1
|
McGovern J, Perry C, Ghincea A, Herzog EL, Shao S, Sun H. The effect of adrenalectomy on bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 2025; 328:L15-L29. [PMID: 39470613 PMCID: PMC11905795 DOI: 10.1152/ajplung.00062.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 10/30/2024] Open
Abstract
Progressive lung fibrosis is often fatal and has limited treatment options. Though the mechanisms are poorly understood, fibrosis is increasingly linked with catecholamines such as adrenaline (AD) and noradrenaline (NA) and hormones such as aldosterone (ALD). The essential functions of the adrenal glands include the production of catecholamines and numerous hormones, but the contribution of adrenal glands to lung fibrosis remains less well studied. Here, we characterized the impact of surgical adrenal ablation in the bleomycin model of lung fibrosis. Wild-type mice underwent surgical adrenalectomy or sham surgery followed by bleomycin administration. We found that although bleomycin-induced collagen overdeposition in the lung was not affected by adrenalectomy, histologic indices of lung remodeling were ameliorated. These findings were accompanied by a decrease of lymphocytes in bronchoalveolar lavage (BAL) and macrophages in lung tissues, along with concomitant reductions in alpha-smooth muscle actin (αSMA) and fibronectin. Surgical adrenalectomy completely abrogated AD, not NA, detection in all compartments. Systemic ALD levels were reduced after adrenalectomy, whereas ALD levels in lung tissues remained unaffected. Taken together, these results support the presence of a pulmonary-adrenal axis in lung fibrosis and suggest that adrenalectomy is protective in this disease. Further investigation will be needed to better understand this observation and aid in the development of novel therapeutic strategies.NEW & NOTEWORTHY The lung-adrenal axis plays a significant role in pulmonary fibrosis. Adrenalectomy provides protection against lung fibrotic ECM remodeling and lung inflammation by reducing the levels of lymphocytes in BAL and macrophages in lung of bleomycin-treated mice. Although compared with sham surgery, adrenalectomy raised collagen concentration in uninjured mice, there was no discernible difference in bleomycin-induced collagen accumulation. However, adrenalectomy significantly reversed the enhanced expression and colocalization of αSMA and fibronectin induced by bleomycin.
Collapse
Affiliation(s)
- John McGovern
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Carrighan Perry
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Alexander Ghincea
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Erica L Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Molecular Medicine/Experimental Pathology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Shuai Shao
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Huanxing Sun
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
2
|
Lin Z, Zhuang J, He L, Zhu S, Kong W, Lu W, Zhang Z. Exploring Smad5: a review to pave the way for a deeper understanding of the pathobiology of common respiratory diseases. Mol Med 2024; 30:225. [PMID: 39578779 PMCID: PMC11585160 DOI: 10.1186/s10020-024-00961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
Smad5 (small mothers against decapentaplegic 5) protein is a receptor-regulated member of the Smad family proteins, mainly participating in the bone morphogenetic protein (BMP) signaling pathway in its phosphorylated form. This article will provide a detailed review of Smad5, focusing on its gene characteristics, protein structure, and subcellular localization properties. We will also explore the related signaling pathways and the mechanisms of Smad5 in respiratory diseases, including chronic obstructive pulmonary disease (COPD), bronchial asthma, pulmonary arterial hypertension(PAH), lung cancer, and idiopathic pulmonary fibrosis (IPF). Additionally, the review will cover aspects such as proliferation, differentiation, apoptosis, anti-fibrosis, and mitochondrial function metabolism. In addition, the review will cover aspects of proliferation, differentiation, apoptosis, anti-fibrosis and functional mitochondrial metabolism related to the above topics. Numerous studies suggest that Smad5 may play a unique and important role in the pathogenesis of respiratory system diseases. However, in previous research, Smad5 was mainly used to broadly determine the activation of the BMP signaling pathway, and its own function has not been given much attention. It is worth noting that Smad5 has distinct nuclear-cytoplasmic distribution characteristics different from Smad1 and Smad8. It can undergo significant nuclear-cytoplasmic shuttling when intracellular pH (pHi) changes, playing important roles in both the classical BMP signaling pathway and non-BMP signaling pathways. Given that Smad5 can move intracellularly in response to changes in physicochemical properties, its cellular localization may play a crucial role in the development of respiratory diseases. This article will explore the possibility that its distribution characteristics may be an important factor that is easily overlooked and not adequately considered in disease research.
