1
|
Zeng H, Safratowich BD, Liu Z, Bukowski MR. Resistant starch inhibits high-fat diet-induced oncogenic responses in the colon of C57BL/6 mice. J Nutr Biochem 2025; 139:109838. [PMID: 39788163 DOI: 10.1016/j.jnutbio.2025.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The beneficial effects of dietary fiber for colon health may be due to short chain fatty acids (SCFAs), such as butyrate, produced by colonic bacterial fermentation. In contrast, obesogenic diet induced obesity is linked to increased colon cancer incidence. We hypothesize that increasing fiber intake promotes healthy microbiome and reduces bacterial dysbiosis and oncogenic signaling in the colon of mice fed an obesogenic diet. About 5-week-old male C57BL/6 mice were assigned to 5 dietary groups (n=22/group) for 24 weeks:(1) AIN93G as a control diet (AIN); (2) a high fat diet (HFD, 45% energy fat); (3) HFD+5% resistant starch enriched dietary fiber (RSF) from maize; (4) HFD+10%RSF; or (5) HFD+20%RSF. Compared to the AIN group, mice receiving the HFD exhibited more than 15% increase in body mass and body fat composition irrespective of RSF dosage. However, the HFD+RSF groups exhibited an increase (>300%) of fecal butyrate but a decrease (>45%) of secondary bile acids in a RSF dose-dependent manner over the HFD group. Similarly, there were concomitant decreases (>25%) in pro-inflammatory plasma cytokines (TNFα, IL-6 and MCP-1), β-catenin and Ki67 protein staining in the colon of the HFD+20%RSF group relative to the HFD group. Furthermore, the abundance of colonic Proteobacteria, signatures of dysbiosis, was decreased (>63%) in a RSF dose-dependent manner compared to the HFD. Collectively, these data indicate that RSF not only increases butyrate but also reduces secondary bile acids, bacterial dysbiosis and β-catenin in the colon of mice fed a HFD.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203.
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Zhenhua Liu
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| |
Collapse
|
2
|
Ma XB, Lv YL, Qian L, Yang JF, Song Q, Liu YM. Evaluating the effects of coffee consumption on the structure and function of the heart from multiple perspectives. Front Cardiovasc Med 2025; 12:1453106. [PMID: 40303614 PMCID: PMC12037506 DOI: 10.3389/fcvm.2025.1453106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Objective To assess the causal relationship between coffee consumption and cardiac structure and function in elderly European populations using multiple genetic methodologies. Methods Leveraging genome-wide association study (GWAS) data from elderly European populations, we conducted linkage disequilibrium score regression (LDSC), two-step Mendelian randomization (MR), and colocalization analyses to investigate genetic associations, causal relationships, and mediating effects among these factors. Robustness of findings was verified through comprehensive sensitivity analyses. Results LDSC regression analysis revealed positive genetic correlations between coffee consumption and cardiac parameters, excluding left ventricular (LV) ejection fraction and right ventricular (RV) ejection fraction. MR results demonstrated favorable associations between increased coffee consumption and cardiac parameters. After applying the Bonferroni adjustment to IVW analysis, as coffee consumption increased by each 1-cup/day, LV end-diastolic volume increased (β = 0.128; 95% CI: 0.043-0.212; P = 0.002), an increase in LV end-systolic volume (β = 0.143; 95% CI: 0.053-0.232; P = 0.001), an increase in RV end-diastolic volume (β = 0.200; 95% CI: 0.095-0.305; P < 0.001), and an increase in RV stroke volume (β = 0.209; 95% CI: 0.104-0.313; P < 0.001). Mediation analyses indicated that each 1-cup/day increase in coffee consumption significantly correlated with reduced diastolic blood pressure (DBP) and elevated body mass index (BMI). Notably, higher DBP exhibited inverse associations with ventricular systolic/diastolic functional parameters, whereas increased BMI demonstrated positive associations with these parameters, collectively mitigating age-related ventricular volume loss. No U-shaped associations were detected in linear MR frameworks. Colocalization analyses confirmed shared causal genetic variants between coffee intake and cardiac remodeling phenotypes. Conclusions Genetically predicted coffee consumption may counteract age-associated ventricular volume loss in elderly Europeans through dual mediation pathways involving DBP reduction and BMI elevation. These structural adaptations suggest potential cardioprotective mechanisms against senile cardiac atrophy. Future studies should prioritize the integration of coffee consumption into cardiovascular risk assessment frameworks and develop personalized recommendations based on individual health profiles.
Collapse
Affiliation(s)
- Xiong-Bin Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yan-Lin Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Lin Qian
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Jing-Fen Yang
- The First Clinical Medical College of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qian Song
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yong-Ming Liu
- Geriatric Cardiovascular Department and Gansu Clinical Research Center for Geriatric Diseases, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Hosny EN, Sawie HG, El-Gizawy MM, Mohammed HS, Faraag AR, Khadrawy YA. Therapeutic effects of alpha lipoic acid and/or caffeine-loaded chitosan nanoparticles on memory impairment and neurochemical changes in high-fat diet-induced obese rats. Physiol Behav 2024; 287:114697. [PMID: 39288867 DOI: 10.1016/j.physbeh.2024.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
The therapeutic effects of alpha lipoic acid (LA) and/or caffeine-loaded chitosan nanoparticles (CCNPs) on obesity-induced memory impairment were evaluated in the present study. Rats were divided into control rats, obese rats induced by high fat diet (HFD) and obese rats treated with LA and/or CCNPs. Obesity was confirmed by measuring the body mass index (BMI). Memory and cognitive functions were evaluated by novel object recognition test (NORT). The levels of serotonin (5-HT), dopamine (DA), norepinephrine (NE), lipid peroxidation (MDA), nitric oxide (NO), reduced glutathione (GSH), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), leptin (LEP) and ghrelin (GHR) and the activities of monoamine oxidase (MAO), acetylcholinesterase (AchE) and Na+,K+,ATPase were determined in the cortex and hippocampus. The cerebral histopathological alterations were examined in obese rats. Obese rats showed impaired memory and exhibited significant neurochemical changes, including decreased levels of 5-HT, DA, GSH, GHR, and Na+,K+-ATPase activity, as well as an increase in AchE, MAO, MDA, NO, IL-1β, TNF-α, and LEP. LA and/or CCNPs treatment reduced BMI and improved memory. LA or CCNPs alleviated the cortical and hippocampal neurochemical changes and histopathological changes induced by obesity. Furthermore, LA and CCNPs exhibited antioxidant and anti-inflammatory properties, which likely contributed to their effects. However, no synergistic effect was observed between LA and CCNPs. These findings suggest that LA or CCNPs may be a potential therapy against obesity and its adverse effects on memory, mediated by their ability to restore monoamine levels and exhibit antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Eman N Hosny
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hussein G Sawie
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mayada M El-Gizawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdel Razik Faraag
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| |
Collapse
|
4
|
Bouchard J, Raj P, Yu L, Sobhi B, Malalgoda M, Malunga L, Netticadan T, Joseph Thandapilly S. Oat protein modulates cholesterol metabolism and improves cardiac systolic function in high fat, high sucrose fed rats. Appl Physiol Nutr Metab 2024; 49:738-750. [PMID: 38477294 DOI: 10.1139/apnm-2023-0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Oats are recognized to provide many health benefits that are mainly associated with its dietary fibre, β-glucan. However, the protein derived from oats is largely understudied with respect to its ability to maintain health and attenuate risk factors of chronic diseases. The goal of the current study was to investigate the metabolic effects of oat protein consumption in lieu of casein as the protein source in high fat, high sucrose (HF/HS) fed Wistar rats. Four-week-old rats were divided into three groups and were fed three different experimental diets: a control diet with casein as the protein source, an HF/HS diet with casein, or an HF/HS diet with oat protein for 16 weeks. Heart structure and function were determined by echocardiography. Blood pressure measurements, an oral glucose tolerance test, and markers of cholesterol metabolism, oxidative stress, inflammation, and liver and kidney damage were also performed. Our study results show that incorporation of oat protein in the diet was effective in preserving systolic heart function in HF/HS fed rats. Oat protein significantly reduced serum total and low-density lipoprotein cholesterol levels. Furthermore, oat protein normalized liver HMG-CoAR activity, which, to our knowledge, is the first time this has been reported in the literature. Therefore, our research suggests that oat protein can provide hypocholesterolemic and cardioprotective benefits in a diet-induced model of metabolic syndrome.
Collapse
Affiliation(s)
- Jenny Bouchard
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Pema Raj
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
| | - Liping Yu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
| | - Babak Sobhi
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
| | - Maneka Malalgoda
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lovemore Malunga
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Netticadan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sijo Joseph Thandapilly
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
5
|
Fortunato IM, Pereira QC, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Metabolic Insights into Caffeine's Anti-Adipogenic Effects: An Exploration through Intestinal Microbiota Modulation in Obesity. Int J Mol Sci 2024; 25:1803. [PMID: 38339081 PMCID: PMC10855966 DOI: 10.3390/ijms25031803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity, a chronic condition marked by the excessive accumulation of adipose tissue, not only affects individual well-being but also significantly inflates healthcare costs. The physiological excess of fat manifests as triglyceride (TG) deposition within adipose tissue, with white adipose tissue (WAT) expansion via adipocyte hyperplasia being a key adipogenesis mechanism. As efforts intensify to address this global health crisis, understanding the complex interplay of contributing factors becomes critical for effective public health interventions and improved patient outcomes. In this context, gut microbiota-derived metabolites play an important role in orchestrating obesity modulation. Microbial lipopolysaccharides (LPS), secondary bile acids (BA), short-chain fatty acids (SCFAs), and trimethylamine (TMA) are the main intestinal metabolites in dyslipidemic states. Emerging evidence highlights the microbiota's substantial role in influencing host metabolism and subsequent health outcomes, presenting new avenues for therapeutic strategies, including polyphenol-based manipulations of these microbial populations. Among various agents, caffeine emerges as a potent modulator of metabolic pathways, exhibiting anti-inflammatory, antioxidant, and obesity-mitigating properties. Notably, caffeine's anti-adipogenic potential, attributed to the downregulation of key adipogenesis regulators, has been established. Recent findings further indicate that caffeine's influence on obesity may be mediated through alterations in the gut microbiota and its metabolic byproducts. Therefore, the present review summarizes the anti-adipogenic effect of caffeine in modulating obesity through the intestinal microbiota and its metabolites.
