1
|
Yang M, Singh A, de Araujo A, McDougle M, Ellis H, Décarie-Spain L, Kanoski SE, de Lartigue G. Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation. Nat Metab 2025; 7:276-296. [PMID: 39815079 PMCID: PMC11860247 DOI: 10.1038/s42255-024-01194-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/28/2024] [Indexed: 01/18/2025]
Abstract
The hippocampus (HPC) has emerged as a critical player in the control of food intake, beyond its well-known role in memory. While previous studies have primarily associated the HPC with food intake inhibition, recent research suggests a role in appetitive processes. Here we identified spatially distinct neuronal populations within the dorsal HPC (dHPC) that respond to either fats or sugars, potent natural reinforcers that contribute to obesity development. Using activity-dependent genetic capture of nutrient-responsive dHPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific intake through different mechanisms. Sugar-responsive neurons encoded spatial memory for sugar location, whereas fat-responsive neurons selectively enhanced the preference and motivation for fat intake. Importantly, stimulation of either nutrient-responsive dHPC neurons increased food intake, while ablation differentially impacted obesogenic diet consumption and prevented diet-induced weight gain. Collectively, these findings uncover previously unknown orexigenic circuits underlying macronutrient-specific consumption and provide a foundation for developing potential obesity treatments.
Collapse
Affiliation(s)
- Mingxin Yang
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arashdeep Singh
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan de Araujo
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly McDougle
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hillary Ellis
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Léa Décarie-Spain
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Guillaume de Lartigue
- Monell Chemical Senses Center, Philadelphia, PA, USA.
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Zhang P, Mao Y, Gao L, Tian Z, Sun R, He Y, Ma P, Dou B, Chen Y, Zhang X, He Z, Yin T, Zeng F. Abnormal functional connectivity of the reward circuit associated with early satiety in patients with postprandial distress syndrome. Appetite 2024; 197:107317. [PMID: 38552365 DOI: 10.1016/j.appet.2024.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Postprandial distress syndrome (PDS) is the most common functional dyspepsia (FD) subtype. Early satiety is one of the cardinal symptoms of the PDS subtype in FD patients. The heterogeneity of symptoms in FD patients hampered therapy for patients based on specific symptoms, necessitating a symptom-based understanding of the pathophysiology of FD. To investigate the correlation between reward circuit and symptom severity of PDS patients, seed (Nucleus accumbens, NAc, a key node in the reward circuit) based resting-state functional connectivity (FC) was applied in the neuroimaging data analysis. The results demonstrated that the patients with PDS manifested strengthened FC between NAc and the caudate, putamen, pallidum, amygdala, hippocampus, thalamus, anterior cingulate cortex (ACC), and insula. Moreover, the FC between NAc and ACC, insula, thalamus, and hippocampus exhibited significant positive associations with symptom severity. More importantly, the strengthened FC between NAc and the ACC, insula, amygdala, and hippocampus were found associated with the early satiety symptom of patients with PDS. This study indicated that the altered FC of reward circuit regions may play a role in the pathophysiology of patients with PDS, and some of the aberrant NAc-based FC within the reward circuit were more related to the early satiety of patients with PDS. These findings improve our symptom-based understanding of the central pathophysiology of FD, lay the groundwork for an objective diagnosis of FD, and shed light on the precise prescription for treating FD based on symptoms.
Collapse
Affiliation(s)
- Pan Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 610075, China; Nervous System Disease Treatment Center, Traditional Chinese Medicine Hospital of Meishan, Meishan, 620032, Sichuan, China
| | - Yangke Mao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 610075, China
| | - Liangchao Gao
- Department of Radiology, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Zilei Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 610075, China
| | - Ruirui Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 610075, China
| | - Yuqi He
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 610075, China
| | - Peihong Ma
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Beihong Dou
- Department of Radiology, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuan Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiabing Zhang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zhaoxuan He
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 610075, China.
| | - Tao Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 610075, China.
| | - Fang Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 610075, China.
| |
Collapse
|
3
|
Yang M, Singh A, McDougle M, Décarie-Spain L, Kanoski S, de Lartigue G. Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561580. [PMID: 37873148 PMCID: PMC10592764 DOI: 10.1101/2023.10.09.561580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The hippocampus (HPC), traditionally known for its role in learning and memory, has emerged as a controller of food intake. While prior studies primarily associated the HPC with food intake inhibition, recent research suggests a critical role in appetitive processes. We hypothesized that orexigenic HPC neurons differentially respond to fats and/or sugars, potent natural reinforcers that contribute to obesity development. Results uncover previously-unrecognized, spatially-distinct neuronal ensembles within the dorsal HPC (dHPC) that are responsive to separate nutrient signals originating from the gut. Using activity-dependent genetic capture of nutrient-responsive HPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific preference through different mechanisms. Sugar-responsive neurons encode an appetitive spatial memory engram for meal location, whereas fat-responsive neurons selectively enhance the preference and motivation for fat intake. Collectively, these findings uncover a neural basis for the exquisite specificity in processing macronutrient signals from a meal that shape dietary choices.
Collapse
|
4
|
Shaker A, Shekari S, Zeinalabedini M, Salimi Z, Roumi Z, Mobarakeh KA, Shamsi-Goushki A, Masoumvand M, Keshavarz Mohammadian M, Samani P, Azizi-Tabesh G, Shafaei H, Doaei S, Kalantari N, Gholamalizadeh M. Role of rs9939506 polymorphism of FTO gene in resistance to eating in male adolescents. BMC Pediatr 2023; 23:486. [PMID: 37752455 PMCID: PMC10521541 DOI: 10.1186/s12887-023-04310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Single Nucleotide Polymorphisms (SNPs) of the Fat mass and obesity-associated (FTO) gene may be associated with obesity by regulating appetite. The present study aimed to investigate the relationship between FTO genotype and resistance to eating in male adolescents. METHODS The present cross-sectional study included 246 adolescent boys in Tehran, Iran, who were assessed for self-efficacy related to weight control using the Weight Efficacy Lifestyle (WEL), questionnaire, food intake using the Food Frequency Questionnaire (FFQ), physical activity using the International Physical Activity Questionnaire (IPAQ), and anthropometric indices using Bio-Impedance Analyzer (BIA). Moreover, the participants underwent genotyping for the rs9930506 polymorphism of the FTO gene, and the relationship between FTO genotype and resistance to eating was investigated using different models of multiple linear regression. RESULTS According to our findings, there was a significant reverse relationship between the FTO rs9930506 genotype and resistance to eating (β: -0.16, P = 0.01). Moreover, the relationship was still significant after adjusting for age, nutritional knowledge, BMI, and mother's BMI, educational level, and occupational status. CONCLUSION According to our results, the FTO genotype had a significant effect on resistance to eating and food desires. However, there is a need for further studies to evaluate the underlying mechanisms of the effects of the FTO gene on appetite and obesity.
Collapse
Affiliation(s)
- Ali Shaker
- Department of Cellular and Molecular Biology, Mashhad Branch, Islamic Azad Universityof Mashhad, Mashhad, Iran
| | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mobina Zeinalabedini
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salimi
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Abbasi Mobarakeh
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Shamsi-Goushki
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Masoumvand
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Pegah Samani
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ghasem Azizi-Tabesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Shafaei
- School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Naser Kalantari
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Olsson C, Hörnell A, Waling M. High availability of vegetables and fruit through government-funded school lunch is not reflected in 4th grade pupils' intake. Food Nutr Res 2023; 67:9405. [PMID: 37533447 PMCID: PMC10392862 DOI: 10.29219/fnr.v67.9405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 08/04/2023] Open
Abstract
Background An increased intake of vegetable and fruit (VF) through school meals can contribute to the prevention of non-communicable diseases. Objective The purpose of this study was to investigate what types of VF 4th grade pupils (10-11 years old) choose, how much they eat when they are given the opportunity to serve themselves from the daily vegetable buffet available at lunch, and whether this varies with socioeconomic background and gender. Design A cross-sectional study design was used where pupils' VF intake was measured during 5 days with a photographic method. In total, 196 pupils from nine public schools participated. Results The results show that pupils on average ate less than one type of VF per day from the vegetable buffet. Girls, pupils with a higher socio-economic status (SES) and those with a more frequent VF intake at home, ate more types of VF per day from the vegetable buffet than their counterparts. The median intake of VF from the vegetable buffet was generally low, 20.4 g/day. The intake was two thirds higher for pupils with higher SES in comparison with pupils with lower SES; 25 g/day versus14 g/day (P = 0.001). No gender differences in grams per day of VF were identified (P = 0.123). Discussion This study indicates that a well-stocked vegetable buffet as part of government-funded school lunch does not automatically contribute substantially to the recommended daily intake of VF among a sample of 4th grade pupils in a high-income country like Sweden. Conclusions The results of the study can be interpreted as a missed opportunity to increase the intentional consumption of VF among pupils in a way that would have implications for public health as well as attenuating differences between socioeconomic groups.
Collapse
Affiliation(s)
| | | | - Maria Waling
- Maria Waling Department of Food, Nutrition and Culinary Science, SE-901 87 Umeå, Sweden.
| |
Collapse
|
6
|
Eddy KT, Plessow F, Breithaupt L, Becker KR, Slattery M, Mancuso CJ, Izquierdo AM, Van De Water AL, Kahn DL, Dreier MJ, Ebrahimi S, Deckersbach T, Thomas JJ, Holsen LM, Misra M, Lawson EA. Neural activation of regions involved in food reward and cognitive control in young females with anorexia nervosa and atypical anorexia nervosa versus healthy controls. Transl Psychiatry 2023; 13:220. [PMID: 37353543 DOI: 10.1038/s41398-023-02494-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023] Open
Abstract
Anorexia nervosa (AN) and atypical AN (AtypAN) are complex neurobiological illnesses that typically onset in adolescence with an often treatment-refractory and chronic illness trajectory. Aberrant eating behaviors in this population have been linked to abnormalities in food reward and cognitive control, but prior studies have not examined respective contributions of clinical characteristics and metabolic state. Research is needed to identify specific disruptions and inform novel intervention targets to improve outcomes. Fifty-nine females with AN (n = 34) or AtypAN (n = 25), ages 10-22 years, all ≤90% expected body weight, and 34 age-matched healthy controls (HC) completed a well-established neuroimaging food cue paradigm fasting and after a standardized meal, and we used ANCOVA models to investigate main and interaction effects of Group and Appetitive State on blood oxygenation level-dependent (BOLD) activation for the contrast of exposure to high-calorie food images minus objects. We found main effects of Group with greater BOLD activation in the dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (DLPFC), hippocampus, caudate, and putamen for AN/AtypAN versus HC groups, and in the three-group model including AN, AtypAN, and HC (sub-)groups, where differences were primarily driven by greater activation in the AtypAN subgroup versus HC group. We found a main effect of Appetitive State with increased premeal BOLD activation in the hypothalamus, amygdala, nucleus accumbens, and caudate for models that included AN/AtypAN and HC groups, and in BOLD activation in the nucleus accumbens for the model that included AN, AtypAN, and HC (sub-)groups. There were no interaction effects of Group with Appetitive State for any of the models. Our findings demonstrate robust feeding-state independent group effects reflecting greater neural activation of specific regions typically associated with reward and cognitive control processing across AN and AtypAN relative to healthy individuals in this food cue paradigm. Differential activation of specific brain regions in response to the passive viewing of high-calorie food images may underlie restrictive eating behavior in this clinical population.
Collapse
Affiliation(s)
- Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Franziska Plessow
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lauren Breithaupt
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kendra R Becker
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Meghan Slattery
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Avery L Van De Water
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Women's Health, Department of Medicine, and Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Danielle L Kahn
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Melissa J Dreier
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - Seda Ebrahimi
- Cambridge Eating Disorders Center, Cambridge, MA, USA
| | - Thilo Deckersbach
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- University of Applied Sciences, Diploma Hochschule, Bad Sooden-Allendorf, Germany
| | - Jennifer J Thomas
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Laura M Holsen
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Health, Department of Medicine, and Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pediatric Endocrinology, Mass General for Children, Boston, MA, USA
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Pepe RB, Lottenberg AM, Fujiwara CTH, Beyruti M, Cintra DE, Machado RM, Rodrigues A, Jensen NSO, Caldas APS, Fernandes AE, Rossoni C, Mattos F, Motarelli JHF, Bressan J, Saldanha J, Beda LMM, Lavrador MSF, Del Bosco M, Cruz P, Correia PE, Maximino P, Pereira S, Faria SL, Piovacari SMF. Position statement on nutrition therapy for overweight and obesity: nutrition department of the Brazilian association for the study of obesity and metabolic syndrome (ABESO-2022). Diabetol Metab Syndr 2023; 15:124. [PMID: 37296485 PMCID: PMC10251611 DOI: 10.1186/s13098-023-01037-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a chronic disease resulting from multifactorial causes mainly related to lifestyle (sedentary lifestyle, inadequate eating habits) and to other conditions such as genetic, hereditary, psychological, cultural, and ethnic factors. The weight loss process is slow and complex, and involves lifestyle changes with an emphasis on nutritional therapy, physical activity practice, psychological interventions, and pharmacological or surgical treatment. Because the management of obesity is a long-term process, it is essential that the nutritional treatment contributes to the maintenance of the individual's global health. The main diet-related causes associated with excess weight are the high consumption of ultraprocessed foods, which are high in fats, sugars, and have high energy density; increased portion sizes; and low intake of fruits, vegetables, and grains. In addition, some situations negatively interfere with the weight loss process, such as fad diets that involve the belief in superfoods, the use of teas and phytotherapics, or even the avoidance of certain food groups, as has currently been the case for foods that are sources of carbohydrates. Individuals with obesity are often exposed to fad diets and, on a recurring basis, adhere to proposals with promises of quick solutions, which are not supported by the scientific literature. The adoption of a dietary pattern combining foods such as grains, lean meats, low-fat dairy, fruits, and vegetables, associated with an energy deficit, is the nutritional treatment recommended by the main international guidelines. Moreover, an emphasis on behavioral aspects including motivational interviewing and the encouragement for the individual to develop skills will contribute to achieve and maintain a healthy weight. Therefore, this Position Statement was prepared based on the analysis of the main randomized controlled studies and meta-analyses that tested different nutrition interventions for weight loss. Topics in the frontier of knowledge such as gut microbiota, inflammation, and nutritional genomics, as well as the processes involved in weight regain, were included in this document. This Position Statement was prepared by the Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), with the collaboration of dietitians from research and clinical fields with an emphasis on strategies for weight loss.