Collapse
Affiliation(s)
- Zeqiang Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayu Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyuan Zhu
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiguo Kong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zili Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Putri KSS, Adhyatmika A, Boorsma CE, Habibie H, Ruigrok MJR, Heukels P, Timens W, de Jager MH, Hinrichs WLJ, Olinga P, Melgert BN. Osteoprotegerin is an Early Marker of the Fibrotic Process and of Antifibrotic Treatment Responses in Ex Vivo Lung Fibrosis. Lung 2024; 202:331-342. [PMID: 38642135 PMCID: PMC11143060 DOI: 10.1007/s00408-024-00691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Lung fibrosis is a chronic lung disease with a high mortality rate with only two approved drugs (pirfenidone and nintedanib) to attenuate its progression. To date, there are no reliable biomarkers to assess fibrosis development and/or treatment effects for these two drugs. Osteoprotegerin (OPG) is used as a serum marker to diagnose liver fibrosis and we have previously shown it associates with lung fibrosis as well. METHODS Here we used murine and human precision-cut lung slices to investigate the regulation of OPG in lung tissue to elucidate whether it tracks with (early) fibrosis development and responds to antifibrotic treatment to assess its potential use as a biomarker. RESULTS OPG mRNA expression in murine lung slices was higher after treatment with profibrotic cytokines TGFβ1 or IL13, and closely correlated with Fn and PAI1 mRNA expression. More OPG protein was released from fibrotic human lung slices than from the control human slices and from TGFβ1 and IL13-stimulated murine lung slices compared to control murine slices. This OPG release was inhibited when murine slices were treated with pirfenidone or nintedanib. OPG release from human fibrotic lung slices was inhibited by pirfenidone treatment. CONCLUSION OPG can already be detected during the early stages of fibrosis development and responds, both in early- and late-stage fibrosis, to treatment with antifibrotic drugs currently on the market for lung fibrosis. Therefore, OPG should be further investigated as a potential biomarker for lung fibrosis and a potential surrogate marker for treatment effect.
Collapse
Affiliation(s)
- Kurnia S S Putri
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Adhyatmika Adhyatmika
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
- Drug Targeting and Personalized Medicine Research Group, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Carian E Boorsma
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Habibie Habibie
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Mitchel J R Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Heukels
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina H de Jager
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Barbro N Melgert
- GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
He H, Ji X, Cao L, Wang Z, Wang X, Li XM, Miao M. Medicine Targeting Epithelial-Mesenchymal Transition to Treat Airway Remodeling and Pulmonary Fibrosis Progression. Can Respir J 2023; 2023:3291957. [PMID: 38074219 PMCID: PMC10701063 DOI: 10.1155/2023/3291957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/18/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Objective. Dysregulation of epithelial-mesenchymal transition (EMT) in the airway epithelium is associated with airway remodeling and the progression of pulmonary fibrosis. Many treatments have been shown to inhibit airway remodeling and pulmonary fibrosis progression in asthma and chronic obstructive pulmonary disease (COPD) by regulating EMT and have few side effects. This review aimed to describe the development of airway remodeling through the EMT pathway, as well as the potential therapeutic targets in these pathways. Furthermore, this study aimed to review the current research on drugs to treat airway remodeling and their effects on the EMT pathway. Findings. The dysregulation of EMT was associated with airway remodeling in various respiratory diseases. The cytokines released during inflammation may induce EMT and subsequent airway remodeling. Various drugs, including herbal formulations, specific herbal compounds, cytokines, amino acid or protein inhibitors, microRNAs, and vitamins, may suppress airway remodeling by inhibiting EMT-related pathways.
