients with neurological disorders impair Rab5 binding or FERRY complex assembly. Thus, Fy-2 serves as a binding hub connecting all five complex subunits and mediating the binding to mRNA and early endosomes via Rab5. Our study provides mechanistic insights into long-distance mRNA transport and demonstrates that the particular architecture of FERRY is closely linked to a previously undescribed mode of RNA binding, involving coiled-coil domains.
Collapse
Affiliation(s)
- Dennis Quentin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Jan S Schuhmacher
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Björn U Klink
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Center for Soft Nanoscience and Institute of Molecular Physics and Biophysics, 48149 Münster, Germany
| | - Jeni Lauer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tanvir R Shaikh
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Pim J Huis In 't Veld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
| |
Collapse
|
18
|
Pavinato L, Delle Vedove A, Carli D, Ferrero M, Carestiato S, Howe JL, Agolini E, Coviello DA, van de Laar I, Au PYB, Di Gregorio E, Fabbiani A, Croci S, Mencarelli MA, Bruno LP, Renieri A, Veltra D, Sofocleous C, Faivre L, Mazel B, Safraou H, Denommé-Pichon AS, van Slegtenhorst MA, Giesbertz N, van Jaarsveld RH, Childers A, Rogers RC, Novelli A, De Rubeis S, Buxbaum JD, Scherer SW, Ferrero GB, Wirth B, Brusco A. CAPRIN1 haploinsufficiency causes a neurodevelopmental disorder with language impairment, ADHD and ASD. Brain 2023; 146:534-548. [PMID: 35979925 PMCID: PMC10169411 DOI: 10.1093/brain/awac278] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022] Open
Abstract
We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.,Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Diana Carli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.,Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children's Hospital, Città Della Salute e Della Scienza di Torino, 10126 Turin, Italy
| | - Marta Ferrero
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.,Experimental Zooprophylactic Institute of Piedmont, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Silvia Carestiato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Jennifer L Howe
- The Centre for Applied Genomics, Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Emanuele Agolini
- Laboratory of Medical Genetics, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Domenico A Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Ingrid van de Laar
- Clinical Genetics, Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Eleonora Di Gregorio
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Alessandra Fabbiani
- Medical Genetics Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy.,Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | - Lucia P Bruno
- Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Alessandra Renieri
- Medical Genetics Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy.,Medical Genetics, University of Siena, 53100 Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, School of Medicine, National & Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Laurence Faivre
- Centre de référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD, CHU Dijon, 21079 Dijon, France.,UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, 21078 Dijon, France
| | - Benoit Mazel
- Centre de référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD, CHU Dijon, 21079 Dijon, France
| | - Hana Safraou
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, 21078 Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, 21078 Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Marjon A van Slegtenhorst
- Clinical Genetics, Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Noor Giesbertz
- Department of Genetics, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Richard H van Jaarsveld
- Department of Genetics, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | | | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| |
Collapse
|
19
|
Schmitd LB, Perez-Pacheco C, Bellile EL, Wu W, Casper K, Mierzwa M, Rozek LS, Wolf GT, Taylor JM, D'Silva NJ. Spatial and Transcriptomic Analysis of Perineural Invasion in Oral Cancer. Clin Cancer Res 2022; 28:3557-3572. [PMID: 35819260 PMCID: PMC9560986 DOI: 10.1158/1078-0432.ccr-21-4543] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/25/2022] [Accepted: 05/24/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Perineural invasion (PNI), a common occurrence in oral squamous cell carcinomas, is associated with poor survival. Consequently, these tumors are treated aggressively. However, diagnostic criteria of PNI vary and its role as an independent predictor of prognosis has not been established. To address these knowledge gaps, we investigated spatial and transcriptomic profiles of PNI-positive and PNI-negative nerves. EXPERIMENTAL DESIGN Tissue sections from 142 patients were stained with S100 and cytokeratin antibodies. Nerves were identified in two distinct areas: tumor bulk and margin. Nerve diameter and nerve-to-tumor distance were assessed; survival analyses were performed. Spatial transcriptomic analysis of nerves at varying distances from tumor was performed with NanoString GeoMx Digital Spatial Profiler Transcriptomic Atlas. RESULTS PNI is an independent predictor of poor prognosis among patients with metastasis-free lymph nodes. Patients with close nerve-tumor distance have poor outcomes even if diagnosed as PNI negative using current criteria. Patients with large nerve(s) in the tumor bulk survive poorly, suggesting that even PNI-negative nerves facilitate tumor progression. Diagnostic criteria were supported by spatial transcriptomic analyses of >18,000 genes; nerves in proximity to cancer exhibit stress and growth response changes that diminish with increasing nerve-tumor distance. These findings were validated in vitro and in human tissue. CONCLUSIONS This is the first study in human cancer with high-throughput gene expression analysis in nerves with striking correlations between transcriptomic profile and clinical outcomes. Our work illuminates nerve-cancer interactions suggesting that cancer-induced injury modulates neuritogenesis, and supports reclassification of PNI based on nerve-tumor distance rather than current subjective criteria.