Collapse
Affiliation(s)
- Renata Bressan Pepe
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Ana Maria Lottenberg
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
- Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), Rua Mato Grosso 306 – cj 1711, Sao Paulo, SP 01239-040 Brazil
| | - Clarissa Tamie Hiwatashi Fujiwara
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Mônica Beyruti
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Dennys Esper Cintra
- Centro de Estudos em Lipídios e Nutrigenômica – CELN – University of Campinas, Campinas, SP Brazil
| | - Roberta Marcondes Machado
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Alessandra Rodrigues
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Natália Sanchez Oliveira Jensen
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | | | - Ariana Ester Fernandes
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Carina Rossoni
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Mattos
- Programa de Obesidade e Cirurgia Bariátrica do Hospital Universitário Clementino Fraga Filho da UFRJ, Rio de Janeiro, RJ Brazil
| | - João Henrique Fabiano Motarelli
- Núcleo de Estudos e Extensão em Comportamento Alimentar e Obesidade (NEPOCA) da Universidade de São Paulo - FMRP/USP, Ribeirão Preto, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | - Lis Mie Masuzawa Beda
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Maria Sílvia Ferrari Lavrador
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Mariana Del Bosco
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Patrícia Cruz
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | | | - Priscila Maximino
- Instituto PENSI - Fundação José Luiz Egydio Setúbal, Instituto Pensi, Fundação José Luiz Egydio Setúbal, Hospital Infantil Sabará, São Paulo, SP Brazil
| | - Silvia Pereira
- Núcleo de Saúde Alimentar da Sociedade Brasileira de Cirurgia Bariátrica e Metabólica, São Paulo, Brazil
| | | | | |
Collapse
|
8
|
Szczerbowska-Boruchowska M, Piana K, Surowka AD, Czyzycki M, Wrobel P, Szymkowski M, Ziomber-Lisiak A. A combined X-ray fluorescence and infrared microspectroscopy study for new insights into elemental-biomolecular obesity-induced changes in rat brain structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122478. [PMID: 36801735 DOI: 10.1016/j.saa.2023.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The objective of our research was to determine the brain changes at the molecular and elemental levels typical of early-stage obesity. Therefore a combined approach using Fourier transform infrared micro-spectroscopy (FTIR-MS) and synchrotron radiation induced X-ray fluorescence (SRXRF) was introduced to evaluate some brain macromolecular and elemental parameters in high-calorie diet (HCD)- induced obese rats (OB, n = 6) and in their lean counterparts (L, n = 6). A HCD was found to alter the lipid- and protein- related structure and elemental composition of the certain brain areas important for energy homeostasis. The increased lipid unsaturation in the frontal cortex and ventral tegmental area, the increased fatty acyl chain length in the lateral hypothalamus and substantia nigra as well as the decreased both protein α helix to protein β- sheet ratio and the percentage fraction of β-turns and β-sheets in the nucleus accumbens were revealed in the OB group reflecting obesity-related brain biomolecular aberrations. In addition, the certain brain elements including P, K and Ca were found to differentiate the lean and obese groups at the best extent. We can conclude that HCD-induced obesity triggers lipid- and protein- related structural changes as well as elemental redistribution within various brain structures important for energy homeostasis. In addition, an approach applying combined X-ray and infrared spectroscopy was shown to be a reliable tool for identifying elemental-biomolecular rat brain changes for better understanding the interplay between the chemical and structural processes involved in appetite control.
Collapse
Affiliation(s)
| | - Kaja Piana
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Artur D Surowka
- Elettra-Sincrotrone Trieste SCpA, SS 14, km 163.5, Basovizza, TS 34149 Trieste, Italy
| | - Mateusz Czyzycki
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland; Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; International Atomic Energy Agency, Nuclear Science and Instrumentation Laboratory, Friedensstrasse 1, 2444 Seibersdorf, Austria
| | - Pawel Wrobel
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Maciej Szymkowski
- Bialystok University of Technology, Faculty of Computer Science, ul. Wiejska 45A, 15-351 Białystok, Poland
| | - Agata Ziomber-Lisiak
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
9
|
Hamilton J, Nguyen C, McAvoy M, Roeder N, Richardson B, Quattrin T, Hajnal A, Thanos PK. Calorie restriction, but not Roux-en-Y gastric bypass surgery, increases [ 3 H] PK11195 binding in a rat model of obesity. Synapse 2023; 77:e22258. [PMID: 36352528 DOI: 10.1002/syn.22258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/11/2022]
Abstract
Roux-en-Y gastric bypass surgery (RYGB) remains an effective weight-loss method used to treat obesity. While it is successful in combating obesity, there are many lingering questions related to the changes in the brain following RYGB surgery, one of them being its effects on neuroinflammation. While it is known that chronic high-fat diet (HFD) contributes to obesity and neuroinflammation, it remains to be understood whether bariatric surgery can ameliorate diet-induced inflammatory responses. To examine this, rats were assigned to either a normal diet (ND) or a HFD for 8 weeks. Rats fed a HFD were split into the following groups: sham surgery with ad libitum access to HFD (sham-HF); sham surgery with calorie-restricted HFD (sham-FR); RYGB surgery with ad libitum access to HFD (RYGB). Following sham or RYGB surgeries, rats were maintained on their diets for 9 weeks before being euthanized. [3 H] PK11195 autoradiography was then performed on fresh-frozen brain tissue in order to measure activated microglia. Sham-FR rats showed increased [3 H] PK11195 binding in the amygdala (63%), perirhinal (60%), and ectorhinal cortex (53%) compared with the ND rats. Obese rats who had the RYGB surgery did not show this increased inflammatory effect. Since the sham-FR and RYGB rats were fed the same amount of HFD, the surgery itself seems responsible for this attenuation in [3 H] PK11195 binding. We speculate that calorie restriction following obese conditions may be seen as a stressor and contribute to inflammation in the brain. Further research is needed to verify this mechanism.
Collapse
Affiliation(s)
- John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Cynthia Nguyen
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Margaret McAvoy
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.,Department of Psychology, University at Buffalo, Buffalo, New York, USA
| | - Brittany Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.,Department of Psychology, University at Buffalo, Buffalo, New York, USA
| | - Teresa Quattrin
- Department of Pediatrics, University at Buffalo, UBMD Pediatrics, JR Oishei Children's Hospital, Buffalo, New York, USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.,Department of Psychology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
10
|
Lender A, Wirtz J, Kronbichler M, Kahveci S, Kühn S, Blechert J. Differential Orbitofrontal Cortex Responses to Chocolate Images While Performing an Approach-Avoidance Task in the MRI Environment. Nutrients 2023; 15:244. [PMID: 36615903 PMCID: PMC9823553 DOI: 10.3390/nu15010244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Chocolate is one of the most frequently craved foods, and it often challenges self-regulation. These cravings may be underpinned by a neural facilitation of approach behavior toward chocolate. This preregistered study investigated the behavioral and neural correlates of such a bias using functional magnetic resonance imaging (fMRI) and reaction times (RTs). Methods: A total of n = 30 frequent chocolate eaters performed a relevant-feature approach-avoidance task (AAT) in the MRI scanner using buttons to enlarge (approach) or to shrink (avoid) pictures of chocolate and inedible control objects. We tested (a) whether implicit RT-based approach biases could be measured in a supine position in the scanner, (b) whether those biases were associated with activity in reward-related brain regions such as the insula, amygdala, striatum, and orbitofrontal cortex (OFC), and (c) whether individual RT-based bias-scores correlated with measures of chocolate craving. Results: Behaviorally, we found a highly reliable approach bias toward chocolate, defined by faster RTs in the compatible conditions (approach chocolate, avoid objects) compared to the incompatible conditions (avoid chocolate, approach objects). Neurally, this compatibility effect involved activity in the left medial OFC, a neural response that was positively correlated with individual approach bias scores. Conclusions: This study shows that the relevant feature AAT can be implemented in an fMRI setting in a supine position using buttons. An approach bias toward chocolate seems related to medial OFC activation that might serve to devalue chocolate when it has to be avoided. Our demonstration of neural and behavioral approach biases for chocolate underscores the need for stimulus-specific cognitive trainings to support healthy consumption and successful self-regulation.
Collapse
Affiliation(s)
- Anja Lender
- Department of Psychology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Janina Wirtz
- Department of Psychiatry and Psychotherapy, Neuronal Plasticity Working Group, University Medical Center Hamburg, Eppendorf Martinistrße 52, 20246 Hamburg, Germany
| | - Martin Kronbichler
- Department of Psychology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Neuroscience Institute, Christian Doppler Medical Centre, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sercan Kahveci
- Department of Psychology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, Neuronal Plasticity Working Group, University Medical Center Hamburg, Eppendorf Martinistrße 52, 20246 Hamburg, Germany
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Jens Blechert
- Department of Psychology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
11
|
Lefebvre M, Hengartner MP, Tronci E, Mancini T, Ille F, Röblitz S, Krüger T, Leeners B. Food preferences throughout the menstrual cycle - A computer-assisted neuro-endocrino-psychological investigation. Physiol Behav 2022; 255:113943. [PMID: 35970225 DOI: 10.1016/j.physbeh.2022.113943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND As eating behavior changes in relation to the menstrual cycle and weight changes with menopausal transition, ovarian hormones appear to be involved in regulating eating behavior. However, observations are contradictory and are difficult to compare, due to methodological problems related to nutritional epidemiology. To better understand the relationship between ovarian steroid hormones and eating behavior, our study evaluates women's responses to visual food cues at different points in the menstrual cycle with their specific serum estrogen/progesterone levels and women's responses in the case of strong estrogen changes in the context of fertility treatments. METHODS We collected data from 129 women, 44 of whom received in vitro fertilization (IVF) at the Department of Reproductive Endocrinology, University Hospital Zurich. A total of 85 women with natural cycles were recruited at the University Hospital Zurich (n = 37) and at the Hannover Medical School (n = 48). Our observational study used 4 different measurement time points across the natural cycle and 2 measurement time points in women with supraphysiological estradiol levels during fertility treatments. Using a second cycle, we then tested our results for replication. At these predefined time points, women were shown pictures of 11 categories of food, with 4 items for each category and blood samples for measurement of hormone levels were taken. Food preferences registered at the time of the investigation were indicated on a visual analogue scale (0-100). RESULTS We did not find any statistically significant association between women's serum hormone levels and the rating of visually presented food, either during the menstrual cycle or during fertility treatments after controlling for multiple testing (all p > 0.005). Ratings for fruits, vegetables, and carbohydrates showed a significant linear decline throughout the first menstrual cycle (p < 0.01), which did not replicate in the second cycle (p > 0.05). In contrast, the ratings for sweets showed a significant linear decline in both cycles (both p < 0.01), with a mean rating of 54.2 and 48.8 in the menstrual phase of the first and second cycle, respectively, to a mean rating of 47.7 and 43.4 in the premenstrual phase of the first and second cycle, respectively. During fertility treatments, no food rating showed a significant change (all p > 0.05). Mood such as negative and positive affects did not influence ratings for visual food cues neither throughout the menstrual cycles nor during fertility treatment. CONCLUSIONS Serum levels of estradiol and progesterone do not correlate with food ratings in women, even when estradiol levels are above the physiological level of a natural menstrual cycle. Since, except for sweets, significant changes in food ratings in a first cycle did not replicate in a second menstrual cycle, significant findings from the literature based on animal or human studies focusing on a single-cycle have to be interpreted with caution.
