1
|
Wang X, Xue Y, Chang L, Zhu X, Liu W, Liang T. The Regulation of Trace Metal Elements in Cancer Ferroptosis. Adv Biol (Weinh) 2025:e2400821. [PMID: 40200790 DOI: 10.1002/adbi.202400821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/11/2025] [Indexed: 04/10/2025]
Abstract
Ferroptosis, as novel type of regulated cell death that has garnered widespread attention over the past decade, has witnessed the continuous discovery of an increasing number of regulatory mechanisms. Trace metal elements play a multifaceted and crucial role in oncology. Interestingly, it has been increasingly evident that these elements, such as copper, are involved in the regulation of iron accumulation, lipid peroxidation and antiferroptotic systems, suggesting the existence of "nonferrous" mechanisms in ferroptosis. In this review, a comprehensive overview of the composition and mechanism of ferroptosis is provided. The interaction between copper metabolism (including cuproptosis) and ferroptosis in cancer, as well as the roles of other trace metal elements (such as zinc, manganese, cobalt, and molybdenum) in ferroptosis are specifically focused. Furthermore, the applications of nanomaterials based on these metals in cancer therapy are also reviewed and potential strategies for co-targeting ferroptosis and cuproptosis are explored. Nevertheless, in light of the intricate and ambiguous nature of these interactions, ongoing research is essential to further elucidate the "nonferrous" mechanisms of ferroptosis, thereby facilitating the development of novel therapeutic targets and approaches for cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuanyuan Xue
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lei Chang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xuena Zhu
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenjun Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, China
- Zhejiang University Cancer Center, Hangzhou, 310003, China
| |
Collapse
|
2
|
Sahiner N, Guven O, Demirci S, Suner SS, Sahiner M, Ari B, Can M. Tannic acid-based bio-MOFs with antibacterial and antioxidant properties acquiring non-hemolytic and non-cytotoxic characteristics. Colloids Surf B Biointerfaces 2025; 252:114669. [PMID: 40174536 DOI: 10.1016/j.colsurfb.2025.114669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Tannic acid (TA) based bio-metal phenolic networks (bio-MPNs) were prepared by using Cu(II), Zn(II), Bi(III), Ce(III), La(III), and Ti(IV) metal ions. TA-based bio-MPNs exhibited wedge-shaped pores between 16.4 and 25.8 nm pore size ranges. The higher gravimetric yield% was achieved for TA-Bi(III), and TA-Ti(IV) bio-MPNs with more than 90 %, and higher surface area was observed for TA-La(IIII) bio-MPNs as 56.2 m2/g with 17.3 nm average pore sizes. All TA-based MPNs are non-hemolytic with less than 5 % hemolysis ratio, whereas TA-based Bio-MPNs do not affect blood clotting with > 90 % blood clotting indexes except for TA-Cu(II) Bio-MPNs at 0.1 mg/mL concentration. Moreover, TA-Bi(III) and TA-Ce(III) Bio-MPNs were found to be safer materials showing no significant toxicity on L929 fibroblast cells at 100 μg/mL concentration, along with TA-based Bio-MPNs prepared with Cu(II), Zn(II), La(III), and Ti(IV) metal ions that could be safely used in in vivo applications at 1 μg/mL concentration. It has been proven by 2 different antioxidant tests that the prepared TA-based Bio-MPNs show antioxidant properties even if their TA-derived antioxidant properties decrease. Furthermore, all types of TA-based Bio-MPNs show great antimicrobial activity depending on the metal ion or microorganism types and the highest antibacterial/antifungal effect was determined for TA-Cu(II), and TA-Zn(II) Bio-MPNs with the lowest MBC/MFC values against Pseudomonas aeruginosa ATCC 10145, Bacillus subtilis ATCC 6633, and Candida albicans ATCC 10231.
Collapse
Affiliation(s)
- Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey; Department of Bioengineering,U. A. Whitaker College of Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, USA.
| | - Olgun Guven
- Department of Chemistry, Faculty of Sciences, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey
| | - Sahin Demirci
- Department of Food Engineering, Faculty of Engineering, Istanbul Aydin University, Florya Halit Aydin Campus, Istanbul 34153, Turkey
| | - Selin S Suner
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey
| | - Mehtap Sahiner
- Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC21, Tampa, FL 33612, USA
| | - Betul Ari
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey
| | - Mehmet Can
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey
| |
Collapse
|
3
|
Liu Z, Gan Y, Shen Z, Cai S, Wang X, Li Y, Li X, Fu H, Chen J, Li N. Role of copper homeostasis and cuproptosis in heart failure pathogenesis: implications for therapeutic strategies. Front Pharmacol 2025; 15:1527901. [PMID: 39850564 PMCID: PMC11754225 DOI: 10.3389/fphar.2024.1527901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Copper is an essential micronutrient involved in various physiological processes in various cell types. Consequently, dysregulation of copper homeostasis-either excessive or deficient-can lead to pathological changes, such as heart failure (HF). Recently, a new type of copper-dependent cell death known as cuproptosis has drawn increasing attention to the impact of copper dyshomeostasis on HF. Notably, copper dyshomeostasis was associated with the occurrence of HF. Hence, this review aimed to investigate the biological processes involved in copper uptake, transport, excretion, and storage at both the cellular and systemic levels in terms of cuproptosis and HF, along with the underlying mechanisms of action. Additionally, the role of cuproptosis and its related mitochondrial dysfunction in HF pathogenesis was analyzed. Finally, we reviewed the therapeutic potential of current drugs that target copper metabolism for treating HF. Overall, the conclusions of this review revealed the therapeutic potential of copper-based therapies that target cuproptosis for the development of strategies for the treatment of HF.
Collapse
Affiliation(s)
- Zhichao Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yongkang Gan
- Department of Vascular Surgery, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhen Shen
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Siqi Cai
- College of Art, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Xizhen Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yong Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaofeng Li
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanjie Fu
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinhong Chen
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Su R, Liu R, Sun Y, Su H, Xing W. Rat copper transport protein 2 (CTR2) is involved in fertilization through interaction with IZUMO1 and JUNO. Theriogenology 2025; 231:160-170. [PMID: 39454481 DOI: 10.1016/j.theriogenology.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
In mammalian reproduction, testis-specific protein IZUMO1 and its receptor JUNO on the oocyte surface are essential for sperm-oocyte recognition, binding, and membrane fusion. However, these factors alone are insufficient to accomplish cytoplasmic membrane fusion. It is believed that other gametic proteins interact with them to facilitate sperm-oocyte interaction on the head and mid-tail of rat spermatozoa as well as on the surface of oocytes. In this study, Copper Transport Protein 2 (CTR2) has been identified on the head and mid-tail of rat spermatozoa as well as on the surface of oocytes. CTR2 directly interacts with both IZUMO1 and JUNO, colocalizing with IZUMO1 on the sperm head and with JUNO on the oocyte membrane. Treatment of the capacitated sperm and zona pellucida-free oocytes with anti-CTR2 antibody resulted in a significant decrease in fertilization rates in IVF experiments. These findings suggest that CTR2 plays an important role in mammalian fertilization by interacting with IZUMO1 and JUNO, providing new insights into the molecular mechanisms of mammalian sperm-oocyte adhesion and fusion.
Collapse
Affiliation(s)
- Rina Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Ruizhuo Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Yangyang Sun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Huimin Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China.
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China.
| |
Collapse
|
5
|
Hou G, Chen Y, Lei H, Lu Y, Liu L, Han Z, Sun S, Li J, Cheng L. Bimetallic peroxide nanoparticles induce PANoptosis by disrupting ion homeostasis for enhanced immunotherapy. SCIENCE ADVANCES 2024; 10:eadp7160. [PMID: 39514658 PMCID: PMC11546811 DOI: 10.1126/sciadv.adp7160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
PANoptosis has recently emerged as a potential approach to improve the immune microenvironment. However, current methods for inducing PANoptosis are limited. Herein, through biological screening, the rational use of the nutrient metal ions Cu2+ and Zn2+ had great potential to induce PANoptosis. Inspired by these findings, we successfully developed hydrazided hyaluronic acid-modified zinc copper oxide (HZCO) nanoparticles as a PANoptosis inducer to potentiate immunotherapy. Bioactive HZCO actively delivered Cu2+ and Zn2+ while disrupting the cellular intrinsic ion metabolism pathway, resulting in double-stranded DNA release and organelle damage in cancer cells. Simultaneously, this process triggered the formation of PANoptosome and the activation of PANoptosis. HZCO-induced PANoptosis inhibited tumor growth and activated potent antitumor immune response, thereby enhancing the effectiveness of anti-programmed cell death 1 therapy. Overall, our work provides an insight into the development of PANoptosis inducers and the design of synergistic immunotherapy strategies.
Collapse
Affiliation(s)
- Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yujie Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingrui Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Luo Y, Pezacki AT, Matier CD, Wang WX. A novel route of intercellular copper transport and detoxification in oyster hemocytes. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135003. [PMID: 38917627 DOI: 10.1016/j.jhazmat.2024.135003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Bivalve hemocytes are oyster immune cells composed of several cellular subtypes with different functions. Hemocytes accumulate high concentrations of copper (Cu) and exert critical roles in metal sequestration and detoxification in oysters, however the specific biochemical mechanisms that govern this have yet to be fully uncovered. Herein, we demonstrate that Cu(I) is predominately sequestered in lysosomes via the Cu transporter ATP7A in hemocytes to reduce the toxic effects of intracellular Cu(I). We also found that Cu(I) is translocated along tunneling nanotubes (TNTs) relocating from high Cu(I) cells to low Cu(I) cells, effectively reducing the burden caused by overloaded Cu(I), and that ATP7A facilitates the efflux of intracellular Cu(I) in both TNTs and hemocyte subtypes. We identify that elevated glutathione (GSH) contents and heat-shock protein (Hsp) levels, as well as the activation of the cell cycle were critical in maintaining the cellular homeostasis and function of hemocytes exposed to Cu. Cu exposure also increased the expression of membrane proteins (MYOF, RalA, RalBP1, and cadherins) and lipid transporter activity which can induce TNT formation, and activated the lysosomal signaling pathway, promoting intercellular lysosomal trafficking dependent on increased hydrolase activity and ATP-dependent activity. This study explores the intracellular and intercellular transport and detoxification of Cu in oyster hemocytes, which may help in understanding the potential toxicity and fate of metals in marine animals.