Collapse
Affiliation(s)
- Ligia B. Schmitd
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Cindy Perez-Pacheco
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Emily L. Bellile
- Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Weisheng Wu
- Bioinformatics Core, University of Michigan, Ann Arbor, Michigan
| | - Keith Casper
- Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michelle Mierzwa
- Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Laura S. Rozek
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Gregory T. Wolf
- Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeremy M.G. Taylor
- Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
- Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nisha J. D'Silva
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
21
|
Dastidar SG, Nair D. A Ribosomal Perspective on Neuronal Local Protein Synthesis. Front Mol Neurosci 2022; 15:823135. [PMID: 35283723 PMCID: PMC8904363 DOI: 10.3389/fnmol.2022.823135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Continued mRNA translation and protein production are critical for various neuronal functions. In addition to the precise sorting of proteins from cell soma to distant locations, protein synthesis allows a dynamic remodeling of the local proteome in a spatially variable manner. This spatial heterogeneity of protein synthesis is shaped by several factors such as injury, guidance cues, developmental cues, neuromodulators, and synaptic activity. In matured neurons, thousands of synapses are non-uniformly distributed throughout the dendritic arbor. At any given moment, the activity of individual synapses varies over a wide range, giving rise to the variability in protein synthesis. While past studies have primarily focused on the translation factors or the identity of translated mRNAs to explain the source of this variation, the role of ribosomes in this regard continues to remain unclear. Here, we discuss how several stochastic mechanisms modulate ribosomal functions, contributing to the variability in neuronal protein expression. Also, we point out several underexplored factors such as local ion concentration, availability of tRNA or ATP during translation, and molecular composition and organization of a compartment that can influence protein synthesis and its variability in neurons.
Collapse
|
22
|
Mofatteh M. Examining the association between traumatic brain injury and headache. J Integr Neurosci 2021; 20:1079-1094. [PMID: 34997731 DOI: 10.31083/j.jin2004109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/06/2022] Open
Abstract
Traumatic brain injury is a common and major cause of disability and death that might require emergency neurological and neurosurgical interventions. Traumatic brain injury can result in temporary or permanent physical, cognitive and psychological impairments. One of the most common complications associated with traumatic brain injury is post-traumatic headache, associated with significant disability and reduced quality of life. Post-traumatic headache is a public health concern that can affect the long-term outcome of traumatic brain injury patients. Clinical symptoms of post-traumatic headache significantly overlap with common primary headaches such as migraine and tension-type headaches. Beyond neurobiological factors, psychological factors can play crucial roles in the initiation and sustainment of post-traumatic headache. While neurological mechanisms underlying post-traumatic headache remains unknown, different studies suggest various mechanisms such as physical damages to the cranial nerves and neck structure, hyper-sensitization of the pain modulatory pathway, and inflammation as underlying causes for the neurobiology of headache. I explore the hypothesis that traumatic brain injury is associated with headaches. In particular, I provide an overview of the neurobiology of post-traumatic headache, its diagnosis, presenting recent findings on the etiology, explaining similarities and differences between with primary headaches such as migraine and tension-type headache, discuss pharmacological and non-pharmacological interventions for the treatments, as well as emphasising on the psychological importance of post-traumatic headache.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT7 1NN Belfast, UK
| |
Collapse
|
23
|
Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis 2021; 162:105564. [PMID: 34838666 DOI: 10.1016/j.nbd.2021.105564] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
This review provides an overview of the synaptic dysfunction of neuronal circuits and the ensuing behavioral alterations caused by mutations in autism spectrum disorder (ASD)-linked genes directly or indirectly affecting the postsynaptic neuronal compartment. There are plenty of ASD risk genes, that may be broadly grouped into those involved in gene expression regulation (epigenetic regulation and transcription) and genes regulating synaptic activity (neural communication and neurotransmission). Notably, the effects mediated by ASD-associated genes can vary extensively depending on the developmental time and/or subcellular site of expression. Therefore, in order to gain a better understanding of the mechanisms of disruptions in postsynaptic function, an effort to better model ASD in experimental animals is required to improve standardization and increase reproducibility within and among studies. Such an effort holds promise to provide deeper insight into the development of these disorders and to improve the translational value of preclinical studies.