Collapse
Affiliation(s)
- Marie Lefebvre
- Department of Reproductive Endocrinology, University hospital Zürich, 8910 Zurich, Frauenklinikstr. 10, Switzerland
| | - Michael P Hengartner
- Department of Applied Psychology, Zurich University for Applied Sciences (ZHAW), Zürich, Switzerland
| | - Enrico Tronci
- Department of Computer Science, University of Roma "La Sapienza", Roma, Italy
| | - Toni Mancini
- Department of Computer Science, University of Roma "La Sapienza", Roma, Italy
| | - Fabian Ille
- Center of Competence in Aerospace Biomedical Science & Technology, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland
| | - Susanna Röblitz
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Tillmann Krüger
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover, Hannover, Germany
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University hospital Zürich, 8910 Zurich, Frauenklinikstr. 10, Switzerland.
| |
Collapse
|
12
|
Kullmann S, Veit R, Crabtree DR, Buosi W, Androutsos O, Johnstone AM, Manios Y, Preissl H, Smeets PAM. The effect of hunger state on hypothalamic functional connectivity in response to food cues. Hum Brain Mapp 2022; 44:418-428. [PMID: 36056618 PMCID: PMC9842901 DOI: 10.1002/hbm.26059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 01/25/2023] Open
Abstract
The neural underpinnings of the integration of internal and external cues that reflect nutritional status are poorly understood in humans. The hypothalamus is a key integrative area involved in short- and long-term energy intake regulation. Hence, we examined the effect of hunger state on the hypothalamus network using functional magnetic resonance imaging. In a multicenter study, participants performed a food cue viewing task either fasted or sated on two separate days. We evaluated hypothalamic functional connectivity (FC) using psychophysiological interactions during high versus low caloric food cue viewing in 107 adults (divided into four groups based on age and body mass index [BMI]; age range 24-76 years; BMI range 19.5-41.5 kg/m2 ). In the sated compared to the fasted condition, the hypothalamus showed significantly higher FC with the bilateral caudate, the left insula and parts of the left inferior frontal cortex. Interestingly, we observed a significant interaction between hunger state and BMI group in the dorsolateral prefrontal cortex (DLPFC). Participants with normal weight compared to overweight and obesity showed higher FC between the hypothalamus and DLPFC in the fasted condition. The current study showed that task-based FC of the hypothalamus can be modulated by internal (hunger state) and external cues (i.e., food cues with varying caloric content) with a general enhanced communication in the sated state and obesity-associated differences in hypothalamus to DLPFC communication. This could potentially promote overeating in persons with obesity.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany,Department of Internal Medicine, Division of Diabetology, Endocrinology and NephrologyEberhard Karls University TübingenTübingenGermany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany
| | - Daniel R. Crabtree
- The Rowett InstituteUniversity of AberdeenAberdeenScotland,Division of Biomedical Sciences, Centre for Health ScienceUniversity of the Highlands and IslandsInvernessUK
| | - William Buosi
- The Rowett InstituteUniversity of AberdeenAberdeenScotland
| | - Odysseas Androutsos
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and DieteticsUniversity of ThessalyVolosGreece
| | | | - Yannis Manios
- Department of Nutrition‐Dietetics, School of Health Science and EducationHarokopio UniversityAthensGreece
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany,Department of Internal Medicine, Division of Diabetology, Endocrinology and NephrologyEberhard Karls University TübingenTübingenGermany
| | - Paul A. M. Smeets
- Division of Human Nutrition and HealthWageningen UniversityWageningenThe Netherlands,Image Sciences Institute, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
13
|
Jack Rejeski W, Laurienti PJ, Bahrami M, Fanning J, Simpson SL, Burdette JH. Aging and Neural Vulnerabilities in Overeating: A Conceptual Overview and Model to Guide Treatment. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e39. [PMID: 36589860 PMCID: PMC9797202 DOI: 10.1002/pcn5.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Given the vulnerability of older adults to chronic disease and physical disability, coupled with the threat that obesity poses to healthy aging, there is an urgent need to understand the causes of positive energy balance and the struggle that many older adults face with intentional weight loss. This paper focuses on neural vulnerabilities related to overeating in older adults, and moderating variables that can have either favorable or unfavorable effect these vulnerabilities. Research from our laboratory on older adults with obesity suggests that they are prone to similar neural vulnerabilities for overeating that have been observed in younger and middle-aged populations. In addition, following brief postabsorptive states, functional brain networks both in the resting state and in response to active imagery of desired food are associated with 6-month weight loss. Data reviewed suggest that the sensorimotor network is a central hub in the process of valuation and underscores the central role played by habits in overeating. Finally, we demonstrate how research on the neural vulnerabilities for overeating offers a useful framework for guiding clinical decision-making in weight management.
Collapse
Affiliation(s)
- W. Jack Rejeski
- Department of Health and Exercise ScienceWake Forest UniversityWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine, Section on Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Radiology, Laboratory for Complex Brain NetworksWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Paul J. Laurienti
- Department of Radiology, Laboratory for Complex Brain NetworksWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mohsen Bahrami
- Department of Radiology, Laboratory for Complex Brain NetworksWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jason Fanning
- Department of Health and Exercise ScienceWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Sean L. Simpson
- Department of Radiology, Laboratory for Complex Brain NetworksWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Biostatistics and Data ScienceWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jonathan H. Burdette
- Department of Radiology, Laboratory for Complex Brain NetworksWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
14
|
Kerem L, Van De Water AL, Kuhnle MC, Harshman S, Hauser K, Eddy KT, Becker KR, Misra M, Micali N, Thomas JJ, Holsen L, Lawson EA. Neurobiology of Avoidant/Restrictive Food Intake Disorder in Youth with Overweight/Obesity Versus Healthy Weight. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2022; 51:701-714. [PMID: 33769133 PMCID: PMC8464625 DOI: 10.1080/15374416.2021.1894944] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Avoidant/restrictive food intake disorder (ARFID) occurs across the weight spectrum, however research addressing the coexistesnce of ARFID with overweight/obesity (OV/OB) is lacking. We aimed to establish co-occurrence of OV/OB and ARFID and to characterize divergent neurobiological features of ARFID by weight. METHOD Youth with full/subthreshold ARFID (12 with healthy weight [HW], 11 with OV/OB) underwent fasting brain fMRI scan while viewing food/non-food images (M age = 16.92 years, 65% female, 87% white). We compared groups on BOLD response to high-calorie foods (HCF) (vs. objects) in food cue processing regions of interest. Following fMRI scanning, we evaluated subjective hunger pre- vs. post-meal. We used a mediation model to explore the association between BMI, brain activation, and hunger. RESULTS Participants with ARFID and OV/OB demonstrated significant hyperactivation in response to HCF (vs. objects) in the orbitofrontal cortex (OFC) and anterior insula compared with HW participants with ARFID. Mediation analysis yielded a significant indirect effect of group (HW vs. OV/OB) on hunger via OFC activation (effect = 18.39, SE = 11.27, 95% CI [-45.09, -3.00]), suggesting that OFC activation mediates differences in hunger between ARFID participants with HW and OV/OB. CONCLUSIONS Compared to youth with ARFID and HW, those with OV/OB demonstrate hyperactivation of brain areas critical for the reward value of food cues. Postprandial changes in subjective hunger depend on BMI and are mediated by OFC activation to food cues. Whether these neurobiological differences contribute to selective hyperphagia in ARFID presenting with OV/OB and represent potential treatment targets is an important area for future investigation.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts
General Hospital and Harvard Medical School
- Division of Pediatric Endocrinology, Mass General Hospital
for Children
| | - Avery L. Van De Water
- Neuroendocrine Unit, Department of Medicine, Massachusetts
General Hospital and Harvard Medical School
- Division of Women’s Health, Department of Medicine
and Department of Psychiatry, Brigham and Women’s Hospital and Harvard
Medical School
| | - Megan C. Kuhnle
- Neuroendocrine Unit, Department of Medicine, Massachusetts
General Hospital and Harvard Medical School
| | - Stephanie Harshman
- Neuroendocrine Unit, Department of Medicine, Massachusetts
General Hospital and Harvard Medical School
| | - Kristine Hauser
- Neuroendocrine Unit, Department of Medicine, Massachusetts
General Hospital and Harvard Medical School
| | - Kamryn T. Eddy
- Eating Disorders Clinical and Research Program,
Massachusetts General Hospital, Department of Psychiatry and Harvard Medical
School
| | - Kendra R. Becker
- Eating Disorders Clinical and Research Program,
Massachusetts General Hospital, Department of Psychiatry and Harvard Medical
School
| | - Madhusmita Misra
- Neuroendocrine Unit, Department of Medicine, Massachusetts
General Hospital and Harvard Medical School
- Division of Pediatric Endocrinology, Mass General Hospital
for Children
| | - Nadia Micali
- Department of Psychiatry, Great Ormond Street Institute of
Child Health, University College London
- Department of Psychiatry, Faculty of Medicine and Child and
Adolescent Psychiatry Division, Department of Child and Adolescent Health,
University of Geneva
| | - Jennifer J. Thomas
- Eating Disorders Clinical and Research Program,
Massachusetts General Hospital, Department of Psychiatry and Harvard Medical
School
| | - Laura Holsen
- Division of Women’s Health, Department of Medicine
and Department of Psychiatry, Brigham and Women’s Hospital and Harvard
Medical School
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts
General Hospital and Harvard Medical School
| |
Collapse
|
15
|
The Circadian Axis and Cardiometabolic Syndrome. JOURNAL OF INTERDISCIPLINARY MEDICINE 2022. [DOI: 10.2478/jim-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Circadian rhythm refers to the daily physiologically fluctuating patterns of systemic processes that occur within a circa 24-hour timeframe, independently of external factors. There is evidence that in time, external and internal cycle misalignment leads to severe health consequences, resulting in the development of cardiometabolic disturbances. Desynchronized hormonal fluctuations along with daily specific macronutrient utilization patterns are also discussed, which by consequence, are all predictors of metabolic syndrome. The aim of this paper is to provide insight on the circadian clock’s organization throughout the human body and to explain the underlying genetic background. By understanding these well-established molecular mechanisms and processes, we believe this paper will provide accuracy regarding the importance of the circadian clock’s integrity and will highlight its role in the etiopathology of cardiometabolic syndrome.
Collapse
|
16
|
Abstract
The modern obesogenic environment contains an abundance of food cues (e.g., sight, smell of food) as well cues that are associated with food through learning and memory processes. Food cue exposure can lead to food seeking and excessive consumption in otherwise food-sated individuals, and a high level of food cue responsivity is a risk factor for overweight and obesity. Similar food cue responses are observed in experimental rodent models, and these models are therefore useful for mechanistically identifying the neural circuits mediating food cue responsivity. This review draws from both experimental rodent models and human data to characterize the behavioral and biological processes through which food-associated stimuli contribute to overeating and weight gain. Two rodent models are emphasized - cue-potentiated feeding and Pavlovian-instrumental transfer - that provide insight in the neural circuits and peptide systems underlying food cue responsivity. Data from humans are highlighted that reveal physiological, psychological, and neural mechanisms that connect food cue responsivity with overeating and weight gain. The collective literature identifies connections between heightened food cue responsivity and obesity in both rodents and humans, and identifies underlying brain regions (nucleus accumbens, amygdala, orbitofrontal cortex, hippocampus) and endocrine systems (ghrelin) that regulate food cue responsivity in both species. These species similarities are encouraging for the possibility of mechanistic rodent model research and further human research leading to novel treatments for excessive food cue responsivity in humans.
Collapse
Affiliation(s)
- Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Kerri N Boutelle
- Department of Pediatrics, Herbert Wertheim School of Public Health and Human Longevity Science, and Psychiatry, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
17
|
Roth CL, Melhorn SJ, De Leon MRB, Rowland MG, Elfers CT, Huang A, Saelens BE, Schur EA. Impaired Brain Satiety Responses After Weight Loss in Children With Obesity. J Clin Endocrinol Metab 2022; 107:2254-2266. [PMID: 35544121 PMCID: PMC9282278 DOI: 10.1210/clinem/dgac299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Obesity interventions often result in increased motivation to eat. OBJECTIVE We investigated relationships between obesity outcomes and changes in brain activation by visual food cues and hormone levels in response to obesity intervention by family-based behavioral treatment (FBT). METHODS Neuroimaging and hormone assessments were conducted before and after 24-week FBT intervention in children with obesity (OB, n = 28), or children of healthy weight without intervention (HW, n = 17), all 9- to 11-year-old boys and girls. We evaluated meal-induced changes in neural activation to high- vs low-calorie food cues across appetite-processing brain regions and gut hormones. RESULTS Among children with OB who underwent FBT, greater declines of BMI z-score were associated with lesser reductions after the FBT intervention in meal-induced changes in neural activation to high- vs low-calorie food cues across appetite-processing brain regions (P < 0.05), and the slope of relationship was significantly different compared with children of HW. In children with OB, less reduction in brain responses to a meal from before to after FBT was associated with greater meal-induced reduction in ghrelin and increased meal-induced stimulation in peptide YY and glucagon-like peptide-1 (all P < 0.05). CONCLUSION In response to FBT, adaptations of central satiety responses and peripheral satiety-regulating hormones were noted. After weight loss, changes of peripheral hormone secretion support weight loss, but there was a weaker central satiety response. The findings suggest that even when peripheral satiety responses by gut hormones are intact, the central regulation of satiety is disturbed in children with OB who significantly improve their weight status during FBT, which could favor future weight regain.
Collapse
Affiliation(s)
- Christian L Roth
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Susan J Melhorn
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mary Rosalynn B De Leon
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maya G Rowland
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | - Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Brian E Saelens
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Schur
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
18
|
Althubeati S, Avery A, Tench CR, Lobo DN, Salter A, Eldeghaidy S. Mapping brain activity of gut-brain signaling to appetite and satiety in healthy adults: A systematic review and functional neuroimaging meta-analysis. Neurosci Biobehav Rev 2022; 136:104603. [PMID: 35276299 PMCID: PMC9096878 DOI: 10.1016/j.neubiorev.2022.104603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 12/19/2022]
Abstract
Understanding how neurohormonal gut-brain signaling regulates appetite and satiety is vital for the development of therapies for obesity and altered eating behavior. However, reported brain areas associated with appetite or satiety regulators show inconsistency across functional neuroimaging studies. The aim of this study was to systematically assess the convergence of brain regions modulated by appetite and satiety regulators. Twenty-five studies were considered for qualitative synthesis, and 14 independent studies (20-experiments) found eligible for coordinate-based neuroimaging meta-analyses across 212 participants and 123 foci. We employed two different meta-analysis approaches. The results from the systematic review revealed the modulation of insula, amygdala, hippocampus, and orbitofrontal cortex (OFC) with appetite regulators, where satiety regulators were more associated with caudate nucleus, hypothalamus, thalamus, putamen, anterior cingulate cortex in addition to the insula and OFC. The two neuroimaging meta-analyses methods identified the caudate nucleus as a key area associated with satiety regulators. Our results provide quantitative brain activation maps of neurohormonal gut-brain signaling in heathy-weight adults that can be used to define alterations with eating behavior.
