1
|
Lupu A, Mihai CM, Dragan F, Tarnita I, Alecsa M, Chisnoiu T, Morariu ID, Cuciureanu M, Nedelcu AH, Salaru DL, Anton E, Danielescu C, Fotea S, Stoleriu G, Beser OF, Lupu VV. Antioxidant Supplementation in Childhood Obesity: A Path to Improved Metabolic Health? Antioxidants (Basel) 2025; 14:466. [PMID: 40298814 PMCID: PMC12024302 DOI: 10.3390/antiox14040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Childhood obesity is linked to heightened oxidative stress, a key driver of endothelial dysfunction, inflammation, and metabolic complications. Antioxidants, including Vitamins C and E, are vital in neutralizing free radicals and mitigating oxidative damage. This non-systematic review examines the potential advantages of antioxidant supplementation in pediatric obesity, focusing on its effects on vascular health, insulin sensitivity, and inflammatory processes. Emerging data suggest that antioxidants may improve endothelial function, reduce blood pressure, and enhance metabolic homeostasis in obese children. However, the long-term efficacy and safety of antioxidant supplementation remain uncertain, necessitating further rigorous randomized controlled trials. A deeper understanding of antioxidants' role in pediatric obesity could unlock novel therapeutic approaches for managing obesity-related complications and improving children's overall health outcomes.
Collapse
Affiliation(s)
- Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (M.A.); (V.V.L.)
| | - Cristina Maria Mihai
- Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania; (C.M.M.); (T.C.)
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Irina Tarnita
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (M.A.); (V.V.L.)
| | - Mirabela Alecsa
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (M.A.); (V.V.L.)
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania; (C.M.M.); (T.C.)
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Magdalena Cuciureanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (A.H.N.); (D.L.S.); (E.A.); (C.D.)
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (A.H.N.); (D.L.S.); (E.A.); (C.D.)
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (A.H.N.); (D.L.S.); (E.A.); (C.D.)
| | - Emil Anton
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (A.H.N.); (D.L.S.); (E.A.); (C.D.)
| | - Ciprian Danielescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (A.H.N.); (D.L.S.); (E.A.); (C.D.)
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (S.F.); (G.S.)
| | - Gabriela Stoleriu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (S.F.); (G.S.)
| | - Omer Faruk Beser
- Department of Pediatric Gastroenterology, Hepatology & Nutrition, Cerrahpasa Medical Faculty, Istanbul University Cerrahpasa, 34776 Istanbul, Turkey;
| | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (M.A.); (V.V.L.)
| |
Collapse
|
2
|
Han Y, Mwesigwa S, Wu Q, Laska MN, Jilcott Pitts SB, Moran NE, Hanchard NA. Common and rare genetic variation intersects with ancestry to influence human skin and plasma carotenoid concentrations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.20.24319465. [PMID: 39763521 PMCID: PMC11703293 DOI: 10.1101/2024.12.20.24319465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Carotenoids are dietary bioactive compounds with health effects that are biomarkers of fruit and vegetable intake. Here, we examine genetic associations with plasma and skin carotenoid concentrations in two rigorously phenotyped human cohorts (n=317). Analysis of genome-wide SNPs revealed heritability to vary by genetic ancestry (h2=0.08-0.44) with ten SNPs at four loci reaching genome-wide significance (P<5E-08) in multivariate models, including at RAPGEF1 (rs3765544, P=8.86E-10, beta=0.75) with α-carotene, and near IGSF11 (rs80316816, P=6.25E-10, beta=0.74), with cryptoxanthin; these were replicated in the second cohort (n=110). Multiple SNPs near IGSF11 demonstrated genotype-dependent dietary effects on plasma cryptoxanthin. Deep sequencing of 35 candidate genes revealed associations between the PKD1L2-BCO1 locus and plasma β-carotene (Padj=0.04, beta=-1.3 to -0.3), and rare, ancestry-restricted, damaging variants in CETP (rs2303790) and APOA1 (rs756535387) in individuals with high skin carotenoids. Our findings implicate novel loci in carotenoid disposition and indicate the importance of including cohorts of diverse genetic ancestry.