Collapse
Affiliation(s)
- Hongjuan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Xiaoyan Ji
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Lihua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Zhenzhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Xiaoyu Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| | - Xiu-Min Li
- Department of Otolaryngology, Microbiology and Immunology, New York Medical College, New York, NY 10595, USA
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, Zhengzhou 450046, China
| |
Collapse
|
5
|
Maghsadi Z, Azadmehr A, Moghadamnia AA, Feizi F, Hamidi N. N-Acetylcysteine attenuated pulmonary fibrosis induced by bleomycin via immunomodulation responses. Res Pharm Sci 2023; 18:177-184. [PMID: 36873280 PMCID: PMC9976053 DOI: 10.4103/1735-5362.367796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/23/2022] [Accepted: 11/27/2022] [Indexed: 01/21/2023] Open
Abstract
Background and purpose Pulmonary fibrosis (PF) is a chronic and life-threatening interstitial lung disease. N-acetyl cysteine (NAC) is an antioxidant pharmaceutically available to reduce endothelial dysfunction, inflammation, and fibrosis, however, the therapeutic effect of NAC on PF has not been clearly identified. This research aimed to investigate the possible therapeutic impact of NAC on PF induced by bleomycin in the rat model. Experimental approach Rats received intraperitoneal injections of NAC at 150, 300, and 600 mg/kg for 28 days before bleomycin, while the positive and negative control groups were treated with bleomycin alone and normal saline, respectively. Then, rats' lung tissues were isolated and leukocyte infiltration and also collagen deposition were evaluated using hematoxylin and eosin and Mallory trichrome stainings, respectively. In addition, the levels of IL-17, and TGF-β cytokines in bronchoalveolar lavage fluid and hydroxyproline in homogenized lung tissues were assayed using the ELISA method. Findings/Results Histological findings indicated that NAC decreased leukocyte infiltration, collagen deposition, and fibrosis score in the bleomycin-induced PF tissue. Moreover, NAC significantly reduced TGF-β and hydroxyproline levels at 300-600 mg/kg, as well as IL-17 cytokine at 600 mg/kg. Conclusion and implications NAC showed a potential anti-fibrotic effect by reducing hydroxyproline and TGF-β as well as an anti-inflammatory effect by decreasing IL-17 cytokine. So, it may be administered as a prophylactic or therapeutic candidate agent to attenuate PF via immunomodulatory effects. Although, future studies are suggested.
Collapse
Affiliation(s)
- Zahra Maghsadi
- Student Research Committee, Babol University of Medical Sciences, Babol, I.R. Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran.,Department of Pharmacology and Toxicology, Faculty of Medicine, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Negar Hamidi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| |
Collapse
|
6
|
Mehrabani M, Mohammadyar S, Rajizadeh MA, Bejeshk MA, Ahmadi B, Nematollahi MH, Mirtajaddini Goki M, Bahrampour Juybari K, Amirkhosravi A. Boosting therapeutic efficacy of mesenchymal stem cells in pulmonary fibrosis: The role of genetic modification and preconditioning strategies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1001-1015. [PMID: 37605719 PMCID: PMC10440137 DOI: 10.22038/ijbms.2023.69023.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/14/2023] [Indexed: 08/23/2023]
Abstract
Pulmonary fibrosis (PF) is the end stage of severe lung diseases, in which the lung parenchyma is replaced by fibrous scar tissue. The result is a remarkable reduction in pulmonary compliance, which may lead to respiratory failure and even death. Idiopathic pulmonary fibrosis (IPF) is the most prevalent form of PF, with no reasonable etiology. However, some factors are believed to be behind the etiology of PF, including prolonged administration of several medications (e.g., bleomycin and amiodarone), environmental contaminant exposure (e.g., gases, asbestos, and silica), and certain systemic diseases (e.g., systemic lupus erythematosus). Despite significant developments in the diagnostic approach to PF in the last few years, efforts to find more effective treatments remain challenging. With their immunomodulatory, anti-inflammatory, and anti-fibrotic properties, stem cells may provide a promising approach for treating a broad spectrum of fibrotic conditions. However, they may lose their biological functions after long-term in vitro culture or exposure to harsh in vivo situations. To overcome these limitations, numerous modification techniques, such as genetic modification, preconditioning, and optimization of cultivation methods for stem cell therapy, have been adopted. Herein, we summarize the previous investigations that have been designed to assess the effects of stem cell preconditioning or genetic modification on the regenerative capacity of stem cells in PF.