Collapse
Affiliation(s)
- Sarah Althubeati
- Division of Food, Nutrition & Dietetics, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; Faculty of Applied Medical Sciences, Department of Clinical Nutrition, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amanda Avery
- Division of Food, Nutrition & Dietetics, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Christopher R Tench
- Division of Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen's Medical Centre, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Dileep N Lobo
- Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Andrew Salter
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Sally Eldeghaidy
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
19
|
Saelens BE, Melhorn SJ, Rowland MG, Scholz K, De Leon MRB, Elfers CT, Schur EA, Roth CL. General and Food-Specific Impulsivity and Inhibition Related to Weight Management. Child Obes 2022; 18:84-91. [PMID: 34357785 PMCID: PMC8892982 DOI: 10.1089/chi.2021.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Understanding child characteristics that relate to weight management treatment outcome could help identify opportunities for intervention innovation or tailoring. The limited evidence available is inconsistent regarding whether and which aspects of children's general or food-specific impulsivity and inhibition relate to treatment outcomes. Methods: Children with (n = 54) and without obesity (n = 22) were compared on various measures of impulsivity and inhibition. Children with obesity (n = 40) then completed family-based treatment for weight management. Analyses examined associations between baseline children's impulsivity and inhibition and child weight status change (BMI z-score) and between treatment-based changes in impulsivity and inhibition and weight status change, with and without adjustment by baseline functional magnetic resonance imaging-measured appetitive drive. Results: Children with obesity scored more poorly on some, but not all, measures of impulsivity and inhibition than children without obesity. Lower baseline general inhibition and greater parent-report of child impulsivity were associated (independently) with greater improvements in child weight status, with modest attenuation after appetite drive adjustment. Children improved task-based general inhibition during treatment. Improvements in general inhibition and snack food discounting were associated with better child weight outcomes, although adjusting for baseline values attenuated these associations. Conclusions: Children with obesity having greater initial impulsivity had better weight outcomes in treatment even after adjusting for initial appetitive drive. In contrast, improvements in task-based inhibition and food-related discounting during treatment were also related to better outcomes. Research is needed on innovative approaches to better address impulsivity and inhibition in children's weight management. Clinical Trial Registration number: NCT02484976.
Collapse
Affiliation(s)
- Brian E. Saelens
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA.,Address correspondence to: Brian E. Saelens, PhD, Seattle Children's Research Institute, 1920 Terry Avenue, Seattle, WA 98101, USA
| | - Susan J. Melhorn
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Kelley Scholz
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Mary Rosalynn B. De Leon
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ellen A. Schur
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christian L. Roth
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
20
|
Brondel L, Quilliot D, Mouillot T, Khan NA, Bastable P, Boggio V, Leloup C, Pénicaud L. Taste of Fat and Obesity: Different Hypotheses and Our Point of View. Nutrients 2022; 14:nu14030555. [PMID: 35276921 PMCID: PMC8838004 DOI: 10.3390/nu14030555] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/09/2023] Open
Abstract
Obesity results from a temporary or prolonged positive energy balance due to an alteration in the homeostatic feedback of energy balance. Food, with its discriminative and hedonic qualities, is a key element of reward-based energy intake. An alteration in the brain reward system for highly palatable energy-rich foods, comprised of fat and carbohydrates, could be one of the main factors involved in the development of obesity by increasing the attractiveness and consumption of fat-rich foods. This would induce, in turn, a decrease in the taste of fat. A better understanding of the altered reward system in obesity may open the door to a new era for the diagnosis, management and treatment of this disease.
Collapse
Affiliation(s)
- Laurent Brondel
- Centre for Taste and Feeding Behaviour, UMR 6265 CNRS, 1324 INRAE, University of Burgundy, Franche-Comté, 21000 Dijon, France; (T.M.); (C.L.)
- Correspondence: ; Tel.: +33-3-80681677 or +33-6-43213100
| | - Didier Quilliot
- Unité Multidisciplinaire de la Chirurgie de L’obésité, University Hospital Nancy-Brabois, 54500 Vandoeuvre-les-Nancy, France;
| | - Thomas Mouillot
- Centre for Taste and Feeding Behaviour, UMR 6265 CNRS, 1324 INRAE, University of Burgundy, Franche-Comté, 21000 Dijon, France; (T.M.); (C.L.)
- Department of Hepato-Gastro-Enterology, University Hospital, 21000 Dijon, France
| | - Naim Akhtar Khan
- Physiologie de Nutrition & Toxicologie (NUTox), UMR/UB/AgroSup 1231, University of Burgundy, Franche-Comté, 21000 Dijon, France;
| | | | | | - Corinne Leloup
- Centre for Taste and Feeding Behaviour, UMR 6265 CNRS, 1324 INRAE, University of Burgundy, Franche-Comté, 21000 Dijon, France; (T.M.); (C.L.)
| | - Luc Pénicaud
- Institut RESTORE, Toulouse University, CNRS U-5070, EFS, ENVT, Inserm U1301 Toulouse, 31432 Toulouse, France;
| |
Collapse
|
21
|
Roger C, Lasbleiz A, Guye M, Dutour A, Gaborit B, Ranjeva JP. The Role of the Human Hypothalamus in Food Intake Networks: An MRI Perspective. Front Nutr 2022; 8:760914. [PMID: 35047539 PMCID: PMC8762294 DOI: 10.3389/fnut.2021.760914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hypothalamus (HT), this small structure often perceived through the prism of neuroimaging as morphologically and functionally homogeneous, plays a key role in the primitive act of feeding. The current paper aims at reviewing the contribution of magnetic resonance imaging (MRI) in the study of the role of the HT in food intake regulation. It focuses on the different MRI techniques that have been used to describe structurally and functionally the Human HT. The latest advances in HT parcellation as well as perspectives in this field are presented. The value of MRI in the study of eating disorders such as anorexia nervosa (AN) and obesity are also highlighted.
Collapse
Affiliation(s)
- Coleen Roger
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| | - Adèle Lasbleiz
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France.,Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Maxime Guye
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| | - Anne Dutour
- Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Bénédicte Gaborit
- Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Jean-Philippe Ranjeva
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The current article discusses five neural vulnerability theories for weight gain and reviews evidence from prospective studies using imaging and behavioral measures reflecting neural function, as well as randomized experiments with humans and animals that are consistent or inconsistent with these theories. RECENT FINDINGS Recent prospective imaging studies examining predictors of weight gain and response to obesity treatment, and repeated-measures imaging studies before and after weight gain and loss have advanced knowledge of etiologic processes and neural plasticity resulting from weight change. Overall, data provide strong support for the incentive sensitization theory of obesity and moderate support for the reward surfeit theory, inhibitory control deficit theory, and dynamic vulnerability model of obesity, which attempted to synthesize the former theories into a single etiologic model. Data provide little support for the reward deficit theory. Important directions for future studies are delineated.
Collapse
Affiliation(s)
- Eric Stice
- Department of Psychiatry, Stanford University, Stanford, CA, 94305, USA.
| | - Sonja Yokum
- Oregon Research Institute, Eugene, OR, 97403, USA
| |
Collapse
|
23
|
Yunker AG, Alves JM, Luo S, Angelo B, DeFendis A, Pickering TA, Monterosso JR, Page KA. Obesity and Sex-Related Associations With Differential Effects of Sucralose vs Sucrose on Appetite and Reward Processing: A Randomized Crossover Trial. JAMA Netw Open 2021; 4:e2126313. [PMID: 34581796 PMCID: PMC8479585 DOI: 10.1001/jamanetworkopen.2021.26313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE Nonnutritive sweeteners (NNSs) are used as an alternative to nutritive sweeteners to quench desire for sweets while reducing caloric intake. However, studies have shown mixed results concerning the effects of NNSs on appetite, and the associations between sex and obesity with reward and appetitive responses to NNS compared with nutritive sugar are unknown. OBJECTIVE To examine neural reactivity to different types of high-calorie food cues (ie, sweet and savory), metabolic responses, and eating behavior following consumption of sucralose (NNS) vs sucrose (nutritive sugar) among healthy young adults. DESIGN, SETTING, AND PARTICIPANTS In a randomized, within-participant, crossover trial including 3 separate visits, participants underwent a functional magnetic resonance imaging task measuring blood oxygen level-dependent signal in response to visual cues. For each study visit, participants arrived at the Dornsife Cognitive Neuroimaging Center of University of Southern California at approximately 8:00 am after a 12-hour overnight fast. Blood was sampled at baseline and 10, 35, and 120 minutes after participants received a drink containing sucrose, sucralose, or water to measure plasma glucose, insulin, glucagon-like peptide(7-36), acyl-ghrelin, total peptide YY, and leptin. Participants were then presented with an ad libitum meal. Participants were right-handed, nonsmokers, weight-stable for at least 3 months before the study visits, nondieters, not taking medication, and with no history of eating disorders, illicit drug use, or medical diagnoses. Data analysis was performed from March 2020 to March 2021. INTERVENTIONS Participants ingested 300-mL drinks containing either sucrose (75 g), sucralose (individually sweetness matched), or water (as a control). MAIN OUTCOMES AND MEASURES Primary outcomes of interest were the effects of body mass index (BMI) status and sex on blood oxygen level-dependent signal to high-calorie food cues, endocrine, and feeding responses following sucralose vs sucrose consumption. Secondary outcomes included neural, endocrine, and feeding responses following sucrose vs water and sucralose vs water (control) consumption, and cue-induced appetite ratings following sucralose vs sucrose (and vs water). RESULTS A total of 76 participants were randomized, but 2 dropped out, leaving 74 adults (43 women [58%]; mean [SD] age, 23.40 [3.96] years; BMI range, 19.18-40.27) who completed the study. In this crossover design, 73 participants each received water (drink 1) and sucrose (drink 2), and 72 participants received water (drink 1), sucrose (drink 2), and sucralose (drink 3). Sucrose vs sucralose was associated with greater production of circulating glucose, insulin, and glucagon-like peptide-1 and suppression of acyl-ghrelin, but no differences were found for peptide YY or leptin. BMI status by drink interactions were observed in the medial frontal cortex (MFC; P for interaction < .001) and orbitofrontal cortex (OFC; P for interaction = .002). Individuals with obesity (MFC, β, 0.60; 95% CI, 0.38 to 0.83; P < .001; OFC, β, 0.27; 95% CI, 0.11 to 0.43; P = .002), but not those with overweight (MFC, β, 0.02; 95% CI, -0.19 to 0.23; P = .87; OFC, β, -0.06; 95% CI, -0.21 to 0.09; P = .41) or healthy weight (MFC, β, -0.13; 95% CI, -0.34 to 0.07; P = .21; OFC, β, -0.08; 95% CI, -0.23 to 0.06; P = .16), exhibited greater responsivity in the MFC and OFC to savory food cues after sucralose vs sucrose. Sex by drink interactions were observed in the MFC (P for interaction = .03) and OFC (P for interaction = .03) after consumption of sucralose vs sucrose. Female participants had greater MFC and OFC responses to food cues (MFC high-calorie vs low-calorie cues, β, 0.21; 95% CI, 0.05 to 0.37; P = .01; MFC sweet vs nonfood cues, β, 0.22; 95% CI, 0.02 to 0.42; P = .03; OFC food vs nonfood cues, β, 0.12; 95% CI, 0.02 to 0.22; P = .03; and OFC sweet vs nonfood cues, β, 0.15; 95% CI, 0.03 to 0.27; P = .01), but male participants' responses did not differ (MFC high-calorie vs low-calorie cues, β, 0.01; 95% CI, -0.19 to 0.21; P = .90; MFC sweet vs nonfood cues, β, -0.04; 95% CI, -0.26 to 0.18; P = .69; OFC food vs nonfood cues, β, -0.08; 95% CI, -0.24 to 0.08; P = .32; OFC sweet vs nonfood cues, β, -0.11; 95% CI, -0.31 to 0.09; P = .31). A sex by drink interaction on total calories consumed during the buffet meal was observed (P for interaction = .03). Female participants consumed greater total calories (β, 1.73; 95% CI, 0.38 to 3.08; P = .01), whereas caloric intake did not differ in male participants (β, 0.68; 95% CI, -0.99 to 2.35; P = .42) after sucralose vs sucrose ingestion. CONCLUSIONS AND RELEVANCE These findings suggest that female individuals and those with obesity may be particularly sensitive to disparate neural responsivity elicited by sucralose compared with sucrose consumption. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02945475.
Collapse
Affiliation(s)
- Alexandra G. Yunker
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Jasmin M. Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Shan Luo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
- Department of Psychology, University of Southern California, Los Angeles
| | - Brendan Angelo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Alexis DeFendis
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| | - Trevor A. Pickering
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - John R. Monterosso
- Department of Psychology, University of Southern California, Los Angeles
| | - Kathleen A. Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
24
|
Alicart H, Heldmann M, Göttlich M, Obst MA, Tittgemeyer M, Münte TF. Modulation of visual processing of food by transcutaneous vagus nerve stimulation (tVNS). Brain Imaging Behav 2021; 15:1886-1897. [PMID: 32926315 PMCID: PMC8413220 DOI: 10.1007/s11682-020-00382-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Present project is concerned with the possibility to modulate the neural regulation of food intake by non-invasive stimulation of the vagus nerve. This nerve carries viscero-afferent information from the gut and other internal organs and therefore serves an important role in ingestive behavior. The electrical stimulation of the vagus nerve (VNS) is a qualified procedure in the treatment of drug-resistant epilepsy and depression. Since weight loss is a known common side effect of VNS treatment in patients with implanted devices, VNS is evaluated as a treatment of obesity. To investigate potential VNS-related changes in the cognitive processing of food-related items, 21 healthy participants were recorded in a 3-Tesla scanner in two counterbalanced sessions. Participants were presented with 72 food pictures and asked to rate how much they liked that food. Before entering the scanner subjects received a 1-h sham or verum stimulation, which was implemented transcutanously with a Cerbomed NEMOS® device. We found significant activations in core areas of the vagal afferent pathway, including left brainstem, thalamus, temporal pole, amygdala, insula, hippocampus, and supplementary motor area for the interaction between ratings (high vs low) and session (verum vs sham stimulation). Significant activations were also found for the main effect of verum compared to sham stimulation in the left inferior and superior parietal cortex. These results demonstrate an effect of tVNS on food image processing even with a preceding short stimulation period. This is a necessary prerequisite for a therapeutic application of tVNS which has to be evaluated in longer-term studies.
