1
|
Kim YK, Giordano E, Hammerling U, Champaneri D, von Lintig J, Hussain MM, Quadro L. The intestine-specific homeobox (ISX) modulates β-carotene-dependent regulation of microsomal triglyceride transfer protein (MTP) in a tissue-specific manner. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159584. [PMID: 39645027 DOI: 10.1016/j.bbalip.2024.159584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Vitamin A is an essential nutrient crucial to ensuring proper mammalian embryonic development. β-Carotene is the most prevalent form of vitamin A in food that, when transferred in its intact form from mother to the developing tissues, can serve as an in situ source of retinoic acid, the active form of vitamin A. We have previously provided evidence that the maternal-fetal transfer of β-carotene across the placenta is mediated by lipoproteins and that β-carotene itself regulates placenta lipoprotein biogenesis by means of its derivatives β-apo-10'-carotenoids and retinoic acid. These metabolites exert antagonistic transcriptional activity on placental microsomal triglyceride transfer protein (MTP) and apolipoprotein B (APOB), two key players of lipoprotein biosynthesis. Here, we analyzed the time-dependency of this regulation over the course of 24 h upon a single maternal administration of β-carotene. We also tested the hypothesis that the transcriptional repressor intestine-specific homeobox (ISX) plays a role in the regulation of Mttp in placenta. We observed that ISX is expressed in placenta of mouse dams and is regulated by β-carotene availability. Furthermore, we demonstrated that the absence of Isx disrupts the β-carotene-mediated regulation of placental MTP. We also showed that this mechanism is organ-specific, as it was not observed in enterocytes of the intestine, a major place of Isx expression. Therefore, we identified ISX as a "master" regulator of a placental β-carotene-dependent transcriptional regulatory cascade that fine-tunes the flux of provitamin A carotenoid towards the developing fetus.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Department of Food Science, Rutgers Center for Lipid Research, Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Elena Giordano
- Department of Food Science, Rutgers Center for Lipid Research, Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Ulrich Hammerling
- Department of Food Science, Rutgers Center for Lipid Research, Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Dhruv Champaneri
- Department of Food Science, Rutgers Center for Lipid Research, Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers Center for Lipid Research, Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
2
|
Zhang Y, Dawson R, Kong L, Tan L. Lutein supplementation for early-life health and development: current knowledge, challenges, and implications. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38795064 DOI: 10.1080/10408398.2024.2357275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Macular carotenoids, which consist of lutein, zeaxanthin, and meso-zeaxanthin, are dietary antioxidants and macular pigments in the eyes, protecting the macula from light-induced oxidative stress. Lutein is also the main carotenoid in the infant brain and is involved in cognitive development. While a few articles reviewed the role of lutein in early health and development, the current review is the first that focuses on the outcomes of lutein supplementation, either provided to mothers or to infants. Additionally, lutein status and metabolism during pregnancy and lactation, factors that limit the potential application of lutein as a nutritional intervention, and solutions to overcome the limitation are also discussed. In brief, the lutein intake in pregnant and lactating women in the United States may not be optimal. Furthermore, preterm and formula-fed infants are known to have compromised lutein status compared to term and breast-fed infants, respectively. While lutein supplementation via both maternal and infant consumption improves lutein status in infants, the application of lutein as a nutritional intervention may be compromised by its low bioavailability. Various encapsulation techniques have been developed to enhance the delivery of lutein in adult animals or human but should be further evaluated in neonatal models.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Human Nutrition, University of Alabama, Tuscaloosa, AL, USA
| | - Reece Dawson
- Department of Human Nutrition, University of Alabama, Tuscaloosa, AL, USA
| | - Lingyan Kong
- Department of Human Nutrition, University of Alabama, Tuscaloosa, AL, USA
| | - Libo Tan
- Department of Human Nutrition, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
3
|
Zhang L, Huang S, Ma K, Chen Y, Wei T, Ye H, Wu J, Liu L, Deng J, Luo H, Tan C. Retinoic Acid-PPARα Mediates β-Carotene Resistance to Placental Dysfunction Induced by Deoxynivalenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18696-18708. [PMID: 38012857 DOI: 10.1021/acs.jafc.3c06647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Deoxynivalenol (DON), one of the most polluted mycotoxins in the environment and food, has been proven to have strong embryonic and reproductive toxicities. However, the effects of DON on placental impairment and effective interventions are still unclear. This study investigated the effect of β-carotene on placental functional impairment and its underlying molecular mechanism under DON exposure. Adverse pregnancy outcomes were caused by intraperitoneal injection of DON from 13.5 to 15.5 days of gestation in mice, resulting in higher enrichment of DON in placenta than in other tissue samples. Interestingly, 0.1% β-carotene dietary supplementation could significantly alleviate DON-induced pregnancy outcomes. Additionally, in vivo and in vitro placental barrier models demonstrated the association of DON-induced placental function impairment with placental permeability barrier disruption, angiogenesis impairment, and oxidative stress induction. Moreover, β-carotene regulated DON-induced placental toxicity by activating the expressions of claudin 1, zonula occludens-1, and vascular endothelial growth factor-A through retinoic acid-peroxisome proliferator-activated receptor α signaling.