Collapse
Affiliation(s)
- Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (I.M.F.); (Q.C.P.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
6
|
Zeng H, Safratowich BD, Cheng WH, Bukowski MR. Identification of oncogenic signatures in the inflammatory colon of C57BL/6 mice fed a high-fat diet. J Nutr Biochem 2023; 111:109188. [PMID: 36272693 DOI: 10.1016/j.jnutbio.2022.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Adoption of an obesogenic diet such as a high-fat diet (HFD) results in obesity, bacterial dysbiosis, chronic inflammation, and cancer. Gut bacteria and their metabolites are recognized by interleukin-1 (IL-1R)/toll-like receptors (TLRs) which are essential to maintain intestinal homeostasis. Moreover, host extracellular microRNAs (miRNAs) can alter bacterial growth in the colon. Characterization of the underlying mechanisms may lead to identifying fecal oncogenic signatures reflecting colonic health. We hypothesize that an HFD accelerates the inflammatory process and modulates IL-1R/TLR pathways, gut microbiome, and disease-related miRNA in the colon. In this study, 4-week-old C57BL/6 mice were fed a modified AIN93G diet (AIN, 16% energy fat) or an HFD (45% energy fat) for 15 weeks. In addition to increased body weight and body fat composition, the concentrations of plasma interleukin 6 (IL-6), inflammatory cell infiltration, β-catenin, and cell proliferation marker (Ki67) in the colon were elevated > 68% in the HFD group compared to the AIN group. Using a PCR array analysis, we identified 14 out of 84 genes with a ≥ 24% decrease in mRNA content related to IL-1R and TLR pathways in colonic epithelial cells in mice fed an HFD compared to the AIN. Furthermore, the content of Alistipes bacteria, the Firmicutes/Bacteroidetes ratio, microRNA-29a, and deoxycholic and lithocholic acids (secondary bile acids with oncogenic potential) were 55% greater in the feces of the HFD group compared to the AIN group. Collectively, this composite, a multimodal profile may represent a unique HFD-induced fecal signature for colonic inflammation and cancer in C57BL/6 mice.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA.
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, USA
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| |
Collapse
|
7
|
Moradi F, Moosavian SP, Djafari F, Teimori A, Imani ZF, Naeini AA. The association between major dietary patterns with the risk of non-alcoholic fatty liver disease, oxidative stress and metabolic parameters: A case-control study. J Diabetes Metab Disord 2022; 21:657-667. [PMID: 35673496 PMCID: PMC9167161 DOI: 10.1007/s40200-022-01028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/06/2022] [Indexed: 11/11/2022]
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD) is caused by the increase of fat in the liver. The present study aimed to study the association between different dietary patterns and NAFLD in adults. Methods This study included 121 adult patients with NAFLD and 119 non-NAFLD. Dietary intake was calculated by a 168-item food frequency questionnaire. Biochemical markers were measured. Dietary patterns were determined by factor analysis. The association between dietary patterns and NAFLD was evaluated using multiple logistic regression analysis. Results Two dietary patterns (healthy, western) were recognized in participants. Western dietary pattern was related with 72 percent increase in the odds of NAFLD (OR: 1.72; 95% CI: 1.32,2.14), after adjustment for covariates. Healthy dietary pattern was associated with 38 percent lower odds of NAFLD (OR: 0.38; 95% CI: 0.11, 0.65). Adherence to the western diet was related to 0.486 greater amounts of ALT, 3.248 mg/dl higher levels of FBS, and 3.989 mg/dl greater amounts of TG and 2.354 mg/dl greater amounts of MDA after adjusting for confounding factors (p > 0.001, p = 0.042, p > 0.001, p = 0.036 respectively). The healthy dietary pattern score was negatively associated with FBS and Cholesterol and TG levels (p = 0.035, p = 0.048, and p = 0.025), respectively. Moreover, it was associated with 3.211 mg/dl higher levels of TAC (p = 0.049). Conclusions There is a significant relationship between dietary patterns and non-alcoholic fatty liver disease. Adherence to a western dietary pattern is related to an increase in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Fateme Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Parisa Moosavian
- Department of Community Nutrition, Vice-Chancellery for Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhang Djafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Azam Teimori
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Faghih Imani
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Salvoza N, Giraudi PJ, Tiribelli C, Rosso N. Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates. Int J Mol Sci 2022; 23:2764. [PMID: 35269912 PMCID: PMC8911502 DOI: 10.3390/ijms23052764] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
The booming prevalence of nonalcoholic fatty liver disease (NAFLD) in adults and children will threaten the health system in the upcoming years. The "multiple hit" hypothesis is the currently accepted explanation of the complex etiology and pathophysiology of the disease. Some of the critical pathological events associated with the development of NAFLD are insulin resistance, steatosis, oxidative stress, inflammation, and fibrosis. Hence, attenuating these events may help prevent or delay the progression of NAFLD. Despite an increasing understanding of the mechanisms involved in NAFLD, no approved standard pharmacological treatment is available. The only currently recommended alternative relies on lifestyle modifications, including diet and physical activity. However, the lack of compliance is still hampering this approach. Thus, there is an evident need to characterize new therapeutic alternatives. Studies of food bioactive compounds became an attractive approach to overcome the reticence toward lifestyle changes. The present study aimed to review some of the reported compounds with beneficial properties in NAFLD; namely, coffee (and its components), tormentic acid, verbascoside, and silymarin. We provide details about their protective effects, their mechanism of action in ameliorating the critical pathological events involved in NAFLD, and their clinical applications.
Collapse
Affiliation(s)
- Noel Salvoza
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
- Philippine Council for Health Research and Development, DOST Compound, Bicutan, Taguig 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Natalia Rosso
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| |
Collapse
|
9
|
Verma P, Joshi BC, Bairy PS. A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220211162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering significant social and economic costs. Abnormal accumulation of fat in the body may increase the health risks including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke and cancer. Synthetic drugs available on the market reported to have several side effects. Therefore, the management of obesity got to involve the traditional use of medicinal plants which helps to search the new therapeutic targets and supports the research and development of anti-obesity drugs.
Objective:
This review aim to update the data and provide a comprehensive report of currently available knowledge of medicinal plants and phyto-chemical constituents reported for their anti-obesity activity.
Methodology:
An electronic search of the periodical databases like Web of Science, Scopus, PubMed, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder and Google Scholar with information reported the period 1991-2019, was used to retrieve published data.
Results:
A comprehensive report of the present review manuscript is an attempt to list the medicinal plants with anti-obesity activity. The review focused on plant extracts, isolated chemical compounds with their mechanism of action and their preclinical experimental model, clinical studies for further scientific research.
Conclusion:
This review is the compilation of the medicinal plants and their constituents reported for the managements of obesity. The data will fascinate the researcher to initiate further research that may lead to the drug for the management of obesity and their associated secondary complications. Several herbal plants and their respective lead constituents were also screened by preclinical In-vitro and In-vivo, clinical trials and are effective in the treatment of obesity. Therefore, there is a need to develop and screen large number of plant extracts and this approach can surely be a driving force for the discovery of anti-obesity drugs from medicinal plants.
Collapse
Affiliation(s)
- Piyush Verma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun-248001, Uttarakhand (India)
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, Uttarakhand (India)
| | - Partha Sarathi Bairy
- School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun-248001, Uttarakhand (India)
| |
Collapse
|
10
|
Siroma TK, Machate DJ, Zorgetto-Pinheiro VA, Figueiredo PS, Marcelino G, Hiane PA, Bogo D, Pott A, Cury ERJ, Guimarães RDCA, Vilela MLB, Ferreira RDS, do Nascimento VA. Polyphenols and ω-3 PUFAs: Beneficial Outcomes to Obesity and Its Related Metabolic Diseases. Front Nutr 2022; 8:781622. [PMID: 35111795 PMCID: PMC8802753 DOI: 10.3389/fnut.2021.781622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Obesity is associated with the leading causes of death in the worldwide. On the other hand, the intake of vegetables, fruits and fish is related to the reduction of obesity and other metabolic syndromes. This review aims to highlight the role of ingestion of polyphenols and omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in reducing obesity and related metabolic diseases (RMDs). The consumption of vegetables, fish and by-products rich in polyphenols and α-linolenic acid (ALA), as well as oils rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with a decrease in obesity and its RMDs in consumers. Furthermore, we discussed the adequate amount of extracts, powder, polyphenols, ω-3 PUFAs administrated in animal models and human subjects, and the relevant outcomes obtained. Thus, we appeal to the research institutions and departments of the Ministries of Health in each country to develop a food education joint project to help schools, businesses and families with the aim of reducing obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Thais Keiko Siroma
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - David Johane Machate
- Spectroscopy and Bioinformatics Applied Biodiversity and Health - GEBABS, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Graduate Program in Materials Science, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Arnildo Pott
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Elenir Rose Jardim Cury
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | | | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Spectroscopy and Bioinformatics Applied Biodiversity and Health - GEBABS, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
11
|
Hayat U, Siddiqui AA, Okut H, Afroz S, Tasleem S, Haris A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: A meta-analysis of 11 epidemiological studies. Ann Hepatol 2021; 20:100254. [PMID: 32920163 DOI: 10.1016/j.aohep.2020.08.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a widespread chronic liver disease. It is considered a multifactorial disorder that can progress to liver fibrosis and cause a worldwide public health concern. Coffee consumption may have a protective impact on NAFLD and liver fibrosis. However, the evidence from the previous studies is inconsistent. This meta-analysis summarizes available literature. MATERIALS AND METHODS This study comprises two meta-analyses. The first meta-analysis summarizes the effect of coffee consumption on NAFLD in those who did or did not drink coffee. The second analysis compares the risk of liver fibrosis development between NAFLD patients who did or did not drink coffee. Pooled risk ratios (RR) and confidence intervals (CI) of observational studies were estimated. RESULTS Of the total collected 321 articles, 11 met our eligibility criteria to be included in the analysis. The risk of NAFLD among those who drank coffee compared to those who did not was significantly lower with a pooled RR value of 0.77 (95% CI 0.60-0.98). Moreover, we also found a significantly reduced risk of liver fibrosis in those who drink coffee than those who did not drink in the NAFLD patients with the relative risk (RR) of 0.68 (95% CI 0.68-0.79). CONCLUSIONS Regular coffee consumption is significantly associated with a reduced risk of NAFLD. It is also significantly associated with decreased risk of liver fibrosis development in already diagnosed NAFLD patients. Although coffee consumption may be considered an essential preventive measure for NAFLD, this subject needs further epidemiological studies.