Collapse
Affiliation(s)
- Helena Alicart
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), 08097, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, Campus Bellvitge, University of Barcelona, 08097, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM) , University of Lübeck , Ratzeburger Allee 160, Lübeck, 23562, Germany
| | - Martin Göttlich
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM) , University of Lübeck , Ratzeburger Allee 160, Lübeck, 23562, Germany
| | - Martina A Obst
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM) , University of Lübeck , Ratzeburger Allee 160, Lübeck, 23562, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max-Planck Institute for Metabolism Research, Cologne, 50931, Cologne, Germany
- Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD) , Cologne, 50931, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM) , University of Lübeck , Ratzeburger Allee 160, Lübeck, 23562, Germany.
| |
Collapse
|
25
|
Wever MCM, van Meer F, Charbonnier L, Crabtree DR, Buosi W, Giannopoulou A, Androutsos O, Johnstone AM, Manios Y, Meek CL, Holst JJ, Smeets PAM. Associations between ghrelin and leptin and neural food cue reactivity in a fasted and sated state. Neuroimage 2021; 240:118374. [PMID: 34245869 DOI: 10.1016/j.neuroimage.2021.118374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
Food cue exposure can trigger eating. Food cue reactivity (FCR) is a conditioned response to food cues and includes physiological responses and activation of reward-related brain areas. FCR can be affected by hunger and weight status. The appetite-regulating hormones ghrelin and leptin play a pivotal role in homeostatic as well as hedonic eating. We examined the association between ghrelin and leptin levels and neural FCR in the fasted and sated state and the association between meal-induced changes in ghrelin and neural FCR, and in how far these associations are related to BMI and HOMA-IR. Data from 109 participants from three European centers (age 50±18 y, BMI 27±5 kg/m2) who performed a food viewing task during fMRI after an overnight fast and after a standardized meal were analyzed. Blood samples were drawn prior to the viewing task in which high-caloric, low-caloric and non-food images were shown. Fasting ghrelin was positively associated with neural FCR in the inferior and superior occipital gyrus in the fasted state. This was partly attributable to BMI and HOMA-IR. These brain regions are involved in visual attention, suggesting that individuals with higher fasting ghrelin have heightened attention to food cues. Leptin was positively associated with high calorie FCR in the medial prefrontal cortex (PFC) in the fasted state and to neural FCR in the left supramarginal gyrus in the fasted versus sated state, when correcting for BMI and HOMA-IR, respectively. This PFC region is involved in assessing anticipated reward value, suggesting that for individuals with higher leptin levels high-caloric foods are more salient than low-caloric foods, but foods in general are not more salient than non-foods. There were no associations between ghrelin and leptin and neural FCR in the sated state, nor between meal-induced changes in ghrelin and neural FCR. In conclusion, we show modest associations between ghrelin and leptin and neural FCR in a relatively large sample of European adults with a broad age and BMI range. Our findings indicate that people with higher leptin levels for their weight status and people with higher ghrelin levels may be more attracted to high caloric foods when hungry. The results of the present study form a foundation for future studies to test whether food intake and (changes in) weight status can be predicted by the association between (mainly fasting) ghrelin and leptin levels and neural FCR.
Collapse
Affiliation(s)
- Mirjam C M Wever
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Floor van Meer
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Lisette Charbonnier
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Daniel R Crabtree
- The Rowett Institute, University of Aberdeen, Foresterhill Road AB25 2ZD, Scotland; Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness IV2 3JH, United Kingdom
| | - William Buosi
- The Rowett Institute, University of Aberdeen, Foresterhill Road AB25 2ZD, Scotland
| | - Angeliki Giannopoulou
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece
| | - Odysseas Androutsos
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece; Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala 42132, Greece
| | | | - Yannis Manios
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece
| | - Claire L Meek
- Department of Clinical Biochemistry, Cambridge University Hospitals, Cambridge, United Kingdom; Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0QQ, United Kingdom
| | - Jens J Holst
- NNF Center for Basic Metabolic Research and Research Section, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul A M Smeets
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | | |
Collapse
|
26
|
Han P, Roitzsch C, Horstmann A, Pössel M, Hummel T. Increased Brain Reward Responsivity to Food-Related Odors in Obesity. Obesity (Silver Spring) 2021; 29:1138-1145. [PMID: 33913254 DOI: 10.1002/oby.23170] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Food odors serve as powerful stimuli signaling the food quality and energy density and direct food-specific appetite and consumption. This study explored obesity-related brain activation in response to odors related to high- or low-energy-dense foods. METHODS Seventeen participants with obesity (BMI > 30 kg/m2 ; 4 males and 13 females) and twenty-one with normal weight (BMI < 25 kg/m2 ; 9 males and 12 females) underwent a functional magnetic resonance imaging scan in which they received chocolate (high-energy-dense food) and cucumber (low-energy-dense food) odor stimuli. Participants' olfactory and gustatory functions were assessed by the "Sniffin' Sticks" and "Taste Strips" tests, respectively. RESULTS Compared with normal-weight controls, participants with obesity had lower odor sensitivity (phenylethyl alcohol) and decreased odor discrimination ability. However, participants with obesity demonstrated greater brain activation in response to chocolate compared with cucumber odors in the bilateral inferior frontal operculum and cerebellar vermis, right ventral anterior insula extending to putamen, right middle temporal gyrus, and right supramarginal areas. CONCLUSIONS The present study provides preliminary evidence that obesity is associated with heightened brain activation of the reward and flavor processing areas in response to chocolate versus cucumber odors, possibly because of the higher energy density and reinforcing value of chocolate compared with cucumber.
Collapse
Affiliation(s)
- Pengfei Han
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, Technical University of Dresden, Dresden, Germany
- The Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Clemens Roitzsch
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, Technical University of Dresden, Dresden, Germany
| | - Annette Horstmann
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig University Medical Center, CRC 1052A5 'Obesity Mechanisms', Leipzig, Germany
| | - Maria Pössel
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thomas Hummel
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
27
|
Sewaybricker LE, Melhorn SJ, Rosenbaum JL, Askren MK, Tyagi V, Webb MF, De Leon MRB, Grabowski TJ, Schur EA. Reassessing relationships between appetite and adiposity in people at risk of obesity: A twin study using fMRI. Physiol Behav 2021; 239:113504. [PMID: 34147511 DOI: 10.1016/j.physbeh.2021.113504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neuroimaging studies suggest that appetitive drive is enhanced in obesity. OBJECTIVE To test if appetitive drive varies in direct proportion to the level of body adiposity after accounting for genetic factors that contribute to both brain response and obesity risk. SUBJECTS/METHODS Participants were adult monozygotic (n = 54) and dizygotic (n = 30) twins with at least one member of the pair with obesity. Body composition was assessed by dual-energy X-ray absorptiometry. Hormonal and appetite measures were obtained in response to a standardized meal that provided 20% of estimated daily caloric needs and to an ad libitum buffet meal. Pre- and post-meal functional magnetic resonance imaging (fMRI) assessed brain response to visual food cues in a set of a priori appetite-regulating regions. Exploratory voxelwise analyses outside a priori regions were performed with correction for multiple comparisons. RESULTS In a group of 84 adults, the majority with obesity (75%), body fat mass was not associated with hormonal responses to a meal (glucose, insulin, glucagon-like peptide-1 and ghrelin, all P>0.40), subjective feelings of hunger (β=-0.01 mm [95% CI -0.35, 0.34] P = 0.97) and fullness (β=0.15 mm [-0.15, 0.44] P = 0.33), or buffet meal intake in relation to estimated daily caloric needs (β=0.28% [-0.05, 0.60] P = 0.10). Body fat mass was also not associated with brain response to high-calorie food cues in appetite-regulating regions (Pre-meal β=-0.12 [-0.32, 0.09] P = 0.26; Post-meal β=0.18 [-0.02, 0.37] P = 0.09; Change by a meal β=0.29 [-0.02, 0.61] P = 0.07). Conversely, lower fat mass was associated with being weight reduced (β=-0.05% [-0.07, -0.03] P<0.001) and greater pre-meal activation to high-calorie food cues in the dorsolateral prefrontal cortex (Z = 3.63 P = 0.017). CONCLUSIONS In a large study of adult twins, the majority with overweight or obesity, the level of adiposity was not associated with excess appetitive drive as assessed by behavioral, hormonal, or fMRI measures.
Collapse
Affiliation(s)
- Leticia E Sewaybricker
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Jennifer L Rosenbaum
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary K Askren
- Departments of Radiology and Neurology, University of Washington, 1959 NE Pacific St. Seattle, WA, 98195 USA
| | - Vidhi Tyagi
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary F Webb
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Mary Rosalynn B De Leon
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA
| | - Thomas J Grabowski
- Departments of Radiology and Neurology, University of Washington, 1959 NE Pacific St. Seattle, WA, 98195 USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, 1959 NE Pacific St. Box 356420, Seattle, WA, 98195 USA.
| |
Collapse
|
28
|
Reents J, Pedersen A. Differences in Food Craving in Individuals With Obesity With and Without Binge Eating Disorder. Front Psychol 2021; 12:660880. [PMID: 34149552 PMCID: PMC8206470 DOI: 10.3389/fpsyg.2021.660880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Overeating behavior is supposedly a major contributing factor to weight gain and obesity. Binge eating disorder (BED) with reoccurring episodes of excessive overeating is strongly associated with obesity. Learning models of overeating behavior and BED assume that mere confrontation with food leads to a conditioned response that is experienced as food craving. Accordingly, individuals with obesity and BED were shown to have high trait food cravings. To date, little is known about differences in state food cravings and cue reactivity at the sight of palatable food in individuals with obesity and BED compared to individuals with obesity without BED. Therefore, the aim of our study was to examine differences in cue-induced, state and trait food cravings in people with obesity with and without BED. We found that all aspects of food cravings were more prevalent in individuals with obesity and BED than in individuals without BED. By implementing a food cue reactivity paradigm, our results show that individuals with obesity with BED have more cue-induced cravings than individuals with obesity without BED. Moreover, these cue-induced cravings in individuals with obesity and BED were highest for high-fat and high-sugar foods as opposed to low-calorie foods. Thus, our results emphasize the role of increased cue reactivity and craving at the sight of palatable foods in individuals with obesity and BED. Hence, our findings support etiological models of conditioned binge eating and are in line with interventions targeting cue reactivity in BED.
Collapse
Affiliation(s)
- Janina Reents
- Institut für Psychologie, Philosophische Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Anya Pedersen
- Institut für Psychologie, Philosophische Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
29
|
Abstract
In recent years, plenty of researches have reported in obese individuals with abnormal brain processes implicated in homeostatic regulation, reward, emotion, memory, attention, and executive function in eating behaviors. Thus, treating obesity cannot remain "brainless." Behavioral and psychological interventions activate the food reward, attention, and motivation system, leading to minimal weight loss and high relapse rates. Pharmacotherapy is an effective weight loss method and regulate brain activity but with concerns about its brain function safety problems. Obesity surgery, the most effective therapy currently available for obesity, shows pronounced effects on brain activity, such as deactivation of reward and attention system, and activation of inhibition control toward food cues. In this review, we present an overview of alterations in the brain after the three common weight loss methods.
Collapse
|
30
|
Lizia MS, Hemamalini AJ, Ravichandran L. Food cue images and subjective appetitive responses in obese children. Nutr Health 2021; 28:25-30. [PMID: 33827335 DOI: 10.1177/02601060211003985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Food decision-making is based on various intrinsic and extrinsic factors of an individual. Food preferences and food cue sensitivity influence energy intake, which in turn affects body weight. AIM The present study assessed the subjective appetite of obese children in response to food cue images. METHODS A total of 70 obese children (37 boys and 33 girls) of the age group 7-10 years were recruited for the study; 34 images of food items grouped under ten food blocks were used as cues to study the self-reported hunger, appetite and satiety sensations among the participants. A visual analogue scale (VAS) was used to measure participant responses for each food block. RESULTS The mean (standard deviation (SD)) body mass index-for-age 'Z' scores (BAZ) of the participants was found to be 2.15 (0.36). The subjective appetitive responses assessed using VAS showed that the hunger ratings of participants were found to be higher in response to images of cereals and cereal products (92.86%), and sweets (97.14%); satiety ratings of the participants were observed to be higher for milk and milk products (87.14%); cereals and savoury foods (78.57%); and higher appetite ratings of participants were recorded for sweets (97.14%) and cereals (92.86%). CONCLUSION Sophisticated neuroimaging techniques are well established in measuring appetite, but our study focused on the subjective analysis of appetite using cost-effective tools such as food cue images and visual analogue scales to further expand the research platform in appetite regulation and obesity.
Collapse
Affiliation(s)
- M Shiny Lizia
- Department of Clinical Nutrition, 204733Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - A J Hemamalini
- Department of Clinical Nutrition, 204733Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Latha Ravichandran
- Department of Paediatric Medicine, 204733Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| |
Collapse
|
31
|
Perszyk EE, Hutelin Z, Trinh J, Kanyamibwa A, Fromm S, Davis XS, Wall KM, Flack KD, DiFeliceantonio AG, Small DM. Fat and Carbohydrate Interact to Potentiate Food Reward in Healthy Weight but Not in Overweight or Obesity. Nutrients 2021; 13:1203. [PMID: 33917347 PMCID: PMC8067354 DOI: 10.3390/nu13041203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 01/30/2023] Open
Abstract
Prior work suggests that actual, but not estimated, energy density drives the reinforcing value of food and that energy from fat and carbohydrate can interact to potentiate reward. Here we sought to replicate these findings in an American sample and to determine if the effects are influenced by body mass index (BMI). Thirty participants with healthy weight (HW; BMI 21.92 ± 1.77; M ± SD) and 30 participants with overweight/obesity (OW/OB; BMI 29.42 ± 4.44) rated pictures of common American snacks in 120-kcal portions for liking, familiarity, frequency of consumption, expected satiety, healthiness, energy content, energy density, and price. Participants then completed an auction task where they bid for the opportunity to consume each food. Snacks contained either primarily carbohydrate, primarily fat, or roughly equal portions of fat and carbohydrate (combo). Replicating prior work, we found that participants with HW bid the most for combo foods in linear mixed model analyses. This effect was not observed among individuals with OW/OB. Additionally, in contrast with previous reports, our linear regression analyses revealed a negative relationship between the actual energy density of the snacks and bid amount that was mediated by food price. Our findings support altered macronutrient reinforcement in obesity and highlight potential influences of the food environment on the regulation of food reward.