Collapse
Affiliation(s)
- Longmiao Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yiling Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tanghong Wei
- Dekon Food and Agriculture Group, Chengdu, Sichuan 610225, China
| | - Hongxuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junyi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liudan Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, Sichuan 610225, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
4
|
Yang X, He Z, Hu R, Yan J, Zhang Q, Li B, Yuan X, Zhang H, He J, Wu S. Dietary β-Carotene on Postpartum Uterine Recovery in Mice: Crosstalk Between Gut Microbiota and Inflammation. Front Immunol 2021; 12:744425. [PMID: 34899699 PMCID: PMC8652147 DOI: 10.3389/fimmu.2021.744425] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
As the precursor of vitamin A, β-carotene has a positive effect on reproductive performance. Our previous study has shown that β-carotene can increase antioxidant enzyme activity potentially through regulating gut microbiota in pregnant sows. This study aimed to clarify the effect of β-carotene on reproductive performance and postpartum uterine recovery from the aspect of inflammation and gut microbiota by using a mouse model. Twenty-seven 6 weeks old female Kunming mice were randomly assigned into 3 groups (n=9), and fed with a diet containing 0, 30 or 90 mg/kg β-carotene, respectively. The results showed that dietary supplementation of β-carotene reduced postpartum uterine hyperemia and uterine mass index (P<0.05), improved intestinal villus height and villus height to crypt depth ratio, decreased serum TNF-α and IL-4 concentration (P<0.05), while no differences were observed in litter size and litter weight among three treatments. Characterization of gut microbiota revealed that β-carotene up-regulated the relative abundance of genera Akkermansia, Candidatus Stoquefichus and Faecalibaculum, but down-regulated the relative abundance of Alloprevotella and Helicobacter. Correlation analysis revealed that Akkermansia was negatively correlated with the IL-4 concentration, while Candidatus Stoquefichus and Faecalibaculum had a negative linear correlation with both TNF-α and IL-4 concentration. On the other hand, Alloprevotella was positively correlated with the TNF-α, and Helicobacter had a positive correlation with both TNF-α and IL-4 concentration. These data demonstrated that dietary supplementation of β-carotene contributes to postpartum uterine recovery by decreasing postpartum uterine hemorrhage and inhibiting the production of inflammatory cytokines potentially through modulating gut microbiota.
Collapse
Affiliation(s)
- Xizi Yang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ziyu He
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Ruizhi Hu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiahao Yan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qianjin Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Baizhen Li
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xupeng Yuan
- Pig Breeding Research Insititute, Hunan Xinguang'an Agricultural Husbandry Co., Ltd., Changsha, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Fruscalzo A, Viola L, Orsaria M, Marzinotto S, Bulfoni M, Driul L, Londero AP, Mariuzzi L. STRA6 and Placental Retinoid Metabolism in Gestational Diabetes Mellitus. J Pers Med 2021; 11:1301. [PMID: 34945773 PMCID: PMC8708334 DOI: 10.3390/jpm11121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Recent reports indicate the potential role of the stimulated by retinoic acid 6 (STRA6) protein in developing insulin resistance. The study's objective was to assess placental STRA6 expression and staining pattern in human pregnancy complicated by gestational diabetes mellitus (GDM). The expression pattern of further relevant genes involved in retinoid metabolism was also evaluated. METHODS A retrospective case-control study on paraffin-embedded placental tissue. Twenty-two human pregnancies affected by GDM, namely, 11 insulin-treated (iGDM) and 11 diet-controlled (dGDM), were compared with 22 normal-developed pregnancies (controls). An RT-PCR was performed in a random sample of 18 patients (six iGDM, six dGDM, and six controls) to assess RNA expression of STRA6 and further markers of retinoid metabolism. A semi-quantitative intensity evaluation at immunohistochemistry was performed for STRA6 in all 44 recruited patients. RESULTS STRA6 showed a decreased placental staining (9.09% vs. 68.18% positively stained samples, p < 0.05) and augmented RNA expression in dGDM patients than controls (ΔCT expression 0.473, IQR 0.403-0.566 vs. 0.149, IQR 0.092-0.276, p < 0.05). The protein staining pattern in patients affected by iGDM was comparable to controls. A reduced RNA expression of LPL, LRP1, VLDLR, and MTTP besides an augmented expression of LDLR was found in dGDM, while overexpression of LRP1 and LPL was found in iGDM patients. Unlike in the control group, significant positive correlations were found between RXRα and the proteins involved in the intracellular uptake of ROH, such as STRA6, LRP1, LRP2, and VLDLR. CONCLUSIONS An altered placental expression and staining pattern of STRA6 were found in pregnancies complicated by GDM compared to the controls. These changes were coupled to an altered expression pattern of several other genes involved in the retinoid metabolism.
Collapse
Affiliation(s)
- Arrigo Fruscalzo
- Clinic of Obstetrics and Gynecology, University Hospital of Fribourg, 1708 Fribourg, Switzerland
| | - Luigi Viola
- Clinic of Radiology, University Federico II, 80138 Naples, Italy;
| | - Maria Orsaria
- Institute of Clinical Pathology, University of Udine, 33100 Udine, Italy; (M.O.); (S.M.); (M.B.); (L.M.)
| | - Stefania Marzinotto
- Institute of Clinical Pathology, University of Udine, 33100 Udine, Italy; (M.O.); (S.M.); (M.B.); (L.M.)
| | - Michela Bulfoni
- Institute of Clinical Pathology, University of Udine, 33100 Udine, Italy; (M.O.); (S.M.); (M.B.); (L.M.)
| | - Lorenza Driul
- Clinic of Obstetrics and Gynecology, University of Udine, 33100 Udine, Italy; (L.D.); (A.P.L.)
| | - Ambrogio P. Londero
- Clinic of Obstetrics and Gynecology, University of Udine, 33100 Udine, Italy; (L.D.); (A.P.L.)