Collapse
Affiliation(s)
- Yixing Han
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Savannah Mwesigwa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Qiang Wu
- Department of Public Health, East Carolina University, Greenville, NC
| | - Melissa N Laska
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | | | - Nancy E Moran
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Neil A Hanchard
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Norman AC, Palmer DG, Moran NE, Roemmich JN, Casperson SL. Association of Candidate Single-Nucleotide Polymorphism Genotypes With Plasma and Skin Carotenoid Concentrations in Adults Provided a Lycopene-Rich Juice. J Nutr 2024; 154:1985-1993. [PMID: 38797482 DOI: 10.1016/j.tjnut.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Carotenoids are fat-soluble phytochemicals with biological roles, including ultraviolet protective functions in skin. Spectroscopic skin carotenoid measurements can also serve as a noninvasive biomarker for carotenoid consumption. Single-nucleotide polymorphisms (SNPs) in metabolic genes are associated with human plasma carotenoid concentrations; however, their relationships with skin carotenoid concentrations are unknown. OBJECTIVES The objective of this study was to determine the relationship between 13 candidate SNPs with skin and plasma carotenoid concentrations before and after a carotenoid-rich tomato juice intervention. METHODS In this randomized, controlled trial, participants (n = 80) were provided with lycopene-rich vegetable juice providing low (13.1 mg), medium (23.9 mg), and high (31.0 mg) daily total carotenoid doses for 8 wk. Plasma carotenoid concentrations were measured by high-pressure liquid chromatography, and skin carotenoid score was assessed by reflection spectroscopy (Veggie Meter) at baseline and the end-of-study time point. Thirteen candidate SNPs in 5 genes (BCO1, CD36, SCARB1, SETD7, and ABCA1) were genotyped from blood using PCR-based assays. Mixed models tested the effects of the intervention, study time point, interaction between intervention and study time point, and SNP genotype on skin and plasma carotenoids throughout the study. Baseline carotenoid intake, body mass index, gender, and age are covariates in all models. RESULTS The genotype of CD36 rs1527479 (P = 0.0490) was significantly associated with skin carotenoid concentrations when baseline and the final week of the intervention were evaluated. Genotypes for BCO1 rs7500996 (P = 0.0067) and CD36 rs1527479 (P = 0.0018) were significant predictors of skin carotenoid concentrations in a combined SNP model. CONCLUSIONS These novel associations between SNPs and skin carotenoid concentrations expand on the understanding of how genetic variation affects interindividual variation in skin carotenoid phenotypes in humans. This trial was registered at clinicaltrials.gov as NCT03202043.
Collapse
Affiliation(s)
- Anna C Norman
- School of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Daniel G Palmer
- United States Department of Agriculture, Agricultural Research Service Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Nancy E Moran
- United States Department of Agriculture, Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - James N Roemmich
- United States Department of Agriculture, Agricultural Research Service Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Shanon L Casperson
- United States Department of Agriculture, Agricultural Research Service Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States.
| |
Collapse
|
4
|
Lee CY. Effects of dietary vitamins on obesity-related metabolic parameters. J Nutr Sci 2023; 12:e47. [PMID: 37123391 PMCID: PMC10131053 DOI: 10.1017/jns.2023.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the leading causes of death worldwide. Genetic factors, some underlying medical conditions, and obesity are risk factors of T2DM. Unlike other risk factors which are non-modifiable, obesity is preventable and usually treatable, and is largely contributed by lifestyle factors. Management of these lifestyle factors may curb the development of T2DM and reduces T2DM prevalence. Dietary vitamins have been recommended as a lifestyle modification intervention to support obesity treatment. Vitamins correlate negatively with body weight, body mass index and body composition. Some of the vitamins may also have anti-adipogenic, anti-inflammatory and antioxidant effects. However, results from pre-clinical and clinical studies of the effects of vitamins on obesity are inconsistent. A clear understanding of the effects of vitamins on obesity will help determine dietary intervention that is truly effective in preventing and treating obesity as well as obesity-related complications including T2DM. This article reviews existing evidences of the effects of vitamin supplementation on obesity and obesity-related metabolic status.
Collapse
Affiliation(s)
- Chooi Yeng Lee
- School of Pharmacy, Monash University Malaysia, Subang Jaya, 47500 Selangor, Malaysia
- Corresponding author: Chooi Yeng Lee, email
| |
Collapse
|
5
|
Marhuenda-Muñoz M, Domínguez-López I, Langohr K, Tresserra-Rimbau A, Martínez González MÁ, Salas-Salvadó J, Corella D, Zomeño MD, Martínez JA, Alonso-Gómez AM, Wärnberg J, Vioque J, Romaguera D, López-Miranda J, Estruch R, Tinahones FJ, Lapetra J, Serra-Majem L, Bueno-Cavanillas A, Tur JA, Martín-Sánchez V, Pintó X, Delgado-Rodríguez M, Matía-Martín P, Vidal J, Vázquez C, Daimiel L, Ros E, Toledo E, Fernández de la Puente Cervera M, Barragán R, Fitó M, Tojal-Sierra L, Gómez-Gracia E, Zazo JM, Morey M, García-Ríos A, Casas R, Gómez-Pérez AM, Santos-Lozano JM, Vázquez-Ruiz Z, Atzeni A, Asensio EM, Gili-Riu MM, Bullon V, Moreno-Rodriguez A, Lecea O, Babio N, Peñas Lopez F, Gómez Melis G, Lamuela-Raventós RM. Circulating carotenoids are associated with favorable lipid and fatty acid profiles in an older population at high cardiovascular risk. Front Nutr 2022; 9:967967. [PMID: 36245542 PMCID: PMC9557191 DOI: 10.3389/fnut.2022.967967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Carotenoid intake has