Collapse
Affiliation(s)
- Umar Hayat
- Department of Population Health, University of Kansas School of Medicine, Wichita, KA, USA.
| | - Ali A Siddiqui
- Department of Gastroenterology, Loma Linda University Hospital, Loma Linda, CA, USA
| | - Hayrettin Okut
- Department of Population Health, University of Kansas School of Medicine, Wichita, KA, USA
| | - Saba Afroz
- Hospital Medicine, Wesley Medical Center, Wichita, KA, USA
| | - Syed Tasleem
- Department of Gastroenterology, Baylor College of Medicine, Houston, USA
| | - Ahmed Haris
- Hospital Medicine, Wesley Medical Center, Wichita, KA, USA
| |
Collapse
|
12
|
Bhandarkar NS, Mouatt P, Majzoub ME, Thomas T, Brown L, Panchal SK. Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens 2021; 10:pathogens10111369. [PMID: 34832525 PMCID: PMC8624503 DOI: 10.3390/pathogens10111369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
Waste from food production can be re-purposed as raw material for usable products to decrease industrial waste. Coffee pulp is 29% of the dry weight of coffee cherries and contains caffeine, chlorogenic acid, trigonelline, diterpenes and fibre. We investigated the attenuation of signs of metabolic syndrome induced by high-carbohydrate, high-fat diet in rats by dietary supplementation with 5% freeze-dried coffee pulp for the final 8 weeks of a 16-week protocol. Coffee pulp decreased body weight, feed efficiency and abdominal fat; normalised systolic blood pressure, left ventricular diastolic stiffness, and plasma concentrations of triglycerides and non-esterified fatty acids; and improved glucose tolerance in rats fed high-carbohydrate, high-fat diet. Further, the gut microbiota was modulated with high-carbohydrate, high-fat diet and coffee pulp supplementation and 14 physiological parameters were correlated with the changes in bacterial community structures. This study suggested that coffee pulp, as a waste from the coffee industry, is useful as a functional food for improving obesity-associated metabolic, cardiovascular and liver structure and function, and gut microbiota.
Collapse
Affiliation(s)
- Nikhil S. Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
- Correspondence: ; Tel.: +61-2-4570-1932
| |
Collapse
|
13
|
Tan LJ, Jung H, Kim SA, Shin S. The Association Between Coffee Consumption and Nonalcoholic Fatty Liver Disease in the South Korean General Population. Mol Nutr Food Res 2021; 65:e2100356. [PMID: 34319647 DOI: 10.1002/mnfr.202100356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/12/2021] [Indexed: 12/30/2022]
Abstract
SCOPE To identify the cross-sectional and prospective association between coffee consumption and nonalcoholic fatty liver disease (NAFLD) among South Korean adults. METHODS AND RESULTS Participants are selected from the Health Examinees study. NAFLD is defined using three non-invasive indexes: fatty liver index (FLI), hepatic steatosis index, and fibrosis-4 calculator (FIB-4). In the cross-sectional analysis, higher habitual coffee consumption is associated with a lower risk for NAFLD, define using the FLI, (men, odds ratio [OR] 0.702; women, OR 0.810) compared with non-consumers. Participants who consumed coffee with sugar and creamer also have a lower risk for NAFLD, defined using the FIB-4, compared with non-coffee-consumers (men, OR 0.739; women, OR 0.807). A prospective analysis indicated that higher coffee consumption is associated with a lower incidence of NAFLD, defined using the FLI, in men (hazard ratio, 0.706). In both men and women, a lower FIB-4 index score is associated with higher coffee consumption regardless of coffee type (all p-value <0.05). CONCLUSIONS Coffee consumption of >3 cups per day has a protective effect against the development of NAFLD to a certain extent, and a negative association is found between coffee consumed with sugar and creamer and the FIB-4 index score in South Korean adults.
Collapse
Affiliation(s)
- Li-Juan Tan
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, South Korea
| | - Hyein Jung
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, South Korea
| | - Seong-Ah Kim
- Department of Urban Society, The Seoul Institute, Seoul, 06756, South Korea
| | - Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, 17546, South Korea
| |
Collapse
|
14
|
Dini I, Laneri S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021; 26:molecules26133921. [PMID: 34206931 PMCID: PMC8271805 DOI: 10.3390/molecules26133921] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
Nowadays, much attention is paid to issues such as ecology and sustainability. Many consumers choose “green cosmetics”, which are environmentally friendly creams, makeup, and beauty products, hoping that they are not harmful to health and reduce pollution. Moreover, the repeated mini-lock downs during the COVID-19 pandemic have fueled the awareness that body beauty is linked to well-being, both external and internal. As a result, consumer preferences for makeup have declined, while those for skincare products have increased. Nutricosmetics, which combines the benefits derived from food supplementation with the advantages of cosmetic treatments to improve the beauty of our body, respond to the new market demands. Food chemistry and cosmetic chemistry come together to promote both inside and outside well-being. A nutricosmetic optimizes the intake of nutritional microelements to meet the needs of the skin and skin appendages, improving their conditions and delaying aging, thus helping to protect the skin from the aging action of environmental factors. Numerous studies in the literature show a significant correlation between the adequate intake of these supplements, improved skin quality (both aesthetic and histological), and the acceleration of wound-healing. This review revised the main foods and bioactive molecules used in nutricosmetic formulations, their cosmetic effects, and the analytical techniques that allow the dosage of the active ingredients in the food.
Collapse
|
15
|
Vileigas DF, de Souza SLB, Corrêa CR, Silva CCVDA, de Campos DHS, Padovani CR, Cicogna AC. The effects of two types of Western diet on the induction of metabolic syndrome and cardiac remodeling in obese rats. J Nutr Biochem 2021; 92:108625. [PMID: 33705955 DOI: 10.1016/j.jnutbio.2021.108625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) include obesity as a critical feature and is strongly associated with risk of cardiovascular disease (CVD). Insights into mechanisms involved in the pathophysiology of these clinical manifestations are essential for the development of therapeutic strategies. Thus, Western diets (WD) have been widely employed in diet-induced obesity (DIO) model. However, there are variations in fat and sugar proportions of such diets, making comparisons challenging. We aimed to assess the impact of two types of the WD on metabolic status and cardiac remodeling, to achieve a DIO model that better mimics the human pathogenesis of MetS-induced CVD. Male Wistar rats were distributed into three groups: control diet, Western diet fat (WDF), and Western diet sugar (WDS) for 41 weeks. Metabolic and inflammatory parameters and cardiac changes were characterized. WDF and WDS feeding promoted higher serum triglycerides, glucose intolerance, and insulin resistance, while just WDF presented inflammation in adipose tissue. WDF-fed rats showed increased catalase activity and malondialdehyde (MDA) and carbonyl protein levels, suggesting cardiac oxidative stress, while WDS-fed rats only raised MDA. Both WD equally elevated protein expressions involved in lipid metabolism, but only WDF downregulated the glycolysis pathway. Furthermore, the mechanical myocardial function was impaired in obese rats, being more relevant in WDF. In conclusion, both WD effectively triggered MetS features, although inflammation was detected just on the WDF-fed animals. Moreover, the WDF promoted a more pronounced functional, metabolic, and oxidative cardiac disorder, suggesting to be an adequate model for studying CVD in the scenario of MetS.
