1
|
Du T, Lei S, Huang Z, Liu X, Jiang Z, Lu M, Zhou Y, Yuan J, Song W, Gu H, Li J. EHDPP impairs intestinal microbiota homeostasis and induces placental injury through choline mediated gut-placenta axis. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137573. [PMID: 40007358 DOI: 10.1016/j.jhazmat.2025.137573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
2-Ethylhexyl-diphenyl phosphate (EHDPP) is an organophosphate ester (OPE) with roles of flame retardant and plasticizer. It is widely used in various applications, detected in environmental matrices and human body, threatening ecological environment and human health. Some OPEs have been reported to disturb the gut microbiota, the gut microbiota mediates placental function. Our previous study showed EHDPP causes placental toxicity and fetal weight loss, it is unknown that whether EHDPP affects fetal development through the gut-placenta axis and whether it is feasible to fight against EHDPP induced placental toxicity through the gut-placenta axis. Our study investigates and indicates that EHDPP disrupts normal gut function by disturbing the gut microbiota homeostasis and compromising the intestinal barrier integrity. The disruption of EHDPP leads to reduced choline transporter expression of the solute carrier family 44A2 (SLC44A2), impaired choline absorption and distribution in placenta. Gut microbiota depletion increases the choline level in placenta. Both gut microbiota depletion and choline supplementation alleviate the EHDPP induced fetal weight loss by increasing the expression and activation of LXRα. In addition, a mendelian randomization study indicates that choline transporter SLC44A2 expression reduction significantly increased the risk of low birth weight in human. In summary, EHDPP exposure exacerbates placental and fetal damage through attenuating the beneficial function of choline mediated gut-placental axis. Direct choline supplementation or indirect choline level upregulation by gut microbiota depletion are therapeutic strategies for EHDPP induced placental injury.
Collapse
Affiliation(s)
- Ting Du
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China
| | - Saifei Lei
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhenyao Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China
| | - Xin Liu
- School of Medical Information and Engineering, Xuzhou Medical University, China
| | - Zhou Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minlan Lu
- School of Life Sciences, Xuzhou Medical University, China
| | - Yiyang Zhou
- School of Life Sciences, Xuzhou Medical University, China
| | - Jiali Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China
| | - Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China
| | - Hao Gu
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China.
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
2
|
Ding N, Yang X, Wang R, Wang F. Metabolomics profiling identifies diagnostic metabolic signatures for pregnancy loss: a cross-sectional study from northwestern China. Front Endocrinol (Lausanne) 2025; 16:1518043. [PMID: 40276553 PMCID: PMC12018233 DOI: 10.3389/fendo.2025.1518043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Objective To identify potential diagnostic metabolic biomarkers for pregnancy loss (PL) by performing untargeted metabolomics analysis. Methods The present study performed untargeted metabolomics analysis on plasma samples from PL patients (n=70) and control subjects (n=122) using liquid chromatography‒mass spectrometry (LC‒MS). Metabolic profiles were evaluated using orthogonal partial least squares discriminant analysis (OPLS-DA), and pathway enrichment analysis was conducted via the KEGG database. LASSO regression was employed to identify significant metabolites, and their diagnostic performance was evaluated through receiver operating characteristic (ROC) curves. Pearson correlation analysis was used to explore the relationships between differentially abundant metabolites and clinical parameters. Results In total, 359 metabolites were identified, 57 of which were significantly altered between the control and PL group through OPLS-DA. Differential metabolites were significantly enriched in caffeine metabolism, tryptophan metabolism, and riboflavin metabolism pathways. Key metabolites, such as testosterone glucuronide, 6-hydroxymelatonin, and (S)-leucic acid, exhibited strong diagnostic potential, with AUC values of 0.991, 0.936 and 0.952, respectively, and the combined AUC was 0.993. Furthermore, Pearson correlation analysis revealed a significant negative correlation between the waist‒to‒hip ratio (WHR) and the abundance of testosterone glucuronide (r = -0.291, p = 0.0146), and a significant positive correlation between WHR and (S)-leucic acid (r = 0.248, p = 0.0381) in the PL group. Conclusion We identified a panel of plasma metabolites with significant diagnostic potential for PL. These biomarkers may facilitate early, noninvasive diagnosis and offer insights into metabolic dysregulation associated with pregnancy loss.
Collapse
Affiliation(s)
| | | | | | - Fang Wang
- Reproductive Medicine Center, Lanzhou University Second Hospital,
Lanzhou, China
| |
Collapse
|
3
|
Işık S, Çiçek S. Impacts of high-dose riboflavin on cytotoxicity, antioxidant, growth, reproductive gene expressions, and genotoxicity in the rainbow trout gonadal cells. Toxicol In Vitro 2024; 94:105730. [PMID: 37944868 DOI: 10.1016/j.tiv.2023.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Riboflavin (vitamin B2 found in food) is a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which study as coenzymes for a variety of cellular processes including biosynthesis, homocysteine metabolism, detoxification, and various oxidation and reduction reactions. Although studies on the symptoms resulting from riboflavin deficiency are intense, studies on the effects of high doses of riboflavin are almost absent. This report aimed to examine the actions of riboflavin on cell viability, the transcriptional expressions of antioxidant enzyme (gsr and gpx1a), growth (gh1, igf1, and igf2), the reproductive (bol) genes and DNA damage in the rainbow trout gonad cells (RTG-2) for 48 h. All concentrations of riboflavin (3.125, 6.25, 12.5, 25, 50, and 100 μM) significantly reduced the RTG-2 cell viability. Riboflavin (LD50: 12.5 μM) significantly downregulated the transcriptional expressions of gpx1a, igf1, and bol genes, while it non-significantly upregulated or downregulated the transcriptional expression of gsr, igf2, and gh1 genes in the RTG-2 cells in comparison to the control group for 48 h. The comet assay demonstrated that riboflavin significantly raised tail DNA% >10% DMSO (positive control). Based on the outcomes, high doses of riboflavin exhibit the potential to have a role in cellular mechanisms, including especially reproduction, DNA damage, and cell death.