Collapse
|
24
|
Abstract
Neurosurgeons receive extensive and lengthy training to equip themselves with various technical skills, and neurosurgery require a great deal of pre-, intra- and postoperative clinical data collection, decision making, care and recovery. The last decade has seen a significant increase in the importance of artificial intelligence (AI) in neurosurgery. AI can provide a great promise in neurosurgery by complementing neurosurgeons' skills to provide the best possible interventional and noninterventional care for patients by enhancing diagnostic and prognostic outcomes in clinical treatment and help neurosurgeons with decision making during surgical interventions to improve patient outcomes. Furthermore, AI is playing a pivotal role in the production, processing and storage of clinical and experimental data. AI usage in neurosurgery can also reduce the costs associated with surgical care and provide high-quality healthcare to a broader population. Additionally, AI and neurosurgery can build a symbiotic relationship where AI helps to push the boundaries of neurosurgery, and neurosurgery can help AI to develop better and more robust algorithms. This review explores the role of AI in interventional and noninterventional aspects of neurosurgery during pre-, intra- and postoperative care, such as diagnosis, clinical decision making, surgical operation, prognosis, data acquisition, and research within the neurosurgical arena.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Lincoln College, University of Oxford, Turl Street, Oxford OX1 3DR, United Kingdom
| |
Collapse
|
25
|
Local Protein Translation and RNA Processing of Synaptic Proteins in Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22062811. [PMID: 33802132 PMCID: PMC8001067 DOI: 10.3390/ijms22062811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition associated with impairments in social interaction, communication and repetitive behaviors. While the underlying disease mechanisms remain to be fully elucidated, dysfunction of neuronal plasticity and local translation control have emerged as key points of interest. Translation of mRNAs for critical synaptic proteins are negatively regulated by Fragile X mental retardation protein (FMRP), which is lost in the most common single-gene disorder associated with ASD. Numerous studies have shown that mRNA transport, RNA metabolism, and translation of synaptic proteins are important for neuronal health, synaptic plasticity, and learning and memory. Accordingly, dysfunction of these mechanisms may contribute to the abnormal brain function observed in individuals with autism spectrum disorder (ASD). In this review, we summarize recent studies about local translation and mRNA processing of synaptic proteins and discuss how perturbations of these processes may be related to the pathophysiology of ASD.
Collapse
|
26
|
Mofatteh M. Neurodegeneration and axonal mRNA transportation. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2021; 10:1-12. [PMID: 33815964 PMCID: PMC8012751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The prevalence of neurodegenerative diseases is accelerating in rapidly aging global population. Novel and effective diagnostic and therapeutic methods are required to tackle the global issue of neurodegeneration in the future. A better understanding of the potential molecular mechanism causing neurodegeneration can shed light on dysfunctional processes in diseased neurons, which can pave the way to design and synthesize novel targets for early diagnosis during the asymptomatic phase of the disease. Abnormal protein aggregation is a hallmark of neurodegenerative diseases which can hamper transportation of cargoes into axons. Recent evidence suggests that disruption of local protein synthesis has been observed in neurodegenerative diseases. Because of their highly asymmetric structure, highly polarized neurons require trafficking of cargoes from the cell body to different subcellular regions to meet the extensive demands of cellular physiology. Localization of mRNAs and subsequent local translation to corresponding proteins in axons is a mechanism which allows neurons to rapidly respond to external stimuli as well as establishing neuronal networks by synthesizing proteins on demand. Axonal protein synthesis is required for axon guidance, synapse formation and plasticity, axon maintenance and regeneration in response to injury. Different types of excitatory and inhibitory neurons in the central and peripheral nervous systems have been shown to localize mRNA. Rising evidence suggests that the repertoire of localizing mRNA in axons can change during aging, indicating a connection between axonal mRNA trafficking and aging diseases such as neurodegeneration. Here, I briefly review the latest findings on the importance of mRNA localization and local translation in neurons and the consequences of their disruption in neurodegenerative diseases. In addition, I discuss recent evidence that dysregulation of mRNA localization and local protein translation can contribute to the formation of neurodegenerative diseases such as Alzheimer's disease, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. In addition, I discuss recent findings on mRNAs localizing to mitochondria in neurodegeneration.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- Lincoln College, University of OxfordOxford, UK
- Sir William Dunn School of Pathology, Medical Sciences Division, University of OxfordOxford, UK
| |
Collapse
|