Collapse
Affiliation(s)
- Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Camila Renata Corrêa
- Department of Patology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
16
|
Zeng H, Safratowich BD, Liu Z, Bukowski MR, Ishaq SL. Adequacy of calcium and vitamin D reduces inflammation, β-catenin signaling, and dysbiotic Parasutterela bacteria in the colon of C57BL/6 mice fed a western-style diet. J Nutr Biochem 2021; 92:108613. [PMID: 33705950 DOI: 10.1016/j.jnutbio.2021.108613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022]
Abstract
Adoption of an obesogenic diet low in calcium and vitamin D (CaD) leads to increased obesity, colonic inflammation, and cancer. However, the underlying mechanisms remain to be elucidated. We tested the hypothesis that CaD supplementation (from inadequacy to adequacy) may reduce colonic inflammation, oncogenic signaling, and dysbiosis in the colon of C57BL/6 mice fed a Western diet. Male C57/BL6 mice (4-weeks old) were assigned to 3 dietary groups for 36 weeks: (1) AIN76A as a control diet (AIN); (2) a defined rodent "new Western diet" (NWD); or (3) NWD with CaD supplementation (NWD/CaD). Compared to the AIN, mice receiving the NWD or NWD/CaD exhibited more than 0.2-fold increase in the levels of plasma leptin, tumor necrosis factor α (TNF-α) and body weight. The levels of plasma interleukin 6 (IL-6), inflammatory cell infiltration, and β-catenin/Ki67 protein (oncogenic signaling) were increased more than 0.8-fold in the NWD (but not NWD/CaD) group compared to the AIN group. Consistent with the inflammatory phenotype, colonic secondary bile acid (inflammatory bacterial metabolite) levels increased more than 0.4-fold in the NWD group compared to the NWD/CaD and AIN groups. Furthermore, the abundance of colonic Proteobacteria (e.g., Parasutterela), considered signatures of dysbiosis, was increased more than four-fold; and the α diversity of colonic bacterial species, indicative of health, was decreased by 30% in the NWD group compared to the AIN and NWD/CaD groups. Collectively, CaD adequacy reduces colonic inflammation, β-catenin oncogenic signaling, secondary bile acids, and bacterial dysbiosis in mice fed with a Western diet.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota.
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota
| | - Zhenhua Liu
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine
| |
Collapse
|
17
|
Nerurkar PV, Gandhi K, Chen JJ. Correlations between Coffee Consumption and Metabolic Phenotypes, Plasma Folate, and Vitamin B12: NHANES 2003 to 2006. Nutrients 2021; 13:nu13041348. [PMID: 33919513 PMCID: PMC8073624 DOI: 10.3390/nu13041348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic syndrome (MetS) is prevalent not only among the overweight and obese but also normal weight individuals, and the phenotype is referred to as a metabolically unhealthy phenotype (MUHP). Besides normal weight individuals, overweight/obese individuals are also protected from MetS, and the phenotype is known as a metabolically healthy phenotype (MHP). Epidemiological studies indicate that coffee and micronutrients such as plasma folate or vitamin B12 (vit. B12) are inversely associated with MetS. However, correlations among coffee consumption metabolic phenotypes, plasma folate, and vit. B12 remain unknown. Our objective was to investigate the correlation between coffee consumption, metabolic phenotypes, plasma folate, and vit. B12 as well as to understand associations between plasma folate, vit. B12, and metabolic phenotypes. Associations among coffee consumption metabolic phenotypes, plasma folate, and vit. B12 were assessed in a cross-sectional study of 2201 participants, 18 years or older, from 2003-2004 and 2005-2006 National Health and Nutrition Examination Surveys (NHANES). MUHP was classified as having > three metabolic abnormalities. Coffee consumption was not associated with metabolic phenotypes, but negatively correlated with several metabolic variables, including BMI (p < 0.001). Plasma folate was positively associated with MUHP (p < 0.004), while vit. B12 was inversely associated with MUHP (p < 0.035). Our results suggest the potential protective impact of coffee on individual components of MetS and indicate a positive correlation between coffee consumption and MUHP among overweight individuals. Identifying possible dietary factors may provide practical and low-cost dietary intervention targets, specifically for early intervention. Larger and randomized intervention studies and prospective longitudinal studies are required to further evaluate these associations.
Collapse
Affiliation(s)
- Pratibha V. Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Correspondence: ; Tel.: +1-(808)-956-9195
| | - Krupa Gandhi
- Division of Biostatistics, Thomas Jefferson University Hospitals, Philadelphia, PA 19107, USA;
| | - John J. Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| |
Collapse
|
18
|
Ergin E, Tokusoglu O, Vural H. Coffee toxicology, processing of the coffee and liver diseases (is it a miracle of nature?). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Erhan Ergin
- Gastroenterology Department Ege Manisa State Hospital Manisa Turkey
| | - Ozlem Tokusoglu
- Department of Food Engineering Celal Bayar University Manisa Turkey
- Dokuz Eylül University Techn. Develop. Zone, DEPARK Technopark, SPİL INNOVA Ltd. Şti İzmir Turkey
| | - Halil Vural
- Department of Food Engineering Hacettepe University, Beytepe Campus Ankara Turkey
| |
Collapse
|
19
|
Chitosan Nanocarrier Entrapping Hydrophilic Drugs as Advanced Polymeric System for Dual Pharmaceutical and Cosmeceutical Application: A Comprehensive Analysis Using Box-Behnken Design. Polymers (Basel) 2021; 13:polym13050677. [PMID: 33668161 PMCID: PMC7956268 DOI: 10.3390/polym13050677] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
The objective of the present research is to propose chitosan as a nanocarrier for caffeine—a commonly used drug in combating cellulite. Being a hydrophilic drug, caffeine suffers from insufficient topical penetration upon application on the skin. Chitosan nanoparticles loaded with caffeine were prepared via the ionic gelation technique and optimized according to a Box–Behnken design. The effect of (A) chitosan concentration, (B) chitosan solution pH, and (C) chitosan to sodium tripolyphosphate mass ratio on (Y1) entrapment efficiency percent, (Y2) particle size, (Y3) polydispersity index, and (Y4) zeta potential were studied. Subsequently, the desired constraints on responses were applied, and validation of the optimization procedure was confirmed by the parameters exhibited by the optimal formulation. A caffeine entrapment efficiency percent of 17.25 ± 1.48%, a particle size of 173.03 ± 4.32 nm, a polydispersity index of 0.278 ± 0.01, and a surface charge of 41.7 ± 3.0 mV were attained. Microscopical evaluation using transmission electron microscope revealed a typical spherical nature of the nanoparticles arranged in a network with a further confirmation of the formation of particles in the nano range. The results proved the successful implementation of the Box–Behnken design for optimization of chitosan-based nanoparticles in the field of advanced polymeric systems for pharmaceutical and cosmeceutical applications.
Collapse
|
20
|
Liao Y, Zhou X, Zeng L. How does tea ( Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Crit Rev Food Sci Nutr 2021; 62:3751-3767. [PMID: 33401945 DOI: 10.1080/10408398.2020.1868970] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tea (Camellia sinensis) is both a plant and a foodstuff. Many bioactive compounds, which are present in the final tea product and related to its quality or functional properties, are produced during the tea manufacturing process. However, the characteristic secondary metabolites, which give tea its unique qualities and are beneficial to human health, are produced mainly in the leaves during the process of plant growth. Therefore, it is important to understand how tea leaves produce these specialized metabolites. In this review, we first compare the common metabolites and specialized metabolites in tea, coffee, cocoa, and grape and discuss the occurrence of characteristic secondary metabolites in tea. Progress in research into the formation of these characteristic secondary metabolites in tea is summarized, including establishing a biological database and genetic transformation system, and the biosynthesis of characteristic secondary metabolites. Finally, speculation on future research into the characteristic secondary metabolites of tea is provided from the viewpoints of the origin, resources, cultivation, and processing of tea. This review provides an important reference for future research on the specialized metabolites of tea in terms of its characteristics.
Collapse
Affiliation(s)
- Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
21
|
Ghattamaneni NKR, Brown L. Functional foods from the tropics to relieve chronic normobaric hypoxia. Respir Physiol Neurobiol 2020; 286:103599. [PMID: 33333240 DOI: 10.1016/j.resp.2020.103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Functional foods with antioxidant and anti-inflammatory properties are regarded as a complementary therapy to improve chronic diseases such as obesity and inflammatory bowel disease (IBD). Obesity is a chronic low-grade inflammatory state leading to organ damage with increased risk of common diseases including cardiovascular and metabolic disease, non-alcoholic fatty liver disease, osteoarthritis and some cancers. IBD is a chronic intestinal inflammation categorised as Crohn's disease and ulcerative colitis depending on the location of inflammation. These inflammatory states are characterised by normobaric hypoxia in adipose and intestinal tissues, respectively. Tropical foods especially from Australia and South America are discussed in this review to show their potential in attenuation of these chronic diseases. The phytochemicals from these foods have antioxidant and anti-inflammatory activities to reduce chronic normobaric hypoxia in the tissues. These health benefits of the tropical foods are relevant not only for health economy but also in providing a global solution by improving the sustainability of their cultivation and assisting the local economies.
Collapse
Affiliation(s)
- Naga K R Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia.
| |
Collapse
|
22
|
Cai Y, Zheng Q, Sun R, Wu J, Li X, Liu R. Recent progress in the study of Artemisiae Scopariae Herba (Yin Chen), a promising medicinal herb for liver diseases. Biomed Pharmacother 2020; 130:110513. [DOI: 10.1016/j.biopha.2020.110513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
|
23
|
Li L, Su C, Chen X, Wang Q, Jiao W, Luo H, Tang J, Wang W, Li S, Guo S. Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6464-6484. [PMID: 32441927 DOI: 10.1021/acs.jafc.0c01554] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorogenic acids (CGAs) have gained considerable attention as pervasive human dietary constituents with potential cardiovascular-preserving effects. The main sources include coffee, yerba mate, Eucommia ulmodies leaves, and Lonicerae Japonicae Flos. CGA consumption can reduce the risks of hypertension, atherosclerosis, heart failure, myocardial infarction, and other factors associated with cardiovascular risk, such as obesity and type 2 diabetes. This review recapitulates recent advances of CGAs in the cardiovascular-preserving effects, pharmacokinetics, sources, and safety. Emerging evidence indicates that CGAs exhibit circulatory guarding properties through the suppression of oxidative stress, leukocyte infiltration, platelet aggregation, platelet-leukocyte interactions, vascular remodeling, and apoptosis as well as the regulation of glucose and lipid metabolism and vasodilatory action in the cardiovascular system. CGAs exert these effects by acting on complex signaling networks, but the global mechanisms are still not clear. The oral bioavailability of CGA is poor, and there is a potential sensitization concern about CGA. The bioactive metabolites, systematic toxicity, and optimized structure are needed for further identification.