Collapse
Affiliation(s)
- Sevda Işık
- Department of Animal Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey
| | - Semra Çiçek
- Department of Animal Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey.
| |
Collapse
|
4
|
Nausea and Vomiting during Early Pregnancy among Chinese Women and Its Association with Nutritional Intakes. Nutrients 2023; 15:nu15040933. [PMID: 36839295 PMCID: PMC9962185 DOI: 10.3390/nu15040933] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Nausea and vomiting in pregnancy (NVP) is one of the most common uncomfortable symptoms of women in early pregnancy. A total of 303 Chinese pregnant women from 10 urban cities in their first trimester were recruited in this study to collect their sociodemographic characteristics and their NVP occurrence. Their dietary nutrient and food intakes were also collected by a 24 h dietary recall and a semi-quantitative food frequency questionnaire (SFFQ). Using the univariate analysis and multiple linear regression analysis to estimate the correlation between NVP and dietary intake, we found that 255 (84.1%) pregnant women experienced NVP during their first trimester. The intake of energy, protein, fat, vitamin A, thiamin, riboflavin, vitamin E, phosphorus, potassium, iron and zinc was lower in women with NVP than in those with no NVP. Additionally, women with NVP were more likely to have insufficient intake of protein, riboflavin, calcium, phosphorus and selenium. In terms of specific food groups, the average daily intake of mushrooms, algae, nuts and seeds, meat, eggs and dairy products in the NVP group was lower. Women in the severe NVP group even had insufficient gestational weight gain. We should pay more attention to women who experience nausea and vomiting during pregnancy and provide them with targeted nutritional support.
Collapse
|
5
|
Rashkin SR, Cleves M, Shaw GM, Nembhard WN, Nestoridi E, Jenkins MM, Romitti PA, Lou XY, Browne ML, Mitchell LE, Olshan AF, Lomangino K, Bhattacharyya S, Witte JS, Hobbs CA. A genome-wide association study of obstructive heart defects among participants in the National Birth Defects Prevention Study. Am J Med Genet A 2022; 188:2303-2314. [PMID: 35451555 PMCID: PMC9283270 DOI: 10.1002/ajmg.a.62759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
Obstructive heart defects (OHDs) share common structural lesions in arteries and cardiac valves, accounting for ~25% of all congenital heart defects. OHDs are highly heritable, resulting from interplay among maternal exposures, genetic susceptibilities, and epigenetic phenomena. A genome-wide association study was conducted in National Birth Defects Prevention Study participants (Ndiscovery = 3978; Nreplication = 2507), investigating the genetic architecture of OHDs using transmission/disequilibrium tests (TDT) in complete case-parental trios (Ndiscovery_TDT = 440; Nreplication_TDT = 275) and case-control analyses separately in infants (Ndiscovery_CCI = 1635; Nreplication_CCI = 990) and mothers (case status defined by infant; Ndiscovery_CCM = 1703; Nreplication_CCM = 1078). In the TDT analysis, the SLC44A2 single nucleotide polymorphism (SNP) rs2360743 was significantly associated with OHD (pdiscovery = 4.08 × 10-9 ; preplication = 2.44 × 10-4 ). A CAPN11 SNP (rs55877192) was suggestively associated with OHD (pdiscovery = 1.61 × 10-7 ; preplication = 0.0016). Two other SNPs were suggestively associated (p < 1 × 10-6 ) with OHD in only the discovery sample. In the case-control analyses, no SNPs were genome-wide significant, and, even with relaxed thresholds ( × discovery < 1 × 10-5 and preplication < 0.05), only one SNP (rs188255766) in the infant analysis was associated with OHDs (pdiscovery = 1.42 × 10-6 ; preplication = 0.04). Additional SNPs with pdiscovery < 1 × 10-5 were in loci supporting previous findings but did not replicate. Overall, there was modest evidence of an association between rs2360743 and rs55877192 and OHD and some evidence validating previously published findings.
Collapse
Affiliation(s)
- Sara R. Rashkin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, US
| | - Mario Cleves
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Health Informatics Institute, Tampa, FL 33612, US
| | - Gary M. Shaw
- Dept of Pediatrics, Stanford University, Stanford, CA 94305, US
| | - Wendy N. Nembhard
- University of Arkansas for Medical Sciences, Department of Epidemiology and Arkansas Center for Birth Defects and Prevention, University of Arkansas for Medical Sciences, Little Rock, AR 72205, US
| | - Eirini Nestoridi
- Massachusetts Center for Birth Defects Research and Prevention, Massachusetts Department of Public Health, Boston, MA 02108, US
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30333, US
| | - Paul A. Romitti
- Department of Epidemiology, University of Iowa, Iowa City, IA 52242, US
| | - Xiang-Yang Lou
- Department of Biostatistics, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL 32603, US
| | - Marilyn L. Browne
- Birth Defects Research Section, New York State Department of Health, Albany, NY 12203, US; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY 12114, US
| | - Laura E. Mitchell
- Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX 77030, US
| | - Andrew F. Olshan
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, US
| | | | - Sudeepa Bhattacharyya
- Bioinformatics and Data Science at University of Arkansas, Little Rock, AR 72204, US
| | - John S. Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, US
- These authors contributed equally to this work
| | - Charlotte A. Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, US
- These authors contributed equally to this work
| | | |
Collapse
|
6
|
Quinn MA, Pritchard AE, Visker JR, McPeek AC, Raghuvanshi R, Martin H C, Wellette-Hunsucker AG, Leszczynski EC, McCabe LR, Pfeiffer KA, Quinn RA, Ferguson DP. Longitudinal effects of growth restriction on the murine gut microbiome and metabolome. Am J Physiol Endocrinol Metab 2022; 323:E159-E170. [PMID: 35658543 PMCID: PMC9423779 DOI: 10.1152/ajpendo.00446.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Undernutrition-induced growth restriction in the early stages of life increases the risk of chronic disease in adulthood. Although metabolic impairments have been observed, few studies have characterized the gut microbiome and gut-liver metabolome profiles of growth-restricted animals during early-to-mid-life development. To induce growth restriction, mouse offspring were either born to gestational undernutrition (GUN) or suckled from postnatal undernutrition (PUN) dams fed a protein-restricted diet (8% protein) or control diet (CON; 20% protein) until weaning at postnatal age of 21 days (PN21). At PN21, all mice were fed the CON diet until adulthood (PN80). Livers were collected at PN21 and PN80, and fecal samples were collected weekly starting at PN21 (postweaning week 1) until PN80 (postweaning week 5) for gut microbiome and metabolome analyses. PUN mice exhibited the most alterations in gut microbiome and gut and liver metabolome compared with CON mice. These mice had altered fecal microbial β-diversity (P = 0.001) and exhibited higher proportions of Bifidobacteriales [linear mixed model (LMM) P = 7.1 × 10-6), Clostridiales (P = 1.459 × 10-5), Erysipelotrichales (P = 0.0003), and lower Bacteroidales (P = 4.1 × 10-5)]. PUN liver and fecal metabolome had a reduced total bile acid pool (P < 0.01), as well as lower abundance of riboflavin (P = 0.003), amino acids [i.e., methionine (P = 0.0018), phenylalanine (P = 0.0015), and tyrosine (P = 0.0041)], and higher excreted total peptides (LMM P = 0.0064) compared with CON. Overall, protein restriction during lactation permanently alters the gut microbiome into adulthood. Although the liver bile acids, amino acids, and acyl-carnitines recovered, the fecal peptides and microbiome remained permanently altered into adulthood, indicating that inadequate protein intake in a specific time frame in early life can have an irreversible impact on the microbiome and fecal metabolome.NEW & NOTEWORTHY Undernutrition-induced early-life growth restriction not only leads to increased disease risk but also permanently alters the gut microbiome and gut-liver metabolome during specific windows of early-life development.