Collapse
Affiliation(s)
- Yali Luo
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Aidan T Pezacki
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carson D Matier
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
7
|
Hao D, Luo W, Yan Y, Zhou J. Focus on cuproptosis: Exploring new mechanisms and therapeutic application prospects of cuproptosis regulation. Biomed Pharmacother 2024; 178:117182. [PMID: 39053428 DOI: 10.1016/j.biopha.2024.117182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cuproptosis is a novel form of regulated cell death, which plays an important role in the physiological and pathological processes of the human body. Despite the increasing research on cuproptosis-related genes (CRGs) and their correlation with diseases, the pathogenesis of cuproptosis-related diseases remains unclear. Furthermore, there is a lack of reviews on the emerging technologies for regulating cuproptosis in disease treatment. This study delves into the copper-induced cell death mechanism, distinguishing cuproptosis from mechanisms like oxidative stress, glutathione synthesis inhibition, and ubiquitin-proteasome system inhibition. Several long-standing mysteries of diseases such as Wilson's disease and Menkes disease may be attributed to the occurrence of cuproptosis. In addition, we also review the detection indicators related to cuproptosis, providing targets for the diagnosis of cuproptosis-related diseases, and summarize the application value of cuproptosis in tumor therapy to better elucidate the impact of copper in cell death and diseases, and thus to promote the application prospects and possible strategies of cuproptosis-related substances, such as copper ion chelators, copper ion carriers, and copper nanomaterials, in disease therapy.
Collapse
Affiliation(s)
- Donglin Hao
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Luo
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| |
Collapse
|
8
|
Zhang Z, Tang H, Du T, Yang D. The impact of copper on bone metabolism. J Orthop Translat 2024; 47:125-131. [PMID: 39021399 PMCID: PMC466973 DOI: 10.1016/j.jot.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Copper is an essential trace element for the human body. Abnormalities in copper metabolism can lead to bone defects, mainly by directly affecting the viability of osteoblasts and osteoclasts and their bone remodeling function, or indirectly regulating bone metabolism by influencing enzyme activities as cofactors. Copper ions released from biological materials can affect osteoblasts and osteoclasts, either directly or indirectly by modulating the inflammatory response, oxidative stress, and rapamycin signaling. This review presents an overview of recent progress in the impact of copper on bone metabolism. Translational potential of this article: The impact of copper on bone metabolism can provide insights into clinical application of copper-containing supplements and biomaterials.
Collapse
Affiliation(s)
- Zihan Zhang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Huixue Tang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Tingting Du
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Di Yang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| |
Collapse
|
9
|
Huang Z, Cao L, Yan D. Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis. J Trace Elem Med Biol 2024; 84:127456. [PMID: 38692229 DOI: 10.1016/j.jtemb.2024.127456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Huang
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China
| | - Lunfei Cao
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China
| | - Dengfeng Yan
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China..
| |
Collapse
|
10
|
Qu J, Wang Y, Wang Q. Cuproptosis: potential new direction in diabetes research and treatment. Front Endocrinol (Lausanne) 2024; 15:1344729. [PMID: 38904034 PMCID: PMC11188452 DOI: 10.3389/fendo.2024.1344729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Cuproptosis, a recently discovered form of cell death, stems from an overabundance of copper ions infiltrating mitochondria. These ions directly engage lipoylated proteins, prompting their oligomerization and subsequent loss of iron-sulfur clusters. This sequence induces proteotoxic stress, ultimately culminating in cell death. Type 2 diabetes, a chronic metabolic disorder resulting from a complex interplay of genetic and environmental factors, has not yet been fully understood in terms of its etiology and pathogenesis. Intricately, it is linked to various modalities of cell death, including mitochondrial autophagy, apoptosis, pyroptosis, and ferroptosis. Studies have discovered impaired copper metabolism in individuals with Type 2 diabetes, hinting at a unique role for copper homeostasis in the progression of the disease. To this end, the present research aims to delineate the potential correlation between cuproptosis and Type 2 diabetes by exhaustively reviewing the existing literature. By synthesizing relevant research on cuproptosis, the paper intends to lay the groundwork for a thorough exploration of the pathogenesis of Type 2 diabetes and the development of targeted therapeutic interventions. The ultimate objective is to facilitate a deeper understanding of Type 2 diabetes and to identify novel therapeutic strategies associated with cuproptosis.
Collapse
Affiliation(s)
| | | | - Qiuyue Wang
- Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Zhong L, Fu D, Xu J, Tan L, Wu H, Wang M. Rational design of a lysosome-targeted fluorescent probe for monitoring the generation of hydroxyl radicals in ferroptosis pathways. RSC Adv 2024; 14:12864-12872. [PMID: 38650686 PMCID: PMC11033609 DOI: 10.1039/d4ra00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Ferroptosis is a newly discovered iron-dependent form of regulated cell death associated with high levels of hydroxyl radical (˙OH) production. Meanwhile, lysosome dysfunction has been shown to be one of the causes of ferroptosis. Although a variety of ˙OH-responsive fluorescent probes have been developed for detecting intracellular ˙OH in living cells, there are still only few lysosome-targeted probes to monitor the variation in lysosomal ˙OH levels during ferroptosis. Herein, we report a novel ˙OH-specific fluorescent probe HCy-Lyso, which is composed of the hydrocyanine and morpholine moiety. Upon treatment with ˙OH, its hydrocyanine unit was converted to the corresponding cyanine group, thus leading to a large π-conjugation extension of HCy-Lyso, accompanied by a significant fluorescence off-on response. Moreover, after reacting with ˙OH in an acidic environment, the protonation product of HCy-Lyso exhibits a higher fluorescence enhancement, which is suitable for detecting lysosomal ˙OH variation. HCy-Lyso has been utilized for imaging endogenous ˙OH in living cells under phorbol myristate acetate (PMA) stimuli and monitoring the changes in lysosomal ˙OH levels during ferroptosis. Thus, our study proposes a new strategy to design lysosome-targeted and ˙OH-responsive fluorescent probes to investigate the relationship between lysosomes and ferroptosis.
Collapse
Affiliation(s)
- Lili Zhong
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570311 China
| | - Datian Fu
- Department of Pharmacy, Hainan Women and Children's Medical Center Haikou Hainan 570312 China
| | - Jin Xu
- Pharmaceutical and Bioengineering School, Hunan Chemical Vocational Technology College Zhuzhou 412006 China
| | - Linyan Tan
- Department of Pharmacy, Tropical Agricultural Technology College, Hainan Vocational University Haikou Hainan 570216 China
| | - Haimei Wu
- Department of Clinical Pharmacy, Hainan Cancer Hospital Haikou Hainan 570100 China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570311 China
| |
Collapse
|
12
|
Moraes D, Tristão GB, Rappleye CA, Ray SC, Ribeiro-Dias F, Gomes RS, Assunção LDP, Paccez JD, Zancopé-Oliveira RM, Silva-Bailão MG, Soares CMDA, Bailão AM. The influence of a copper efflux pump in Histoplasma capsulatum virulence. FEBS J 2024; 291:744-760. [PMID: 37950580 DOI: 10.1111/febs.16999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
During the infectious process, pathogenic microorganisms must obtain nutrients from the host in order to survive and proliferate. These nutritional sources include the metallic nutrient copper. Despite its essentiality, copper in large amounts is toxic. Host defense mechanisms use high copper poisoning as a fungicidal strategy to control infection. Transcriptional analyses showed that yeast cultured in the presence of copper or inside macrophages (24 h) had elevated expression of CRP1, a copper efflux pump, suggesting that Histoplasma capsulatum could be exposed to a high copper environment in macrophages during the innate immune stage of infection. Accordingly, macrophages cultured in high copper are more efficient in controlling H. capsulatum growth. Also, silencing of ATP7a, a copper pump that promotes the copper influx in phagosomes, increases fungal survival in macrophages. The rich copper environment faced by the fungus is not dependent on IFN-γ, since fungal CRP1 expression is induced in untreated macrophages. Appropriately, CRP1 knockdown fungal strains are more susceptible to macrophage control than wild-type yeasts. Additionally, CRP1 silencing decreases fungal burden in mice during the phase of innate immune response (4-day postinfection) and CRP1 is required for full virulence in a macrophage cell lines (J774 A.1 and RAW 264.7), as well as primary cells (BMDM). Thus, induction of fungal copper detoxifying genes during innate immunity and the attenuated virulence of CRP1-knockdown yeasts suggest that H. capsulatum is exposed to a copper-rich environment at early infection, but circumvents this condition to establish infection.
Collapse
Affiliation(s)
- Dayane Moraes
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gabriel Brum Tristão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Stephanie C Ray
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rodrigo Saar Gomes
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
13
|
Tsui KH, Hsiao JH, Lin LT, Tsang YL, Shao AN, Kuo CH, Chang R, Wen ZH, Li CJ. The Cross-Communication of Cuproptosis and Regulated Cell Death in Human Pathophysiology. Int J Biol Sci 2024; 20:218-230. [PMID: 38164173 PMCID: PMC10750287 DOI: 10.7150/ijbs.84733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024] Open
Abstract
Copper (Cu) plays a crucial and diverse function in biological systems, acting as a cofactor at numerous sites of enzymatic activity and participating in various physiological processes, including oxidative stress regulation, lipid metabolism, and energy metabolism. Similar to other micronutrients, the body regulates Cu levels to ensure homeostasis; any disruption in Cu homeostasis may result in various illnesses. Cuproptosis causes proteotoxic stress and ultimately results in cell death by the binding of Cu ions to lipid-acylated proteins during the tricarboxylic acid cycle of mitochondrial respiration. Cu is not only involved in regulatory cell death (RCD), but also in exogenous factors that induce cellular responses and toxic outcomes. Cu imbalances also affect the transmission of several RCD messages. Therefore, this article presents a thorough examination of the mechanisms involved in Cu-induced RCD as well as the role of Cu complexes in its pathophysiology.