Collapse
Affiliation(s)
- Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Congping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenchao Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Hui Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
24
|
Lukitasari M, Nugroho DA, Rohman MS, Widodo N, Farmawati A, Hastuti P. Beneficial effects of green coffee and green tea extract combination on metabolic syndrome improvement by affecting AMPK and PPAR-α gene expression. J Adv Pharm Technol Res 2020; 11:81-85. [PMID: 32587821 PMCID: PMC7305783 DOI: 10.4103/japtr.japtr_116_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/21/2020] [Accepted: 03/22/2020] [Indexed: 11/04/2022] Open
Abstract
Effect of green coffee and green tea extract on metabolic syndrome. To explore green coffee and green tea extract combination effect on metabolic profile and blood pressure improvement through adenosine monophosphate-activated protein kinase (AMPK) and Peroxisome Proliferator-Activated Receptor α (PPARα) gene expression modulation. Experimental laboratory research with pre- and post-control group design. Twenty-five metabolic syndrome rats model were grouped into five groups (n = 5): standard control (normal), metabolic syndrome (SM), green coffee extract (GC), green tea extract (GT), and combination green coffee and green tea extract (CM). The extract was given during 9 weeks. Serum glucose, triglyceride, high-density lipoprotein, and systolic blood pressure level were analyzed before and after the extract administration. At the end of the study, PPAR-α and AMPK-α2 gene were analyzed. Independent t-test. CM group had significantly higher PPAR-α, and AMPK-α2 gene expression compared to those of SM, GC, and GT group. Green coffee and green tea extract combination administration improved metabolic profile and blood pressure on metabolic syndrome through affecting PPAR-α and AMPK-α2 gene expression.
Collapse
Affiliation(s)
- Mifetika Lukitasari
- Department of Nursing, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Dwi Adi Nugroho
- Departement of Herbal Medicine, Brawijaya Cardiovascular Research Group, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Mohammad Saifur Rohman
- Departement of Cardiology and Vascular Medicine, Faculty of Medicine, Saiful Anwar General Hospital, Brawijaya University, Malang, East Java, Indonesia
| | - Nashi Widodo
- Departement of Biology Mathematics and Natural Sciences, Brawijaya University, Malang, East Java, Indonesia
| | - Arta Farmawati
- Departement of Biochemistry, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Pramudji Hastuti
- Departement of Biochemistry, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
25
|
Chlorogenic acid supplementation improves skeletal muscle mitochondrial function in a rat model of resistance training. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00429-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Bhandarkar NS, Mouatt P, Goncalves P, Thomas T, Brown L, Panchal SK. Modulation of gut microbiota by spent coffee grounds attenuates diet-induced metabolic syndrome in rats. FASEB J 2020; 34:4783-4797. [PMID: 32039529 DOI: 10.1096/fj.201902416rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Coffee brewing produces spent coffee grounds as waste; few studies have investigated the health benefits of these grounds. This study investigated responses to spent coffee grounds in a diet-induced rat model of metabolic syndrome. Male Wistar rats aged 8-9 weeks were fed either corn starch-rich diet or high-carbohydrate, high-fat diet for 16 weeks, which were supplemented with 5% spent coffee grounds during the last 8 weeks. Rats fed non-supplemented diets were used as controls. High-carbohydrate, high-fat diet-fed rats developed metabolic syndrome including abdominal obesity, impaired glucose tolerance, dyslipidemia, and cardiovascular and liver damage. Body weight, abdominal fat, total body fat mass, systolic blood pressure, and concentrations of plasma triglycerides and non-esterified fatty acids were reduced by spent coffee grounds along with improved glucose tolerance and structure and function of heart and liver. Spent coffee grounds increased the diversity of the gut microbiota and decreased the ratio of Firmicutes to Bacteroidetes. Changes in gut microbiota correlated with the reduction in obesity and improvement in glucose tolerance and systolic blood pressure. These findings indicate that intervention with spent coffee grounds may be useful for managing obesity and metabolic syndrome by altering the gut microbiota, thus increasing the value of this food waste.
Collapse
Affiliation(s)
- Nikhil S Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Priscila Goncalves
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
27
|
Zeng H, Larson KJ, Cheng WH, Bukowski MR, Safratowich BD, Liu Z, Hakkak R. Advanced liver steatosis accompanies an increase in hepatic inflammation, colonic, secondary bile acids and Lactobacillaceae/Lachnospiraceae bacteria in C57BL/6 mice fed a high-fat diet. J Nutr Biochem 2020; 78:108336. [PMID: 32004929 DOI: 10.1016/j.jnutbio.2019.108336] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/30/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries, and the gut-liver axis is implicated in liver disease pathogenesis. We hypothesize that advanced liver steatosis accompanies an increase in hepatic inflammation, colonic secondary bile acids (BAs) and secondary BA-producing bacteria in mice fed a high-fat (HF) diet model of obesity. Four-week old male C57BL/6 mice were fed an HF (45% energy) or a low-fat (LF) (10% energy) diet for 21 weeks. At the end of the study, body weight and body fat percentage in the HF group were 0.23- and 0.41-fold greater than those in the LF group, respectively. Similarly, the HF group exhibited an increase in hepatic lipid droplets, inflammatory cell infiltration, inducible nitric oxide synthase, and hepatocellular ballooning (but without hepatic Mallory bodies) which are key histological features of advanced hepatic steatosis. Furthermore, RNA sequencing, qPCR and immunohistological methods found that nicotinamide n-methyltransferase and selenoprotein P, two inflammation-related hepatic genes, were upregulated in the HF group. Consistent with the hepatic inflammation, the levels of proinflammatory plasma-cytokines (TNF-α and IL6), colonic secondary BAs (LCA, DCA) and secondary BA producing bacteria (e.g., lactobacillaceae/Lachnospiraceae) were at least 0.5-fold greater in the HF group compared with the LF group. Taken together, the data demonstrate that advanced liver-steatosis is concurrent with an elevated level of hepatic inflammation, colonic secondary bile acids and their associated bacteria in mice fed an HF diet. These data suggest a potential gut-liver crosstalk at the stage of advanced liver-steatosis.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203.
| | - Kate J Larson
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, 39762
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Zhenhua Liu
- School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003
| | - Reza Hakkak
- Departments of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, 72205; Arkansas Children Research Institute, Little Rock, AR, 72202
| |
Collapse
|
28
|
Vileigas DF, Marciano CLDC, Mota GAF, de Souza SLB, Sant’Ana PG, Okoshi K, Padovani CR, Cicogna AC. Temporal Measures in Cardiac Structure and Function During the Development of Obesity Induced by Different Types of Western Diet in a Rat Model. Nutrients 2019; 12:nu12010068. [PMID: 31888029 PMCID: PMC7019835 DOI: 10.3390/nu12010068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is recognized worldwide as a complex metabolic disorder that has reached epidemic proportions and is often associated with a high incidence of cardiovascular diseases. To study this pathology and evaluate cardiac function, several models of diet-induced obesity (DIO) have been developed. The Western diet (WD) is one of the most widely used models; however, variations in diet composition and time period of the experimental protocol make comparisons challenging. Thus, this study aimed to evaluate the effects of two different types of Western diet on cardiac remodeling in obese rats with sequential analyses during a long-term follow-up. Male Wistar rats were distributed into three groups fed with control diet (CD), Western diet fat (WDF), and Western diet sugar (WDS) for 41 weeks. The animal nutritional profile and cardiac histology were assessed at the 41st week. Cardiac structure and function were evaluated by echocardiogram at four different moments: 17, 25, 33, and 41 weeks. A noninvasive method was performed to assess systolic blood pressure at the 33rd and 41st week. The animals fed with WD (WDF and WDS) developed pronounced obesity with an average increase of 86.5% in adiposity index at the end of the experiment. WDF and WDS groups also presented hypertension. The echocardiographic data showed no structural differences among the three groups, but WDF animals presented decreased endocardial fractional shortening and ejection fraction at the 33rd and 41st week, suggesting altered systolic function. Moreover, WDF and WFS animals did not present hypertrophy and interstitial collagen accumulation in the left ventricle. In conclusion, both WD were effective in triggering severe obesity in rats; however, only the WDF induced mild cardiac dysfunction after long-term diet exposure. Further studies are needed to search for an appropriate DIO model with relevant cardiac remodeling.