Collapse
Affiliation(s)
- Melissa A Quinn
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Abby E Pritchard
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Joseph R Visker
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah
| | - Ashley C McPeek
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Ruma Raghuvanshi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan
| | - Christian Martin H
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan
| | - Austin G Wellette-Hunsucker
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Eric C Leszczynski
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing Michigan
| | - Karin A Pfeiffer
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing Michigan
| | - David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Mild Choline Deficiency and MTHFD1 Synthetase Deficiency Interact to Increase Incidence of Developmental Delays and Defects in Mice. Nutrients 2021; 14:nu14010127. [PMID: 35011003 PMCID: PMC8747146 DOI: 10.3390/nu14010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/07/2023] Open
Abstract
Folate and choline are interconnected metabolically. The MTHFD1 R653Q SNP is a risk factor for birth defects and there are concerns that choline deficiency may interact with this SNP and exacerbate health risks. 80–90% of women do not meet the Adequate Intake (AI) for choline. The objective of this study was to assess the effects of choline deficiency on maternal one-carbon metabolism and reproductive outcomes in the MTHFD1-synthetase deficient mouse (Mthfd1S), a model for MTHFD1 R653Q. Mthfd1S+/+ and Mthfd1S+/− females were fed control (CD) or choline-deficient diets (ChDD; 1/3 the amount of choline) before mating and during pregnancy. Embryos were evaluated for delays and defects at 10.5 days gestation. Choline metabolites were measured in the maternal liver, and total folate measured in maternal plasma and liver. ChDD significantly decreased choline, betaine, phosphocholine, and dimethylglycine in maternal liver (p < 0.05, ANOVA), and altered phosphatidylcholine metabolism. Maternal and embryonic genotype, and diet-genotype interactions had significant effects on defect incidence. Mild choline deficiency and Mthfd1S+/− genotype alter maternal one-carbon metabolism and increase incidence of developmental defects. Further study is required to determine if low choline intakes contribute to developmental defects in humans, particularly in 653QQ women.
Collapse
|
8
|
Guo J, Hang P, Yu J, Li W, Zhao X, Sun Y, Fan Z, Du Z. The association between RGS4 and choline in cardiac fibrosis. Cell Commun Signal 2021; 19:46. [PMID: 33892733 PMCID: PMC8063380 DOI: 10.1186/s12964-020-00682-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Myocardial fibrosis is caused by the adverse and powerful remodeling of the heart secondary to the death of cardiomyocytes after myocardial infarction. Regulators of G protein Signaling (RGS) 4 is involved in cardiac diseases through regulating G protein-coupled receptors (GPCRs). Methods Cardiac fibrosis models were established through cardiac fibroblasts (CFs) treatment with transforming growth factor (TGF)-β1 in vitro and mice subjected to myocardial infarction in vivo. The mRNA expression of RGS4, collagen I/III and α-SMA detected by qRT-PCR. Protein level of RGS4, collagen I, CTGF and α-SMA detected by Western blot. The ejection fraction (EF%) and fractional shortening (FS%) of mice were measured by echocardiography. Collagen deposition of mice was tested by Masson staining. Results The expression of RGS4 increased in CFs treatment with TGF-β1 and in MI mice. The model of cardiac fibrosis detected by qRT-PCR and Western blot. It was demonstrated that inhibition of RGS4 expression improved cardiac fibrosis by transfection with small interfering RNA in CFs and injection with lentivirus shRNA in mice. The protective effect of choline against cardiac fibrosis was counteracted by overexpression of RGS4 in vitro and in vivo. Moreover, choline inhibited the protein level of TGF-β1, p-Smad2/3, p-p38 and p-ERK1/2 in CFs treated with TGF-β1, which were restored by RGS4 overexpression. Conclusion This study demonstrated that RGS4 promoted cardiac fibrosis and attenuated the anti-cardiac fibrosis of choline. RGS4 may weaken anti-cardiac fibrosis of choline through TGF-β1/Smad and MAPK signaling pathways. ![]()
Video Abstract: Video Byte of this article
Supplementary Information The online version contains supplementary material availlable at 10.1186/s12964-020-00682-y.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Pengzhou Hang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Jie Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Wen Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xiuye Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yue Sun
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Ziyi Fan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, 150086, People's Republic of China. .,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China. .,State Key Laboratory of Quality Reserch in Chinese Medicines, Macau University of Science and Technology, Macau, Macau, 150086, People's Republic of China.
| |
Collapse
|
9
|
Gao Y, Zhu C, Li K, Cheng X, Du Y, Yang D, Fan X, Gaur U, Yang M. Comparative proteomics analysis of dietary restriction in Drosophila. PLoS One 2020; 15:e0240596. [PMID: 33064752 PMCID: PMC7567386 DOI: 10.1371/journal.pone.0240596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
To explore the underlying mechanism of dietary restriction (DR) induced lifespan extension in fruit flies at protein level, we performed proteome sequencing in Drosophila at day 7 (young) and day 42 (old) under DR and ad libitum (AL) conditions. A total of 18629 unique peptides were identified in Uniprot, corresponding to 3,662 proteins. Among them, 383 and 409 differentially expressed proteins (DEPs) were identified from comparison between DR vs AL at day 7 and 42, respectively. Bioinformatics analysis revealed that membrane-related processes, post-transcriptional processes, spliceosome and reproduction related processes, were highlighted significantly. In addition, expression of proteins involved in pathways such as spliceosomes, oxidative phosphorylation, lysosomes, ubiquitination, and riboflavin metabolism was relatively higher during DR. A relatively large number of DEPs were found to participate in longevity and age-related disease pathways. We identified 20 proteins that were consistently regulated during DR and some of which are known to be involved in ageing, such as mTORC1, antioxidant, DNA damage repair and autophagy. In the integration analysis, we found 15 genes that were stably regulated by DR at both transcriptional as well as translational levels. Our results provided a useful dataset for further investigations on the mechanism of DR and aging.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Chenxing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Keqin Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Xingyi Cheng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Yanjiao Du
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Jeong H, Vacanti NM. Systemic vitamin intake impacting tissue proteomes. Nutr Metab (Lond) 2020; 17:73. [PMID: 32863845 PMCID: PMC7449053 DOI: 10.1186/s12986-020-00491-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The kinetics and localization of the reactions of metabolism are coordinated by the enzymes that catalyze them. These enzymes are controlled via a myriad of mechanisms including inhibition/activation by metabolites, compartmentalization, thermodynamics, and nutrient sensing-based transcriptional or post-translational regulation; all of which are influenced as a network by the activities of metabolic enzymes and have downstream potential to exert direct or indirect control over protein abundances. Considering many of these enzymes are active only when one or more vitamin cofactors are present; the availability of vitamin cofactors likely yields a systems-influence over tissue proteomes. Furthermore, vitamins may influence protein abundances as nuclear receptor agonists, antioxidants, substrates for post-translational modifications, molecular signal transducers, and regulators of electrolyte homeostasis. Herein, studies of vitamin intake are explored for their contribution to unraveling vitamin influence over protein expression. As a body of work, these studies establish vitamin intake as a regulator of protein abundance; with the most powerful demonstrations reporting regulation of proteins directly related to the vitamin of interest. However, as a whole, the field has not kept pace with advances in proteomic platforms and analytical methodologies, and has not moved to validate mechanisms of regulation or potential for clinical application.