Collapse
Affiliation(s)
- Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sohaib Mohammadyar
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahareh Ahmadi
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Kobra Bahrampour Juybari
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Arian Amirkhosravi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Guan R, Yuan L, Li J, Wang J, Li Z, Cai Z, Guo H, Fang Y, Lin R, Liu W, Wang L, Zheng Q, Xu J, Zhou Y, Qian J, Ding M, Luo J, Li Y, Yang K, Sun D, Yao H, He J, Lu W. Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts. Eur Respir J 2022; 60:13993003.02307-2021. [PMID: 35777761 PMCID: PMC9808813 DOI: 10.1183/13993003.02307-2021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/22/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Accumulation of myofibroblasts is critical to fibrogenesis in idiopathic pulmonary fibrosis (IPF). Senescence and insufficient mitophagy in fibroblasts contribute to their differentiation into myofibroblasts, thereby promoting the development of lung fibrosis. Bone morphogenetic protein 4 (BMP4), a multifunctional growth factor, is essential for the early stage of lung development; however, the role of BMP4 in modulating lung fibrosis remains unknown. METHODS The aim of this study was to evaluate the role of BMP4 in lung fibrosis using BMP4-haplodeleted mice, BMP4-overexpressed mice, primary lung fibroblasts and lung samples from patients with IPF. RESULTS BMP4 expression was downregulated in IPF lungs and fibroblasts compared to control individuals, negatively correlated with fibrotic genes, and BMP4 decreased with transforming growth factor (TGF)-β1 stimulation in lung fibroblasts in a time- and dose-dependent manner. In mice challenged with bleomycin, BMP4 haploinsufficiency perpetuated activation of lung myofibroblasts and caused accelerated lung function decline, severe fibrosis and mortality. BMP4 overexpression using adeno-associated virus 9 vectors showed preventative and therapeutic efficacy against lung fibrosis. In vitro, BMP4 attenuated TGF-β1-induced fibroblast-to-myofibroblast differentiation and extracellular matrix (ECM) production by reducing impaired mitophagy and cellular senescence in lung fibroblasts. Pink1 silencing by short-hairpin RNA transfection abolished the ability of BMP4 to reverse the TGF-β1-induced myofibroblast differentiation and ECM production, indicating dependence on Pink1-mediated mitophagy. Moreover, the inhibitory effect of BMP4 on fibroblast activation and differentiation was accompanied with an activation of Smad1/5/9 signalling and suppression of TGF-β1-mediated Smad2/3 signalling in vivo and in vitro. CONCLUSION Strategies for enhancing BMP4 signalling may represent an effective treatment for pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Liang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Jingpei Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Ziying Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaowei Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - You Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Qian
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Mingjing Ding
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Jieping Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dejun Sun
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Wenju Lu and Jianxing He contributed equally to this article as lead authors and supervised the work
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China .,Wenju Lu and Jianxing He contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
8
|
Guo Z, Zhang Y, Yan F. Potential of Mesenchymal Stem Cell-Based Therapies for Pulmonary Fibrosis. DNA Cell Biol 2022; 41:951-965. [DOI: 10.1089/dna.2022.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhihou Guo
- Stem Cell Lab, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yaping Zhang
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Furong Yan
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
9
|