Collapse
Affiliation(s)
- Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Cecília Lume de Carvalho Marciano
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Paula Grippa Sant’Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu 18618970, Brazil;
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
- Correspondence: ; Tel.: +55-14-3880-1618
| |
Collapse
|
29
|
Vileigas DF, Harman VM, Freire PP, Marciano CLC, Sant'Ana PG, de Souza SLB, Mota GAF, da Silva VL, Campos DHS, Padovani CR, Okoshi K, Beynon RJ, Santos LD, Cicogna AC. Landscape of heart proteome changes in a diet-induced obesity model. Sci Rep 2019; 9:18050. [PMID: 31792287 PMCID: PMC6888820 DOI: 10.1038/s41598-019-54522-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is a pandemic associated with a high incidence of cardiovascular disease; however, the mechanisms are not fully elucidated. Proteomics may provide a more in-depth understanding of the pathophysiological mechanisms and contribute to the identification of potential therapeutic targets. Thus, our study evaluated myocardial protein expression in healthy and obese rats, employing two proteomic approaches. Male Wistar rats were established in two groups (n = 13/group): control diet and Western diet fed for 41 weeks. Obesity was determined by the adipose index, and cardiac function was evaluated in vivo by echocardiogram and in vitro by isolated papillary muscle analysis. Proteomics was based on two-dimensional gel electrophoresis (2-DE) along with mass spectrometry identification, and shotgun proteomics with label-free quantification. The Western diet was efficient in triggering obesity and impaired contractile function in vitro; however, no cardiac dysfunction was observed in vivo. The combination of two proteomic approaches was able to increase the cardiac proteomic map and to identify 82 differentially expressed proteins involved in different biological processes, mainly metabolism. Furthermore, the data also indicated a cardiac alteration in fatty acids transport, antioxidant defence, cytoskeleton, and proteasome complex, which have not previously been associated with obesity. Thus, we define a robust alteration in the myocardial proteome of diet-induced obese rats, even before functional impairment could be detected in vivo by echocardiogram.
Collapse
Affiliation(s)
- Danielle F Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil.
| | - Victoria M Harman
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, L69 7ZB, United Kingdom
| | - Paula P Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, 18618970, Brazil
| | - Cecília L C Marciano
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Paula G Sant'Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Sérgio L B de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Gustavo A F Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Vitor L da Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Dijon H S Campos
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Carlos R Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, 18618970, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, L69 7ZB, United Kingdom
| | - Lucilene D Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP)/Graduate Program in Tropical Diseases (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, 18610307, Brazil
| | - Antonio C Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, 18618687, Brazil.
| |
Collapse
|
30
|
Koch W, Zagórska J, Marzec Z, Kukula-Koch W. Applications of Tea ( Camellia sinensis) and its Active Constituents in Cosmetics. Molecules 2019; 24:E4277. [PMID: 31771249 PMCID: PMC6930595 DOI: 10.3390/molecules24234277] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022] Open
Abstract
Studies on the cosmetic applications of plant extracts are increasingly appearing in the scientific literature, which is due to the growing popularity of skincare products around the world. In the light of the observed changes, a return to natural treatment and skincare with cosmetics free of harmful substances or toxic preservatives is visible. Currently, tea extracts, due to their rich composition and various biological actions, play an important role among the dietary supplements and cosmetics. This review is intended to collect the reports on the properties of the tea plant, its extracts and preparations in cosmetology: for skin care products and for the treatment of selected dermatological diseases. Particular attention is paid to its antioxidant, anti-hyaluronidase, anti-inflammatory, slimming, hair-strengthening, photoprotective and sealing blood vessels properties.
Collapse
Affiliation(s)
- Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, 4a, Chodźki str., 20-093 Lublin, Poland;
| | - Justyna Zagórska
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1 Chodźki str., 20-093 Lublin, Poland; (J.Z.); (W.K.-K.)
| | - Zbigniew Marzec
- Chair and Department of Food and Nutrition, Medical University of Lublin, 4a, Chodźki str., 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1 Chodźki str., 20-093 Lublin, Poland; (J.Z.); (W.K.-K.)
| |
Collapse
|
31
|
Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity's Metabolic Consequences. MEDICINES 2019; 6:medicines6030094. [PMID: 31505825 PMCID: PMC6789755 DOI: 10.3390/medicines6030094] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Background: Weight management and obesity prevention is a basic aim of health organizations in order to decrease the prevalence of various metabolic disorders. The aim of the present review article was the evaluation of the possible role of functional foods and their bioactive compounds as alternative way to promote weight management and prevent obesity and its metabolic consequences. Methods: Approximately 100 articles were selected from Scopus, PubMed, Google Scholar, and Science Direct, by using relative key words, and based mainly on recent animal, clinical or epidemiological studies. Results: The literature review highlighted the possible effect of specific functional foods such as coffee, green tea, berries, nuts, olive oil, pomegranate, avocado, and ginger. Specific bioactive compounds of those foods—such as caffeine, catechins, gallic acid, anthocyanins, ascorbic acid, polyphenols, oleuropein, capsaicin, and quercetin—may contribute to weight management, obesity prevention, and obesity’s metabolic consequences. The possible mechanisms include effect on satiety, lipid absorption, fatty acids beta oxidation, stimulation of thermogenesis, etc. Conclusions: Functional foods, as part of a balanced diet, could be useful in the direction of weight management and decrease of obesity’s’ metabolic consequences. However, the scientific evidence is unclear and in most cases controversial and more clinical and epidemiological studies are needed in order to further investigate the mechanisms of their possible effect.
Collapse
|
32
|
Bhandarkar NS, Mouatt P, Brown L, Panchal SK. Green coffee ameliorates components of diet-induced metabolic syndrome in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
33
|
Priftis A, Soursou V, Makiou AS, Tekos F, Veskoukis AS, Tsantarliotou MP, Taitzoglou IA, Kouretas D. A lightly roasted coffee extract improves blood and tissue redox status in rats through enhancement of GSH biosynthesis. Food Chem Toxicol 2019; 125:305-312. [DOI: 10.1016/j.fct.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/18/2022]
|
34
|
Consumption of decaffeinated coffee protects against the development of early non-alcoholic steatohepatitis: Role of intestinal barrier function. Redox Biol 2018; 21:101092. [PMID: 30605883 PMCID: PMC6313826 DOI: 10.1016/j.redox.2018.101092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide lacking universally accepted therapies. Studies suggest that coffee consumption is associated with a reduced risk of NAFLD; however, molecular mechanisms and ingredients involved remain to be fully understood. Here, we determined the effects of regular intake of decaffeinated coffee on the development of NAFLD in mice, and molecular mechanisms involved. Methods Female C57BL/6J mice (n = 6–7/ group) were pair-fed either a liquid control diet (C) or fat-, fructose- and cholesterol-rich diet (FFC) +/- decaffeinated coffee (DeCaf, 6 g/kg BW) for 4 days or 6 weeks. Indices of liver damage, hepatic inflammation and parameters of insulin resistance and intestinal permeability as well as nitric oxide system were determined. Results Early signs of insulin resistance and non-alcoholic steatohepatitis (NASH) found after 6 weeks of FFC feeding were significantly lower in FFC+DeCaf-fed mice when compared to FFC-fed animals. Moreover, elevation of portal endotoxin levels and loss of tight junction proteins in proximal small intestine found in FFC-fed mice were significantly attenuated in FFC+DeCaf-fed animals. These beneficial effects of DeCaf were associated with a protection against the significant induction of inducible NO-synthase protein levels and 3-nitrotyrosine protein adducts found in proximal small intestine of FFC-fed mice. Similar protective effects of DeCaf were also found in mice fed the FFC diet short-term. Conclusion Our results suggest that protective effects of DeCaf on the development of NAFLD are at least in part related to maintaining intestinal barrier function. decaffeinated coffee protects mice from the development of NAFLD. decaffeinated coffee attenuated increased translocation of bacterial endotoxins. decaffeinated coffee prevents diet-induced induction of iNOS in small intestine.
Collapse
|
35
|
Escalante G, Bryan P, Rodriguez J. Effects of a topical lotion containing aminophylline, caffeine, yohimbe, l-carnitine, and gotu kola on thigh circumference, skinfold thickness, and fat mass in sedentary females. J Cosmet Dermatol 2018; 18:1037-1043. [PMID: 30456780 PMCID: PMC7379994 DOI: 10.1111/jocd.12801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/14/2018] [Accepted: 08/02/2018] [Indexed: 11/27/2022]
Abstract
Background and objective Topical aminophylline, caffeine, yohimbe, l‐carnitine, and gotu kola (Centella asiatica) may aid in reducing body fat. Lipoxyderm™ contains these ingredients and was used to test if fat loss of the thigh, in conjunction with a low intensity exercise program and restricted calorie intake, was enhanced via the topical application of this lotion. Methods This was a double‐blind, placebo‐controlled, within‐group study that investigated the effects of Lipoxyderm™ on thigh fat mass, circumference, and skinfold thickness. Seven participants underwent pre/post‐exercise testing for weight, bilateral thigh circumference/skinfold thickness, and body composition/thigh fat mass assessment via dual‐energy X‐ray absorptiometry. Participants followed a hypocaloric diet, walked 150 minutes/wk, and were randomly assigned to apply a placebo to one leg and Lipoxyderm™ to their other leg for 28 days. Separate two‐way mixed factorial repeated measures ANOVAs were used to compare the effects of Lipoxyderm™ to the placebo on thigh circumference, skinfold thickness, and fat mass. Results A significant time x group interaction was found for thigh circumference (F1,6 = 18.2, P = 0.005), skinfold thickness (F1,6 = 14.6, P = 0.009), and fat mass (F1,6 = 37.1, P = 0.001). Conclusions A twice‐daily topical application of Lipoxyderm™ for 28 days compared to a placebo combined with a walking program and a restricted caloric intake is more effective at reducing thigh circumference (1.2 vs 0.8 cm), thigh skinfold thickness (3.7 vs 2.0 mm), and thigh fat mass (100.0 g vs 57.3 g).