Collapse
Affiliation(s)
- Heesoo Jeong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY USA
| | | |
Collapse
|
11
|
Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients 2018; 10:nu10101513. [PMID: 30332744 PMCID: PMC6213596 DOI: 10.3390/nu10101513] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/13/2022] Open
Abstract
Choline, an essential dietary nutrient for humans, is required for the synthesis of the neurotransmitter, acetylcholine, the methyl group donor, betaine, and phospholipids; and therefore, choline is involved in a broad range of critical physiological functions across all stages of the life cycle. The current dietary recommendations for choline have been established as Adequate Intakes (AIs) for total choline; however, dietary choline is present in multiple different forms that are both water-soluble (e.g., free choline, phosphocholine, and glycerophosphocholine) and lipid-soluble (e.g., phosphatidylcholine and sphingomyelin). Interestingly, the different dietary choline forms consumed during infancy differ from those in adulthood. This can be explained by the primary food source, where the majority of choline present in human milk is in the water-soluble form, versus lipid-soluble forms for foods consumed later on. This review summarizes the current knowledge on dietary recommendations and assessment methods, and dietary choline intake from food sources across the life cycle.
Collapse
|
12
|
Qiang Y, Li Q, Xin Y, Fang X, Tian Y, Ma J, Wang J, Wang Q, Zhang R, Wang J, Wang F. Intake of Dietary One-Carbon Metabolism-Related B Vitamins and the Risk of Esophageal Cancer: A Dose-Response Meta-Analysis. Nutrients 2018; 10:835. [PMID: 29954131 PMCID: PMC6073467 DOI: 10.3390/nu10070835] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Several B vitamins are essential in the one-carbon metabolism pathway, which is central to DNA methylation, synthesis, and repair. Moreover, an imbalance in this pathway has been linked to certain types of cancers. Here, we performed a meta-analysis in order to investigate the relationship between the intake of four dietary one-carbon metabolism-related B vitamins (B2, B6, folate, and B12) and the risk of esophageal cancer (EC). We searched PubMed, Web of Science, and Embase for relevant studies published through 1 March 2018. The odds ratio (OR) with 95% confidence interval (CI) for the highest versus the lowest level of each dietary B vitamin was then calculated. From 21 articles reporting 26 studies including 6404 EC cases and 504,550 controls, we found an inverse correlation between the consumption of vitamin B6 and folate and the risk of EC; this association was specific to the US, Europe, and Australia, but was not found in Asia. A dose-response analysis revealed that each 100 μg/day increase in folate intake reduced the risk of EC by 12%. Moreover, each 1 mg/day increase in vitamin B6 intake decreased the risk of EC by 16%. Surprisingly, we found that each 1 μg/day increase in vitamin B12 intake increased the risk of esophageal adenocarcinoma by 2%, particularly in the US and Europe, suggesting both geographic and histological differences. Together, our results suggest that an increased intake of one-carbon metabolism-related B vitamins may protect against EC, with the exception of vitamin B12, which should be consumed in moderation.
Collapse
Affiliation(s)
- Yuzhen Qiang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Qianwen Li
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongjuan Xin
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Xuexian Fang
- Institute of Nutrition and Food Safety, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Yongmei Tian
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Jifei Ma
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianyao Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Qingqing Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Ruochen Zhang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Junhao Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
- Institute of Nutrition and Food Safety, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
13
|
Zeisel SH, Klatt KC, Caudill MA. Choline. Adv Nutr 2018; 9:58-60. [PMID: 29438456 PMCID: PMC6008955 DOI: 10.1093/advances/nmx004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/16/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Steven H Zeisel
- UNC Nutrition Research Institute, Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, Kannapolis, NC
| | - Kevin C Klatt
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| |
Collapse
|
14
|
Udhayabanu T, Karthi S, Mahesh A, Varalakshmi P, Manole A, Houlden H, Ashokkumar B. Adaptive regulation of riboflavin transport in heart: effect of dietary riboflavin deficiency in cardiovascular pathogenesis. Mol Cell Biochem 2017; 440:147-156. [PMID: 28836047 DOI: 10.1007/s11010-017-3163-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023]
Abstract
Deficiency or defective transport of riboflavin (RF) is known to cause neurological disorders, cataract, cardiovascular anomalies, and various cancers by altering the biochemical pathways. Mechanisms and regulation of RF uptake process is well characterized in the cells of intestine, liver, kidney, and brain origin, while very little is known in the heart. Hence, we aimed to understand the expression and regulation of RF transporters (rRFVT-1 and rRFVT-2) in cardiomyocytes during RF deficiency and also investigated the role of RF in ischemic cardiomyopathy and mitochondrial dysfunction in vivo. Riboflavin uptake assay revealed that RF transport in H9C2 is (1) significantly higher at pH 7.5, (2) independent of Na+ and (3) saturable with a Km of 3.746 µM. For in vivo studies, male Wistar rats (110-130 g) were provided riboflavin deficient food containing 0.3 ± 0.05 mg/kg riboflavin for 7 weeks, which resulted in over expression of both RFVTs in mRNA and protein level. RF deprivation resulted in the accumulation of cardiac biomarkers, histopathological abnormalities, and reduced mitochondrial membrane potential which evidenced the key role of RF in the development of cardiovascular pathogenesis. Besides, adaptive regulation of RF transporters upon RF deficiency signifies that RFVTs can be considered as an effective delivery system for drugs against cardiac diseases.