Rosenkrans ZT, Massey CF, Bernau K, Ferreira CA, Jeffery JJ, Schulte JJ, Moore M, Valla F, Batterton JM, Drake CR, McMillan AB, Sandbo N, Pirasteh A, Hernandez R. [ 68 Ga]Ga-FAPI-46 PET for non-invasive detection of pulmonary fibrosis disease activity. Eur J Nucl Med Mol Imaging 2022; 49:3705-3716. [PMID: 35556159 PMCID: PMC9553066 DOI: 10.1007/s00259-022-05814-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/23/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE The lack of effective molecular biomarkers to monitor idiopathic pulmonary fibrosis (IPF) activity or treatment response remains an unmet clinical need. Herein, we determined the utility of fibroblast activation protein inhibitor for positron emission tomography (FAPI PET) imaging in a mouse model of pulmonary fibrosis. METHODS Pulmonary fibrosis was induced by intratracheal administration of bleomycin (1 U/kg) while intratracheal saline was administered to control mice. Subgroups from each cohort (n = 3-5) underwent dynamic 1 h PET/CT after intravenously injecting FAPI-46 radiolabeled with gallium-68 ([68 Ga]Ga-FAPI-46) at 7 days and 14 days following disease induction. Animals were sacrificed following imaging for ex vivo gamma counting and histologic correlation. [68 Ga]Ga-FAPI-46 uptake was quantified and reported as percent injected activity per cc (%IA/cc) or percent injected activity (%IA). Lung CT density in Hounsfield units (HU) was also correlated with histologic examinations of lung fibrosis. RESULTS CT only detected differences in the fibrotic response at 14 days post-bleomycin administration. [68 Ga]Ga-FAPI-46 lung uptake was significantly higher in the bleomycin group than in control subjects at 7 days and 14 days. Significantly (P = 0.0012) increased [68 Ga]Ga-FAPI-46 lung uptake in the bleomycin groups at 14 days (1.01 ± 0.12%IA/cc) vs. 7 days (0.33 ± 0.09%IA/cc) at 60 min post-injection of the tracer was observed. These findings were consistent with an increase in both fibrinogenesis and FAP expression as seen in histology. CONCLUSION CT was unable to assess disease activity in a murine model of IPF. Conversely, FAPI PET detected both the presence and activity of lung fibrogenesis, making it a promising tool for assessing early disease activity and evaluating the efficacy of therapeutic interventions in lung fibrosis patients.
Collapse
Affiliation(s)
- Zachary T Rosenkrans
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Christopher F Massey
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Ksenija Bernau
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Carolina A Ferreira
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Justin J Jeffery
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jefree J Schulte
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Jeanine M Batterton
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | | | - Alan B McMillan
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Nathan Sandbo
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ali Pirasteh
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA.
- Department of Radiology, University of Wisconsin-Madison, 1111 Highland Ave., Room 2423, WI, 53705, Madison, USA.
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Radiology, University of Wisconsin-Madison, 1111 Highland Ave., Room 2423, WI, 53705, Madison, USA.
| |
Collapse
|
10
|
Han M, Song Y, Liu S, Lu X, Su L, Liu M, Zhu X, Sun K, Lu Y, Wang A. Engineering of Stimulus-Responsive Pirfenidone Liposomes for Pulmonary Delivery During Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:882678. [PMID: 35548360 PMCID: PMC9081653 DOI: 10.3389/fphar.2022.882678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive and irreversible loss of lung function. Clinically safe and efficacious drug treatments for IPF are lacking. Pirfenidone (an anti-inflammatory, antioxidant and anti-fibrotic small-molecule drug) is considered a promising treatment for IPF. Unfortunately, several disadvantages of pirfenidone caused by traditional administration (e.g., gastrointestinal reactions, short elimination half-life) hinder its implementation. We designed pirfenidone pH-sensitive liposomes (PSLs) to target the acidic microenvironment of IPF and act directly at the disease site through pulmonary administration. Pirfenidone was encapsulated in liposomes to extend its half-life, and modified with polyethylene glycol on the surface of liposomes to improve the permeability of the mucus layer in airways. In vitro, the cytotoxicity of pirfenidone PSLs to pulmonary fibroblasts was increased significantly at 48 h compared with that using pirfenidone. In a murine and rat model of bleomycin-induced pulmonary fibrosis, pirfenidone PSLs inhibited IPF development and increased PSL accumulation in the lungs compared with that using pirfenidone solution or phosphate-buffered saline. Pirfenidone PSLs had potentially fewer side effects and stronger lung targeting. These results suggest that pirfenidone PSLs are promising preparations for IPF treatment.