Collapse
Affiliation(s)
- Emily E. Perszyk
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA; (E.E.P.); (Z.H.); (J.T.); (A.K.); (S.F.); (X.S.D.); (K.M.W.)
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Zach Hutelin
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA; (E.E.P.); (Z.H.); (J.T.); (A.K.); (S.F.); (X.S.D.); (K.M.W.)
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jessica Trinh
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA; (E.E.P.); (Z.H.); (J.T.); (A.K.); (S.F.); (X.S.D.); (K.M.W.)
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Arsene Kanyamibwa
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA; (E.E.P.); (Z.H.); (J.T.); (A.K.); (S.F.); (X.S.D.); (K.M.W.)
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Sophie Fromm
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA; (E.E.P.); (Z.H.); (J.T.); (A.K.); (S.F.); (X.S.D.); (K.M.W.)
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Xue S. Davis
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA; (E.E.P.); (Z.H.); (J.T.); (A.K.); (S.F.); (X.S.D.); (K.M.W.)
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kathryn M. Wall
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA; (E.E.P.); (Z.H.); (J.T.); (A.K.); (S.F.); (X.S.D.); (K.M.W.)
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kyle D. Flack
- Department of Dietetics and Human Nutrition, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40508, USA;
| | - Alexandra G. DiFeliceantonio
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, College of Agriculture and Life Sciences, Blacksburg, VA 24061, USA;
- Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, VA 24016, USA
| | - Dana M. Small
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA; (E.E.P.); (Z.H.); (J.T.); (A.K.); (S.F.); (X.S.D.); (K.M.W.)
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
32
|
Loos RJF, Burant C, Schur EA. Strategies to Understand the Weight-Reduced State: Genetics and Brain Imaging. Obesity (Silver Spring) 2021; 29 Suppl 1:S39-S50. [PMID: 33759393 PMCID: PMC8500189 DOI: 10.1002/oby.23101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022]
Abstract
Most individuals with obesity or overweight have difficulty maintaining weight loss. The weight-reduced state induces changes in many physiological processes that appear to drive weight regain. Here, we review the use of cell biology, genetics, and imaging techniques that are being used to begin understanding why weight regain is the normal response to dieting. As with obesity itself, weight regain has both genetic and environmental drivers. Genetic drivers for "thinness" and "obesity" largely overlap, but there is evidence for specific genetic loci that are different for each of these weight states. There is only limited information regarding the genetics of weight regain. Currently, most genetic loci related to weight point to the central nervous system as the organ responsible for determining the weight set point. Neuroimaging tools have proved useful in studying the contribution of the central nervous system to the weight-reduced state in humans. Neuroimaging technologies fall into three broad categories: functional, connectivity, and structural neuroimaging. Connectivity and structural imaging techniques offer unique opportunities for testing mechanistic hypotheses about changes in brain function or tissue structure in the weight-reduced state.
Collapse
Affiliation(s)
- Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles Burant
- Department of Internal Medicine, University of Washington, Seattle, Washington, USA
| | - Ellen A. Schur
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Cai S, Aris IM, Yuan WL, Tan KH, Godfrey KM, Gluckman PD, Shek LPC, Chong YS, Yap F, Fortier MV, Meaney MJ, Lee YS, Qiu A. Neonatal amygdala microstructure mediates the relationship between gestational glycemia and offspring adiposity. BMJ Open Diabetes Res Care 2021; 9:e001396. [PMID: 33888539 PMCID: PMC8070871 DOI: 10.1136/bmjdrc-2020-001396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 03/24/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION To determine if variations in the neonatal amygdala mediate the association between maternal antenatal glycemia and offspring adiposity in early childhood. RESEARCH DESIGN AND METHODS 123 non-obese pregnant women with no pregnancy complications aside from gestational diabetes underwent a 75 g 2-hour oral glucose tolerance test at 26-28 weeks' gestation. Volume and fractional anisotropy (FA) of the neonatal amygdala (5-17 days old) were measured by MRI. The Body Mass Index (BMI) z-scores and sum of skinfold thickness (subscapular and triceps) of these children were tracked up to 60 months of age (18, 24, 36, 48, 54 and 60 months). RESULTS Maternal fasting glucose levels were positively associated with the offspring's sum of skinfold thickness at age 48 months (β=3.12, 95% CI 0.18 to 6.06 mm) and 60 months (β=4.14, 95% CI 0.46 to 7.82 mm) and BMI z-scores at 48 months (β=0.94, 95% CI 0.03 to 1.85), 54 months (β=0.74, 95% CI 0.12 to 1.36) and 60 months (β=0.74, 95% CI 0.08 to 1.39). Maternal fasting glucose was negatively associated with the offspring's FA of the right amygdala (β=-0.019, 95% CI -0.036 to -0.003). Right amygdala FA was negatively associated with the sum of skinfold thickness in the offspring at age 48 months (β=-56.95, 95% CI -98.43 to -15.47 mm), 54 months (β=-46.18, 95% CI -88.57 to -3.78 mm), and 60 months (β=-53.69, 95% CI -105.74 to -1.64 mm). The effect sizes mediated by right amygdala FA between fasting glucose and sum of skinfolds were estimated at β=5.14 (95% CI 0.74 to 9.53) mm (p=0.022), β=4.40 (95% CI 0.08 to 8.72) (p=0.049) mm and β=4.56 (95% CI -0.17 to 9.29) mm (p=0.059) at 48, 54 and 60 months, respectively. CONCLUSIONS In the offspring of non-obese mothers, gestational fasting glucose concentration is negatively associated with neonatal right amygdala FA and positively associated with childhood adiposity. Neonatal right amygdala FA may be a potential mediator between maternal glycemia and childhood adiposity.
Collapse
Affiliation(s)
- Shirong Cai
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department for Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Wen Lun Yuan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore
- Duke-NUS Medical School, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- The Liggins Institute, The University of Auckland, Aukland, New Zealand
| | - Lynette Pei-Chi Shek
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department for Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fabian Yap
- Department of Pediatric Endocrinology, KK Women's and Children's Hospital, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Departments of Psychiatry and Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|
34
|
Legget KT, Wylie KP, Cornier MA, Berman BD, Tregellas JR. Altered between-network connectivity in individuals prone to obesity. Physiol Behav 2021; 229:113242. [PMID: 33157075 PMCID: PMC7775284 DOI: 10.1016/j.physbeh.2020.113242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Investigating intrinsic brain functional connectivity may help identify the neurobiology underlying cognitive patterns and biases contributing to obesity propensity. To address this, the current study used a novel whole-brain, data-driven approach to examine functional connectivity differences in large-scale network interactions between obesity-prone (OP) and obesity-resistant (OR) individuals. METHODS OR (N = 24) and OP (N = 25) adults completed functional magnetic resonance imaging (fMRI) during rest. Large-scale brain networks were identified using independent component analysis (ICA). Voxel-specific between-network connectivity analysis assessed correlations between ICA component time series' and individual voxel time series, identifying regions strongly connected to many networks, i.e., "hubs". RESULTS Significant group differences in between-network connectivity (OP vs. OR; FDR-corrected) were observed in bilateral basal ganglia (left: q = 0.009; right: q = 0.010) and right dorsolateral prefrontal cortex (dlPFC; q = 0.026), with OP>OR. Basal ganglia differences were largely driven by a more strongly negative correlation with a lateral sensorimotor network in OP, with dlPFC differences driven by a more strongly negative correlation with an inferior visual network in OP. CONCLUSIONS Greater between-network connectivity was observed in the basal ganglia and dlPFC in OP, driven by stronger associations with lateral sensorimotor and inferior visual networks, respectively. This may reflect a disrupted balance between goal-directed and habitual control systems and between internal/external monitoring processes.
Collapse
Affiliation(s)
- Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States.
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Marc-Andre Cornier
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Brian D Berman
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Department of Neurology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Neurology Section, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| |
Collapse
|
35
|
Charroud C, Poulen G, Sanrey E, Menjot de Champfleur N, Deverdun J, Coubes P, Le Bars E. Task- and Rest-based Functional Brain Connectivity in Food-related Reward Processes among Healthy Adolescents. Neuroscience 2021; 457:196-205. [PMID: 33484819 DOI: 10.1016/j.neuroscience.2021.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
It is known that the nucleus accumbens, orbitofrontal cortex and insula play a role in food-related reward processes. Although their interconnectedness would be an ideal topic for understanding food intake mechanisms, it nevertheless remains unclear especially in adolescent. Therefore, this study aims to investigate the effect of hunger on functional connectivity in healthy adolescents using task- and rest-based imaging. Fifteen participants underwent two MRI sessions, pre-lunch (hunger) and post-lunch (satiety), including food cue task and resting-state. During task- and rest-based imaging, functional connectivity was greater when hungry as opposed to satiated between the right posterior insula/nucleus accumbens, suggesting involvement of salient interoceptive stimuli signals. During task-based imaging, an increase was observed in functional connectivity when hungry as opposed to satiated between the medial and lateral orbitofrontal cortex which contributes to the perception of food deprivation as a frustration. A decrease was identified when hungry as opposed to satiated in functional connectivity in the right anterior orbitofrontal/accumbens and posterior insula/medial orbitofrontal cortices reflecting suppression of the affective and sensorial information. Conversely, functional connectivity was increased during aversive stimuli between the right medial orbitofrontal cortex and right posterior insula when hungry as opposed to satiated. This suggests that the value of valence could occur in the shift in connectivity between these two regions. In addition, during rest-based imaging, a left-sided lateralization was reported (accumbens/lateral orbitofrontal and accumbens/posterior insula) when hungry as opposed to satiated which may represent changes in internal state due to focus on the benefit of an upcoming meal.
Collapse
Affiliation(s)
- Céline Charroud
- Unité de recherche sur les comportements et mouvements anormaux (URCMA, IGF, INSERM U661 UMR 5203), Department of Neurosurgery, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France.
| | - Gaëtan Poulen
- Unité de recherche sur les comportements et mouvements anormaux (URCMA, IGF, INSERM U661 UMR 5203), Department of Neurosurgery, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France; Unité de pathologie cérébrale résistante, Department of Neurosurgery, Montpellier University Hospital Center, Montpellier, France
| | - Emily Sanrey
- Unité de recherche sur les comportements et mouvements anormaux (URCMA, IGF, INSERM U661 UMR 5203), Department of Neurosurgery, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France; Unité de pathologie cérébrale résistante, Department of Neurosurgery, Montpellier University Hospital Center, Montpellier, France
| | - Nicolas Menjot de Champfleur
- Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Jérémy Deverdun
- Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Philippe Coubes
- Unité de recherche sur les comportements et mouvements anormaux (URCMA, IGF, INSERM U661 UMR 5203), Department of Neurosurgery, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France; Unité de pathologie cérébrale résistante, Department of Neurosurgery, Montpellier University Hospital Center, Montpellier, France
| | - Emmanuelle Le Bars
- Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| |
Collapse
|
36
|
Giuliani NR, Cosme D, Merchant JS, Dirks B, Berkman ET. Brain Activity Associated With Regulating Food Cravings Predicts Changes in Self-Reported Food Craving and Consumption Over Time. Front Hum Neurosci 2020; 14:577669. [PMID: 33281580 PMCID: PMC7689031 DOI: 10.3389/fnhum.2020.577669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023] Open
Abstract
Neural patterns associated with viewing energy-dense foods can predict changes in eating-related outcomes. However, most research on this topic is limited to one follow-up time point, and single outcome measures. The present study seeks to add to that literature by employing a more refined assessment of food craving and consumption outcomes along with a more detailed neurobiological model of behavior change over several time points. Here, a community sample of 88 individuals (age: M = 39.17, SD = 3.47; baseline BMI: M = 31.5, SD = 3.9, range 24–42) with higher body mass index (BMI) performed a food craving reactivity and regulation task while undergoing functional magnetic resonance imaging. At that time—and 1, 3, and 6 months later—participants reported craving for and consumption of healthy and unhealthy foods via the Food Craving Inventory (FCI) and ASA24 (N at 6 months = 52–55 depending on the measure). A priori hypotheses that brain activity associated with both viewing and regulating personally desired unhealthy, energy-dense foods would be associated with self-reported craving for and consumption of unhealthy foods at baseline were not supported by the data. Instead, regression models controlling for age, sex, and BMI demonstrated that brain activity across several regions measured while individuals were regulating their desires for unhealthy food was associated with the self-reported craving for and consumption of healthy food. The hypothesis that vmPFC activity would predict patterns of healthier eating was also not supported. Instead, linear mixed models controlling for baseline age and sex, as well as changes in BMI, revealed that more regulation-related activity in the dlPFC, dACC, IFG, and vmPFC at baseline predicted decreases in the craving for and consumption of healthy foods over the course of 6 months.