been reported to be associated with improved cardiovascular health, but there is little information on actual plasma concentrations of these compounds as biomarkers of cardiometabolic risk. The objective was to investigate the association between circulating plasma carotenoids and different cardiometabolic risk factors and the plasma fatty acid profile. This is a cross-sectional evaluation of baseline data conducted in a subcohort (106 women and 124 men) of an ongoing multi-factorial lifestyle trial for primary cardiovascular prevention. Plasma concentrations of carotenoids were quantified by liquid chromatography coupled to mass spectrometry. The associations between carotenoid concentrations and cardiometabolic risk factors were assessed using regression models adapted for interval-censored variables. Carotenoid concentrations were cross-sectionally inversely associated with serum triglyceride concentrations [-2.79 mg/dl (95% CI: -4.25, -1.34) and -5.15 mg/dl (95% CI: -7.38, -2.93), p-values = 0.0002 and <0.00001 in women and men, respectively], lower levels of plasma saturated fatty acids [-0.09% (95% CI: -0.14, -0.03) and -0.15 % (95% CI: -0.23, -0.08), p-values = 0.001 and 0.0001 in women and men, respectively], and higher levels of plasma polyunsaturated fatty acids [(0.12 % (95% CI: -0.01, 0.25) and 0.39 % (95% CI: 0.19, 0.59), p-values = 0.065 and 0.0001 in women and men, respectively] in the whole population. Plasma carotenoid concentrations were also associated with higher plasma HDL-cholesterol in women [0.47 mg/dl (95% CI: 0.23, 0.72), p-value: 0.0002], and lower fasting plasma glucose in men [-1.35 mg/dl (95% CI: -2.12, -0.59), p-value: 0.001].
Collapse
Affiliation(s)
- María Marhuenda-Muñoz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, Institute of Nutrition and Food Safety, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Inés Domínguez-López
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, Institute of Nutrition and Food Safety, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Klaus Langohr
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya-Barcelona TECH, Jordi Girona, Barcelona, Spain
| | - Anna Tresserra-Rimbau
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, Institute of Nutrition and Food Safety, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Miguel Ángel Martínez González
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, IdiSNA, University of Navarra, Pamplona, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - María Dolores Zomeño
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas, Barcelona, Spain
- School of Health Sciences, Blanquerna-Ramon Llull University, Barcelona, Spain
| | - J. Alfredo Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Angel M. Alonso-Gómez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Nursing, School of Health Sciences, Instituto de Investigación Biomédica de Málaga, University of Málaga, Málaga, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
- Universidad Miguel Hernandez, Instituto de Investigación Sanitaria y Biomédica de Alicante, Elche-Alicante, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - José López-Miranda
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ramón Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Francisco J. Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology, Virgen de la Victoria Hospital, Instituto de Investigación Biomédica de Málaga, University of Málaga, Málaga, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Department of Family Medicine, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Ll. Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro Hospitalario Universitario Insular Materno Infantil, Canarian Health Service, Las Palmas de Gran Canaria, Spain
| | - Aurora Bueno-Cavanillas
- Department of Nursing, School of Health Sciences, Instituto de Investigación Biomédica de Málaga, University of Málaga, Málaga, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Josep A. Tur
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Research Group on Community Nutrition and Oxidative Stress, IUNICS, University of Balearic Islands, Palma de Mallorca, Spain
| | - Vicente Martín-Sánchez
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine, University of León, León, Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel Delgado-Rodríguez
- Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
- Division of Preventive Medicine, Faculty of Medicine, University of Jaén, Jaén, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Clotilde Vázquez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Fundación Jimenez Díaz, Instituto de Investigaciones Biomédicas, University Autonoma, Madrid, Spain
| | - Lidia Daimiel
- Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Fundación Jimenez Díaz, Instituto de Investigaciones Biomédicas, University Autonoma, Madrid, Spain
| | - Estefanía Toledo
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, IdiSNA, University of Navarra, Pamplona, Spain
| | - María Fernández de la Puente Cervera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Rocío Barragán
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montse Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas, Barcelona, Spain
| | - Lucas Tojal-Sierra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country, Vitoria-Gasteiz, Spain
| | | | - Juan Manuel Zazo
- Department of Preventive Medicine and Public Health, School of Medicine, Instituto de Investigación Biomédica de Málaga, University of Málaga, Málaga, Spain
| | - Marga Morey
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Antonio García-Ríos
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Rosa Casas
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Ana M. Gómez-Pérez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology, Virgen de la Victoria Hospital, Instituto de Investigación Biomédica de Málaga, University of Málaga, Málaga, Spain