Collapse
Affiliation(s)
- Meishan Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yingjian Song
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Sha Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
- *Correspondence: Sha Liu, ; Kaoxiang Sun,
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Linyu Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Meixuan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiaosu Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
- *Correspondence: Sha Liu, ; Kaoxiang Sun,
| | - Yanan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
11
|
Wet-dry-wet drug screen leads to the synthesis of TS1, a novel compound reversing lung fibrosis through inhibition of myofibroblast differentiation. Cell Death Dis 2021; 13:2. [PMID: 34916483 PMCID: PMC8677786 DOI: 10.1038/s41419-021-04439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022]
Abstract
Therapies halting the progression of fibrosis are ineffective and limited. Activated myofibroblasts are emerging as important targets in the progression of fibrotic diseases. Previously, we performed a high-throughput screen on lung fibroblasts and subsequently demonstrated that the inhibition of myofibroblast activation is able to prevent lung fibrosis in bleomycin-treated mice. High-throughput screens are an ideal method of repurposing drugs, yet they contain an intrinsic limitation, which is the size of the library itself. Here, we exploited the data from our "wet" screen and used "dry" machine learning analysis to virtually screen millions of compounds, identifying novel anti-fibrotic hits which target myofibroblast differentiation, many of which were structurally related to dopamine. We synthesized and validated several compounds ex vivo ("wet") and confirmed that both dopamine and its derivative TS1 are powerful inhibitors of myofibroblast activation. We further used RNAi-mediated knock-down and demonstrated that both molecules act through the dopamine receptor 3 and exert their anti-fibrotic effect by inhibiting the canonical transforming growth factor β pathway. Furthermore, molecular modelling confirmed the capability of TS1 to bind both human and mouse dopamine receptor 3. The anti-fibrotic effect on human cells was confirmed using primary fibroblasts from idiopathic pulmonary fibrosis patients. Finally, TS1 prevented and reversed disease progression in a murine model of lung fibrosis. Both our interdisciplinary approach and our novel compound TS1 are promising tools for understanding and combating lung fibrosis.
Collapse
|
12
|
Martin M, Zhang J, Miao Y, He M, Kang J, Huang HY, Chou CH, Huang TS, Hong HC, Su SH, Wong SS, Harper RL, Wang L, Bhattacharjee R, Huang HD, Chen ZB, Malhotra A, Rabinovitch M, Hagood JS, Shyy JYJ. Role of endothelial cells in pulmonary fibrosis via SREBP2 activation. JCI Insight 2021; 6:125635. [PMID: 34806652 PMCID: PMC8663776 DOI: 10.1172/jci.insight.125635] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/06/2021] [Indexed: 01/22/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with limited treatment options. Despite endothelial cells (ECs) comprising 30% of the lung cellular composition, the role of EC dysfunction in pulmonary fibrosis (PF) remains unclear. We hypothesize that sterol regulatory element-binding protein 2 (SREBP2) plays a critical role in the pathogenesis of PF via EC phenotypic modifications. Transcriptome data demonstrate that SREBP2 overexpression in ECs led to the induction of the TGF, Wnt, and cytoskeleton remodeling gene ontology pathways and the increased expression of mesenchymal genes, such as snail family transcriptional repressor 1 (snai1), α-smooth muscle actin, vimentin, and neural cadherin. Furthermore, SREBP2 directly bound to the promoter regions and transactivated these mesenchymal genes. This transcriptomic change was associated with an epigenetic and phenotypic switch in ECs, leading to increased proliferation, stress fiber formation, and ECM deposition. Mice with endothelial-specific transgenic overexpression of SREBP2 (EC-SREBP2[N]-Tg mice) that were administered bleomycin to induce PF demonstrated exacerbated vascular remodeling and increased mesenchymal transition in the lung. SREBP2 was also found to be markedly increased in lung specimens from patients with IPF. These results suggest that SREBP2, induced by lung injury, can exacerbate PF in rodent models and in human patients with IPF.