Collapse
Affiliation(s)
- Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Ling Tsang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Ai-Ning Shao
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chen-Hsin Kuo
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Lu W, Lei C, Chen K, Wang Z, Liu F, Li X, Shen J, Shen Q, Gao J, Lin W, Hu Q. A Cu-Based Metal-Organic Framework Cu-Cip with Cuproptosis for Cancer Therapy and Inhibition of Cancer Cell Migration. Inorg Chem 2023; 62:21299-21308. [PMID: 38069807 DOI: 10.1021/acs.inorgchem.3c03393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Microflora within cancer cells plays a pivotal role in promoting metastasis of cancer. However, contemporary anticancer research often overlooks the potential benefits of combining anticancer and antibacterial agents. Consequently, a metal-organic framework Cu-Cip with cuproptosis and antibacterial properties was synthesized for cancer therapy. To enhance the anticancer effect of the material, Mn2+ was loaded into Cu-Cip, yielding Mn@Cu-Cip. The fabricated material was characterized using single-crystal X-ray diffraction, PXRD, and FT-IR. By interacting with overexpressed H2O2 to produce ROS and accumulating Cu ions in cancer cells, MOFs exhibited excellent anticancer performance. Moreover, the material displayed the function of damaging Staphylococcus aureus and Escherichia coli, revealing the admirable antibacterial properties of the material. In addition, the antibacterial ability could inhibit tumor cell migration. The Cu-based MOF revealed promising applications in the field of tumor treatment.
Collapse
Affiliation(s)
- Wenwen Lu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Chen Lei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Ke Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Zhengfeng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Feng Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Xianan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jie Shen
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P. R. China
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Junkuo Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Wenxin Lin
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
15
|
Yang Y, Li M, Chen G, Liu S, Guo H, Dong X, Wang K, Geng H, Jiang J, Li X. Dissecting copper biology and cancer treatment: ‘Activating Cuproptosis or suppressing Cuproplasia’. Coord Chem Rev 2023; 495:215395. [DOI: 10.1016/j.ccr.2023.215395] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
16
|
陈 丽, 黄 定, 郑 刚, 孟 晓. [Lead exposure aggravates Aβ 1-42-induced microglial activation and copper ion accumulation in microglial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1752-1760. [PMID: 37933651 PMCID: PMC10630214 DOI: 10.12122/j.issn.1673-4254.2023.10.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To investigate the effect of lead (Pb) exposure on Aβ1-42-induced microglial activation and copper ion accumulation in microglial cells and explore the regulatory mechanism of Pb-induced aggravation of Alzheimer's disease (AD)-like pathology. METHODS Cultured microglial BV2 cells were treated with different concentrations of Aβ1-42, lead acetate or their combination for 12 h, and the changes in cell viability and morphology were evaluated. Immunofluorescence assay was performed to detect iNOS and oxidative stress level in the treated cells, and the release of inflammatory factors was detected using ELISA. Western blotting and inductively coupled plasma-mass spectrometry (ICP-MS) were used to detect the expressions of CTR1 and ATP7A proteins and copper content in the cells. RESULTS Treatment with 15 and 20 μmol/L Aβ1-42 for 12 h significantly lowered the viability of BV2 cells. Treatment with Aβ1-42 at 10 μmol/L for 12 h obviously increased the release of iNOS, TNF-α and IL-6 in the cells (P<0.05), and its combination with 15 or 20 μmol/L lead acetate more strongly lowered BV2 cell viability (P<0.05). Compared with 10 μmol/L Aβ1-42 treatment alone, 10 μmol/L Aβ1-42 combined with 10 μmol/L lead acetate for 12 h caused more obvious microglial activation, as manifested by enlarged cell bodies, increased cell protrusions and elongation, enhanced release of iNOS, TNF-α, IL-6, IL-1β and ROS, and increased intracellular copper ion accumulation and expression of copper transporter CTR1 (P<0.05). Compared with the conditioned medium from activated BV2 cells, which caused obvious injuries in hippocampal neuron HT22 cells (P<0.001), the medium from BV2 cells treated with NAC and the copper ion chelating agent TM caused milder injuries in HT22 cells (P<0.05). CONCLUSION Lead exposure aggravates neuronal damage caused by Aβ1-42-treated microglial cells by increasing copper ion accumulation, oxidative stress, and inflammatory factor release to trigger microglial activation.
Collapse
Affiliation(s)
- 丽旋 陈
- 南方医科大学公共卫生学院职业卫生与职业医学系,广东 广州 510515Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 定帮 黄
- 南方医科大学公共卫生学院职业卫生与职业医学系,广东 广州 510515Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 刚 郑
- 空军军医大学军事预防医学系,特殊作业环境危害评估与防治教育部重点实验室,陕西 西安 710032Department of Military Preventive Medicine, Air Force Military Medical University, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China
| | - 晓静 孟
- 南方医科大学公共卫生学院职业卫生与职业医学系,广东 广州 510515Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Peng T, Qiu F, Qu Y, Yu C, Cheng X, Li L. Current and Future of "Turn-On" Based Small-Molecule Copper Probes for Cuproptosis. ChemistryOpen 2023; 12:e202300078. [PMID: 37705070 PMCID: PMC10499804 DOI: 10.1002/open.202300078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
Increasing evidence shows that abnormal copper (Cu) metabolism is highly related to many diseases, such as Alzheimer's disease, Wilson's disease, hematological malignancies and Menkes disease. Very recently, cuproptosis, a Cu-dependent, programmed cell death was firstly described by Tsvetkov et al. in 2022. Their findings may provide a new perspective for the treatment of related diseases. However, the concrete mechanisms of these diseases, especially cuproptosis, remain completely unclear, the reason of which may be a lack of reliable tools to conduct highly selective, sensitive and high-resolution imaging of Cu in complex life systems. So far, numerous small-molecular fluorescent probes have been designed and utilized to explore the Cu signal pathway. Among them, fluorescence turn-on probes greatly enhance the resolution and accuracy of imaging and may be a promising tool for research of investigation into cuproptosis. This review summarizes the probes developed in the past decade which have the potential to study cuproptosis, focusing on the design strategies, luminescence mechanism and biological-imaging applications. Besides, we put forward some ideas concerning the design of next-generation probes for cuproptosis, aiming to tackle the main problems in this new field. Furthermore, the prospect of cuproptosis in the treatment of corresponding diseases is also highlighted.
Collapse
Affiliation(s)
- Ting‐En Peng
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Feng Qiu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Yunwei Qu
- The Institute of Flexible Electronics (IFE, Future Technologies)Xiamen UniversityXiamen361005China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
- The Institute of Flexible Electronics (IFE, Future Technologies)Xiamen UniversityXiamen361005China
| |
Collapse
|
18
|
Rivera PL, Li WT, Bhogal S, Mandell JB, Belayneh R, Hankins ML, Payne JT, Watters RJ, Weiss KR. Antioxidant 1 copper chaperone gene expression and copper levels in dog osteosarcoma patients. Vet Comp Oncol 2023; 21:559-564. [PMID: 37148200 PMCID: PMC11231990 DOI: 10.1111/vco.12903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Twenty-four dogs with OS underwent limb amputation. Serum, OS tumour, and normal bone were harvested at time of surgery. RNA was extracted and gene expression was performed using quantitative polymerase chain reaction (qPCR). Tissue and blood copper concentrations were also determined with spectrophotometry. Compared to bone, tumour samples had significantly higher expressions of antioxidant 1 copper chaperone (ATOX1, p = .0003). OS tumour copper levels were significantly higher than that of serum (p < .010) and bone (p = .038). Similar to our previous observations in mouse and human OS, dog OS demonstrates overexpression of genes that regulate copper metabolism (ATOX1), and subsequent copper levels. Dogs with OS may provide a robust comparative oncology platform for the further study of these factors, as well as potential pharmacologic interventions.
Collapse
Affiliation(s)
- Pedro L. Rivera
- Department of Surgery, Pittsburgh Veterinary Specialty & Emergency Center-BluePearl, Pittsburgh, Pennsylvania, USA
| | - William T. Li
- Musculoskeletal Oncology Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sumail Bhogal
- Musculoskeletal Oncology Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan B. Mandell
- Musculoskeletal Oncology Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebekah Belayneh
- Musculoskeletal Oncology Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Margaret L. Hankins
- Musculoskeletal Oncology Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John T. Payne
- Department of Surgery, Pittsburgh Veterinary Specialty & Emergency Center-BluePearl, Pittsburgh, Pennsylvania, USA
| | - Rebecca J. Watters
- Musculoskeletal Oncology Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kurt R. Weiss
- Musculoskeletal Oncology Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D. Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol 2023; 13:1209156. [PMID: 37427098 PMCID: PMC10327296 DOI: 10.3389/fonc.2023.1209156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
As an essential nutrient, copper's redox properties are both beneficial and toxic to cells. Therefore, leveraging the characteristics of copper-dependent diseases or using copper toxicity to treat copper-sensitive diseases may offer new strategies for specific disease treatments. In particular, copper concentration is typically higher in cancer cells, making copper a critical limiting nutrient for cancer cell growth and proliferation. Hence, intervening in copper metabolism specific to cancer cells may become a potential tumor treatment strategy, directly impacting tumor growth and metastasis. In this review, we discuss the metabolism of copper in the body and summarize research progress on the role of copper in promoting tumor cell growth or inducing programmed cell death in tumor cells. Additionally, we elucidate the role of copper-related drugs in cancer treatment, intending to provide new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zaihua Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
20
|
Shao Y, Fan X, Yang X, Li S, Huang L, Zhou X, Zhang S, Zheng M, Sun J. Impact of Cuproptosis-related markers on clinical status, tumor immune microenvironment and immunotherapy in colorectal cancer: A multi-omic analysis. Comput Struct Biotechnol J 2023; 21:3383-3403. [PMID: 37389187 PMCID: PMC10300104 DOI: 10.1016/j.csbj.2023.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023] Open
Abstract
Background Cuproptosis, a novel identified cell death form induced by copper, is characterized by aggregation of lipoylated mitochondrial enzymes and the destabilization of Fe-S cluster proteins. However, the function and potential clinical value of cuproptosis and cuproptosis-related biomarkers in colorectal cancer (CRC) remain largely unknown. Methods A comprehensive multi-omics (transcriptomics, genomics, and single-cell transcriptome) analysis was performed for identifying the influence of 16 cuproptosis-related markers on clinical status, molecular functions and tumor microenvironment (TME) in CRC. A novel cuproptosis-related scoring system (CuproScore) based on cuproptosis-related markers was also constructed to predict the prognosis of CRC individuals, TME and the response to immunotherapy. In addition, our transcriptome cohort of 15 paired CRC tissue, tissue-array, and various assays in 4 kinds of CRC cell lines in vitro were applied for verification. Results Cuproptosis-related markers were closely associated with both clinical prognosis and molecular functions. And the cuproptosis-related molecular phenotypes and scoring system (CuproScore) could distinguish and predict the prognosis of CRC patients, TME, and the response to immunotherapy in both public and our transcriptome cohorts. Besides, the expression, function and clinical significance of these markers were also checked and analyzed in CRC cell lines and CRC tissues in our own cohorts. Conclusions In conclusion, we indicated that cuproptosis and CPRMs played a significant role in CRC progression and in modeling the TME. Inducing cuproptosis may be a useful tool for tumor therapy in the future.