| | - José Manuel Santos-Lozano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Department of Family Medicine, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Zenaida Vázquez-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, IdiSNA, University of Navarra, Pamplona, Spain
| | - Alessandro Atzeni
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Eva M. Asensio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - M. Mar Gili-Riu
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas, Barcelona, Spain
| | - Vanessa Bullon
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Anai Moreno-Rodriguez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Oscar Lecea
- Department of Preventive Medicine and Public Health, IdiSNA, University of Navarra, Pamplona, Spain
- Department of Family Medicine, Atención Primaria Servicio Navarro de Salud, Pamplona, Spain
| | - Nancy Babio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Francesca Peñas Lopez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas, Barcelona, Spain
| | - Guadalupe Gómez Melis
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya-Barcelona TECH, Jordi Girona, Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XIA, Institute of Nutrition and Food Safety, University of Barcelona, Santa Coloma de Gramenet, Spain
| |
Collapse
|
6
|
Qorbani M, Seif E, Heshmat R, Ghonbalani ZN, Basiry P, Kazemian E, Kelishadi R. Association of Serum Retinol Concentrations With Metabolic Syndrome Components in Iranian Children and Adolescents: The CASPIAN-V Study. Front Nutr 2022; 9:807634. [PMID: 35634391 PMCID: PMC9137422 DOI: 10.3389/fnut.2022.807634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background As a fat-soluble vitamin, vitamin A plays a crucial role in adipogenesis, lipolysis, insulin resistance, and obesity. However, it is still unclear whether they are associated with cardiometabolic risk factors in children and adolescents. The current study aimed to determine the association between serum retinol concentration and the cluster of metabolic syndrome components among children and adolescents. Methods This nationwide cross-sectional study was performed on 2,518 students aged 7–18 years from the Childhood and Adolescence Surveillance and Prevention of Adult Non- communicable disease (CASPIAN-V) study. Students were selected via multistage cluster sampling method from 30 provinces of Iran in 2015. Multivariable logistic regression was used to assess the association of serum retinol concentration with metabolic syndrome (MetS) components. Results Overall, the mean (SD) age of study participants was 12.16 (3.04) years, and 44.9% (n = 1,166) of them were girls. The mean serum retinol concentration was 1.48 ± 1.55 μmol/L and vitamin A deficiency was observed among 19.7% (95% CI: 18.2–21.3) of study subjects. The results of the logistic regression analysis showed that increasing serum retinol concentrations were associated with an increased likelihood of developing obesity (OR: 1.12, 95% CI: 1.04, 1.20), abdominal obesity (OR: 1.07, 95% CI: 1.01, 1.14), low high-density lipoprotein cholesterol (HDL-C) (OR: 1.10, 95% CI: 1.04, 1.16) and high fasting blood glucose (FBG) (OR: 1.21, 95% CI: 1.10, 1.35), whereas it was associated with a decreased odds of developing high blood pressure (OR: 0.82, 95% CI: 0.73, 0.93). Nevertheless, there was no statistically significant association between metabolic syndrome itself and retinol concentration (OR: 1.02, 95% CI: 0.88, 1.18). Conclusion We found that serum retinol concentration was positively associated with metabolic syndrome components such as obesity, low HDL-C, and high FBG, but not with metabolic syndrome itself.
Collapse
Affiliation(s)
- Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Seif
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Nouri Ghonbalani
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Pouria Basiry
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Elham Kazemian
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- *Correspondence: Elham Kazemian
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Bentley AR, Chen G, Doumatey AP, Shriner D, Meeks KAC, Gouveia MH, Ekoru K, Zhou J, Adeyemo A, Rotimi CN. GWAS in Africans identifies novel lipids loci and demonstrates heterogenous association within Africa. Hum Mol Genet 2021; 30:2205-2214. [PMID: 34196372 PMCID: PMC8561421 DOI: 10.1093/hmg/ddab174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/11/2023] Open
Abstract
Serum lipids are biomarkers of cardiometabolic disease risk, and understanding genomic factors contributing to their distribution is of interest. Studies of lipids in Africans are rare, though it is expected that such studies could identify novel loci. We conducted a GWAS of 4317 Africans enrolled from Nigeria, Ghana and Kenya. We evaluated linear mixed models of high-density lipoprotein cholesterol (HDLC), low-density lipoprotein cholesterol (LDLC), total cholesterol (CHOL), triglycerides (TG) and TG/HDLC. Replication was attempted in 9542 African Americans (AA). In our main analysis, we identified 28 novel associations in Africans. Of the 18 of these that could be tested in AA, three associations replicated (GPNMB-TG, ENPP1-TG and SMARCA4-LDLC). Five additional novel loci were discovered upon meta-analysis with AA (rs138282551-TG, PGBD5-HDLC, CD80-TG/HDLC, SLC44A1-CHOL and TLL2-CHOL). Analyses considering only those with predominantly West African ancestry (Nigeria, Ghana and AA) yielded new insights: ORC5-LDLC and chr20:60973327-CHOL. Among our novel findings are some loci with known connections to lipids pathways. For instance, rs147706369 (TLL2) alters a regulatory motif for sterol regulatory element-binding proteins, a family of transcription factors that control the expression of a range of enzymes involved in cholesterol, fatty acid and TG synthesis, and rs115749422 (SMARCA4), an independent association near the known LDLR locus that is rare or absent in populations without African ancestry. These findings demonstrate the utility of conducting genomic analyses in Africans for discovering novel loci and provide some preliminary evidence for caution against treating 'African ancestry' as a monolithic category.