Collapse
Affiliation(s)
- Nicole R Giuliani
- Department of Special Education and Clinical Sciences, Prevention Science Institute, University of Oregon, Eugene, OR, United States
| | - Danielle Cosme
- Communication Neuroscience Lab, Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, United States
| | - Junaid S Merchant
- Developmental Social Cognitive Neuroscience Lab, Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, College Park, MD, United States
| | - Bryce Dirks
- Brain Connectivity and Cognition Lab, Department of Psychology, University of Miami, Miami, FL, United States
| | - Elliot T Berkman
- Social and Affective Neuroscience Lab, Department of Psychology, Center for Translational Neuroscience, University of Oregon, Eugene, OR, United States
| |
Collapse
|
37
|
Beaumont JD, Davis D, Dalton M, Nowicky A, Russell M, Barwood MJ. The effect of transcranial direct current stimulation (tDCS) on food craving, reward and appetite in a healthy population. Appetite 2020; 157:105004. [PMID: 33068669 DOI: 10.1016/j.appet.2020.105004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 11/15/2022]
Abstract
The ability to control hedonic appetite is associated with executive functioning, originating in the prefrontal cortex (PFC). These rewarding components of food can override homeostatic mechanisms, potentiating obesogenic behaviours. Indeed, those susceptible to overconsumption appear to have PFC hypo-activation. Transcranial direct current stimulation (tDCS) over the dorsolateral PFC (DLPFC) has been shown to reduce food craving and consumption, potentially via attenuating this reward response. We examined the effects of stimulation on food reward and craving using a healthy-weight cohort. This study is amongst the first to explore the effects of tDCS on explicit and implicit components of reward for different food categories. Twenty-one healthy-weight participants (24 ± 7 years, 22.8 ± 2.3 kg m-2) completed two sessions involving double-blind, randomised and counterbalanced anodal or sham tDCS over the right DLPFC, at 2 mA for 20 min. Food craving (Food Craving Questionnaire-State), reward (Leeds Food Preference Questionnaire), and subjective appetite (100 mm visual analogue scales) were measured pre- and post-tDCS. Eating behaviour trait susceptibility was assessed using the Three Factor Eating Questionnaire-Short Form, Control of Eating Questionnaire, and Food Craving Questionnaire-Trait-reduced. Stimulation did not alter food craving, reward or appetite in healthy-weight participants who displayed low susceptibility to overconsumption, with low trait craving, good craving control, and low uncontrolled eating and emotional eating behaviour. Implicit and explicit reward were reliable measures of hedonic appetite, suggesting these are robust targets for future tDCS research. These findings suggest that applying tDCS over the DLPFC does not change food reward response in individuals not at risk for overconsumption, and future work should focus on those at risk of overconsumption who may be more responsive to the effects of tDCS on hedonic appetite.
Collapse
Affiliation(s)
- Jordan D Beaumont
- School of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK.
| | - Danielle Davis
- School of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| | - Michelle Dalton
- School of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| | - Alexander Nowicky
- Centre for Cognitive Neuroscience, Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| | - Martin J Barwood
- School of Social and Health Sciences, Leeds Trinity University, Leeds, LS18 5HD, UK
| |
Collapse
|
38
|
A L, Sf M, Fh W, J M, J B. Love at first taste: Activation in reward-related brain regions during single-trial naturalistic appetitive conditioning in humans. Physiol Behav 2020; 224:113014. [PMID: 32553642 DOI: 10.1016/j.physbeh.2020.113014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022]
Abstract
Palatable food can trigger appetitive responses, such as salivation and approach tendencies. Though evolutionarily functional, these conditioned responses can encourage overeating and obesity when food is abundant. The current study examines the neural correlates of 'denovo' Pavlovian appetitive conditioning, pairing one class of unknown objects (conditioned stimuli, CS) with their sweet taste (unconditioned stimulus, US) during a single trial. To do so, 23 participants consumed unknown (marzipan) objects of one particular color (CS+) while only interacting with control stimuli of different color and shape (CS-). After this single-trial conditioning procedure, participants viewed and rated images of the marzipan figures and the control objects during functional magnetic resonance imaging (fMRI). Relative to the CS-, the CS+ elicited stronger activation in the dorsal striatum, a brain region associated with cue-reward coupling. Furthermore, conditioning effects in subjective 'craving', defined as increased palatability and desire to eat, were observed, and these were positively related to conditioning effects in the amygdala, a brain region associated with the need-dependent value of a reward. Thus, the study identified reward-related brain regions involved in single-trial appetitive learning, thereby providing a potential mechanism that contributes to the etiology of food craving. These findings might help to understand clinically relevant food cravings in individuals with eating or weight related concerns and might support the development of extinction based treatments.
Collapse
Affiliation(s)
- Lender A
- Department of Psychology, Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Miedl Sf
- Department of Psychology, Division of Clinical Psychology and Psychopathology, Paris-Lodron-University of Salzburg, Hellbrunner Str. 34, 15020 Salzburg, Austria
| | - Wilhelm Fh
- Department of Psychology, Division of Clinical Psychology and Psychopathology, Paris-Lodron-University of Salzburg, Hellbrunner Str. 34, 15020 Salzburg, Austria
| | - Miller J
- Department of Psychology, Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Blechert J
- Department of Psychology, Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| |
Collapse
|
39
|
Kleinhans NM, Sweigert J, Blake M, Douglass B, Doane B, Reitz F, Larimer M. FMRI activation to cannabis odor cues is altered in individuals at risk for a cannabis use disorder. Brain Behav 2020; 10:e01764. [PMID: 32862560 PMCID: PMC7559640 DOI: 10.1002/brb3.1764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The smell of cannabis is a cue with universal relevance to cannabis users. However, most cue reactivity imaging studies have solely utilized visual images, auditory imagery scripts, or tactile cues in their experiments. This study introduces a multimodal cue reactivity paradigm that includes picture, odor, and bimodal picture + odor cues. METHODS Twenty-eight adults at risk for cannabis use disorder (CUD; defined as at least weekly use and Substance Involvement Score of ≥4 on the Cannabis sub-test of the Alcohol, Smoking and Substance Involvement Screening Test) and 26 cannabis-naive controls were exposed to cannabis and floral cues during event-related fMRI. Between-group differences in fMRI activation and correlations were tested using FMRIB's Local Analyses of Mixed Effects and corrected for multiple comparisons using a voxelwise threshold of z > 2.3 and a corrected cluster threshold of p < .05. RESULTS Both visual and olfactory modalities resulted in significant activation of craving and reward systems, with cannabis odor cues eliciting a significantly greater response in regions mediating anticipation and reward (nucleus accumbens, pallidum, putamen, and anterior insular cortex, supplementary motor area, angular gyrus and superior frontal gyrus) and cannabis picture cues eliciting a significantly greater response in the occipital cortex and amygdala. Furthermore, the CUD group showed significantly increased activation in the ventral tegmental area (VTA), the insula, and the pallidum compared to controls. Within the CUD group, activation in the insula, anterior cingulate, and occipital cortex to bimodal cannabis cues was significantly correlated with self-reported craving. CONCLUSION Our multimodal cue reactivity paradigm is sensitive to neural adaptations associated with problematic cannabis use.
Collapse
Affiliation(s)
- Natalia M Kleinhans
- Department of Radiology, University of Washington, Seattle, WA, USA.,Integrated Brain Imaging Center, University of Washington, Seattle, WA, USA.,Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Julia Sweigert
- Department of Radiology, University of Washington, Seattle, WA, USA.,Integrated Brain Imaging Center, University of Washington, Seattle, WA, USA
| | - Matthew Blake
- Department of Radiology, University of Washington, Seattle, WA, USA.,Integrated Brain Imaging Center, University of Washington, Seattle, WA, USA
| | | | | | - Fredrick Reitz
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Mary Larimer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
Schur EA, Melhorn SJ, Scholz K, De Leon MRB, Elfers CT, Rowland MG, Saelens BE, Roth CL. Child neurobiology impacts success in family-based behavioral treatment for children with obesity. Int J Obes (Lond) 2020; 44:2011-2022. [PMID: 32713944 PMCID: PMC7530004 DOI: 10.1038/s41366-020-0644-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/08/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
Background and Objectives: Family-based behavioral treatment (FBT) is the recommended treatment for children with common obesity. However, there is a large variability in short- and long-term treatment response and mechanisms for unsuccessful treatment outcomes are not fully understood. In this study, we tested if brain response to visual food cues among children with obesity before treatment predicted weight or behavioral outcomes during a 6-mo. behavioral weight management program and/or long-term relative weight maintenance over a 1-year follow-up period. Subjects and Methods: Thirty-seven children with obesity (age 9–11y, 62% male) who entered active FBT (attended 2 or more sessions) and had outcome data. Brain activation was assessed at pre-treatment by functional magnetic resonance imaging across an a priori set of appetite-processing brain regions that included the ventral and dorsal striatum, medial orbitofrontal cortex, amygdala, substantia nigra/ventral tegmental area and insula in response to viewing food images before and after a standardized meal. Results: Children with more robust reductions in brain activation to high-calorie food cue images following a meal had greater declines in BMI z-score during FBT (r= 0.42; 95% CI: 0.09, 0.66; P=0.02) and greater improvements in Healthy Eating Index scores (r= −0.41; 95% CI: −0.67, −0.06; P=0.02). In whole-brain analyses, greater activation in the ventromedial prefrontal cortex, specifically by high-calorie food cues, was predictive of better treatment outcomes (whole-brain cluster corrected P=0.02). There were no significant predictors of relative weight maintenance and initial behavioral or hormonal measures did not predict FBT outcomes. Conclusions: Children’s brain responses to a meal prior to obesity treatment were related to treatment-based weight outcomes, suggesting that neurophysiologic factors and appetitive drive, more so than initial hormone status or behavioral characteristics, limit intervention success.
Collapse
Affiliation(s)
- Ellen A Schur
- Division of General Internal Medicine, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA.
| | - Susan J Melhorn
- Division of General Internal Medicine, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
| | - Kelley Scholz
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Mary Rosalynn B De Leon
- Division of General Internal Medicine, Department of Medicine, University of Washington, 750 Republican St, Box 358062, Seattle, WA, 98109, USA
| | - Clinton T Elfers
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Maya G Rowland
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Brian E Saelens
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA.,Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Christian L Roth
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA.,Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| |
Collapse
|
41
|
Wall KM, Farruggia MC, Perszyk EE, Kanyamibwa A, Fromm S, Davis XS, Dalenberg JR, DiFeliceantonio AG, Small DM. No evidence for an association between obesity and milkshake liking. Int J Obes (Lond) 2020; 44:1668-1677. [PMID: 32398755 PMCID: PMC7387147 DOI: 10.1038/s41366-020-0583-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prevailing models of obesity posit that hedonic signals override homeostatic mechanisms to promote overeating in today's food environment. What researchers mean by "hedonic" varies considerably, but most frequently refers to an aggregate of appetitive events including incentive salience, motivation, reinforcement, and perceived pleasantness. Here we define hedonic as orosensory pleasure experienced during eating and set out to test whether there is a relationship between adiposity and the perceived pleasure of a palatable and energy-dense milkshake. METHODS The perceived liking, wanting, and intensity of two palatable and energy-dense milkshakes were assessed using the Labeled Hedonic Scale (1), visual analog scale (VAS), and Generalized Labeled Magnitude Scale (2) in 110 individuals ranging in body mass index (BMI) from 19.3 to 52.1 kg/m2. Waist circumference, waist-hip ratio, and percent body fat were also measured. Importantly, unlike the majority of prior studies, we attempted to standardize internal state by instructing participants to arrive to the laboratory neither hungry nor full and at least 1-h fasted. Data were analyzed with general linear and linear mixed effects models (GLMs). Hunger ratings were also examined prior to hedonic measurement and included as covariates in our analyses. RESULTS We identified a significant association between ratings of hunger and milkshake liking and wanting. By contrast, we found no evidence for a relationship between any measure of adiposity and ratings of milkshake liking, wanting, or intensity. CONCLUSIONS We conclude that adiposity is not associated with the pleasure experienced during consumption of our energy-dense and palatable milkshakes. Our results provide further evidence against the hypothesis that heightened hedonic signals drive weight gain.
Collapse
Affiliation(s)
- Kathryn M Wall
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.,Modern Diet and Physiology Research Center, New Haven, CT, 06519, USA
| | - Michael C Farruggia
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.,Modern Diet and Physiology Research Center, New Haven, CT, 06519, USA.,Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT, USA
| | - Emily E Perszyk
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.,Modern Diet and Physiology Research Center, New Haven, CT, 06519, USA.,Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT, USA
| | - Arsene Kanyamibwa
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.,Modern Diet and Physiology Research Center, New Haven, CT, 06519, USA
| | - Sophie Fromm
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.,Modern Diet and Physiology Research Center, New Haven, CT, 06519, USA
| | - Xue S Davis
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.,Modern Diet and Physiology Research Center, New Haven, CT, 06519, USA
| | - Jelle R Dalenberg
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.,Modern Diet and Physiology Research Center, New Haven, CT, 06519, USA
| | - Alexandra G DiFeliceantonio
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.,Modern Diet and Physiology Research Center, New Haven, CT, 06519, USA
| | - Dana M Small
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA. .,Modern Diet and Physiology Research Center, New Haven, CT, 06519, USA. .,Interdepartmental Neuroscience Program, Yale University, 333 Cedar Street, New Haven, CT, USA. .,Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
42
|
Sensitivity to sweetness correlates to elevated reward brain responses to sweet and high-fat food odors in young healthy volunteers. Neuroimage 2020; 208:116413. [DOI: 10.1016/j.neuroimage.2019.116413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022] Open
|
43
|
Abstract
The conscious perception of the hedonic sensory properties of caloric foods is commonly believed to guide our dietary choices. Current and traditional models implicate the consciously perceived hedonic qualities of food as driving overeating, whereas subliminal signals arising from the gut would curb our uncontrolled desire for calories. Here we review recent animal and human studies that support a markedly different model for food reward. These findings reveal in particular the existence of subcortical body-to-brain neural pathways linking gastrointestinal nutrient sensors to the brain's reward regions. Unexpectedly, consciously perceptible hedonic qualities appear to play a less relevant, and mostly transient, role in food reinforcement. In this model, gut-brain reward pathways bypass cranial taste and aroma sensory receptors and the cortical networks that give rise to flavor perception. They instead reinforce behaviors independently of the cognitive processes that support overt insights into the nature of our dietary decisions.