Collapse
Affiliation(s)
- Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Nurmalasari NPD, Winans MJ, Perroz K, Bovard VR, Anderson R, Smith S, Gallagher JEG. Toxicity and assimilation of cellulosic copper nanoparticles require α-arrestins in S. cerevisiae. Metallomics 2023; 15:mfad011. [PMID: 36841230 PMCID: PMC10022662 DOI: 10.1093/mtomcs/mfad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
The increased use of antimicrobial compounds such as copper into nanoparticles changes how living cells interact with these novel materials. The increased use of antimicrobial nanomaterials combats infectious disease and food spoilage. Fungal infections are particularly difficult to treat because of the few druggable targets, and Saccharomyces cerevisiae provides an insightful model organism to test these new materials. However, because of the novel characteristics of these materials, it is unclear how these materials interact with living cells and if resistance to copper-based nanomaterials could occur. Copper nanoparticles built on carboxymethylcellulose microfibril strands with copper (CMC-Cu) are a promising nanomaterial when imported into yeast cells and induce cell death. The α-arrestins are cargo adaptors that select which molecules are imported into eukaryotic cells. We screened α-arrestins mutants and identified Aly2, Rim8, and Rog3 α-arrestins, which are necessary for the internalization of CMC-Cu nanoparticles. Internal reactive oxygen species in these mutants were lower and corresponded to the increased viability in the presence of CMC-Cu. Using lattice light-sheet microscopy on live cells, we determined that CMC-Cu were imported into yeast within 30 min of exposure. Initially, the cytoplasmic pH decreased but returned to basal level 90 min later. However, there was heterogeneity in response to CMC-Cu exposure, which could be due to the heterogeneity of the particles or differences in the metabolic states within the population. When yeast were exposed to sublethal concentrations of CMC-Cu no resistance occurred. Internalization of CMC-Cu increases the potency of these antimicrobial nanomaterials and is likely key to preventing fungi from evolving resistance.
Collapse
Affiliation(s)
- Ni Putu Dewi Nurmalasari
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Matthew J Winans
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Katelyn Perroz
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Victoria R Bovard
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Robert Anderson
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Steve Smith
- Department of Nanoscience & Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | | |
Collapse
|
22
|
Zhang B, Burke R. Copper homeostasis and the ubiquitin proteasome system. Metallomics 2023; 15:7055959. [PMID: 36822629 PMCID: PMC10022722 DOI: 10.1093/mtomcs/mfad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Copper is involved in many physiological pathways and important biological processes as a cofactor of several copper-dependent enzymes. Given the requirement for copper and its potential toxicity, intracellular copper levels are tightly controlled. Disturbances of human copper homeostasis are characterized by disorders of copper overload (Wilson's disease) or copper deficiency (Menkes disease). The maintenance of cellular copper levels involves numerous copper transporters and copper chaperones. Recently, accumulating evidence has revealed that components of the ubiquitin proteasome system (UPS) participate in the posttranslational regulation of these proteins, suggesting that they might play a role in maintaining copper homeostasis. Cellular copper levels could also affect the activity of the UPS, indicating that copper homeostasis and the UPS are interdependent. Copper homeostasis and the UPS are essential to the integrity of normal brain function and while separate links between neurodegenerative diseases and UPS inhibition/copper dyshomeostasis have been extensively reported, there is growing evidence that these two networks might contribute synergistically to the occurrence of neurodegenerative diseases. Here, we review the role of copper and the UPS in the development of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, and discuss the genetic interactions between copper transporters/chaperones and components of the UPS.
Collapse
Affiliation(s)
- Bichao Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Richard Burke
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
23
|
Study on Computer Screening and Drug Properties of Herbs Intervening in Copper Death. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:3311834. [PMID: 36684691 PMCID: PMC9848818 DOI: 10.1155/2023/3311834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023]
Abstract
Objective The objective of this study was to explore the medicinal properties of herbal medicines that can interfere with the copper death pathway. Methods The Human Gene Database, Chemical Interactions in Comparative Toxicogenomics Database, Encyclopedia of Traditional Chinese Medicine, China Medical Information Platform, and Cytoscape software were used to find target and chemicals that interfere with copper death targets, as well as herbal medicines containing these chemicals and their four natures and five flavors (basic properties of herbal medicines). Results 27 copper death-related targets were finally retrieved, as well as 2143 chemicals that could interfere with them, including 180 herbal compounds. The compounds with the highest degree values (number of nodes connected to this node) were folic acid, resveratrol, and quercetin. The 180 compounds were related to 278 herbs; those with the highest degree values (number of nodes connected to this node) were Jujubae Fructus, Ginkgo biloba L, and Acanthopanax senticosus. The 27 copper death targets were indirectly associated with 278 herbs; those with the highest degree values (number of nodes connected to this node) were Achyranthis Bidentatae Radix, Polygonum cuspidatum Sieb. et Zucc, and Mori Folium. Among the 278 herbs, 6 had incomplete information. A pharmacological analysis showed that among the 272 Chinese herbs, the most frequent meridians were the liver (133), lung (104), and spleen (91). Of the four natures, the most frequent were cold (73), warm (68), and flat (45). Of the five flavors, the most frequent were bitter (165), pungent (116), and sweet (99). Conclusion This study preliminarily discussed the material basis and medicinal properties of herbs that can intervene in copper death, which can provide reference for the theoretical discussion, drug development, and clinical research of Chinese medicine regulating copper death.
Collapse
|
24
|
Dalto DB, Audet I, Roy C, Novais AK, Deschêne K, Goulet K, Matte JJ, Lapointe J. Effects of dietary zinc oxide levels on the metabolism of zinc and copper in weaned pigs. J Anim Sci 2023; 101:skad055. [PMID: 36800314 PMCID: PMC10016195 DOI: 10.1093/jas/skad055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
This study compared different dietary zinc oxide (ZnO) levels on zinc (Zn) and copper (Cu) metabolism in weaned pigs. One hundred twenty weaned piglets (7.96 ± 1.17 kg; 21 d of age) were used in a completely randomized 3 × 4 factorial design composed with three levels of dietary ZnO at 100 (100Zn), 1,000 (1,000Zn), or 3,000 mg/kg (3,000Zn) and four ages at slaughter at 21 (day 21), 23 (day 23), 35 (day 35), and 42 d (day 42). Dietary Cu levels were constant at 130 mg/kg. Serum, jejunum, liver, and kidney levels of Zn and Cu as well as mRNA abundance of genes related to Zn and Cu metabolism were analyzed. Zinc levels were greatest in 3,000Zn piglets from day 35 in all tissues (P ≤ 0.01). In 3,000Zn piglets, mRNA expression of ZIP4 was reduced in jejunum whereas ZnT1 and MT3 were stimulated in jejunum and liver and MT1 in kidney (P ≤ 0.04) from day 35. Copper levels were greatest in jejunum (P = 0.06) and kidney (P ≤ 0.01; days 35 and 42 only) and lowest in liver and serum (P ≤ 0.01) of 3,000Zn piglets. In conclusion, the treatment containing 3,000 mg ZnO/kg triggered Zn homeostatic mechanisms in weaned pigs and impaired Cu metabolism through high enterocyte and kidney Cu sequestration.
Collapse
Affiliation(s)
- Danyel Bueno Dalto
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, CanadaJ1M 0C8
| | - Isabelle Audet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, CanadaJ1M 0C8
| | - Caroline Roy
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, CanadaJ1M 0C8
| | - Aliny Kétilim Novais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, CanadaJ1M 0C8
| | - Karine Deschêne
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, CanadaJ1M 0C8
| | - Katherine Goulet
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, CanadaJ1K 2R1
| | - J Jacques Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, CanadaJ1M 0C8
| | - Jérôme Lapointe
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, CanadaJ1M 0C8
| |
Collapse
|
25
|
Wang X, Zhou Y, Wang D, Wang Y, Zhou Z, Ma X, Liu X, Dong Y. Cisplatin-induced ototoxicity: From signaling network to therapeutic targets. Biomed Pharmacother 2023; 157:114045. [PMID: 36455457 DOI: 10.1016/j.biopha.2022.114045] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Administration of cisplatin, a common chemotherapeutic drug, has an inevitable side effect of sensorineural hearing loss. The main etiologies are stria vascularis injury, spiral ganglion degeneration, and hair cell death. Over several decades, the research scope of cisplatin-induced ototoxicity has expanded with the discovery of the molecular mechanism mediating inner ear cell death, highlighting the roles of reactive oxygen species and transport channels for cisplatin uptake into inner ear cells. Upon entering hair cells, cisplatin disrupts organelle metabolism, induces oxidative stress, and targets DNA to cause intracellular damage. Recent studies have also reported the role of inflammation in cisplatin-induced ototoxicity. In this article, we preform a narrative review of the latest reported molecular mechanisms of cisplatin-induced ototoxicity, from extracellular to intracellular. We build up a signaling network starting with cisplatin entering into the inner ear through the blood labyrinth barrier, disrupting cochlear endolymph homeostasis, and activating inflammatory responses of the outer hair cells. After entering the hair cells, cisplatin causes hair cell death via DNA damage, redox system imbalance, and mitochondrial and endoplasmic reticulum dysfunction, culminating in programmed cell death including apoptosis, necroptosis, autophagic death, pyroptosis, and ferroptosis. Based on the mentioned mechanisms, prominent therapeutic targets, such as channel-blocking drugs of cisplatin transporter, construction of cisplatin structural analogues, anti-inflammatory drugs, antioxidants, cell death inhibitors, and others, were collated. Considering the recent research efforts, we have analyzed the feasibility of the aforementioned therapeutic strategies and proposed our otoprotective approaches to overcome cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Xilu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingying Zhou
- Department of Obstetrics & gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dali Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoyu Zhou
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofang Liu
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Liu H, Kong Y, Liang X, Liu Z, Guo X, Yang B, Yin T, He H, Gou J, Zhang Y, Tang X. The treatment of hepatocellular carcinoma with SP94 modified asymmetrical bilayer lipid-encapsulated Cu(DDC) 2 nanoparticles facilitating Cu accumulation in the tumor. Expert Opin Drug Deliv 2023; 20:145-158. [PMID: 36462209 DOI: 10.1080/17425247.2023.2155631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND Copper diethyldithiocarbamate (Cu(DDC)2) has been demonstrated to possess excellent antitumor activity. However, the extremely poor water solubility of Cu(DDC)2 bring difficulty for its formulation research. In this study, we aim to develop a novel nanocarrier for Cu(DDC)2 delivery to overcome this obstacle and enhance antitumor activity. METHODS The SP94 modified asymmetrical bilayer lipid-encapsulated Cu(DDC)2 nanoparticles (DCDP) was established by combining the method of inverse microemulsion aggregation and thin-film dispersion. In vitro cellular assays and in vivo tumor-xenograft experiments were conducted to evaluate the tumor chemotherapeutic effect of DCDP. And the vital role of copper ions played in DSF or DDC (DSF/DDC)-based cancer chemotherapy was also explored. RESULTS DCDP with an encapsulation efficiency (EE%) of 74.0% were successfully prepared. SP94 modification facilitated cellular intake for DCDP, and promoted apoptosis to repress tumor cell proliferation (IC50, 200 nM). And DCDP effectively inhibited tumor growth with a high tumor inhibition rate of 74.84%. Furthermore, Cu(DDC)2 was found to facilitate the copper ion accumulation in tumor tissues, which is beneficial to therapy with high potency. CONCLUSION DCDP exhibited high-efficient tumor chemotherapeutic efficacy and provided a novel strategy for investigating the anticancer mechanism of Cu(DDC)2.