Collapse
Affiliation(s)
- Tamilarasan Udhayabanu
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Sellamuthu Karthi
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Ayyavu Mahesh
- Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Andreea Manole
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
15
|
Zou YX, Ruan MH, Luan J, Feng X, Chen S, Chu ZY. Anti-Aging Effect of Riboflavin Via Endogenous Antioxidant in Fruit fly Drosophila Melanogaster. J Nutr Health Aging 2017; 21:314-319. [PMID: 28244572 DOI: 10.1007/s12603-016-0752-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES This study investigated the effect of riboflavin on aging in Drosophila melanogaster (fruit fly). DESIGN Experimental study. SETTING Naval Medical Research Institute. PARTICIPANTS Fruit fly Drosophila melanogaster. INTERVENTION After lifelong supplement of riboflavin, the lifespan and the reproduction of fruit flies were observed. Hydrogen peroxide (H2O2) was used to mimic oxidative stress damage to fruit flies and the survival time was recorded. MEASUREMENTS The activity of copper-zinc-containing superoxide dismutase (SOD1), manganese containing SOD (SOD2) and catalase (CAT) and lipofuscin (LF) content were determined. RESULTS Riboflavin significantly prolonged the lifespan (Log rank χ2=16.677, P<0.001) and increased the reproductive capacity (P<0.01 for day 15; P<0.05 for day 30) of fruit flies by lifelong supplement. The survival time of fruit flies damaged by H2O2 was significantly prolonged (Log rank χ2=15.886, P<0.001), the activity of SOD1 (P<0.01) and CAT (P<0.01) was enhanced, and the accumulation of LF (P<0.01) was inhibited by riboflavin supplement. CONCLUSION Riboflavin prolonged the lifespan and increased the reproduction of fruit flies through anti-oxidative stress pathway involving enhancing the activity of SOD1 and CAT and inhibiting LF accumulation. Riboflavin deserves more attention for slowing human aging.
Collapse
Affiliation(s)
- Y-X Zou
- Zhi-Yong Chu, Naval Medical Research Institute, 880 Xiangyin Road, Shanghai, China. Tel: +86(21)81883188,
| | | | | | | | | | | |
Collapse
|
16
|
Mandaviya PR, Stolk L, Heil SG. Homocysteine and DNA methylation: a review of animal and human literature. Mol Genet Metab 2014; 113:243-52. [PMID: 25456744 DOI: 10.1016/j.ymgme.2014.10.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/04/2014] [Accepted: 10/04/2014] [Indexed: 11/28/2022]
Abstract
Homocysteine (Hcy) is a sulfur-containing non-protein forming amino acid, which is synthesized from methionine as an important intermediate in the one-carbon pathway. High concentrations of Hcy in a condition called hyperhomocysteinemia (HHcy) are an independent risk factor for several disorders including cardiovascular diseases and osteoporotic fractures. Since Hcy is produced as a byproduct of the methyltransferase reaction, alteration in DNA methylation is studied as one of the underlying mechanisms of HHcy-associated disorders. In animal models, elevated Hcy concentrations are induced either by diet (high methionine, low B-vitamins, or both), gene knockouts (Mthfr, Cbs, Mtrr or Mtr) or combination of both to investigate their effects on DNA methylation or its markers. In humans, most of the literature involves case-control studies concerning patients. The focus of this review is to study existing literature on HHcy and its role in relation to DNA methylation. Apart from this, a few studies investigated the effect of Hcy-lowering trials on restoring DNA methylation patterns, by giving a folic acid or B-vitamin supplemented diet. These studies which were conducted in animal models as well as humans were included in this review.
Collapse
Affiliation(s)
- Pooja R Mandaviya
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Lisette Stolk
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Goon S, Dey SR. A 24-hour dietary recall for assessing the intake pattern of choline among Bangladeshi pregnant women at their third trimester of pregnancy. Cent Asian J Glob Health 2014; 3:72. [PMID: 29755886 PMCID: PMC5927736 DOI: 10.5195/cajgh.2014.72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maternal choline intake during the third trimester of human pregnancy can modify systemic and local epigenetic marks in fetal-derived tissues, promoting better pregnancy outcomes, increased immunity, as well as improved mental and physical work capacity with proper memory and cognitive development. 103 pregnant women presenting to the antenatal care of Azimpur Maternity Hospital of Dhaka, Bangladesh in their third trimester of pregnancy were randomly selected for this cross sectional study exploring dietary intake patterns of choline. A dietary recall form was administered to estimate frequency and amount of food consumption of foods for the previous 24 hours. Most women reported diets that delivered less than the recommended choline intake (mean ± SD; 189.5 ± 98.2) providing only 42.72% of total RDA value. The results of this study may indicate that dietary choline among pregnant, Bangladeshi women may not be adequate to meet the needs of both, the mother and fetus. Further studies are warranted to determine clinical implications.
Collapse
Affiliation(s)
- Shatabdi Goon
- Dept. of Nutrition and Food Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Sima Rani Dey
- Dept. of Applied Statistics, East West University, Dhaka, Bangladesh
| |
Collapse
|
18
|
Shaw GM, Yang W, Carmichael SL, Vollset SE, Hobbs CA, Lammer EJ, Ueland PM. One-carbon metabolite levels in mid-pregnancy and risks of conotruncal heart defects. ACTA ACUST UNITED AC 2014; 100:107-15. [PMID: 24532477 DOI: 10.1002/bdra.23224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/20/2013] [Accepted: 01/13/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND Evidence exists for an association between use of vitamin supplements with folic acid in early pregnancy and reduced risk for offspring with conotruncal heart defects. A few observations have been made about nutrients related to one-carbon metabolism other than folate. Our prospective study attempted to extend information on nutrition and conotruncal heart defects by measuring analytes in mid-pregnancy sera. METHODS This study included data from a repository of women's mid-pregnancy serum specimens based on screened pregnancies in California from 2002-2007. Each woman's specimen was linked with delivery information to determine whether her fetus had a conotruncal heart defect or another structural malformation, or was nonmalformed. We identified 140 conotruncal cases and randomly selected 280 specimens as nonmalformed controls. Specimens were tested for a variety of analytes, including homocysteine, methylmalonic acid, folate, vitamin B12 , pyridoxal phosphate, pyridoxal, pyridoxic acid, riboflavin, total choline, betaine, methionine, cysteine, cystathionine, arginine, asymmetric and symmetric dimethylarginine. RESULTS AND CONCLUSIONS We did not observe statistical evidence for substantial differences between cases and controls for any of the measured analytes. Analyses specifically targeting B-vitamins also did not reveal differences between cases and controls.