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Laura Mariuzzi
- Institute of Clinical Pathology, University of Udine, 33100 Udine, Italy; (M.O.); (S.M.); (M.B.); (L.M.)
| |
Collapse
|
6
|
Quadro L, Giordano E, Costabile BK, Nargis T, Iqbal J, Kim Y, Wassef L, Hussain MM. Interplay between β-carotene and lipoprotein metabolism at the maternal-fetal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158591. [PMID: 31863969 PMCID: PMC7302977 DOI: 10.1016/j.bbalip.2019.158591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023]
Abstract
Vitamin A is an essential nutrient, critical for proper embryonic development in mammals. Both embryonic vitamin A-deficiency or -excess lead to congenital malformations or lethality in mammals, including humans. This is due to the defective transcriptional action of retinoic acid, the active form of vitamin A, that regulates in a spatial- and temporal-dependent manner the expression of genes essential for organogenesis. Thus, an adequate supply of vitamin A from the maternal circulation is vital for normal mammalian fetal development. Provitamin A carotenoids circulate in the maternal bloodstream and are available to the embryo. Of all the dietary carotenoids, β-carotene is the main vitamin A precursor, contributing at least 30% of the vitamin A intake in the industrialized countries and often constituting the sole source of retinoids (vitamin A and its derivatives) in the developing world. In humans, up to 40% of the absorbed dietary β-carotene is incorporated in its intact form in chylomicrons for distribution to other organs within the body, including the developing tissues. Here, it can serve as a source of vitamin A upon conversion into apocarotenoids by its cleavage enzymes. Given that β-carotene is carried in the bloodstream by lipoproteins, and that the placenta acquires, assembles and secretes lipoproteins, it is becoming evident that the maternal-fetal transfer of β-carotene relies on lipoprotein metabolism. Here, we will explore the current knowledge about this important biological process, the cross-talk between carotenoid and lipid metabolism in the context of the maternal-fetal transfer of this provitamin A precursor, and the mechanisms whereby β-carotene is metabolized by the developing tissues. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Loredana Quadro
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| | - Elena Giordano
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Brianna K Costabile
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Titli Nargis
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA; Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, NY, USA
| | - Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA; King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
| | - Younkyung Kim
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Lesley Wassef
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA; Diabetes and Obesity Research Center, NYU Winthrop Hospital, Mineola, NY, USA; Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
7
|
de Souza Mesquita LM, Mennitti LV, de Rosso VV, Pisani LP. The role of vitamin A and its pro-vitamin carotenoids in fetal and neonatal programming: gaps in knowledge and metabolic pathways. Nutr Rev 2020; 79:76-87. [DOI: 10.1093/nutrit/nuaa075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Vitamin A (VA) and its pro-vitamin carotenoids are naturally occurring lipophilic compounds involved in several cellular processes and metabolic pathways. Despite their broad spectrum of activities in the general population, dietary deficiencies of these compounds can potentially affect pregnancy outcomes. Since maternal nutritional status and diet composition during pregnancy and lactation can have long-lasting effects in offspring until adulthood, this study presents an overview of VA and the role of pro-VA carotenoids during pregnancy and lactation – the nutrition, metabolism, and biological effects in the offspring. The review aimed to discuss the pro-VA carotenoids and VA-associated pathways and summarize the results with reference to gestational disorders, and VA and pro-VA carotenoids as preventive agents. Also, considering that obesity, overweight, and metabolic diseases are major public health concerns worldwide, fetal and neonatal development is discussed, highlighting the physiological role of these molecules in obesity prevention. This review comprehensively summarizes the current data and shows the potential impact of these compounds on nutritional status in pregnancy and lactation.
Collapse
Affiliation(s)
- Leonardo M de Souza Mesquita
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| | - Laís V Mennitti
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| | - Veridiana V de Rosso
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| |
Collapse
|
8
|
Abstract
The placenta, a hallmark of mammalian embryogenesis, allows nutrients to be exchanged between the mother and the fetus. Vitamin A (VA), an essential nutrient, cannot be synthesized by the embryo, and must be acquired from the maternal circulation through the placenta. Our understanding of how this transfer is accomplished is still in its infancy. In this chapter, we recapitulate the early studies about the relationship between maternal dietary/supplemental VA intake and fetal VA levels. We then describe how the discovery of retinol-binding protein (RBP or RBP4), the development of labeling and detection techniques, and the advent of knockout mice shifted this field from a macroscopic to a molecular level. The most recent data indicate that VA and its derivatives (retinoids) and the pro-VA carotenoid, β-carotene, are transferred across the placenta by distinct proteins, some of which overlap with proteins involved in lipoprotein uptake. The VA status and dietary intake of the mother influence the expression of these proteins, creating feedback signals that control the uptake of retinoids and that may also regulate the uptake of lipids, raising the intriguing possibility of crosstalk between micronutrient and macronutrient metabolism. Many questions remain about the temporal and spatial patterns by which these proteins are expressed and transferred throughout gestation. The answers to these questions are highly relevant to human health, considering that those with either limited or excessive intake of retinoids/carotenoids during pregnancy may be at risk of obtaining improper amounts of VA that ultimately impact the development and health of their offspring.