Collapse
Affiliation(s)
- Hao Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Yihan Kong
- Technology Research & Development Centre, Tianjin Pharmaceutical Research Institute Co., Ltd, Tianjin, China
| | - Xue Liang
- R&D & Innovation Committee, CSPC Pharmaceutical Group Limited, Shijiazhuang, China
| | - Zixu Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Xueting Guo
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Bing Yang
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
27
|
Li YJ, Li HY, Zhang Q, Wei SL. The prognostic value and immune landscape of a cuproptosis-related lncRNA signature in head and neck squamous cell carcinoma. Front Genet 2022; 13:942785. [PMID: 35942287 PMCID: PMC9356288 DOI: 10.3389/fgene.2022.942785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Cuproptosis has been recognized as a novel regulatory cell death, which has been confirmed to promote the occurrence and development of tumors. However, whether cuproptosis-related lncRNA has an impact on the prognosis of squamous cell carcinoma of the head and neck (HNSCC) is still unclear. Methods: In total, 501 HNSCC tumor samples and 44 normal were downloaded from the TCGA database. Cuproptosis-related lncRNAs were obtained by co-expressed analysis. We got prognostic lncRNA that was associated with cuproptosis by using univariate Cox regression analysis and LASSO Cox regression. Then we constructed and validated the prognostic signature of HNSCC and analyzed the immune landscape of the signature. Results: The Prognostic Signature is based on 10 cuproptosis-related lncRNAs including AC090587.1, AC004943.2, TTN-AS1, AL162458.1, AC106820.5, AC012313.5, AL132800.1, WDFY3-AS2, CDKN2A-DT, and AL136419.3. The results of overall survival, risk score distribution, and survival status in the low-risk group were better than those in the high-risk group. In addition, all immune checkpoint genes involved were significantly different between the two risk groups (p < 0.05). The risk score was positively correlated with Eosinophils. M0 and M2 phenotype macrophages, mast cells activated, NK cells activated, and negatively related with B cells naive, mast cells resting, plasma cells, CD8T cells, T cells follicular helper, T cells regulatory (Tregs). Consensus clustering was identified in molecular subtypes of HNSC. More high-risk samples concentrated in Cluster1, which had a higher Tumor Immune Dysfunction and Exclusion (TIDE) score and Single Nucleotide Polymorphisms (SNP) alternation than Cluster2. Conclusion: Our study elucidated the correlation between cuproptosis-related lncRNA with prognosis and immune landscape of HNSCC, which may provide references for further research on the exploration of the mechanism and functions of the prognosis for HNSCC.
Collapse
Affiliation(s)
- Yao jun Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Quan Zhang
- Tianjin Union Medical Center, Tianjin, China
| | - Sheng li Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Sheng li Wei,
| |
Collapse
|
28
|
Gao J, Gao A, Zhou H, Chen L. The role of metal ions in the Golgi apparatus. Cell Biol Int 2022; 46:1309-1319. [PMID: 35830695 DOI: 10.1002/cbin.11848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 11/09/2022]
Abstract
The Golgi apparatus is a membrane-bound organelle that functions as a central role in the secretory pathway. Since the discovery of the Golgi apparatus, its structure and function have attracted ever-increasing attention from researchers. Recently, it has been demonstrated that metal ions are necessary for the Golgi apparatus to maintain its proper structure and functions. Given that metal ions play an important role in various biological processes, their abnormal homeostasis is related to many diseases. Therefore, in this paper, we reviewed the uptake and release mechanisms of the Golgi apparatus Ca2+ , Cu, and Zn2+ . Furthermore, we describe the diseases associated with Golgi apparatus Ca2+ , Cu, and Zn2+ imbalance.
Collapse
Affiliation(s)
- Jiayin Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Hong Zhou
- Department of Radiology of the First Affiliated Hospital of University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
29
|
Saifi MA, Godugu C. Copper chelation therapy inhibits renal fibrosis by modulating copper transport proteins. Biofactors 2022; 48:934-945. [PMID: 35322483 DOI: 10.1002/biof.1837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/25/2022] [Indexed: 11/11/2022]
Abstract
The copper (Cu) transporter proteins play an important role in the maintenance of the Cu homeostasis in the body. Lysyl oxidase (LOX) proteins are involved in crosslinking of collagens and elastin molecules resulting in the establishment of extracellular matrix (ECM) and require Cu for their functional activity. Although there are few reports showing the protective effects of Cu chelators, the mechanism behind protection remains unknown. The present study investigated the role of Cu transporter proteins in renal fibrosis. We used tubular epithelial cells and three different animal models of renal injury to investigate the induction of Cu transporter proteins in renal injury with different etiology. We used disulfiram, clioquinol as two Cu chelators and ammonium tetrathiomolybdate as a standard Cu chelator. In addition, β-aminopropionitrile (BAPN) was used as a standard LOX inhibitor. We demonstrated that renal fibrosis is associated with the induction of Cu transporter proteins such as ATP7A and Copper Transporter 1 (CTR1) but the Cu overload did not induce renal fibrosis. In addition, the Cu chelators inhibited renal fibrosis by inhibiting the Cu transporter proteins.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
30
|
Yuan L, Wang WX. Bioimaging revealed contrasting organelle-specific transport of copper and zinc and implication for toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118891. [PMID: 35077835 DOI: 10.1016/j.envpol.2022.118891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Zn and Cu are two of the essential trace elements and it is important to understand the regulation of their distribution on cellular functions. Herein, we for the first time investigated the subcellular fate and behavior of Zn and Cu in zebrafish cells through bioimaging, and demonstrated the completely different behaviors of Zn and Cu. The distribution of Zn2+ was concentration-dependent, and Zn2+ at low concentration was predominantly located in the lysosomes (76.5%). A further increase of cellular Zn2+ resulted in a spillover and more diffusive distribution, with partitioning to mitochondria and other regions. In contrast, the subcellular distribution of Cu+ was time-dependent. Upon entering the cells, Cu2+ was reduced to Cu+, which was first concentrated in the mitochondria (71.4%) followed by transportation to lysosomes (58.6%), and finally removal from the cell. With such differential transportation, Cu2+ instead of Zn2+ had a negative effect on the mitochondrial membrane potential and glutathione. Correspondingly, the pH of lysosomes was more sensitive to Zn2+ exposure and decreased with increasing internalized Zn2+, whereas it increased upon Cu2+ exposure. The responses of cellular pH showed an opposite pattern from the lysosomal pH. Lysosome was the most critical organelle in response to incoming Zn2+ by increasing its number and size, whereas Cu2+ reduced the lysosome size. Our study showed that Zn2+ and Cu2+ had completely different cellular handlings and fates with important implications for understanding of their toxicity.