Collapse
Affiliation(s)
- Ivan E. de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
| | - Mark Schatzker
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
| | - Dana M. Small
- Modern Diet and Physiology Research Center, Yale University, New Haven, Connecticut 06511, USA
- Departments of Psychiatry and Psychology, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
44
|
Roth CL, Melhorn SJ, Elfers CT, Scholz K, De Leon MRB, Rowland M, Kearns S, Aylward E, Grabowski TJ, Saelens BE, Schur EA. Central Nervous System and Peripheral Hormone Responses to a Meal in Children. J Clin Endocrinol Metab 2019; 104:1471-1483. [PMID: 30418574 PMCID: PMC6435098 DOI: 10.1210/jc.2018-01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
CONTEXT Behavioral studies suggest that responses to food consumption are altered in children with obesity (OB). OBJECTIVE To test central nervous system and peripheral hormone response by functional MRI and satiety-regulating hormone levels before and after a meal. DESIGN AND SETTING Cross-sectional study comparing children with OB and children of healthy weight (HW) recruited from across the Puget Sound region of Washington. PARTICIPANTS Children (9 to 11 years old; OB, n = 54; HW, n = 22), matched for age and sex. INTERVENTION AND OUTCOME MEASURES Neural activation to images of high- and low-calorie food and objects was evaluated across a set of a priori appetite-processing regions that included the ventral and dorsal striatum, amygdala, substantia nigra/ventral tegmental area, insula, and medial orbitofrontal cortex. Premeal and postmeal hormones (insulin, peptide YY, glucagon-like peptide-1, active ghrelin) were measured. RESULTS In response to a meal, average brain activation by high-calorie food cues vs objects in a priori regions was reduced after meals in children of HW (Z = -3.5, P < 0.0001), but not in children with OB (z = 0.28, P = 0.78) despite appropriate meal responses by gut hormones. Although premeal average brain activation by high-calorie food cues was lower in children with OB vs children of HW, postmeal activation was higher in children with OB (Z = -2.1, P = 0.04 and Z = 2.3, P = 0.02, respectively). An attenuated central response to a meal was associated with greater degree of insulin resistance. CONCLUSIONS Our data suggest that children with OB exhibit an attenuated central, as opposed to gut hormone, response to a meal, which may predispose them to overconsumption of food or difficulty with weight loss.
Collapse
Affiliation(s)
- Christian L Roth
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Correspondence and Reprint Requests: Christian L. Roth, MD, Seattle Children’s Research Institute, 1900 Ninth Avenue, Seattle, Washington 98101. E-mail:
| | - Susan J Melhorn
- Department of Medicine, General Internal Medicine, University of Washington, Seattle, Washington
| | | | - Kelley Scholz
- Seattle Children’s Research Institute, Seattle, Washington
| | - Mary Rosalynn B De Leon
- Department of Medicine, General Internal Medicine, University of Washington, Seattle, Washington
| | - Maya Rowland
- Seattle Children’s Research Institute, Seattle, Washington
| | - Sue Kearns
- Seattle Children’s Research Institute, Seattle, Washington
| | | | - Thomas J Grabowski
- Department of Radiology, Magnetic Resonance Research Laboratory, University of Washington, Seattle, Washington
| | | | - Ellen A Schur
- Department of Medicine, General Internal Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
45
|
Smeets PAM, Dagher A, Hare TA, Kullmann S, van der Laan LN, Poldrack RA, Preissl H, Small D, Stice E, Veldhuizen MG. Good practice in food-related neuroimaging. Am J Clin Nutr 2019; 109:491-503. [PMID: 30834431 PMCID: PMC7945961 DOI: 10.1093/ajcn/nqy344] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/22/2017] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The use of neuroimaging tools, especially functional magnetic resonance imaging, in nutritional research has increased substantially over the past 2 decades. Neuroimaging is a research tool with great potential impact on the field of nutrition, but to achieve that potential, appropriate use of techniques and interpretation of neuroimaging results is necessary. In this article, we present guidelines for good methodological practice in functional magnetic resonance imaging studies and flag specific limitations in the hope of helping researchers to make the most of neuroimaging tools and avoid potential pitfalls. We highlight specific considerations for food-related studies, such as how to adjust statistically for common confounders, like, for example, hunger state, menstrual phase, and BMI, as well as how to optimally match different types of food stimuli. Finally, we summarize current research needs and future directions, such as the use of prospective designs and more realistic paradigms for studying eating behavior.
Collapse
Affiliation(s)
- Paul A M Smeets
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, NL,Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands,Address correspondence to PAMS (e-mail: )
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Todd A Hare
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research, Tübingen, Germany
| | - Laura N van der Laan
- Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research, Tübingen, Germany
| | - Dana Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | | | | |
Collapse
|
46
|
Stice E, Burger K. Neural vulnerability factors for obesity. Clin Psychol Rev 2019; 68:38-53. [PMID: 30587407 PMCID: PMC6397091 DOI: 10.1016/j.cpr.2018.12.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/05/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
Multiple theories identify neural vulnerability factors that may increase risk for overeating and weight gain. Early cross-sectional neuroimaging studies were unable to determine whether aberrant neural responsivity was a risk factor for or a consequence of overeating. More recent obesity risk, prospective, repeated-measures, and experimental neuroimaging studies with humans have advanced knowledge of etiologic processes and neural plasticity resulting from overeating. Herein, we review evidence from these more rigorous human neuroimaging studies, in conjunction with behavioral measures reflecting neural function, as well as experiments with animals that investigated neural vulnerability theories for overeating. Findings provide support for the reward surfeit theory that posits that individuals at risk for obesity initially show hyper-responsivity of reward circuitry to high-calorie food tastes, which theoretically drives elevated intake of such foods. However, findings provide little support for the reward deficit theory that postulates that individuals at risk for obesity show an initial hypo-responsivity of reward circuitry that motives overeating. Further, results provide support for the incentive sensitization and dynamic vulnerability theories that propose that overconsumption of high-calorie foods results in increased reward and attention region responsivity to cues that are associated with hedonic reward from intake of these high-calorie foods via conditioning, as well as a simultaneous decrease in reward region responsivity to high-calorie food tastes. However, there is little evidence that this induced reduction in reward region response to high-calorie food tastes drives an escalation in overeating. Finally, results provide support for the theory that an initial deficit in inhibitory control and a bias for immediate reward contribute to overconsumption of high-calorie foods. Findings imply that interventions that reduce reward and attention region responsivity to food cues and increase inhibitory control should reduce overeating and excessive weight gain, an intervention theory that is receiving support in randomized trials.
Collapse
Affiliation(s)
- Eric Stice
- Oregon Research Institute, Eugene, OR, USA.
| | - Kyle Burger
- University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
47
|
The corticosteroid prednisolone increases amygdala and insula reactivity to food approach signals in healthy young men. Psychoneuroendocrinology 2019; 99:154-165. [PMID: 30245328 DOI: 10.1016/j.psyneuen.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/22/2022]
Abstract
Short- and long-term treatment with glucocorticoids is widely used in clinical practice and frequently induces features of iatrogenic Cushing syndrome, such as abdominally centered weight gain. Despite decades of glucocorticoids usage, the mechanisms underlying these side effects are still only partly understood. One possibility is that glucocorticoids impact subcortical (hypothalamus, amygdala, insula) and cortical (orbitofrontal and cingulate cortex) brain regions involved in appetite regulation and reward processing. In the present study, we used functional magnetic resonance imaging (fMRI) to study the acute effects of a prednisolone infusion on reactivity of brain reward systems to food stimuli. Twenty healthy normal-weight men were tested in a randomized, double-blind, cross-over study. After an overnight fast and infusion of either 250 mg prednisolone or placebo (always administered between 8 and 9 A M), fMRI scans were taken while presenting food and object pictures in a Go/NoGo (GNG) task. At home, participants were asked to register what they had eaten. On the following morning they came back to the lab and had a supervised ad libitum breakfast at a standardized buffet. Food-Go in contrast to Object-Go pictures yielded increased blood oxygen level dependent (BOLD) activity in hippocampus, amygdala, orbitofrontal cortex, insula and anterior cingulate cortex. Prednisolone increased activation in the bilateral amygdala and right insula for approach-associated food pictures. The buffet test did not reveal significant differences in calorie consumption or preferences of different macronutrients. However, prednisolone-induced insula reactivity to Food-Go images was associated with greater caloric intake, both at home and in the standardized buffet. In sum, we observed a specific effect of prednisolone on the BOLD response of the amygdala and insula to approach-associated food stimuli. As these brain areas have previously been implicated in hedonic eating, the present pattern of results may reflect an increased anticipated reward value of food modulated by glucocorticoids. These effects might potentially drive increased food intake and weight gain under prolonged glucocorticoid treatment.
Collapse
|
48
|
Slow Down: Behavioural and Physiological Effects of Reducing Eating Rate. Nutrients 2018; 11:nu11010050. [PMID: 30591684 PMCID: PMC6357517 DOI: 10.3390/nu11010050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022] Open
Abstract
Slowing eating rate appears to be an effective strategy for reducing food intake. This feasibility study investigated the effect of eating rate on post-meal responses using functional magnetic resonance imaging (fMRI), plasma gastrointestinal hormone concentrations, appetite ratings, memory for recent eating, and snack consumption. Twenty-one participants (mean age 23 years with healthy body mass index) were randomly assigned to consume a 600 kcal meal at either a “normal” or “slow” rate (6 vs. 24 min). Immediately afterwards, participants rated meal enjoyment and satisfaction. FMRI was performed 2-h post-meal during a memory task about the meal. Appetite, peptide YY, and ghrelin were measured at baseline and every 30 min for 3 h. Participants were given an ad-libitum snack three hours post-meal. Results were reported as effect sizes (Cohen’s d) due to the feasibility sample size. The normal rate group found the meal more enjoyable (effect size = 0.5) and satisfying (effect size = 0.6). Two hours post-meal, the slow rate group reported greater fullness (effect size = 0.7) and more accurate portion size memory (effect sizes = 0.4), with a linear relationship between time taken to make portion size decisions and the BOLD response in satiety and reward brain regions. Ghrelin suppression post-meal was greater in the slow rate group (effect size = 0.8). Three hours post-meal, the slow rate group consumed on average 25% less energy from snacks (effect size = 0.5). These data offer novel insights about mechanisms underlying how eating rate affects food intake and have implications for the design of effective weight-management interventions.
Collapse
|
49
|
Perlaki G, Molnar D, Smeets PAM, Ahrens W, Wolters M, Eiben G, Lissner L, Erhard P, van Meer F, Herrmann M, Janszky J, Orsi G, on behalf of the I.Family Consortium. Volumetric gray matter measures of amygdala and accumbens in childhood overweight/obesity. PLoS One 2018; 13:e0205331. [PMID: 30335775 PMCID: PMC6193643 DOI: 10.1371/journal.pone.0205331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/24/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives Neuroimaging data suggest that pediatric overweight and obesity are associated with morphological alterations in gray matter (GM) brain structures, but previous studies using mainly voxel-based morphometry (VBM) showed inconsistent results. Here, we aimed to examine the relationship between youth obesity and the volume of predefined reward system structures using magnetic resonance (MR) volumetry. We also aimed to complement volumetry with VBM-style analysis. Methods Fifty-one Caucasian young subjects (32 females; mean age: 13.8±1.9, range: 10.2–16.5 years) were included. Subjects were selected from a subsample of the I.Family study examined in the Hungarian center. A T1-weighted 1 mm3 isotropic resolution image was acquired. Age- and sex-standardized body mass index (zBMI) was assessed at the day of MRI and ~1.89 years (mean±SD: 689±188 days) before the examination. Obesity related GM alterations were investigated using MR volumetry in five predefined brain structures presumed to play crucial roles in body weight regulation (hippocampus, amygdala, accumbens, caudate, putamen), as well as whole-brain and regional VBM. Results The volumes of accumbens and amygdala showed significant positive correlations with zBMI, while their GM densities were inversely related to zBMI. Voxel-based GM mass also showed significant negative correlation with zBMI when investigated in the predefined amygdala region, but this relationship was mediated by GM density. Conclusions Overweight/obesity related morphometric brain differences already seem to be present in children/adolescents. Our work highlights the disparity between volume and VBM-derived measures and that GM mass (combination of volume and density) is not informative in the context of obesity related volumetric changes. To better characterize the association between childhood obesity and GM morphometry, a combination of volumetric segmentation and VBM methods, as well as future longitudinal studies are necessary. Our results suggest that childhood obesity is associated with enlarged structural volumes, but decreased GM density in the reward system.
Collapse
Affiliation(s)
- Gabor Perlaki
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
- * E-mail:
| | - Denes Molnar
- Department of Pediatrics, University of Pecs, Medical School, Pecs, Hungary
| | - Paul A. M. Smeets
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Division of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
| | - Gabriele Eiben
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine and Public Health, School of Health and Education, University of Skövde, Skövde, Sweden
| | - Lauren Lissner
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Erhard
- Center for Cognitive Sciences, University of Bremen, Bremen, Germany
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
| | - Floor van Meer
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manfred Herrmann
- Center for Cognitive Sciences, University of Bremen, Bremen, Germany
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
| | - Jozsef Janszky
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
| | - Gergely Orsi
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
| | | |
Collapse
|
50
|
Abstract
OBJECTIVE To elucidate the mechanisms of how snack foods may induce non-homeostatic food intake, we used resting state functional magnetic resonance imaging (fMRI), as resting state networks can individually adapt to experience after short time exposures. In addition, we used graph theoretical analysis together with machine learning techniques (support vector machine) to identifying biomarkers that can categorize between high-caloric (potato chips) vs. low-caloric (zucchini) food stimulation. METHODS Seventeen healthy human subjects with body mass index (BMI) 19 to 27 underwent 2 different fMRI sessions where an initial resting state scan was acquired, followed by visual presentation of different images of potato chips and zucchini. There was then a 5-minute pause to ingest food (day 1=potato chips, day 3=zucchini), followed by a second resting state scan. fMRI data were further analyzed using graph theory analysis and support vector machine techniques. RESULTS Potato chips vs. zucchini stimulation led to significant connectivity changes. The support vector machine was able to accurately categorize the 2 types of food stimuli with 100% accuracy. Visual, auditory, and somatosensory structures, as well as thalamus, insula, and basal ganglia were found to be important for food classification. After potato chips consumption, the BMI was associated with the path length and degree in nucleus accumbens, middle temporal gyrus, and thalamus. CONCLUSION The results suggest that high vs. low caloric food stimulation in healthy individuals can induce significant changes in resting state networks. These changes can be detected using graph theory measures in conjunction with support vector machine. Additionally, we found that the BMI affects the response of the nucleus accumbens when high caloric food is consumed.
Collapse
|