Collapse
|
9
|
β-apo-10'-carotenoids support normal embryonic development during vitamin A deficiency. Sci Rep 2018; 8:8834. [PMID: 29892071 PMCID: PMC5995931 DOI: 10.1038/s41598-018-27071-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
Vitamin A deficiency is still a public health concern affecting millions of pregnant women and children. Retinoic acid, the active form of vitamin A, is critical for proper mammalian embryonic development. Embryos can generate retinoic acid from maternal circulating β-carotene upon oxidation of retinaldehyde produced via the symmetric cleavage enzyme β-carotene 15,15'-oxygenase (BCO1). Another cleavage enzyme, β-carotene 9',10'-oxygenase (BCO2), asymmetrically cleaves β-carotene in adult tissues to prevent its mitochondrial toxicity, generating β-apo-10'-carotenal, which can be converted to retinoids (vitamin A and its metabolites) by BCO1. However, the role of BCO2 during mammalian embryogenesis is unknown. We found that mice lacking BCO2 on a vitamin A deficiency-susceptible genetic background (Rbp4-/-) generated severely malformed vitamin A-deficient embryos. Maternal β-carotene supplementation impaired fertility and did not restore normal embryonic development in the Bco2-/-Rbp4-/- mice, despite the expression of BCO1. These data demonstrate that BCO2 prevents β-carotene toxicity during embryogenesis under severe vitamin A deficiency. In contrast, β-apo-10'-carotenal dose-dependently restored normal embryonic development in Bco2-/-Rbp4-/- but not Bco1-/-Bco2-/-Rbp4-/- mice, suggesting that β-apo-10'-carotenal facilitates embryogenesis as a substrate for BCO1-catalyzed retinoid formation. These findings provide a proof of principle for the important role of BCO2 in embryonic development and invite consideration of β-apo-10'-carotenal as a nutritional supplement to sustain normal embryonic development in vitamin A-deprived pregnant women.
Collapse
|
10
|
Giordano E, Quadro L. Lutein, zeaxanthin and mammalian development: Metabolism, functions and implications for health. Arch Biochem Biophys 2018; 647:33-40. [PMID: 29654731 PMCID: PMC5949277 DOI: 10.1016/j.abb.2018.04.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 01/04/2023]
Abstract
It is now widely accepted that nutrition during critical periods in early development, both pre- and postnatal, may have lifetime consequences in determining health or onset of major diseases in the adult life. Dietary carotenoids have shown beneficial health effects throughout the life cycle due to their potential antioxidant properties, their ability to serves as precursors of vitamin A and to the emerging signaling functions of their metabolites. The non-provitamin A carotenoids lutein and zeaxanthin are emerging as important modulators of infant and child visual and cognitive development, as well as critical effectors in the prevention and treatment of morbidity associated with premature births. This review provides a general overview of lutein and zeaxanthin metabolism in mammalian tissues and highlights the major advancements and remaining gaps in knowledge in regards to their metabolism and health effects during pre- and early post-natal development. Furthering our knowledge in this area of research will impact dietary recommendation and supplementation strategies aimed at sustaining proper fetal and infant growth.
Collapse
Affiliation(s)
- Elena Giordano
- Department of Food Science; Rutgers Center for Lipid Research; New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, United States
| | - Loredana Quadro
- Department of Food Science; Rutgers Center for Lipid Research; New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
11
|
Lira L, de Souza A, Amâncio A, Bezerra C, Pimentel J, Moia M, Dimenstein R. Retinol and Betacarotene Status in Mother-Infant Dyads and Associations between Them. ANNALS OF NUTRITION AND METABOLISM 2017; 72:50-56. [DOI: 10.1159/000485042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/30/2017] [Indexed: 01/09/2023]
Abstract
Background/Aims: Assessing the diet and biochemical indicators of vitamin A deficiency (VAD) in high-risk populations is crucial in cases where this deficiency is mainly caused by chronically inadequate intake. This study aimed to determine the retinol and betacarotene status in mother-infant dyads, and to evaluate the associations between them. Methods: Umbilical cord serum, maternal serum, and colostrum were collected from 134 healthy mothers living in a risk region for VAD. Vitamin A and betacarotene were quantified by liquid chromatography, and dietary information was collected using a food frequency questionnaire. Results: Although the overall mean intakes of vitamin A and betacarotene were considered adequate, 16% of the women had insufficient intake. Mean retinol levels were also adequate, yet low levels were diagnosed in about 8% of the mothers, based on maternal serum and colostrum, and in 16% of the cord serum samples. Retinol and betacarotene were positively associated in cord serum (p = 0.004), maternal serum (p = 0.041), and colostrum (p < 0.001) but was not associated with dietary intake. Conclusions: A diagnosis of adequacy based on mean biochemical and dietary data of this population in fact masks the marginal vitamin A status presented by mothers and children.