Collapse
Affiliation(s)
- Liuliang Yuan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
31
|
Saifi MA, Shaikh AS, Kaki VR, Godugu C. Disulfiram prevents collagen crosslinking and inhibits renal fibrosis by inhibiting lysyl oxidase enzymes. J Cell Physiol 2022; 237:2516-2527. [PMID: 35285015 DOI: 10.1002/jcp.30717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 01/28/2023]
Abstract
Chronic kidney disease is one of the major health burdens affecting a considerable number of people worldwide. The aberrant regulation of lysyl oxidase (LOX) family of enzymes results in establishment of dense extracellular matrix (ECM). Since, LOX enzymes need copper (Cu) for their proper catalytic activity; the present study investigated the efficacy of a copper chelator, disulfiram (DSF) in renal fibrosis. Antifibrotic activity of DSF was investigated in kidney epithelial cells stimulated by transforming growth factor-β1 (5 ng/ml) as well as in two animal models. The renal injury was induced in animals by unilateral ureteral obstruction and folic acid administration (250 mg/kg). The DSF (3 and 10 mg/kg, every 3rd day) and standard LOX inhibitor, β-aminopropionitrile (BAPN, 100 mg/kg, daily) administration was started on day 0 and continued till the day of sacrifice. DSF was found to be a potent LOX/LOXL2 inhibitor to reduce crosslinking of collagen fibrils leading to reduction in the collagen deposition. In addition, the DSF was demonstrated to inhibit epithelial-mesenchymal transition in the tubular cells and fibrotic kidneys. Our results suggested that DSF, being a clinically available drug could be translated to clinics for its potent antifibrotic activity due to its inhibitory effect on LOX proteins.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
32
|
Finko AV, Sokolov AI, Guk DA, Tafeenko VA, Moiseeva AA, Skvortsov DA, Stomakhin AA, Beloglazkin AA, Borisov RS, Pergushov VI, Melnikov MY, Zyk NV, Majouga AG, Beloglazkina EK. Copper coordination compounds with (5 Z,5 Z')-2,2'-(alkane-α,ω-diyldiselenyl)-bis-5-(2-pyridylmethylene)-3,5-dihydro-4 H-imidazol-4-ones. Comparison with sulfur analogue. RSC Adv 2022; 12:7133-7148. [PMID: 35424664 PMCID: PMC8982280 DOI: 10.1039/d1ra08995a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
A series of new organic ligands (5Z,5Z')-2,2'-(alkane-α,ω-diyldiselenyl)-bis-5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-ones (L) consisting of two 5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-one units linked with polymethylene chains of various lengths (n = 2-10, where n is the number of CH2 units) have been synthesized. The reactions of these ligands with CuCl2·2H2O and CuClO4·6H2O gave Cu2+ or Cu1+ containing mono- and binuclear complexes with Cu2LCl x (x = 2-4) or CuL(ClO4) y (y = 1, 2) composition. It was shown that the agents reducing Cu2+ to Cu1+ in the course of complex formation can be both a ligand and an organic solvent in which the reaction is carried out. This fundamentally distinguishes the selenium-containing ligands L from their previously described sulfur analogs, which by themselves are not capable of reducing Cu2+ during complexation under the same conditions. A higher cytotoxicity and reasonable selectivity to cancer cell lines for synthesized complexes of selenium-containing ligands was shown; unlike sulfur analogs, ligands L themselves demonstrate a high cytotoxicity, comparable in some cases to the toxicity of copper-containing complexes.
Collapse
Affiliation(s)
- Alexander V Finko
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,Topchiev Institute of Petrochemical Synthesis RAS Leninskii pr., 29 Moscow 119991 Russia
| | - Anatolii I Sokolov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Dmitry A Guk
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Victor A Tafeenko
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Anna A Moiseeva
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Dmitry A Skvortsov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,Higher School of Economics Myasnitskaya 13 Moscow 101000 Russia
| | - Andrei A Stomakhin
- Engelhardt Institute of Molecular Biology RAS Vavilova 32 Moscow 119991 Russia
| | - Andrei A Beloglazkin
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,Topchiev Institute of Petrochemical Synthesis RAS Leninskii pr., 29 Moscow 119991 Russia
| | - Roman S Borisov
- Topchiev Institute of Petrochemical Synthesis RAS Leninskii pr., 29 Moscow 119991 Russia
| | - Vladimir I Pergushov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Mikhail Ya Melnikov
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Nikolay V Zyk
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| | - Alexander G Majouga
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia .,National University of Science and Technology Leninskii pr., 4 Moscow 119049 Russia.,Mendeleev University of Chemical Technology Miusskaya pl. 9 Moscow 125047 Russia
| | - Elena K Beloglazkina
- Moscow State University, Department of Chemistry Leninskie Gory, Building 1/3 Moscow 119991 Russia
| |
Collapse
|
33
|
Laulumaa S, Varjosalo M. Commander Complex-A Multifaceted Operator in Intracellular Signaling and Cargo. Cells 2021; 10:cells10123447. [PMID: 34943955 PMCID: PMC8700231 DOI: 10.3390/cells10123447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Commander complex is a 16-protein complex that plays multiple roles in various intracellular events in endosomal cargo and in the regulation of cell homeostasis, cell cycle and immune response. It consists of COMMD1-10, CCDC22, CCDC93, DENND10, VPS26C, VPS29, and VPS35L. These proteins are expressed ubiquitously in the human body, and they have been linked to diseases including Wilson's disease, atherosclerosis, and several types of cancer. In this review we describe the function of the commander complex in endosomal cargo and summarize the individual known roles of COMMD proteins in cell signaling and cancer. It becomes evident that commander complex might be a much more important player in intracellular regulation than we currently understand, and more systematic research on the role of commander complex is required.
Collapse
|
34
|
Priessner M, Summers PA, Lewis BW, Sastre M, Ying L, Kuimova MK, Vilar R. Selective Detection of Cu
+
Ions in Live Cells via Fluorescence Lifetime Imaging Microscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Martin Priessner
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Peter A. Summers
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Benjamin W. Lewis
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Magdalena Sastre
- Department of Brain Sciences Imperial College London Hammersmith Campus London W12 0NN UK
| | - Liming Ying
- National Heart and Lung Institute Molecular Sciences Research Hub White City Campus Imperial College London London W12 0BZ UK
| | - Marina K. Kuimova
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Ramon Vilar
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
35
|
Priessner M, Summers PA, Lewis BW, Sastre M, Ying L, Kuimova MK, Vilar R. Selective Detection of Cu + Ions in Live Cells via Fluorescence Lifetime Imaging Microscopy. Angew Chem Int Ed Engl 2021; 60:23148-23153. [PMID: 34379368 PMCID: PMC8596571 DOI: 10.1002/anie.202109349] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Copper is an essential trace element in living organisms with its levels and localisation being carefully managed by the cellular machinery. However, if misregulated, deficiency or excess of copper ions can lead to several diseases. Therefore, it is important to have reliable methods to detect, monitor and visualise this metal in cells. Herein we report a new optical probe based on BODIPY, which shows a switch-on in its fluorescence intensity upon binding to copper(I), but not in the presence of high concentration of other physiologically relevant metal ions. More interestingly, binding to copper(I) leads to significant changes in the fluorescence lifetime of the new probe, which can be used to visualize copper(I) pools in lysosomes of live cells via fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Martin Priessner
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Peter A. Summers
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Benjamin W. Lewis
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Magdalena Sastre
- Department of Brain SciencesImperial College LondonHammersmith CampusLondonW12 0NNUK
| | - Liming Ying
- National Heart and Lung InstituteMolecular Sciences Research HubWhite City CampusImperial College LondonLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Ramon Vilar
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| |
Collapse
|
36
|
Wang M, Zhang R, Dehaen W, Fang Y, Qian S, Ren Y, Cheng F, Guo Y, Guo C, Li Y, Deng Y, Cao Z, Peng C. Specific recognition, intracellular assay and detoxification of fluorescent curcumin derivative for copper ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126490. [PMID: 34252661 DOI: 10.1016/j.jhazmat.2021.126490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Recognition and excretion of metal ions play an important role in the diagnosis and treatment of various diseases and poisoning. Although copper (Cu) is a cofactor of many key enzymes in the human body, its accumulation caused by genetic ATP7B mutation or environmental pollution can lead to hepatotoxicity, renal failure, Wilson's disease, inflammation, and even Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, in this work, a difluoroboron curcumin derivative (DF-Cur) was used for the specific recognition of copper ions (Cu2+). DF-Cur could be further used to as a rapid diagnostic agent for the copper detection in cells and zebrafish at the nanomolar level. DF-Cur could significantly reduce the toxic damage caused by high Cu2+ dose. Inductively coupled plasma-mass spectrometry (ICP-MS) analysis indicated that DF-Cur could promote the excretion of copper ions in the urine and bile and reduce the accumulation of copper ions in vivo. In addition, DF-Cur could selectively detect cholesterol in the blood and adipose tissue in vivo by fluorescent staining. These results demonstrated that this molecule might represent a new and promising diagnostic and therapeutic agent to combat diseases related to copper ions accumulation.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruoqi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Chemistry, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium.
| | - Shan Qian
- Department of Pharmaceutical Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuying Guo
- Department of Pharmaceutical Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chuanjie Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
37
|
Bhat A, Li S, Hammler D, Winterhalder MJ, Marx A, Zumbusch A. Live Cell Imaging of Enzymatic Turnover of an Adenosine 5'-Tetraphosphate Analog. Int J Mol Sci 2021; 22:ijms22168616. [PMID: 34445322 PMCID: PMC8395338 DOI: 10.3390/ijms22168616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/11/2023] Open
Abstract
The hydrolysis of nucleotides is of paramount importance as an energy source for cellular processes. In addition, the transfer of phosphates from nucleotides onto proteins is important as a post-translational protein modification. Monitoring the enzymatic turnover of nucleotides therefore offers great potential as a tool to follow enzymatic activity. While a number of fluorescence sensors are known, so far, there are no methods available for the real-time monitoring of ATP hydrolysis inside live cells. We present the synthesis and application of a novel fluorogenic adenosine 5′-tetraphosphate (Ap4) analog suited for this task. Upon enzymatic hydrolysis, the molecule displays an increase in fluorescence intensity, which provides a readout of its turnover. We demonstrate how this can be used for monitoring cellular processes involving Ap4 hydrolysis. To this end, we visualized the enzymatic activity in live cells using confocal fluorescence microscopy of the Ap4 analog. Our results demonstrate that the Ap4 analog is hydrolyzed in lysosomes. We show that this approach is suited to visualize the lysosome distribution profiles within the live cell and discuss how it can be employed to gather information regarding autophagic flux.
Collapse
|
38
|
Malekahmadi M, Firouzi S, Rezayi M, Ghazizadeh H, Ranjbar G, Ferns GA, Mobarhan MG. Association of Zinc and Copper Status with Cardiovascular Diseases and their Assessment Methods: A Review Study. Mini Rev Med Chem 2021; 20:2067-2078. [PMID: 32727323 DOI: 10.2174/1389557520666200729160416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality, morbidity, and financial losses and has a high prevalence across the world. Several studies have investigated the association between various CVD types with zinc and copper status as the essential minerals for the human body, proposing contradictory and similar results. This narrative review aimed to survey the correlations between zinc and copper status in the human body and some risk factors of CVD, as well as the assessment methods of zinc and copper status in the human body. According to the reviewed articles, zinc and copper deficiency may increase the risk of coronary heart disease, valvular regurgitation, and myocardial lesions, cardiac hypertrophy. Furthermore, it could lead to the expanded mitochondrial compartments of the heart, acute and chronic heart failure, and elevation of inflammation markers, such as interleukin-1 (IL-1) and IL-6. Two methods are primarily used for the assessment of zinc and copper in the human body, including the direct method (measurement of their concentrations) and indirect method (determining the activity of zinc- and copper-containing enzymes). Both these methods are considered reliable for the assessment of the zinc and copper levels in healthy individuals. Serum or plasma levels of these elements are also commonly used for the assessment of the correlation between zinc and copper status and CVD. But, which one is a more accurate indicator in relation to CVD is not yet clear; therefore, further studies are required in this field.