Collapse
Affiliation(s)
| | - Patrick Bryan
- California State University, San Bernardino, San Bernardino, California
| | - Juan Rodriguez
- California State University, San Bernardino, San Bernardino, California
| |
Collapse
|
36
|
Bhandarkar NS, Brown L, Panchal SK. Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats. Nutr Res 2018; 62:78-88. [PMID: 30803509 DOI: 10.1016/j.nutres.2018.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 01/07/2023]
Abstract
Chlorogenic acid as a constituent of coffee is consumed regularly in the human diet. Chlorogenic acid intake has been associated with decreased risk of cardiovascular disease and type 2 diabetes. We hypothesized that chlorogenic acid would improve cardiovascular, liver, and metabolic responses in a rat model of metabolic syndrome induced by a high-carbohydrate, high-fat diet. Male Wistar rats (8-9 weeks old, 335 ± 2 g, n = 48) were divided into 4 groups and fed with corn starch diet (16 weeks); corn starch diet with chlorogenic acid in food for the last 8 weeks; high-carbohydrate, high-fat diet (16 weeks); or high-carbohydrate, high-fat diet with chlorogenic acid (~100 mg/kg/d) in food for the last 8 weeks. In high-carbohydrate, high-fat diet-fed rats, chlorogenic acid reduced energy intake and food efficiency to reduce visceral fat, especially retroperitoneal fat, and abdominal circumference; reversed the elevated systolic blood pressure; and attenuated left ventricular diastolic stiffness with reduced collagen deposition and infiltration of inflammatory cells in the left ventricle. Chlorogenic acid decreased inflammation and fat deposition in the liver along with reduced plasma liver enzyme activities of obese rats but did not change the plasma lipid profile. Chlorogenic acid increased diversity of gut microbiota, which may improve overall metabolism in the body. Thus, chronic dietary chlorogenic acid attenuated diet-induced inflammation as well as cardiovascular, liver, and metabolic changes, suggesting that chlorogenic acid has potential for further clinical evaluation.
Collapse
Affiliation(s)
- Nikhil S Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; School of Health and Wellbeing, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
37
|
Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci Rep 2018; 8:16173. [PMID: 30385796 PMCID: PMC6212590 DOI: 10.1038/s41598-018-34571-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
We previously showed that male Tsumura Suzuki obese diabetes (TSOD) mice, a spontaneous mouse model of metabolic syndrome, manifested gut dysbiosis and subsequent disruption of the type and quantity of plasma short-chain fatty acids (SCFAs), and daily coffee intake prevented nonalcoholic steatohepatitis in this mouse model. Here, we present a preliminary study on whether coffee and its major components, caffeine and chlorogenic acid, would affect the gut dysbiosis and the disrupted plasma SCFA profile of TSOD mice, which could lead to improvement in the liver pathology of these mice. Three mice per group were used. Daily intake of coffee or its components for 16 wk prevented liver lobular inflammation without improving obesity in TSOD mice. Coffee and its components did not repair the altered levels of Gram-positive and Gram-negative bacteria and an increased abundance of Firmicutes in TSOD mice but rather caused additional changes in bacteria in six genera. However, caffeine and chlorogenic acid partially improved the disrupted plasma SCFA profile in TSOD mice, although coffee had no effects. Whether these alterations in the gut microbiome and the plasma SCFA profile might affect the liver pathology of TSOD mice may deserve further investigation.
Collapse
|
38
|
Effects of Unfiltered Coffee and Bioactive Coffee Compounds on the Development of Metabolic Syndrome Components in a High-Fat-/High-Fructose-Fed Rat Model. Nutrients 2018; 10:nu10101547. [PMID: 30347674 PMCID: PMC6213813 DOI: 10.3390/nu10101547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The literature is inconsistent as to how coffee affects metabolic syndrome (MetS), and which bioactive compounds are responsible for its metabolic effects. This study aimed to evaluate the effects of unfiltered coffee on diet-induced MetS and investigate whether or not phenolic acids and trigonelline are the main bioactive compounds in coffee. Twenty-four male Sprague‒Dawley rats were fed a high-fat (35% W/W) diet plus 20% W/W fructose in drinking water for 14 weeks, and were randomized into three groups: control, coffee, or nutraceuticals (5-O-caffeoylquinic acid, caffeic acid, and trigonelline). Coffee or nutraceuticals were provided in drinking water at a dosage equal to 4 cups/day in a human. Compared to the controls, total food intake (p = 0.023) and mean body weight at endpoint (p = 0.016) and estimated average plasma glucose (p = 0.041) were lower only in the coffee group. Surrogate measures of insulin resistance including the overall fasting insulin (p = 0.010), endpoint HOMA-IR (p = 0.022), and oral glucose tolerance (p = 0.029) were improved in the coffee group. Circulating triglyceride levels were lower (p = 0.010), and histopathological and quantitative (p = 0.010) measurements indicated lower grades of liver steatosis compared to controls after long-term coffee consumption. In conclusion, a combination of phenolic acids and trigonelline was not as effective as coffee per se in improving the components of the MetS. This points to the role of other coffee chemicals and a potential synergism between compounds.
Collapse
|
39
|
Bliss ES, Whiteside E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front Physiol 2018; 9:900. [PMID: 30050464 PMCID: PMC6052131 DOI: 10.3389/fphys.2018.00900] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global epidemic, placing socioeconomic strain on public healthcare systems, especially within the so-called Western countries, such as Australia, United States, United Kingdom, and Canada. Obesity results from an imbalance between energy intake and energy expenditure, where energy intake exceeds expenditure. Current non-invasive treatments lack efficacy in combating obesity, suggesting that obesity is a multi-faceted and more complex disease than previously thought. This has led to an increase in research exploring energy homeostasis and the discovery of a complex bidirectional communication axis referred to as the gut-brain axis. The gut-brain axis is comprised of various neurohumoral components that allow the gut and brain to communicate with each other. Communication occurs within the axis via local, paracrine and/or endocrine mechanisms involving a variety of gut-derived peptides produced from enteroendocrine cells (EECs), including glucagon-like peptide 1 (GLP1), cholecystokinin (CCK), peptide YY3-36 (PYY), pancreatic polypeptide (PP), and oxyntomodulin. Neural networks, such as the enteric nervous system (ENS) and vagus nerve also convey information within the gut-brain axis. Emerging evidence suggests the human gut microbiota, a complex ecosystem residing in the gastrointestinal tract (GIT), may influence weight-gain through several inter-dependent pathways including energy harvesting, short-chain fatty-acids (SCFA) signalling, behaviour modifications, controlling satiety and modulating inflammatory responses within the host. Hence, the gut-brain axis, the microbiota and the link between these elements and the role each plays in either promoting or regulating energy and thereby contributing to obesity will be explored in this review.
Collapse
Affiliation(s)
- Edward S. Bliss
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | | |
Collapse
|
40
|
Do flavanols-rich natural products relieve obesity-related insulin resistance? Food Chem Toxicol 2017; 112:157-167. [PMID: 29288757 DOI: 10.1016/j.fct.2017.12.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/28/2022]
Abstract
Growing evidence support that insulin resistance may occur as a severe problem due to chronic energetic overfeeding and subsequent obesity. When an abundance of glucose and saturated fat enter the cell, impaired blood flow, hypoxia, inflammation and macrophage infiltration in obese adipose tissue may induce oxidative stress and insulin resistance. Excessive circulating saturated fatty acids ectopically accumulate in insulin-sensitive tissues and impair insulin action. In this context, excessive hepatic lipid accumulation may play a central, pathogenic role in insulin resistance. It is thought that dietary polyphenols may ameliorate obesity-related insulin resistance by attenuating inflammatory responses and oxidative stress. The most often occurring natural polyphenolic compounds are flavonoids. In this review, the possible mechanistic effect of flavonoid-rich natural products on insulin resistance-related metabolic pathways is discussed. Polyphenol intake can prevent high-fat-diet-induced insulin resistance via cell surface G protein-coupled estrogen receptors by upregulating the expression of related genes, and their pathways, which are responsible for the insulin sensitivity.
Collapse
|
41
|
Zeng H, Ishaq SL, Liu Z, Bukowski MR. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet. J Nutr Biochem 2017; 54:18-27. [PMID: 29223827 DOI: 10.1016/j.jnutbio.2017.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203.
| | - Suzanne L Ishaq
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717
| | - Zhenhua Liu
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| |
Collapse
|
42
|
Vileigas DF, de Deus AF, da Silva DCT, de Tomasi LC, de Campos DHS, Adorni CS, de Oliveira SM, Sant'Ana PG, Okoshi K, Padovani CR, Cicogna AC. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function. Physiol Rep 2017; 4:4/17/e12914. [PMID: 27582064 PMCID: PMC5027348 DOI: 10.14814/phy2.12914] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 01/13/2023] Open
Abstract
Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β‐adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high‐fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1‐ and β2‐adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA. Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high‐fat diet‐induced obesity was not effective in triggering cardiac dysfunction and impair the beta‐adrenergic signaling.