Collapse
|
12
|
Low-Density Lipoprotein Receptor Contributes to β-Carotene Uptake in the Maternal Liver. Nutrients 2016; 8:nu8120765. [PMID: 27916814 PMCID: PMC5188420 DOI: 10.3390/nu8120765] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
Vitamin A regulates many essential mammalian biological processes, including embryonic development. β-carotene is the main source of vitamin A in the human diet. Once ingested, it is packaged into lipoproteins, predominantly low-density lipoproteins (LDL), and transported to different sites within the body, including the liver and developing tissues, where it can either be stored or metabolized to retinoids (vitamin A and its derivatives). The molecular mechanisms of β-carotene uptake by the liver or developing tissues remain elusive. Here, we investigated the role of the LDL receptor (LDLr) in β-carotene uptake by maternal liver, placenta and embryo. We administered a single dose of β-carotene to Ldlr+/− and Ldlr−/− pregnant mice via intraperitoneal injection at mid-gestation and monitored the changes in β-carotene content among maternal lipoproteins and the liver, as well as the accumulation of β-carotene in the placental–fetal unit. We showed an abnormal β-carotene distribution among serum lipoproteins and reduced hepatic β-carotene uptake in Ldlr−/− dams. These data strongly imply that LDLr significantly contributes to β-carotene uptake in the adult mouse liver. In contrast, LDLr does not seem to mediate acquisition of β-carotene by the placental–fetal unit.
Collapse
|
13
|
Costabile BK, Kim YK, Iqbal J, Zuccaro MV, Wassef L, Narayanasamy S, Curley RW, Harrison EH, Hussain MM, Quadro L. β-Apo-10'-carotenoids Modulate Placental Microsomal Triglyceride Transfer Protein Expression and Function to Optimize Transport of Intact β-Carotene to the Embryo. J Biol Chem 2016; 291:18525-35. [PMID: 27402843 DOI: 10.1074/jbc.m116.738336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Indexed: 11/06/2022] Open
Abstract
β-Carotene is an important source of vitamin A for the mammalian embryo, which depends on its adequate supply to achieve proper organogenesis. In mammalian tissues, β-carotene 15,15'-oxygenase (BCO1) converts β-carotene to retinaldehyde, which is then oxidized to retinoic acid, the biologically active form of vitamin A that acts as a transcription factor ligand to regulate gene expression. β-Carotene can also be cleaved by β-carotene 9',10'-oxygenase (BCO2) to form β-apo-10'-carotenal, a precursor of retinoic acid and a transcriptional regulator per se The mammalian embryo obtains β-carotene from the maternal circulation. However, the molecular mechanisms that enable its transfer across the maternal-fetal barrier are not understood. Given that β-carotene is transported in the adult bloodstream by lipoproteins and that the placenta acquires, assembles, and secretes lipoproteins, we hypothesized that the aforementioned process requires placental lipoprotein biosynthesis. Here we show that β-carotene availability regulates transcription and activity of placental microsomal triglyceride transfer protein as well as expression of placental apolipoprotein B, two key players in lipoprotein biosynthesis. We also show that β-apo-10'-carotenal mediates the transcriptional regulation of microsomal triglyceride transfer protein via hepatic nuclear factor 4α and chicken ovalbumin upstream promoter transcription factor I/II. Our data provide the first in vivo evidence of the transcriptional regulatory activity of β-apocarotenoids and identify microsomal triglyceride transfer protein and its transcription factors as the targets of their action. This study demonstrates that β-carotene induces a feed-forward mechanism in the placenta to enhance the assimilation of β-carotene for proper embryogenesis.
Collapse
Affiliation(s)
- Brianna K Costabile
- From the Department of Food Science and Rutgers Center for Lipid Research and New Jersey Institute for Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Youn-Kyung Kim
- From the Department of Food Science and Rutgers Center for Lipid Research and New Jersey Institute for Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Jahangir Iqbal
- Departments of Cell Biology and Pediatrics, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York 11203, and
| | - Michael V Zuccaro
- From the Department of Food Science and Rutgers Center for Lipid Research and New Jersey Institute for Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Lesley Wassef
- From the Department of Food Science and Rutgers Center for Lipid Research and New Jersey Institute for Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Sureshbabu Narayanasamy
- College of Pharmacy and Department of Human Nutrition, The Ohio State University, Columbus, Ohio 43210
| | | | - Earl H Harrison
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio 43210
| | - M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York 11203, and
| | - Loredana Quadro
- From the Department of Food Science and Rutgers Center for Lipid Research and New Jersey Institute for Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey 08901,
| |
Collapse
|
14
|