Collapse
Affiliation(s)
- Mahsa Malekahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Firouzi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Hofmann L, Hirsch M, Ruthstein S. Advances in Understanding of the Copper Homeostasis in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:2050. [PMID: 33669570 PMCID: PMC7922089 DOI: 10.3390/ijms22042050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health and Human Services. Among others, the World Health Organization (WHO) encourages the discovery and development of novel antibiotic classes with new targets and mechanisms of action without cross-resistance to existing classes. To find potential new target sites in pathogenic bacteria, such as P. aeruginosa, it is inevitable to fully understand the molecular mechanism of homeostasis, metabolism, regulation, growth, and resistances thereof. P. aeruginosa maintains a sophisticated copper defense cascade comprising three stages, resembling those of public safety organizations. These stages include copper scavenging, first responder, and second responder. Similar mechanisms are found in numerous pathogens. Here we compare the copper-dependent transcription regulators cueR and copRS of Escherichia coli (E. coli) and P. aeruginosa. Further, phylogenetic analysis and structural modelling of mexPQ-opmE reveal that this efflux pump is unlikely to be involved in the copper export of P. aeruginosa. Altogether, we present current understandings of the copper homeostasis in P. aeruginosa and potential new target sites for antimicrobial agents or a combinatorial drug regimen in the fight against multidrug resistant pathogens.
Collapse
Affiliation(s)
| | | | - Sharon Ruthstein
- Institute of Nanotechnology and Advanced Materials & Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (M.H.)
| |
Collapse
|
40
|
|
41
|
Singla A, Chen Q, Suzuki K, Song J, Fedoseienko A, Wijers M, Lopez A, Billadeau DD, van de Sluis B, Burstein E. Regulation of murine copper homeostasis by members of the COMMD protein family. Dis Model Mech 2021; 14:dmm.045963. [PMID: 33262129 PMCID: PMC7803461 DOI: 10.1242/dmm.045963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Copper is an essential transition metal for all eukaryotes. In mammals, intestinal copper absorption is mediated by the ATP7A copper transporter, whereas copper excretion occurs predominantly through the biliary route and is mediated by the paralog ATP7B. Both transporters have been shown to be recycled actively between the endosomal network and the plasma membrane by a molecular machinery known as the COMMD/CCDC22/CCDC93 or CCC complex. In fact, mutations in COMMD1 can lead to impaired biliary copper excretion and liver pathology in dogs and in mice with liver-specific Commd1 deficiency, recapitulating aspects of this phenotype. Nonetheless, the role of the CCC complex in intestinal copper absorption in vivo has not been studied, and the potential redundancy of various COMMD family members has not been tested. In this study, we examined copper homeostasis in enterocyte-specific and hepatocyte-specific COMMD gene-deficient mice. We found that, in contrast to effects in cell lines in culture, COMMD protein deficiency induced minimal changes in ATP7A in enterocytes and did not lead to altered copper levels under low- or high-copper diets, suggesting that regulation of ATP7A in enterocytes is not of physiological consequence. By contrast, deficiency of any of three COMMD genes (Commd1, Commd6 or Commd9) resulted in hepatic copper accumulation under high-copper diets. We found that each of these deficiencies caused destabilization of the entire CCC complex and suggest that this might explain their shared phenotype. Overall, we conclude that the CCC complex plays an important role in ATP7B endosomal recycling and function. Summary: Examination of copper homeostasis in enterocyte-specific and hepatocyte-specific COMMD gene-deficient mice revealed that homologs of COMMD1, which has been linked previously by genetic studies to copper regulation, also regulate copper handling in mammals.
Collapse
Affiliation(s)
- Amika Singla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of General Surgery, Tongji Hospital, Tongji School of Medicine, Shanghai 200065, China
| | - Kohei Suzuki
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jie Song
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alina Fedoseienko
- Section of Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Melinde Wijers
- Section of Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Adam Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel D Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bart van de Sluis
- Section of Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
42
|
Li S, Ruan Z, Zhang H, Xu H. Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system. Eur J Med Chem 2020; 211:113111. [PMID: 33360804 DOI: 10.1016/j.ejmech.2020.113111] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Bioluminescence imaging (BLI) is a newly developed noninvasive visual approach which facilitates the understanding of a plethora of biological processes in vitro and in vivo due to the high sensitivity, resolution and selectivity, low background signal, and the lack of external light excitation. BLI based on firefly luciferin-luciferase system has been widely used for the activity evaluation of tumor-specific enzymes, for the detection of diseases-related bioactive small molecules and metal ions, and for the diagnosis and therapy of diseases including the studies of drug transport, the research of immune response, and the evaluation of drug potency and tissue distribution. In this review, we highlight the recent achievements in luciferin derivatives with red-shifted emission spectra, mutant luciferase-luciferin pairs, and the diagnostic and therapeutic application of BLI based on firefly luciferin-luciferase system. The development and application of BLI will expand our knowledge of the occurrence and development of diseases and shed light on the diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyang Ruan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
43
|
Copper transporter 1 affinity as a delivery strategy to improve the cytotoxic profile of rationally designed copper(II) complexes for cancer treatment. Toxicol In Vitro 2020; 67:104922. [PMID: 32590028 DOI: 10.1016/j.tiv.2020.104922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
Cisplatin is widely used to treat different types of cancer, but its severe side effects are the major disadvantage of this treatment. Therefore, other metals are currently the subject of research in the rational development of anticancer drugs, such as copper, that has been demonstrated to be promising in this scenario. Here, we evaluated the effects of two novel copper complexes against breast cancer cell lines, and also examined the influence of overexpressing copper transporter 1 (CTR1) on the cytotoxicity of these complexes. Complex (1) [Cu(sdmx-)2(phen)] showed low IC50 values, induced intense cell morphological changes and arrested the cell cycle at the sub-G1 phase in cancer cells. Complex (1) was tested in transfected cells overexpressing the CTR1 receptor in order to compare its steric effects with a less bulky ligand and more labile complex (2) [CuCl2(impy)]. A significant reduction of IC50 value was observed in CTR1 overexpressing cells for complex (2) (32 μM to 20 μM) as compared to (1) (2.78 μM to 3.41 μM), evidencing a possible uptake through copper reduction (Cu+2 → Cu+1) mediated by CTR1. Thus, considering that CTR1 is a mediator of metallodrugs uptake, the development of strategies that use rational drug design is important in order to improve the therapeutic efficacy through greater specificity and consecutive reduction of side effects. Here we show the example for the case of copper(II) complexes.
Collapse
|
44
|
Shekh K, Alcaraz AJ, Niyogi S, Hecker M. Comparative analyses of oxidative stress response and metallothionein induction in white sturgeon and rainbow trout during acute waterborne copper exposure. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108723. [PMID: 32044455 DOI: 10.1016/j.cbpc.2020.108723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
Early life-stages of the endangered white sturgeon (Acipenser transmontanus) have been shown to be among the most sensitive fishes to aqueous copper (Cu) exposure. In a recent analogous study, we examined the role of whole-body Cu accumulation and Na homeostasis in species-specific differences between the sensitivity of white sturgeon and a common laboratory fish model, rainbow trout, to Cu. However, the potential roles of important mechanisms such as Cu-induced oxidative stress and/or metallothionein (MT) induction as potential drivers of sensitivity of white sturgeon to Cu have not been investigated to date. Here, rainbow trout and white sturgeon from three different early life-stages were exposed to waterborne Cu for 96 h, following which major antioxidant parameters, lipid peroxidation and MT gene expression were evaluated. Results indicated that during larval and swim-up life-stages, Cu induced oxidative damage in white sturgeon was greater than in rainbow trout. Moreover, baseline glutathione (GSH) was significantly greater in rainbow trout than white sturgeon. Observations also suggested that trout exceedingly relied on GSH to combat Cu-induced oxidative stress as they grew older. In contrast, sturgeon recruited an increasing level of MT to neutralize Cu-induced oxidative stress and/or Cu loading. In our recent study, we demonstrated that Na homeostasis is more susceptible to Cu in white sturgeon than in rainbow trout. Collectively, these findings indicate that the greater degree of oxidative damage in early life-stages, in addition to the higher magnitude of the disruption of Na homeostasis, contributes to the higher sensitivity of white sturgeon to Cu exposure.
Collapse
Affiliation(s)
- Kamran Shekh
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada.
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Som Niyogi
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
| |
Collapse
|
45
|
Wiriyasermkul P, Moriyama S, Nagamori S. Membrane transport proteins in melanosomes: Regulation of ions for pigmentation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183318. [PMID: 32333855 PMCID: PMC7175901 DOI: 10.1016/j.bbamem.2020.183318] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are unique organelles in melanocytes that produce melanin, the pigment for skin, hair, and eye color. Tyrosinase is the essential and rate-limiting enzyme for melanin production, that strictly requires neutral pH for activity. pH maintenance is a result of the combinational function of multiple ion transport proteins. Thus, ion homeostasis in melanosomes is crucial for melanin synthesis. Defect of the ion transport system causes various pigmentation phenotypes, from mild effect to severe disorders such as albinism. In this review, we summarize the up-to-date knowledge of the ion transport system, such as transport function, structure, and the physiological roles and mechanisms of the ion transport proteins in melanosomes. In addition, we propose a model of melanosomal ion transport system-how the functional coupling of multiple transport proteins modulates and maintains ion homeostasis. We discuss melanin synthesis in terms of the ion transport system.