Collapse
Affiliation(s)
- Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | |
Collapse
|
19
|
Xu M, Wu X, Li Y, Yang X, Hu J, Zheng M, Tian J. CITED2 mutation and methylation in children with congenital heart disease. J Biomed Sci 2014; 21:7. [PMID: 24456003 PMCID: PMC3917535 DOI: 10.1186/1423-0127-21-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/20/2014] [Indexed: 12/29/2022] Open
Abstract
Background The occurrence of Congenital Heart Disease (CHD) is resulted from either genetic or environmental factors or the both. The CITED2 gene deletion or mutation is associated with the development of cardiac malformations. In this study, we have investigated the role of CITED2 gene mutation and methylation in the development of Congenital Heart Disease in pediatric patients in China. Results We have screened 120 pediatric patients with congenital heart disease. Among these patients, 4 cases were detected to carry various CITED2 gene heterozygous mutations (c.550G > A, c.574A > G, c.573-578del6) leading correspondingly to the alterations of amino acid sequences in Gly184Ser, Ser192Gly, and Ser192fs, respectively. No CITED2 gene mutations were detected in the control group. At the same time, we found that CITED2 mutations could inhibit TFAP2c expression. In addition, we have demonstrated that abnormal CITED2 gene methylation was detected in most of the tested pediatric patients with CHD, which leads to a decrease of CITED2 transcription activities. Conclusions Our study suggests that CITED2 gene mutations and methylation may play an important role in the development of pediatric congenital heart disease.
Collapse
Affiliation(s)
| | - Xiaoyun Wu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing 400014, P,R, China.
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Obeid R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients 2013; 5:3481-95. [PMID: 24022817 PMCID: PMC3798916 DOI: 10.3390/nu5093481] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/18/2022] Open
Abstract
Methyl groups are important for numerous cellular functions such as DNA methylation, phosphatidylcholine synthesis, and protein synthesis. The methyl group can directly be delivered by dietary methyl donors, including methionine, folate, betaine, and choline. The liver and the muscles appear to be the major organs for methyl group metabolism. Choline can be synthesized from phosphatidylcholine via the cytidine-diphosphate (CDP) pathway. Low dietary choline loweres methionine formation and causes a marked increase in S-adenosylmethionine utilization in the liver. The link between choline, betaine, and energy metabolism in humans indicates novel functions for these nutrients. This function appears to goes beyond the role of the nutrients in gene methylation and epigenetic control. Studies that simulated methyl-deficient diets reported disturbances in energy metabolism and protein synthesis in the liver, fatty liver, or muscle disorders. Changes in plasma concentrations of total homocysteine (tHcy) reflect one aspect of the metabolic consequences of methyl group deficiency or nutrient supplementations. Folic acid supplementation spares betaine as a methyl donor. Betaine is a significant determinant of plasma tHcy, particularly in case of folate deficiency, methionine load, or alcohol consumption. Betaine supplementation has a lowering effect on post-methionine load tHcy. Hypomethylation and tHcy elevation can be attenuated when choline or betaine is available.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry, University Hospital of the Saarland, D-66424, Homburg, Germany.
| |
Collapse
|
22
|
Alsayed R, Al Quobaili F, Srour S, Geisel J, Obeid R. Elevated dimethylglycine in blood of children with congenital heart defects and their mothers. Metabolism 2013; 62:1074-80. [PMID: 23481916 DOI: 10.1016/j.metabol.2013.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/07/2013] [Accepted: 01/31/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Congenital Heart Defects (CHD) may be related to nutritional deficiencies affecting the methylation cycle. We aimed to study the metabolic markers of the betaine homocysteine methyl transferase (BHMT) pathway in children with CHD and their mothers compared to children without CHD and their mothers. MATERIALS AND METHODS Children with CHD (n=105, age < 3 years) and mothers of 80 of the affected children were studied. The controls were non-CHDs children of comparable age as the CHD group (n=52) and their mothers (n=50). We measured serum or plasma concentrations of the metabolites of the methylation cycle homocysteine (HCY), methylmalonic acid (MMA), cystathionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), betaine, choline, and dimethylglycine (DMG). RESULTS Children with CHD had higher plasma SAM (131 vs. 100 nmol/L) and DMG (8.7 vs. 6.0 μmol/L) and lower betaine/DMG ratio (7.5 vs. 10.2) compared to the controls. Mothers of CHD children showed also higher DMG (6.1 vs. 4.1 µmol/L) and lower betaine/DMG ratio compared with the mothers of the controls. Higher SAM levels were related to higher cystathionine, MMA, betaine, choline, and DMG. MMA elevation in the patients was related to higher HCY, SAM, betaine and DMG. CONCLUSIONS Elevated DMG in CHD children and their mothers compared to the controls can indicate upregulation of the BHMT pathway in this disease group. Nutritional factors are related to metabolic imbalance during pregnancy that may be related to worse birth outcome.
Collapse
Affiliation(s)
- Ranwa Alsayed
- Damascus University, Faculty of Pharmacy, Department of Biochemistry, Damascus, Syria.
| | | | | | | | | |
Collapse
|
23
|
Imbard A, Blom HJ, Schlemmer D, Barto R, Czerkiewicz I, Rigal O, Muller F, Benoist JF. Methylation metabolites in amniotic fluid depend on gestational age. Prenat Diagn 2013; 33:848-55. [PMID: 23613283 DOI: 10.1002/pd.4142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Methylation metabolism is essential for fetus development. However, normative data for amniotic fluid (AF) concentrations of methylation metabolites at different gestational ages are lacking. We aimed to determine in AF reference values of 14 intermediates involved in methylation. METHODS Two hundred sixty-eight AFs sampled between 14 and 39 weeks of gestation were retrospectively selected in our AF bank. Next, we measured methionine (Met)-cycle intermediates [S-adenosyl Met (AdoMet), S-adenosyl-l-homocysteine (AdoHcy), total Hcy, Met, and methyl malonic acid] and methyl donors and methyl acceptors (betaine, dimethylglycine, sarcosine, free and total choline, free and total ethanolamine, creatine, and guanidinoacetate) by liquid chromatography coupled with tandem mass spectrometry. RESULTS Reference ranges according to gestational age were determined for each parameter. Strong correlations between metabolites directly connected in their metabolic pathway and between total Hcy and betaine were observed. CONCLUSION Methionine, an essential amino acid required for protein synthesis, is the only parameter that dramatically decreases with gestational age. The AdoMet/AdoHcy ratio exponentially increases from 25 weeks of gestation, which could reflect increasing methylation capacities. The negative correlation between betaine and total Hcy together with a constant betaine to dimethylglycine ratio during gestation suggests that betaine may be used as a methyl donor during fetal life.