Kim YK, Zuccaro MV, Zhang C, Sarkar D, Quadro L. Alcohol exposure in utero perturbs retinoid homeostasis in adult rats. Hepatobiliary Surg Nutr 2015; 4:268-77. [PMID: 26312243 PMCID: PMC4526764 DOI: 10.3978/j.issn.2304-3881.2015.01.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Maternal alcohol exposure and adult alcohol intake have been shown to perturb the metabolism of various micro- and macro-nutrients, including vitamin A and its derivatives (retinoids). Therefore, it has been hypothesized that the well-known detrimental consequences of alcohol consumption may be due to deregulations of the metabolism of such nutrients rather than to a direct effect of alcohol. Alcohol exposure in utero also has long-term harmful consequences on the health of the offspring with mechanisms that have not been fully clarified. Disruption of tissue retinoid homeostasis has been linked not only to abnormal embryonic development, but also to various adult pathological conditions, including cancer, metabolic disorders and abnormal lung function. We hypothesized that prenatal alcohol exposure may permanently perturb tissue retinoid metabolism, predisposing the offspring to adult chronic diseases. METHODS Serum and tissues (liver, lung and prostate from males; liver and lung from females) were collected from 60-75 day-old sprague dawley rats born from dams that were: (I) fed a liquid diet containing 6.7% alcohol between gestational day 7 and 21; or (II) pair-fed with isocaloric liquid diet during the same gestational window; or (III) fed ad libitum with regular rat chow diet throughout pregnancy. Serum and tissue retinoid levels were analyzed by reverse-phase high-performance liquid chromatography (HPLC). Serum retinol-binding protein (RBP) levels were measured by western blot analysis, and liver, lung and prostate mRNA levels of lecithin-retinol acyltransferase (LRAT) were measured by qPCR. RESULTS Retinyl ester levels were significantly reduced in the lung of both males and females, as well as in the liver and ventral prostate of males born from alcohol-fed dams. Tissue LRAT mRNA levels remained unchanged upon maternal alcohol treatment. CONCLUSIONS Prenatal alcohol exposure in rats affects retinoid metabolism in adult life, in a tissue- and sex-dependent manner. We propose that the alcohol-induced perturbations of vitamin A metabolism may predispose to detrimental consequnces on adult health.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- 1 Department of Food Science, Rutgers Center for Lipid Research, 2 Department of Animal Sciences and Endocrine Research Program, Rutgers University, New Brunswick, NJ 08901, USA
| | - Michael V Zuccaro
- 1 Department of Food Science, Rutgers Center for Lipid Research, 2 Department of Animal Sciences and Endocrine Research Program, Rutgers University, New Brunswick, NJ 08901, USA
| | - Changqing Zhang
- 1 Department of Food Science, Rutgers Center for Lipid Research, 2 Department of Animal Sciences and Endocrine Research Program, Rutgers University, New Brunswick, NJ 08901, USA
| | - Dipak Sarkar
- 1 Department of Food Science, Rutgers Center for Lipid Research, 2 Department of Animal Sciences and Endocrine Research Program, Rutgers University, New Brunswick, NJ 08901, USA
| | - Loredana Quadro
- 1 Department of Food Science, Rutgers Center for Lipid Research, 2 Department of Animal Sciences and Endocrine Research Program, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Wassef L, Shete V, Costabile B, Rodas R, Quadro L. High Preformed Vitamin A Intake during Pregnancy Prevents Embryonic Accumulation of Intact β-Carotene from the Maternal Circulation in Mice. J Nutr 2015; 145:1408-14. [PMID: 25995275 PMCID: PMC4478946 DOI: 10.3945/jn.114.207043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The vitamin A precursor β-carotene (BC) promotes mammalian embryonic development by serving as a source of retinoids (vitamin A derivatives) to the developing tissues. In the Western world, increased consumption of dietary supplements, including vitamin A and BC, is common; however, the consequences of maternal high preformed vitamin A intake on embryonic uptake and metabolism of BC are poorly understood. OBJECTIVE This study investigated vitamin A and BC metabolism in developing mouse tissues after a single BC administration to pregnant wild-type (WT) mice fed purified diets with different vitamin A concentrations. METHODS WT dams fed a sufficient vitamin A (VA-S; 4.2 μg of retinol/g of diet), high vitamin A (VA-H; 33 μg of retinol/g of diet), or excess vitamin A (VA-E; 66 μg of retinol/g of diet) diet throughout gestation were intraperitoneally injected with BC or vehicle at 13.5 d postcoitum (dpc). At 14.5 dpc, retinoid and BC concentrations in maternal serum and liver, placenta, and embryo were quantified by HPLC; expressions of genes controlling retinoid and BC homeostasis were analyzed by quantitative polymerase chain reaction. Maternal lipoprotein BC concentrations were analyzed by density gradient ultracentrifugation followed by HPLC. RESULTS Intact BC was undetectable only in embryos from VA-E + BC dams. Relative to the VA-S + vehicle group, placentas from VA-S + BC dams showed 39% downregulation of LDL-receptor-related protein 1 (Lrp1 ); 35% downregulation of VLDL receptor (Vldlr); 56% reduced mRNA expression of β-carotene 15,15'-oxygenase (Bco1); and 80% upregulation of β-carotene 9',10'-oxygenase (Bco2). Placental cytochrome P450, family 26, subfamily A, polypeptide 1 (Cyp26A1) was upregulated 2-fold in the VA-E group compared with the VA-S group, regardless of maternal treatment. CONCLUSIONS In mice, transfer of intact BC to the embryo is attenuated by high tissue vitamin A concentrations. Maternal vitamin A intake and BC availability activate a placental transcriptional response to protect the embryo from retinoid and carotenoid excess.