Collapse
Affiliation(s)
- Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Mateus H Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Kenneth Ekoru
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Mummidi S, Farook VS, Reddivari L, Hernandez-Ruiz J, Diaz-Badillo A, Fowler SP, Resendez RG, Akhtar F, Lehman DM, Jenkinson CP, Arya R, Lynch JL, Canas JA, DeFronzo RA, Hale DE, Blangero J, Lopez-Alvarenga JC, Duggirala R, Vanamala JKP. Serum carotenoids and Pediatric Metabolic Index predict insulin sensitivity in Mexican American children. Sci Rep 2021; 11:871. [PMID: 33441626 PMCID: PMC7806924 DOI: 10.1038/s41598-020-79387-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
High concentrations of carotenoids are protective against cardiometabolic risk traits (CMTs) in adults and children. We recently showed in non-diabetic Mexican American (MA) children that serum α-carotene and β-carotene are inversely correlated with obesity measures and triglycerides and positively with HDL cholesterol and that they were under strong genetic influences. Additionally, we previously described a Pediatric Metabolic Index (PMI) that helps in the identification of children who are at risk for cardiometabolic diseases. Here, we quantified serum lycopene and β-cryptoxanthin concentrations in approximately 580 children from MA families using an ultraperformance liquid chromatography-photodiode array and determined their heritabilities and correlations with CMTs. Using response surface methodology (RSM), we determined two-way interactions of carotenoids and PMI on Matsuda insulin sensitivity index (ISI). The concentrations of lycopene and β-cryptoxanthin were highly heritable [h2 = 0.98, P = 7 × 10-18 and h2 = 0.58, P = 1 × 10-7]. We found significant (P ≤ 0.05) negative phenotypic correlations between β-cryptoxanthin and five CMTs: body mass index (- 0.22), waist circumference (- 0.25), triglycerides (- 0.18), fat mass (- 0.23), fasting glucose (- 0.09), and positive correlations with HDL cholesterol (0.29). In contrast, lycopene only showed a significant negative correlation with fasting glucose (- 0.08) and a positive correlation with HDL cholesterol (0.18). Importantly, we found that common genetic influences significantly contributed to the observed phenotypic correlations. RSM showed that increased serum concentrations of α- and β-carotenoids rather than that of β-cryptoxanthin or lycopene had maximal effects on ISI. In summary, our findings suggest that the serum carotenoids are under strong additive genetic influences and may have differential effects on susceptibility to CMTs in children.
Collapse
Affiliation(s)
- Srinivas Mummidi
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.
| | - Vidya S Farook
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Joselin Hernandez-Ruiz
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | - Alvaro Diaz-Badillo
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Sharon P Fowler
- School of Public Health, University of Texas Health Houston, Houston, TX, USA
| | - Roy G Resendez
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Feroz Akhtar
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Donna M Lehman
- Department of Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Christopher P Jenkinson
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Rector Arya
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Jane L Lynch
- Department of Pediatrics, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jose A Canas
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA
| | - Ralph A DeFronzo
- Department of Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Daniel E Hale
- Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Juan Carlos Lopez-Alvarenga
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Jairam K P Vanamala
- Department of Food Science, Pennsylvania State University, University Park, PA, USA.
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Tang W, Zhan W, Wei M, Chen Q. Associations Between Different Dietary Vitamins and the Risk of Obesity in Children and Adolescents: A Machine Learning Approach. Front Endocrinol (Lausanne) 2021; 12:816975. [PMID: 35250848 PMCID: PMC8893992 DOI: 10.3389/fendo.2021.816975] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDS Simultaneous dietary intake of vitamins is considered as a common and real scenario in daily life. However, limited prospective studies have evaluated the association between multivitamins intake and obesity in children and adolescents. OBJECTIVES This study aimed to evaluate the relationship between the intake of different dietary vitamins and the risk of obesity in children (6-11 years) and adolescents (12-19 years). METHODS We conducted a cross-sectional study based on data from U.S. National Health and Nutrition Examination Survey, 2013-2016. A total of 3634 children and adolescents were included who had available data on dietary vitamins, obesity and covariates. We analyzed the dietary intake levels of nine vitamins, including vitamin A, vitamin B1, vitamin B2, vitamin B6, vitamin B12, vitamin C, vitamin D, vitamin E, vitamin K. Multivariate logistic regression was used to model the associations between vitamins and obesity. Bayesian kernel machine regression (BKMR) was employed to explore the joint and independent effects of vitamins on obesity among children and adolescents. RESULTS In the multivariate logistic regression model, five vitamins (vitamin A, vitamin B1, vitamin B2, vitamin B12, and vitamin D) were negatively associated with obesity in children and adolescents. BKMR analysis showed that when the concentration of the nine vitamins was at or above the 55th percentile compared with the median value, the combined intake of these vitamins could significantly reduce the risk of obesity in children and adolescents. Potential interactions between vitamin B2 and vitamin B12 in increasing the risk of obesity in children and adolescents were observed. CONCLUSIONS We determine the combined effects of multivitamins on obesity in children and adolescents, and observe a significant interaction between vitamin B2 and vitamin B12. Further cohort studies are needed to clarify the health effects of multivitamins intake in a larger population.