Collapse
Affiliation(s)
- Apolline Imbard
- Biochemistry Hormonology Laboratory, AP-HP Hôpital Robert Debré, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Martinez E, Gérard N, Garcia MM, Mazur A, Guéant-Rodriguez RM, Comte B, Guéant JL, Brachet P. Myocardium proteome remodelling after nutritional deprivation of methyl donors. J Nutr Biochem 2013; 24:1241-50. [PMID: 23318136 DOI: 10.1016/j.jnutbio.2012.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/06/2012] [Accepted: 09/21/2012] [Indexed: 01/02/2023]
Abstract
Methyl donor (MD: folate, vitamin B12 and choline) deficiency causes hyperhomocysteinemia, a risk factor for cardiovascular diseases. However, the mechanisms of the association between MD deficiency, hyperhomocysteinemia, and cardiomyopathy remain unclear. Therefore, we performed a proteomic analysis of myocardium of pups from rat dams fed a MD-depleted diet to understand the impact of MD deficiency on heart at the protein level. Two-dimension gel electrophoresis and mass spectrometry-based analyses allowed us to identify 39 proteins with significantly altered abundance in MD-deficient myocardium. Ingenuity Pathway Analysis showed that 87% of them fitted to a single protein network associated with developmental disorder, cellular compromise and lipid metabolism. Concurrently increased protein carbonylation, the major oxidative post-translational protein modification, could contribute to the decreased abundance of many myocardial proteins after MD deficiency. To decipher the effect of MD deficiency on the abundance of specific proteins identified in vivo, we developed an in vitro model using the cardiomyoblast cell line H9c2. After a 4-day exposure to a MD-deprived (vs. complete) medium, cells were deficient of folate and vitamin B12, and released abnormal amounts of homocysteine. Western blot analyses of pup myocardium and H9c2 cells yielded similar findings for several proteins. Of specific interest is the result showing increased and decreased abundances of prohibitin and α-crystallin B, respectively, which underlines mitochondrial injury and endoplasmic reticulum stress within MD deficiency. The in vitro findings validate the MD-deficient H9c2 cells as a relevant model for studying mechanisms of the early metabolic changes occurring in cardiac cells after MD deprivation.
Collapse
Affiliation(s)
- Emilie Martinez
- INRA-Theix, UMR1019, Unité de Nutrition Humaine, CRNH Auvergne, Université d'Auvergne Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mikael LG, Deng L, Paul L, Selhub J, Rozen R. Moderately high intake of folic acid has a negative impact on mouse embryonic development. ACTA ACUST UNITED AC 2012; 97:47-52. [PMID: 23125102 DOI: 10.1002/bdra.23092] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND The incidence of neural tube defects has diminished considerably since the implementation of food fortification with folic acid (FA). However, the impact of excess FA intake, particularly during pregnancy, requires investigation. In a recent study, we reported that a diet supplemented with 20-fold higher FA than the recommended intake for rodents had adverse effects on embryonic mouse development at embryonic days (E)10.5 and 14.5. In this report, we examined developmental outcomes in E14.5 embryos after administering a diet supplemented with 10-fold higher FA than recommended to pregnant mice with and without a mild deficiency of methylenetetrahydrofolate reductase (MTHFR). METHODS Pregnant mice with or without a deficiency in MTHFR were fed a control diet (recommended FA intake of 2 mg/kg diet for rodents) or an FA-supplemented diet (FASD; 10-fold higher than the recommended intake [20 mg/kg diet]). At E14.5, mice were examined for embryonic loss and growth retardation, and hearts were assessed for defects and for ventricular wall thickness. RESULTS Maternal FA supplementation was associated with embryonic loss, embryonic delays, a higher incidence of ventricular septal defects, and thinner left and right ventricular walls, compared to mothers fed control diet. CONCLUSIONS Our work suggests that even moderately high levels of FA supplementation may adversely affect fetal mouse development. Additional studies are warranted to evaluate the impact of high folate intake in pregnant women. Birth Defects Research (Part A), 2013. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leonie G Mikael
- Departments of Human Genetics and Pediatrics, McGill University, Montreal Children's Hospital Research Institute, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
26
|
Mikael LG, Pancer J, Jiang X, Wu Q, Caudill M, Rozen R. Low dietary folate and methylenetetrahydrofolate reductase deficiency may lead to pregnancy complications through modulation of ApoAI and IFN-γ in spleen and placenta, and through reduction of methylation potential. Mol Nutr Food Res 2012; 57:661-70. [PMID: 23112124 DOI: 10.1002/mnfr.201200152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/04/2012] [Accepted: 08/22/2012] [Indexed: 11/08/2022]
Abstract
SCOPE Genetic or nutritional disturbances in folate metabolism lead to hyperhomocysteinemia and adverse reproductive outcomes. Folate-dependent homocysteine remethylation is required for methylation reactions and may influence choline/betaine metabolism. Hyperhomocysteinemia has been suggested to play a role in inflammation. The goal of this study was to determine whether folate-related pregnancy complications could be due to altered expression of some inflammatory mediators or due to disturbances in methylation intermediates. METHODS AND RESULTS Pregnant mice with or without a deficiency of methylenetetrahydrofolate reductase (MTHFR) were fed control diets or folate-deficient (FD) diets; tissues were collected at embryonic day 14.5. FD decreased plasma phosphocholine and increased plasma glycerophosphocholine and lysophosphatidylcholine. Liver betaine, phosphocholine, and S-adenosylmethionine:S-adenosylhomocysteine ratios were reduced in FD. In liver, spleen, and placenta, the lowest levels of apolipoprotein AI (ApoAI) were observed in Mthfr(+/-) mice fed FD. Increased interferon-gamma (IFN-γ) was observed in spleen and placentae due to FD or Mthfr genotype. Plasma homocysteine correlated negatively with liver and spleen ApoAI, and positively with IFN-γ. CONCLUSION Low dietary folate or Mthfr deficiency during pregnancy may result in adverse pregnancy outcomes by altering expression of the inflammatory mediators ApoAI and IFN-γ in spleen and placenta. Disturbances in choline metabolism or methylation reactions may also play a role.