Collapse
Affiliation(s)
| | | | | | | | - Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ
| |
Collapse
|
16
|
Kim YK, Zuccaro MV, Costabile BK, Rodas R, Quadro L. Tissue- and sex-specific effects of β-carotene 15,15' oxygenase (BCO1) on retinoid and lipid metabolism in adult and developing mice. Arch Biochem Biophys 2015; 572:11-18. [PMID: 25602705 PMCID: PMC4402122 DOI: 10.1016/j.abb.2015.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
In mammals, β-carotene-15,15'-oxygenase (BCO1) is the main enzyme that cleaves β-carotene, the most abundant vitamin A precursor, to generate retinoids (vitamin A derivatives), both in adult and developing tissues. We previously reported that, in addition to this function, BCO1 can also influence the synthesis of retinyl esters, the storage form of retinoids, in the mouse embryo at mid-gestation. Indeed, lack of embryonic BCO1 impaired both lecithin-dependent and acyl CoA-dependent retinol esterification, mediated by lecithin:retinol acyltransferase (LRAT) and acyl CoA:retinol acyltransferase (ARAT), respectively. Furthermore, embryonic BCO1 also influenced the ester pools of cholesterol and diacylglycerol. In this report, we gained novel insights into this alternative function of BCO1 by investigating whether BCO1 influenced embryonic retinoid and lipid metabolism in a tissue-dependent manner. To this end, livers and brains from wild-type and BCO1-/- embryos at mid-gestation were analyzed for retinoid and lipid content, as well as gene expression levels. We also asked whether or not the role of BCO1 as a regulator of lecithin- and acyl CoA-dependent retinol esterification was exclusively restricted to the developing tissues. Thus, a survey of retinol and retinyl ester levels in adult tissues of wild-type, BCO1-/-, LRAT-/- and LRAT-/-BCO1-/- mice was performed. We showed that the absence of BCO1 affects embryonic retinoid and lipid homeostasis in a tissue-specific manner and that retinyl ester formation is also influenced by BCO1 in a few adult tissues (pancreas, lung, heart and adipose) in a sex-dependent manner.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08091, USA
| | - Michael V Zuccaro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08091, USA
| | - Brianna K Costabile
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08091, USA
| | - Rebeka Rodas
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08091, USA
| | - Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08091, USA.
| |
Collapse
|
17
|
Takahashi H, Kutasy B, Pes L, Paradisi F, Puri P. Decidual β-carotene-15,15'-oxygenase-1 and 2 (BCMO1,2) expression is increased in nitrofen model of congenital diaphragmatic hernia. Pediatr Surg Int 2015; 31:37-43. [PMID: 25344780 DOI: 10.1007/s00383-014-3621-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND Retinoids are essential for fetal and lung development. Beta-carotene(BC) is the main dietary retinoid source and beta-carotene-15,15'-oxygenase-1 and 2 (Bcmo1,2) is the primary enzyme generating retinoid from BC in adult mammalian tissues. Placenta has a major role in the retinol homeostasis in fetal life: Since there is no fetal retinol synthesis, maternal retinol has to cross the placenta. It has been recently shown that BC can be converted to retinol by Bcmo1,2 in placenta for retinol transfer and moreover, BC can cross the placenta intact. The placental Bcmo1,2 expression is tightly controlled by placental retinol level. In severe retinol deficiency it has been shown that placental Bcmo1,2 expression are increased for generating retinol from dietary maternal BC even when the main retinol transfer is blocked. In recent years, low pulmonary retinol levels and disrupted retinoid signaling pathway have been implicated in the pathogenesis of pulmonary hypoplasia and congenital diaphragmatic hernia (CDH) in the nitrofen model of CDH. Recently, it has been demonstrated that the main retinol transfer in the placenta is blocked in the nitrofen model of CDH causing increased placental and decreased serum retinol level. The aim of our study was to determine maternal and fetal β-carotene levels and to investigate the hypothesis that placental expression of BCMO1 and BCMO2 is altered in nitrofen-exposed rat fetuses with CDH. METHODS Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Maternal and fetal serum, placenta, liver and left lungs were harvested on D21 and divided into two groups: control (n = 8) and nitrofen with CDH (n = 8). Immunochistochemistry was performed to evaluate trophoblasts by cytokeratin expression and placental Bcmo1,2 expression. Expression levels of Bcmo1,2 genes in fetal lungs and liver were determined using RT-PCR and immunohistochemistry. BC level was measured using HPLC. RESULTS Markedly increased decidual Bcmo1,2 immunoreactivity was observed in CDH group compared to controls. There was no difference neither in the trophoblastic Bcmo1,2 immunoreactivity nor in the pulmonary and liver Bcmo1,2 expression compared to controls. There was no significant difference in maternal serum BC levels between control and CDH mothers (2.14 ± 0.55 vs 2.56 ± 1.6 μM/g, p = 0.8). BC was not detectable neither in the fetal serum nor liver or lungs. CONCLUSIONS Our data show that nitrofen increases maternal but not fetal Bcmo1,2 expression in the placenta in nitrofen-induced CDH group. The markedly increased decidual Bcmo1,2 expression suggests that nitrofen may trigger local, decidual retinol synthesis in the nitrofen model of CDH.
Collapse
Affiliation(s)
- Hiromizu Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
18
|
Wassef L, Wirawan R, Chikindas M, Breslin PAS, Hoffman DJ, Quadro L. β-carotene-producing bacteria residing in the intestine provide vitamin A to mouse tissues in vivo. J Nutr 2014; 144:608-13. [PMID: 24598882 DOI: 10.3945/jn.113.188391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vitamin A deficiency (VAD) is an overwhelming public health problem that affects hundreds of millions of people worldwide. A definitive solution to VAD has yet to be identified. Because it is an essential nutrient, vitamin A or its carotenoid precursor β-carotene can only be obtained from food or supplements. In this study, we wanted to establish whether β-carotene produced in the mouse intestine by bacteria synthesizing the provitamin A carotenoid could be delivered to various tissues within the body. To achieve this, we took advantage of the Escherichia coli MG1655*, an intestine-adapted spontaneous mutant of E. coli MG1655, and the plasmid pAC-BETA, containing the genes coding for the 4 key enzymes of the β-carotene biosynthetic pathway (geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and lycopene cyclase) from Erwinia herbicola. We engineered the E. coli MG1655* to produce β-carotene during transformation with pAC-BETA (MG1655*-βC) and gavaged wild-type and knockout mice for the enzyme β-carotene 15,15'-oxygenase with this recombinant strain. Various regimens of bacteria administration were tested (single vs. multiple and low vs. high doses). β-Carotene concentration was measured by HPLC in mouse serum, liver, intestine, and feces. Enumeration of MG1655*-βC cells in the feces was performed to assess efficiency of intestinal colonization. We demonstrated in vivo that probiotic bacteria could be used to deliver vitamin A to the tissues of a mammalian host. These results have the potential to pave the road for future investigations aimed at identifying alternative, novel approaches to treat VAD.