Collapse
Affiliation(s)
- Pattama Wiriyasermkul
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Satomi Moriyama
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Shushi Nagamori
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
46
|
Niu YY, Zhang YY, Zhu Z, Zhang XQ, Liu X, Zhu SY, Song Y, Jin X, Lindholm B, Yu C. Elevated intracellular copper contributes a unique role to kidney fibrosis by lysyl oxidase mediated matrix crosslinking. Cell Death Dis 2020; 11:211. [PMID: 32235836 PMCID: PMC7109154 DOI: 10.1038/s41419-020-2404-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022]
Abstract
Copper ions play various roles in mammalian cells, presumably due to their involvement in different enzymatic reactions. Some studies indicated that serum copper correlates with fibrosis in organs, such as liver and lung. However, the mechanism is unknown. Here, we explored the role of copper in kidney fibrosis development and possible underlying mechanisms. We found that copper transporter 1 (CTR1) expression was increased in the kidney tissues in two fibrosis models and in patients with kidney fibrosis. Similar results were also found in renal tubular epithelial cells and fibroblast cells treated with transforming growth factor beta (TGF-β). Mechanistically, the upregulation of CTR1 required Smads-dependent TGF-β signaling pathway and Smad3 directly binded to the promoter of CTR1 in renal fibroblast cells using chromatin immunoprecipitation. Elevated CTR1 induced increase of copper intracellular influx. The elevated intracellular copper ions activated lysyl oxidase (LOX) to enhance the crosslinking of collagen and elastin, which then promoted kidney fibrosis. Reducing intracellular copper accumulation by knocking down CTR1 ameliorated kidney fibrosis in unilateral ureteral obstruction induced renal fibrosis model and renal fibroblast cells stimulated by TGF-β. Treatment with copper chelator tetrathiomolybdate (TM) also alleviated renal fibrosis in vivo and in vitro. In conclusion, intracellular copper accumulation plays a unique role to kidney fibrosis by activating LOX mediated collagen and elastin crosslinking. Inhibition of intracellular copper overload may be a potential portal to alleviate kidney fibrosis.
Collapse
Affiliation(s)
- Yang-Yang Niu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying-Ying Zhang
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi Zhu
- Terahertz Technology Innovatio, Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz, Science Cooperative Innovation Center, School of Optical-Electrical Computer, Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao-Qin Zhang
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Liu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sai-Ya Zhu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ye Song
- Department of Ultrasound, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xian Jin
- EnnovaBio Pharmaceuticals Co., Ltd, Shanghai, China
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Abstract
Copper accumulation and deficiency are reciprocally connected to lipid metabolism. In Wilson disease (WD), which is caused by a genetic loss of function of the copper-transporting P-type ATPase beta, copper accumulates mainly in the liver and lipid metabolism is dysregulated. The underlying mechanisms linking copper and lipid metabolism in WD are not clear. Copper may impair metabolic machinery by direct binding to protein and lipid structures or by generating reactive oxygen species with consequent damage to cellular organelles vital to energy metabolism. In the liver, copper overload results in mitochondrial impairment, down-regulation of lipid metabolism, and the development of steatosis with an etiology not fully elucidated. Little is known regarding the effect of copper overload on extrahepatic energy homeostasis. This review aims to discuss alterations in hepatic energy metabolism associated with WD, highlights potential mechanisms involved in the development of hepatic and systemic dysregulation of lipid metabolism, and reviews current knowledge on the effects of copper overload on extrahepatic energy metabolism.
Collapse
Affiliation(s)
- Tagreed A. Mazi
- Department of Nutrition, University of California Davis, Davis, CA, USA,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, USA,Corresponding author. (V. Medici)
| |
Collapse
|
48
|
Pérès EA, Toutain J, Paty LP, Divoux D, Ibazizène M, Guillouet S, Barré L, Vidal A, Cherel M, Bourgeois M, Bernaudin M, Valable S. 64Cu-ATSM/ 64Cu-Cl 2 and their relationship to hypoxia in glioblastoma: a preclinical study. EJNMMI Res 2019; 9:114. [PMID: 31858290 PMCID: PMC6923301 DOI: 10.1186/s13550-019-0586-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Diacetyl-bis(N4-methylthiosemicarbazone), labeled with 64Cu (64Cu-ATSM) has been suggested as a promising tracer for imaging hypoxia. However, various controversial studies highlighted potential pitfalls that may disable its use as a selective hypoxic marker. They also highlighted that the results may be tumor location dependent. Here, we first analyzed uptake of Cu-ATSM and its less lipophilic counterpart Cu-Cl2 in the tumor over time in an orthotopic glioblastoma model. An in vitro study was also conducted to investigate the hypoxia-dependent copper uptake in tumor cells. We then further performed a comprehensive ex vivo study to compare 64Cu uptake to hypoxic markers, specific cellular reactions, and also transporter expression. Methods μPET was performed 14 days (18F-FMISO), 15 days (64Cu-ATSM and 64Cu-Cl2), and 16 days (64Cu-ATSM and 64Cu-Cl2) after C6 cell inoculation. Thereafter, the brains were withdrawn for further autoradiography and immunohistochemistry. C6 cells were also grown in hypoxic workstation to analyze cellular uptake of Cu complexes in different oxygen levels. Results In vivo results showed that Cu-ASTM and Cu-Cl2 accumulated in hypoxic areas of the tumors. Cu-ATSM also stained, to a lesser extent, non-hypoxic regions, such as regions of astrogliosis, with high expression of copper transporters and in particular DMT-1 and CTR1, and also characterized by the expression of elevated astrogliosis. In vitro results show that 64Cu-ATSM showed an increase in the uptake only in severe hypoxia at 0.5 and 0.2% of oxygen while for 64Cu-Cl2, the cell retention was significantly increased at 5% and 1% of oxygen with no significant rise at lower oxygen percentages. Conclusion In the present study, we show that Cu-complexes undoubtedly accumulate in hypoxic areas of the tumors. This uptake may be the reflection of a direct dependency to a redox metabolism and also a reflection of hypoxic-induced overexpression of transporters. We also show that Cu-ATSM also stained non-hypoxic regions such as astrogliosis.
Collapse
Affiliation(s)
- Elodie A Pérès
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Jérôme Toutain
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Louis-Paul Paty
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Didier Divoux
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Méziane Ibazizène
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, GIP Cyceron, Caen, France
| | - Stéphane Guillouet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, GIP Cyceron, Caen, France
| | - Louisa Barré
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, GIP Cyceron, Caen, France
| | | | - Michel Cherel
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France.,GIP ARRONAX, Nantes, France.,Nuclear Medicine Department, ICO-René Gauducheau Cancer Center, Saint-Herblain, France
| | - Mickaël Bourgeois
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France.,GIP ARRONAX, Nantes, France.,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France.
| |
Collapse
|
49
|
Dalto DB, Audet I, Matte JJ. Impact of dietary zinc:copper ratio on the postprandial net portal appearance of these minerals in pigs1. J Anim Sci 2019; 97:3938-3946. [PMID: 31292635 DOI: 10.1093/jas/skz238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
The present study compared the net intestinal absorption of zinc (Zn) and copper (Cu) after meals containing different dietary ratios among these trace elements. Ten 46-kg pigs were used in a cross-over design to assess the 10-h net portal-drained viscera (PDV) flux of serum Cu and Zn after ingestion of boluses containing ZnSO4 and CuSO4 in different Zn:Cu ratios (mg:mg): 120:20; 200:20; 120:8; and 200:8. Arterial Zn concentrations peaked within the first hour post-meal and responses were greater with 200 (0.9 to 1.8 mg/L) than with 120 mg (0.9 to 1.6 mg/L) of dietary Zn (dietary Zn × time, P = 0.05). Net PDV flux of Zn was greater (P = 0.02) with 200 than with 120 mg of dietary Zn and tended to be greater (P = 0.10) with 20 than with 8 mg of dietary Cu. The cumulative PDV appearance of Zn (% of dietary intake) was greater with 120 than 200 mg of dietary Zn from 8 h post-meal (P ≤ 0.04) and with 20 than 8 mg of dietary Cu from 7 h post-meal (P ≤ 0.05). At the end of the postprandial period (10 h), estimated PDV appearance of Zn was 16.0%, 18.4%, 12.0%, and 15.3% of Zn intake for 120:8, 120:20, 200:8, and 200:20 ratios, respectively. For Cu, irrespective of treatment, arterial values varied (P < 0.01) by less than 5% across postmeal times. Net PDV flux was not affected by treatments (P ≥ 0.12), but the value for ratio 120:20 was different from zero (P = 0.03). There was an interaction dietary Zn × dietary Cu on cumulative PDV appearance of Cu (% of dietary intake) at 30 min post-meal (P = 0.04) and thereafter at 3 h post-meal (P = 0.04). For the whole postprandial period (10 h), estimated PDV appearance of Cu was 61.9%, 42.1%, -17.1%, and 23.6% of Cu intake for 120:8, 120:20, 200:8, and 200:20 ratios, respectively. In conclusion, the present dietary amounts and ratios of Zn and Cu can affect the metabolic availability of both trace minerals for pigs. Ratios with 120 mg of dietary Zn maximized the postintestinal availability of both Zn and Cu.
Collapse
Affiliation(s)
- Danyel Bueno Dalto
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - Isabelle Audet
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - J Jacques Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| |
Collapse
|
50
|
Petruzzelli R, Polishchuk RS. Activity and Trafficking of Copper-Transporting ATPases in Tumor Development and Defense against Platinum-Based Drugs. Cells 2019; 8:E1080. [PMID: 31540259 PMCID: PMC6769697 DOI: 10.3390/cells8091080] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking pathways emanating from the Golgi regulate a wide range of cellular processes. One of these is the maintenance of copper (Cu) homeostasis operated by the Golgi-localized Cu-transporting ATPases ATP7A and ATP7B. At the Golgi, these proteins supply Cu to newly synthesized enzymes which use this metal as a cofactor to catalyze a number of vitally important biochemical reactions. However, in response to elevated Cu, the Golgi exports ATP7A/B to post-Golgi sites where they promote sequestration and efflux of excess Cu to limit its potential toxicity. Growing tumors actively consume Cu and employ ATP7A/B to regulate the availability of this metal for oncogenic enzymes such as LOX and LOX-like proteins, which confer higher invasiveness to malignant cells. Furthermore, ATP7A/B activity and trafficking allow tumor cells to detoxify platinum (Pt)-based drugs (like cisplatin), which are used for the chemotherapy of different solid tumors. Despite these noted activities of ATP7A/B that favor oncogenic processes, the mechanisms that regulate the expression and trafficking of Cu ATPases in malignant cells are far from being completely understood. This review summarizes current data on the role of ATP7A/B in the regulation of Cu and Pt metabolism in malignant cells and outlines questions and challenges that should be addressed to understand how ATP7A and ATP7B trafficking mechanisms might be targeted to counteract tumor development.
Collapse
Affiliation(s)
- Raffaella Petruzzelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| |
Collapse
|