Collapse
Affiliation(s)
- Leonie G Mikael
- Department of Human Genetics, McGill University, Montreal Children's Hospital Research Institute, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 2012; 23:853-9. [PMID: 22749138 DOI: 10.1016/j.jnutbio.2012.03.003] [Citation(s) in RCA: 499] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 01/17/2023]
Abstract
DNA methylation is the most extensively studied mechanism of epigenetic gene regulation. Increasing evidence indicates that DNA methylation is labile in response to nutritional and environmental influences. Alterations in DNA methylation profiles can lead to changes in gene expression, resulting in diverse phenotypes with the potential for increased disease risk. The primary methyl donor for DNA methylation is S-adenosylmethionine (SAM), a species generated in the cyclical cellular process called one-carbon metabolism. One-carbon metabolism is catalyzed by several enzymes in the presence of dietary micronutrients, including folate, choline, betaine and other B vitamins. For this reason, nutrition status, particularly micronutrient intake, has been a focal point when investigating epigenetic mechanisms. Although animal evidence linking nutrition and DNA methylation is fairly extensive, epidemiological evidence is less comprehensive. This review serves to integrate studies of the animal in vivo with human epidemiological data pertaining to nutritional regulation of DNA methylation and to further identify areas in which current knowledge is limited.
Collapse
Affiliation(s)
- Olivia S Anderson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | | | | |
Collapse
|
28
|
Mikael LG, Pancer J, Wu Q, Rozen R. Disturbed one-carbon metabolism causing adverse reproductive outcomes in mice is associated with altered expression of apolipoprotein AI and inflammatory mediators PPARα, interferon-γ, and interleukin-10. J Nutr 2012; 142:411-8. [PMID: 22259189 DOI: 10.3945/jn.111.151753] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Low dietary choline or deficiency of methylenetetrahydrofolate reductase (Mthfr) leads to hyperhomocysteinemia (Hhcy) and adverse reproductive outcomes. Homocysteine reduces synthesis of ApoAI, the major lipoprotein in HDL-cholesterol; ApoAI is regulated by PPARα and has antiinflammatory properties. Our aim was to determine whether pregnancy complications due to genetic or nutritional deficiencies in 1-carbon metabolism could relate to dysregulation of ApoAI and inflammatory mediators. We fed pregnant mice, with or without a deficiency of Mthfr, control or choline-deficient (ChDD) diets for 10-12 wk and examined levels of ApoAI, PPARα, IFNγ, and IL-10. ApoAI mRNA was reduced in livers of Mthfr(+/-) mice and ApoAI protein was reduced due to Mthfr deficiency or choline deficiency in liver and plasma. Placental ApoAI protein was also reduced due to Mthfr genotype or choline-deficient diet and in developmentally delayed embryos. Reduced liver PPARα expression (mRNA and protein) was observed in ChDD-fed mice and was associated with increased methylation of a CpG dinucleotide in its promoter. Hepatic IFNγ increased due to genotype, and placental IFNγ was higher in Mthfr(+/-) ChDD-fed dams compared to Mthfr(+/+) mice fed ChDD or Mthfr(+/-) mice fed CD. IL-10 was reduced in livers of ChDD-fed mice. We propose that a deficiency of dietary choline or Mthfr leads to Hhcy and reduced expression of maternal ApoAI, with reduced ApoAI transfer to embryo. Disturbances in 1-carbon metabolism also reduce maternal PPARα expression, possibly through promoter hypermethylation, and increase IFNγ and decrease IL-10 levels. This disturbance of the T helper (Th1) (IFNγ):Th2 (IL-10) ratio and the increase in inflammatory mediators may contribute to pregnancy complications.
Collapse
Affiliation(s)
- Leonie G Mikael
- Department of Human Genetics, McGill University, Montreal Children's Hospital Research Institute, Montreal, QC, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
Food intake can influence neuronal functions through different modulators expressed in the brain. The present review is a report through relevant experimental findings on the effects of choline, a nutritional component found in the diet, to identify a safe and effective dietary solution that can offer some protection against neurotoxicity and neurological disorders and that can be implemented in animals and humans in a very short period of time.
Collapse
Affiliation(s)
- Elisabetta Biasi
- Department of Pharmacology and Cancer Biology, Duke Univesity Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
30
|
Beaudin AE, Abarinov EV, Malysheva O, Perry CA, Caudill M, Stover PJ. Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice. Am J Clin Nutr 2012; 95:109-14. [PMID: 22134951 PMCID: PMC3238454 DOI: 10.3945/ajcn.111.020305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Low dietary choline intake has been proposed to increase the risk of neural tube defects (NTDs) in human populations. Mice with reduced Shmt1 expression exhibit a higher frequency of NTDs when placed on a folate- and choline-deficient diet and may represent a model of human NTDs. The individual contribution of dietary folate and choline deficiency to NTD incidence in this mouse model is not known. OBJECTIVE To dissociate the effects of dietary folate and choline deficiency on Shmt1-related NTD sensitivity, we determined NTD incidence in embryos from Shmt1-null dams fed diets deficient in either folate or choline. DESIGN Shmt1(+/+) and Shmt1(-/-) dams were maintained on a standard AIN93G diet (Dyets), an AIN93G diet lacking folate (FD), or an AIN93G diet lacking choline (CD). Virgin Shmt1(+/+) and Shmt1(-/-) dams were crossed with Shmt1(+/-) males, and embryos were examined for the presence of NTDs at embryonic day (E) 11.5 or E12.5. RESULTS Exencephaly was observed only in Shmt1(-/-) embryos isolated from dams maintained on the FD diet (P = 0.004). Approximately 33% of Shmt1(-/-)embryos (n = 18) isolated from dams maintained on the FD diet exhibited exencephaly. NTDs were not observed in any embryos isolated from dams maintained on the CD (n = 100) or control (n = 152) diets or in any Shmt1(+/+) (n = 78) or Shmt1(+/-) embryos (n = 182). CONCLUSION Maternal folate deficiency alone is sufficient to induce NTDs in response to embryonic Shmt1 disruption.
Collapse
Affiliation(s)
- Anna E Beaudin
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The aim of this review is to evaluate the evidence for and against fasting plasma total homocysteine (tHcy) as a biomarker/risk factor of impaired reproductive function before and during pregnancy. Apart from nutritional and lifestyle factors, tHcy is also influenced by physiological factors specific to pregnancy such as hemodilution, increased glomerular filtration rate, and endocrinological changes. These lead to a considerable reduction under normal circumstances in tHcy by midpregnancy. Stimulating excess endogenous homocysteine production before and during pregnancy in animal experiments and adding exogenous homocysteine to cell cultures result in the impairment of reproductive and developmental processes from preconception throughout pregnancy and during subsequent development of the offspring. Different studies have confirmed that elevated tHcy is a risk factor for subfertility, congenital developmental defects, preeclampsia, and intrauterine growth retardation. There is conflicting evidence that elevated tHcy is a risk factor for miscarriage, gestational diabetes, premature rupture of the membranes, placental abruption, and offspring with Down syndrome. Prospective, sufficiently powered, studies from preconception/early pregnancy are required to determine whether tHcy is a risk factor for these pregnancy complications.
Collapse
|
32
|
|