Collapse
|
19
|
Shete V, Quadro L. Mammalian metabolism of β-carotene: gaps in knowledge. Nutrients 2013; 5:4849-68. [PMID: 24288025 PMCID: PMC3875911 DOI: 10.3390/nu5124849] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 02/03/2023] Open
Abstract
β-carotene is the most abundant provitamin A carotenoid in human diet and tissues. It exerts a number of beneficial functions in mammals, including humans, owing to its ability to generate vitamin A as well as to emerging crucial signaling functions of its metabolites. Even though β-carotene is generally considered a safer form of vitamin A due to its highly regulated intestinal absorption, detrimental effects have also been ascribed to its intake, at least under specific circumstances. A better understanding of the metabolism of β-carotene is still needed to unequivocally discriminate the conditions under which it may exert beneficial or detrimental effects on human health and thus to enable the formulation of dietary recommendations adequate for different groups of individuals and populations worldwide. Here we provide a general overview of the metabolism of this vitamin A precursor in mammals with the aim of identifying the gaps in knowledge that call for immediate attention. We highlight the main questions that remain to be answered in regards to the cleavage, uptake, extracellular and intracellular transport of β-carotene as well as the interactions between the metabolism of β-carotene and that of other macronutrients such as lipids.
Collapse
Affiliation(s)
- Varsha Shete
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
20
|
Dixon JL, Kim YK, Brinker A, Quadro L. Loss of β-carotene 15,15'-oxygenase in developing mouse tissues alters esterification of retinol, cholesterol and diacylglycerols. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:34-43. [PMID: 23988655 DOI: 10.1016/j.bbalip.2013.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022]
Abstract
We provide novel insights into the function(s) of β-carotene-15,15'-oxygenase (CMOI) during embryogenesis. By performing in vivo and in vitro experiments, we showed that CMOI influences not only lecithin:retinol acyltransferase but also acyl CoA:retinol acyltransferase reaction in the developing tissues at mid-gestation. In addition, LC/MS lipidomics analysis of the CMOI-/- embryos showed reduced levels of four phosphatidylcholine and three phosphatidylethanolamine acyl chain species, and of eight triacylglycerol species with four or more unsaturations and fifty-two or more carbons in the acyl chains. Cholesteryl esters of arachidonate, palmitate, linoleate, and DHA were also reduced to less than 30% of control. Analysis of the fatty acyl CoA species ruled out a loss in fatty acyl CoA synthetase capability. Comparison of acyl species suggested significantly decreased 18:2, 18:3, 20:1, 20:4, or 22:6 acyl chains within the above lipids in CMOI-null embryos. Furthermore, LCAT, ACAT1 and DGAT2 mRNA levels were also downregulated in CMOI-/- embryos. These data strongly support the notion that, in addition to cleaving β-carotene to generate retinoids, CMOI serves an additional function(s) in retinoid and lipid metabolism and point to its role in the formation of specific lipids, possibly for use in nervous system tissue.
Collapse
Affiliation(s)
- Joseph L Dixon
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
21
|
Wassef L, Spiegler E, Quadro L. Embryonic phenotype, β-carotene and retinoid metabolism upon maternal supplementation of β-carotene in a mouse model of severe vitamin A deficiency. Arch Biochem Biophys 2013; 539:223-9. [PMID: 23871845 DOI: 10.1016/j.abb.2013.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/10/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022]
Abstract
We investigated the effect of β-carotene (bC) supplementation during pregnancy in a mouse model of severe vitamin A deficiency, i.e. Lrat-/-Rbp-/- dams maintained on a vitamin A-deficient diet during gestation. bC, a provitamin A carotenoid, can be enzymatically cleaved to form vitamin A for use by the developing embryo. We found that an acute supplementation (13.5 days post coitum, dpc) of bC to Lrat-/-Rbp-/- dams on a vitamin A-deficient diet activated transcriptional mechanisms in the developing tissues to maximize the utilization of bC provided to the dams. Nevertheless, these regulatory mechanisms are inefficient under this regimen, as the embryonic phenotype was not improved. We further investigated the effect of a repeated supplementation of bC during a crucial developmental period (6.5-9.5 dpc) on the above-mentioned mouse model. This treatment improved the embryonic abnormalities, as 40% of the embryos showed a normal phenotype. In addition, analysis of retinoic acid-responsive genes, such as Cyp26a1 in these embryos suggests that bC cleavage results in the production of retinoic acid which then can be used by the embryo. Taken together, these in vivo studies show that bC can be used as a source of vitamin A for severely vitamin A-deficient mammalian embryos.
Collapse
Affiliation(s)
- L Wassef
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, NJ, USA
| | | | | |
Collapse
|