Collapse
Affiliation(s)
- Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiang Zhan
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengdan Wei
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qian Chen,
| |
Collapse
|
10
|
Marcelino G, Machate DJ, Freitas KDC, Hiane PA, Maldonade IR, Pott A, Asato MA, Candido CJ, Guimarães RDCA. β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules 2020; 25:molecules25245803. [PMID: 33316948 PMCID: PMC7763535 DOI: 10.3390/molecules25245803] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
Carotenoids are vital antioxidants for plants and animals. They protect cells from oxidative events and act against the inflammatory process and carcinogenesis. Among the most abundant carotenoids in human and foods is β-carotene. This carotenoid has the highest level of provitamin A activity, as it splits into two molecules of retinol through the actions of the cytosolic enzymes: β-carotene-15,15′-monooxygenase (β-carotene-15,15′-oxygenase 1) and β-carotene-9′,10′-dioxygenase (β-carotene-9′,10′-oxygenase 2). The literature supports the idea that β-carotene acts against type 2 diabetes mellitus, cardiovascular diseases, obesity, and metabolic syndrome. Due to the many processes involved in β-carotene biosynthesis and metabolic function, little is known about such components, since many mechanisms have not yet been fully elucidated. Therefore, our study concisely described the relationships between the consumption of carotenoids, with emphasis on β-carotene, and obesity and type 2 diabetes mellitus and its associated parameters in order to understand the preventive role of carotenoids better and encourage their consumption.
Collapse
Affiliation(s)
- Gabriela Marcelino
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.M.); (P.A.H.); (C.J.C.); (R.d.C.A.G.)
| | - David Johane Machate
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Graduate Program in Science of Materials, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Karine de Cássia Freitas
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.M.); (P.A.H.); (C.J.C.); (R.d.C.A.G.)
- Correspondence:
| | - Priscila Aiko Hiane
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.M.); (P.A.H.); (C.J.C.); (R.d.C.A.G.)
| | - Iriani Rodrigues Maldonade
- Laboratory of Food Science and Technology, Brazilian Agricultural Research Corporation (Embrapa Vegetables), Brasília 70275-970, Brazil;
| | - Arnildo Pott
- Laboratory of Botany, Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Marcel Arakaki Asato
- Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Camila Jordão Candido
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.M.); (P.A.H.); (C.J.C.); (R.d.C.A.G.)
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.M.); (P.A.H.); (C.J.C.); (R.d.C.A.G.)
| |
Collapse
|
11
|
Castellano JM, Espinosa JM, Perona JS. Modulation of Lipid Transport and Adipose Tissue Deposition by Small Lipophilic Compounds. Front Cell Dev Biol 2020; 8:555359. [PMID: 33163484 PMCID: PMC7591460 DOI: 10.3389/fcell.2020.555359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Small lipophilic molecules present in foods of plant origin have relevant biological activities at rather low concentrations. Evidence suggests that phytosterols, carotenoids, terpenoids, and tocopherols can interact with different metabolic pathways, exerting beneficial effects against a number of metabolic diseases. These small molecules can modulate triacylglycerol absorption in the intestine and the biosynthesis of chylomicrons, the lipid carriers in the blood. Once in the bloodstream, they can impact lipoprotein clearance from blood, thereby affecting fatty acid release, incorporation into adipocytes and triglyceride reassembling and deposit. Consequently, some of these molecules can regulate pathophysiological processes associated to obesity and its related conditions, such as insulin resistance, metabolic syndrome and type-2 diabetes. The protective capacity of some lipophilic small molecules on oxidative and chemotoxic stress, can modify the expression of key genes in the adaptive cellular response, such as transcription factors, contributing to prevent the inflammatory status of adipose tissue. These small lipophilic compounds can be incorporated into diet as natural parts of food but they can also be employed to supplement other dietary and pharmacologic products as nutraceuticals, exerting protective effects against the development of metabolic diseases in which inflammation is involved. The aim of this review is to summarize the current knowledge of the influence of dietary lipophilic small biomolecules (phytosterols, carotenoids, tocopherols, and triterpenes) on lipid transport, as well as on the effects they may have on pathophysiological metabolic states, related to obesity, insulin resistance and inflammation, providing an evidence-based summary of their main beneficial effects on human health.