Collapse
Affiliation(s)
- Danielle F Vileigas
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Adriana F de Deus
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Danielle C T da Silva
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Loreta C de Tomasi
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Dijon H S de Campos
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Caroline S Adorni
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Scarlet M de Oliveira
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Paula G Sant'Ana
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Carlos R Padovani
- Department of Biostatistics, Biosciences Institute São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - Antonio C Cicogna
- Department of Internal Medicine, Medical School São Paulo State University "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| |
Collapse
|
43
|
Guo X, Wang O, Wang Y, Wang K, Ji B, Zhou F. Phenolic acids alleviate high-fat and high-fructose diet-induced metabolic disorders in rats. J Food Biochem 2017. [DOI: 10.1111/jfbc.12419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoxuan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
| | - Ou Wang
- National Institute for Nutrition and Health; Chinese Center for Disease Control and Prevention; Beijing 100050 People's Republic of China
| | - Yong Wang
- Academy of State Administration of Grain; Beijing 100037 People's Republic of China
| | - Kai Wang
- Institute of Apicultural Research; Chinese Academy of Agricultural Sciences; Beijing 100093 People's Republic of China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing 100083 People's Republic of China
| |
Collapse
|
44
|
Adorni CS, Corrêa CR, Vileigas DF, de Campos DHS, Padovani CR, Minatel IO, Cicogna AC. The influence of obesity by a diet high in saturated fats and carbohydrates balance in the manifestation of systemic complications and comorbidities. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41110-017-0042-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Shin KS. The Chemical Characteristics and Immune-Modulating Activity of Polysaccharides Isolated from Cold-Brew Coffee. Prev Nutr Food Sci 2017; 22:100-106. [PMID: 28702426 PMCID: PMC5503418 DOI: 10.3746/pnf.2017.22.2.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/09/2017] [Indexed: 11/06/2022] Open
Abstract
To elucidate new biological ingredients in cold-brew coffee extracted with cold water, crude polysaccharide (CCP-0) was isolated by ethanol precipitation, and its immune-stimulating activities were assayed. CCP-0 mainly comprised galactose (53.6%), mannose (15.7%), arabinose (11.9%), and uronic acid (12.4%), suggesting that it might exist as a mixture of galactomannan and arabinogalactan. CCP-0 significantly increased cell proliferation on both murine peritoneal macrophages and splenocytes in a dose dependent manner. CCP-0 also significantly augmented nitric oxide and reactive oxygen species production by murine peritoneal macrophages. In addition, macrophages stimulated by CCP-0 enhanced production of various cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and IL-12. In an in vitro assay for intestinal immune-modulating activity, CCP-0 showed higher bone-marrow cell-proliferation activity through Peyer's patch cells at 100 μg/mL than the negative control. These results suggest that CCP-0 may potentially enhance macrophage functions and the intestinal immune system.
Collapse
Affiliation(s)
- Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Gyeonggi 16227, Korea
| |
Collapse
|
46
|
Tajik N, Tajik M, Mack I, Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr 2017; 56:2215-2244. [PMID: 28391515 DOI: 10.1007/s00394-017-1379-1] [Citation(s) in RCA: 437] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/10/2017] [Indexed: 02/08/2023]
Abstract
Chlorogenic acid (CGA), an important biologically active dietary polyphenol, is produced by certain plant species and is a major component of coffee. Reduction in the risk of a variety of diseases following CGA consumption has been mentioned in recent basic and clinical research studies. This systematic review discusses in vivo animal and human studies of the physiological and biochemical effects of chlorogenic acids (CGAs) on biomarkers of chronic disease. We searched PubMed, Embase, Amed and Scopus using the following search terms: ("chlorogenic acid" OR "green coffee bean extract") AND (human OR animal) (last performed on April 1st, 2015) for relevant literature on the in vivo effects of CGAs in animal and human models, including clinical trials on cardiovascular, metabolic, cancerogenic, neurological and other functions. After exclusion of editorials and letters, uncontrolled observations, duplicate and not relevant publications the remaining 94 studies have been reviewed. The biological properties of CGA in addition to its antioxidant and anti-inflammatory effects have recently been reported. It is postulated that CGA is able to exert pivotal roles on glucose and lipid metabolism regulation and on the related disorders, e.g. diabetes, cardiovascular disease (CVD), obesity, cancer, and hepatic steatosis. The wide range of potential health benefits of CGA, including its anti-diabetic, anti-carcinogenic, anti-inflammatory and anti-obesity impacts, may provide a non-pharmacological and non-invasive approach for treatment or prevention of some chronic diseases. In this study, the effects of CGAs on different aspects of health by reviewing the related literatures have been discussed.
Collapse
Affiliation(s)
- Narges Tajik
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Frondsbergstr 23, 72076, Tuebingen, Germany
| | - Mahboubeh Tajik
- Faculty of Physical Education and Sport Sciences, International Branch of Ferdowsi University of Mashhad, Mashhad, Iran
| | - Isabelle Mack
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Frondsbergstr 23, 72076, Tuebingen, Germany
| | - Paul Enck
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Frondsbergstr 23, 72076, Tuebingen, Germany.
| |
Collapse
|
47
|
Baselga-Escudero L, Souza-Mello V, Pascual-Serrano A, Rachid T, Voci A, Demori I, Grasselli E. Beneficial effects of the Mediterranean spices and aromas on non-alcoholic fatty liver disease. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Salomone F, Galvano F, Li Volti G. Molecular Bases Underlying the Hepatoprotective Effects of Coffee. Nutrients 2017; 9:nu9010085. [PMID: 28124992 PMCID: PMC5295129 DOI: 10.3390/nu9010085] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/29/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022] Open
Abstract
Coffee is the most consumed beverage worldwide. Epidemiological studies with prospective cohorts showed that coffee intake is associated with reduced cardiovascular and all-cause mortality independently of caffeine content. Cohort and case-control studies reported an inverse association between coffee consumption and the degree of liver fibrosis as well as the development of liver cancer. Furthermore, the beneficial effects of coffee have been recently confirmed by large meta-analyses. In the last two decades, various in vitro and in vivo studies evaluated the molecular determinants for the hepatoprotective effects of coffee. In the present article, we aimed to critically review experimental evidence regarding the active components and the molecular bases underlying the beneficial role of coffee against chronic liver diseases. Almost all studies highlighted the beneficial effects of this beverage against liver fibrosis with the most solid results indicating a pivot role for both caffeine and chlorogenic acids. In particular, in experimental models of fibrosis, caffeine was shown to inhibit hepatic stellate cell activation by blocking adenosine receptors, and emerging evidence indicated that caffeine may also favorably impact angiogenesis and hepatic hemodynamics. On the other side, chlorogenic acids, potent phenolic antioxidants, suppress liver fibrogenesis and carcinogenesis by reducing oxidative stress and counteract steatogenesis through the modulation of glucose and lipid homeostasis in the liver. Overall, these molecular insights may have translational significance and suggest that coffee components need clinical evaluation.
Collapse
Affiliation(s)
- Federico Salomone
- Division of Gastroenterology, Ospedale di Acireale, Azienda Sanitaria Provinciale di Catania, 95124 Catania, Italy.
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy.
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
49
|
Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. J Nutr Biochem 2016; 35:30-36. [PMID: 27362974 DOI: 10.1016/j.jnutbio.2016.05.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/10/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Consumption of an obesigenic/high-fat diet (HFD) is associated with a high colon cancer risk and may alter the gut microbiota. To test the hypothesis that long-term high-fat (HF) feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed HFD (45% energy) or a low-fat (LF) diet (10% energy) for 36 weeks. At the end of the study, body weights in the HF group were 35% greater than those in the LF group. These changes were associated with dramatic increases in body fat composition, inflammatory cell infiltration, inducible nitric oxide synthase protein concentration and cell proliferation marker (Ki67) in ileum and colon. Similarly, β-catenin expression was increased in colon (but not ileum). Consistent with gut inflammation phenotype, we also found that plasma leptin, interleukin 6 and tumor necrosis factor α concentrations were also elevated in mice fed the HFD, indicative of chronic inflammation. Fecal DNA was extracted and the V1-V3 hypervariable region of the microbial 16S rRNA gene was amplified using primers suitable for 454 pyrosequencing. Compared to the LF group, the HF group had high proportions of bacteria from the family Lachnospiraceae/Streptococcaceae, which is known to be involved in the development of metabolic disorders, diabetes and colon cancer. Taken together, our data demonstrate, for the first time, that long-term HF consumption not only increases inflammatory status but also accompanies an increase of colonic β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of C57BL/6 mice.
Collapse
|
50
|
Huang CC, Tung YT, Huang WC, Chen YM, Hsu YJ, Hsu MC. Beneficial effects of cocoa, coffee, green tea, and garcinia complex supplement on diet induced obesity in rats. Altern Ther Health Med 2016; 16:100. [PMID: 26968378 PMCID: PMC4788897 DOI: 10.1186/s12906-016-1077-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 01/12/2023]
Abstract
Background Cocoa, coffee, green tea and garcinia contain large amounts of polyphenols. Polyphenols are well-known phytochemicals and found in plants, and have modulated physiological and molecular pathways that are involved in energy metabolism, adiposity, and obesity. Methods To evaluate the obesity-lowering effect of a combined extract (comprising cocoa, coffee, green tea and garcinia; CCGG) in high-energy diet (HED)-induced obese rats. Male Sprague Dawley rats (8 weeks old) were randomly divided into four groups (n = 12 per group): normal diet with vehicle treatment (Control), and HED to receive vehicle or CCGG by oral gavage at 129, 258, or 517 mg/kg/day for 4 weeks, designated the HED, 0.5X, 1X and 1X groups, respectively. Results HED induced macrovesicular fat in the liver and the formation of adipose tissues, and significantly increased the levels of serum free fatty acids (FFA), triacylglycerol (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and LDL-C/HDL-C, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and ketone bodies in serum, and hepatic TG and TC levels, and decreased the levels of high density lipoprotein cholesterol (HDL-C) in serum and lipase activity in fat tissues. Treatment with CCGG could significantly decrease the levels of FFA, TG, TC, LDL-C, and LDL-C/HDL-C, AST, ALT, and ketone bodies in serum, and hepatic TG and TC contents, and increase the levels of HDL-C in serum and lipase activity in fat tissues compared to the HED group. Liver histopathology also showed that CCGG could significantly reduce the incidence of liver lesions. Conclusion These results suggested that CCGG stimulated lipid metabolism in HED-induced obese rats, which is attributable to fat mobilization from adipose tissue.
Collapse
|