Collapse
Affiliation(s)
- José M Castellano
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Juan M Espinosa
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Javier S Perona
- Group of Bioactive Compounds, Nutrition and Health, Department of Food and Health, Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
12
|
Antioxidants and Oxidative Stress in Children: Influence of Puberty and Metabolically Unhealthy Status. Antioxidants (Basel) 2020; 9:antiox9070618. [PMID: 32679739 PMCID: PMC7402162 DOI: 10.3390/antiox9070618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress could help explain the relationship between childhood obesity and a metabolically unhealthy (MU) status. Moreover, puberty could also influence this relationship, since it entails physiological cardiometabolic changes. We aimed to evaluate plasma antioxidants and oxidative stress biomarkers in MU and metabolically healthy (MH) prepubertal and pubertal children and their associations with pro-inflammatory and endothelial damage biomarkers, taking puberty into account. A total of 1444 Spanish children aged 3-17 years (48.9% males, 66% prepubertal, 47.1% with obesity) were recruited. Blood pressure, anthropometric and biochemical parameters were measured, and children were categorized as having a MU or MH status according to risk factors. Retinol, carotenes, tocopherols, total antioxidant capacity (TAC), oxidized low-density lipoprotein and selected pro-inflammatory and endothelial damage biomarkers were analyzed. General linear models adjusted for age, sex, recruitment center and body mass index, partial correlations and stepwise linear regressions were performed. Lower carotenes and tocopherols levels were found in MU than in MH children. Plasma TAC was lower in prepubertal and higher in pubertal children with obesity compared to normal-weight children. Antioxidants and oxidative stress biomarkers showed novel associations with several pro-inflammatory and endothelial damage biomarkers, with pubertal differences, supporting the importance of considering both the antioxidant and oxidative stress status and puberty in the prevention of metabolic diseases in childhood.
Collapse
|
13
|
Network Analysis of the Potential Role of DNA Methylation in the Relationship between Plasma Carotenoids and Lipid Profile. Nutrients 2019; 11:nu11061265. [PMID: 31167428 PMCID: PMC6628241 DOI: 10.3390/nu11061265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Variability in plasma carotenoids may be attributable to several factors including genetic variants and lipid profile. Until now, the impact of DNA methylation on this variability has not been widely studied. Weighted gene correlation network analysis (WGCNA) is a systems biology method used for finding gene clusters (modules) with highly correlated methylation levels and for relating them to phenotypic traits. The objective of the present study was to examine the role of DNA methylation in the relationship between plasma total carotenoid concentrations and lipid profile using WGCNA in 48 healthy subjects. Genome-wide DNA methylation levels of 20,687 out of 472,245 CpG sites in blood leukocytes were associated with total carotenoid concentrations. Using WGCNA, nine co-methylation modules were identified. A total of 2734 hub genes (17 unique top hub genes) were potentially related to lipid profile. This study provides evidence for the potential implications of gene co-methylation in the relationship between plasma carotenoids and lipid profile. Further studies and validation of the hub genes are needed.
Collapse
|
14
|
Tremblay BL, Guénard F, Lamarche B, Pérusse L, Vohl MC. Weighted gene co-expression network analysis to explain the relationship between plasma total carotenoids and lipid profile. GENES AND NUTRITION 2019; 14:16. [PMID: 31086608 PMCID: PMC6505263 DOI: 10.1186/s12263-019-0639-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
Background Variability in circulating carotenoids may be attributable to several factors including, among others, genetic variants and lipid profile. However, relatively few studies have considered the impact of gene expression in the inter-individual variability in circulating carotenoids. Most studies considered expression of genes individually and ignored their high degree of interconnection. Weighted gene co-expression network analysis (WGCNA) is a systems biology method used for finding gene clusters with highly correlated expression levels and for relating them to phenotypic traits. The objective of the present observational study is to examine the relationship between plasma total carotenoid concentrations and lipid profile using WGCNA. Results Whole blood expression levels of 533 probes were associated with plasma total carotenoids. Among the four WGCNA distinct modules identified, turquoise, blue, and brown modules correlated with plasma high-density lipoprotein cholesterol (HDL-C) and total cholesterol. Probes showing a strong association with HDL-C and total cholesterol were also the most important elements of the brown and blue modules. A total of four and 29 hub genes associated with total carotenoids were potentially related to HDL-C and total cholesterol, respectively. Conclusions Expression levels of 533 probes were associated with plasma total carotenoid concentrations. Using WGCNA, four modules and several hub genes related to lipid and carotenoid metabolism were identified. This integrative analysis provides evidence for the potential role of gene co-expression in the relationship between carotenoids and lipid concentrations. Further studies and validation of the hub genes are needed. Electronic supplementary material The online version of this article (10.1186/s12263-019-0639-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bénédicte L Tremblay
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Frédéric Guénard
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Benoît Lamarche
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Louis Pérusse
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,3Department of Kinesiology, Laval University, 2300 rue de la Terrasse, Quebec City, QC G1V 0A6 Canada
| | - Marie-Claude Vohl
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| |
Collapse
|
15
|
Coronel J, Pinos I, Amengual J. β-carotene in Obesity Research: Technical Considerations and Current Status of the Field. Nutrients 2019; 11:E842. [PMID: 31013923 PMCID: PMC6521044 DOI: 10.3390/nu11040842] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, obesity has become a rising health problem as the accessibility to high calorie, low nutritional value food has increased. Research shows that some bioactive components in fruits and vegetables, such as carotenoids, could contribute to the prevention and treatment of obesity. Some of these carotenoids are responsible for vitamin A production, a hormone-like vitamin with pleiotropic effects in mammals. Among these effects, vitamin A is a potent regulator of adipose tissue development, and is therefore important for obesity. This review focuses on the role of the provitamin A carotenoid β-carotene in human health, emphasizing the mechanisms by which this compound and its derivatives regulate adipocyte biology. It also discusses the physiological relevance of carotenoid accumulation, the implication of the carotenoid-cleaving enzymes, and the technical difficulties and considerations researchers must take when working with these bioactive molecules. Thanks to the broad spectrum of functions carotenoids have in modern nutrition and health, it is necessary to understand their benefits regarding to metabolic diseases such as obesity in order to evaluate their applicability to the medical and pharmaceutical fields.
Collapse
Affiliation(s)
- Johana Coronel
- Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Jaume Amengual
- Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
16
|
Genetic and Common Environmental Contributions to Familial Resemblances in Plasma Carotenoid Concentrations in Healthy Families. Nutrients 2018; 10:nu10081002. [PMID: 30065157 PMCID: PMC6116158 DOI: 10.3390/nu10081002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 11/16/2022] Open
Abstract
Carotenoids have shown an interindividual variability that may be due to genetic factors. The only study that has reported heritability of serum α- and β-carotene has not considered the environmental component. This study aimed to estimate the contribution of both genetic and common environmental effects to the variance of carotenoid concentrations and to test whether their phenotypic correlations with cardiometabolic risk factors are explained by shared genetic and environmental effects. Plasma carotenoid concentrations (α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, zeaxanthin, and total carotenoids) of 48 healthy subjects were measured. Heritability estimates of carotenoid concentrations were calculated using the variance component method. Lutein and lycopene showed a significant familial effect (p = 6 × 10-6 and 0.0043, respectively). Maximal heritability, genetic heritability, and common environmental effect were computed for lutein (88.3%, 43.8%, and 44.5%, respectively) and lycopene (45.2%, 0%, and 45.2%, respectively). Significant phenotypic correlations between carotenoid concentrations and cardiometabolic risk factors were obtained for β-cryptoxanthin, lycopene, and zeaxanthin. Familial resemblances in lycopene concentrations were mainly attributable to common environmental effects, while for lutein concentrations they were attributable to genetic and common environmental effects. Common genetic and environmental factors may influence carotenoids and cardiometabolic risk factors, but further studies are needed to better understand the potential impact on disease development.
Collapse
|
17
|
Moran NE, Mohn ES, Hason N, Erdman JW, Johnson EJ. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv Nutr 2018; 9:465-492. [PMID: 30032230 PMCID: PMC6054194 DOI: 10.1093/advances/nmy025] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Carotenoids are orange, yellow, and red lipophilic pigments present in many fruit and vegetables, as well as other food groups. Some carotenoids contribute to vitamin A requirements. The consumption and blood concentrations of specific carotenoids have been associated with reduced risks of a number of chronic conditions. However, the interpretation of large, population-based observational and prospective clinical trials is often complicated by the many extrinsic and intrinsic factors that affect the physiologic response to carotenoids. Extrinsic factors affecting carotenoid bioavailability include food-based factors, such as co-consumed lipid, food processing, and molecular structure, as well as environmental factors, such as interactions with prescription drugs, smoking, or alcohol consumption. Intrinsic, physiologic factors associated with blood and tissue carotenoid concentrations include age, body composition, hormonal fluctuations, and variation in genes associated with carotenoid absorption and metabolism. To most effectively investigate carotenoid bioactivity and to utilize blood or tissue carotenoid concentrations as biomarkers of intake, investigators should either experimentally or statistically control for confounding variables affecting the bioavailability, tissue distribution, and metabolism of carotene and xanthophyll species. Although much remains to be investigated, recent advances have highlighted that lipid co-consumption, baseline vitamin A status, smoking, body mass and body fat distribution, and genetics are relevant covariates for interpreting blood serum or plasma carotenoid responses. These and other intrinsic and extrinsic factors are discussed, highlighting remaining gaps in knowledge and opportunities for future research. To provide context, we review the state of knowledge with regard to the prominent health effects of carotenoids.
Collapse
Affiliation(s)
- Nancy E Moran
- USDA–Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Emily S Mohn
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Noor Hason
- USDA–Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - John W Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Elizabeth J Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| |
Collapse
|