Collapse
Affiliation(s)
- Marcy Martin
- Division of Cardiology, Department of Medicine, UCSD, La Jolla, California, USA.,Vera Moulton Wall Center for Pulmonary Vascular Diseases.,Stanford Cardiovascular Institute, and.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jiao Zhang
- Division of Cardiology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Yifei Miao
- Division of Cardiology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Ming He
- Division of Cardiology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Jian Kang
- Division of Cardiology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China.,Warshel Institute for Computational Biology, and School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Chih-Hung Chou
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tse-Shun Huang
- Department of Bioengineering and Institute of Engineering in Medicine and
| | - Hsiao-Chin Hong
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shu-Han Su
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Simon S Wong
- Division of Respiratory Medicine, Department of Pediatrics, UCSD, La Jolla, California, USA
| | - Rebecca L Harper
- Vera Moulton Wall Center for Pulmonary Vascular Diseases.,Stanford Cardiovascular Institute, and.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Lingli Wang
- Vera Moulton Wall Center for Pulmonary Vascular Diseases.,Stanford Cardiovascular Institute, and.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Rakesh Bhattacharjee
- Division of Respiratory Medicine, Department of Pediatrics, UCSD, La Jolla, California, USA
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China.,Warshel Institute for Computational Biology, and School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Atul Malhotra
- Division of Pulmonary and Critical Care Medicine, UCSD, La Jolla, California, USA
| | - Marlene Rabinovitch
- Vera Moulton Wall Center for Pulmonary Vascular Diseases.,Stanford Cardiovascular Institute, and.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - James S Hagood
- Division of Respiratory Medicine, Department of Pediatrics, UCSD, La Jolla, California, USA.,Division of Pulmonology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
13
|
CXXC5 Attenuates Pulmonary Fibrosis in a Bleomycin-Induced Mouse Model and MLFs by Suppression of the CD40/CD40L Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7840652. [PMID: 32337277 PMCID: PMC7160725 DOI: 10.1155/2020/7840652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/26/2023]
Abstract
Objective To investigate the role of CXXC5 and the CD40/CD40L pathway in lung fibrosis. Methods (1) We constructed mouse models of bleomycin-induced pulmonary fibrosis and transfected them with a CXXC5 overexpression vector to evaluate the severity of pulmonary fibrosis. (2) Mouse lung fibroblast (MLF) models stably overexpressed or knockout of CXXC5 vector were constructed. After transforming growth factor-β1 (TGF-β1) stimulation, we examined the proliferation and apoptosis of the MLF model and evaluated the expression of mesenchymal markers and the CXXC5/CD40/CD40L pathway. Results (1) Compared with other groups, the overexpressed CXXC5 group had less alveolar structure destruction, thinner alveolar septum, and lower Ashcroft score. (2) In bleomycin-induced mice, the expression of CD40 and CD40L increased at both transcriptional and protein levels, and the same changes were observed in α-smooth muscle actin (α-SMA) and collagen type I (Colla I). After upregulation of CXXC5, the increase in CD40, CD40L, α-SMA, and Colla I was attenuated. (3) Stimulated with TGF-β1, MLF proliferation was activated, apoptosis was suppressed, and the expression of CD40, CD40L, α-SMA, and Colla I was increased at both transcriptional and protein levels. After upregulation of CXXC5, these changes were attenuated. Conclusion CXXC5 inhibits pulmonary fibrosis and transformation to myofibroblasts by negative feedback regulation of the CD40/CD40L pathway.
Collapse
|
14
|
Abyaneh HS, Regenold M, McKee TD, Allen C, Gauthier MA. Towards extracellular matrix normalization for improved treatment of solid tumors. Theranostics 2020; 10:1960-1980. [PMID: 32042347 PMCID: PMC6993244 DOI: 10.7150/thno.39995] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
It is currently challenging to eradicate cancer. In the case of solid tumors, the dense and aberrant extracellular matrix (ECM) is a major contributor to the heterogeneous distribution of small molecule drugs and nano-formulations, which makes certain areas of the tumor difficult to treat. As such, much research is devoted to characterizing this matrix and devising strategies to modify its properties as a means to facilitate the improved penetration of drugs and their nano-formulations. This contribution presents the current state of knowledge on the composition of normal ECM and changes to ECM that occur during the pathological progression of cancer. It also includes discussion of strategies designed to modify the composition/properties of the ECM as a means to enhance the penetration and transport of drugs and nano-formulations within solid tumors. Moreover, a discussion of approaches to image the ECM, as well as ways to monitor changes in the ECM as a function of time are presented, as these are important for the implementation of ECM-modifying strategies within therapeutic interventions. Overall, considering the complexity of the ECM, its variability within different tissues, and the multiple pathways by which homeostasis is maintained (both in normal and malignant tissues), the available literature - while promising - suggests that improved monitoring of ECM remodeling in vivo is needed to harness the described strategies to their full potential, and match them with an appropriate chemotherapy regimen.
Collapse
Affiliation(s)
- Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Maximilian Regenold
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Trevor D. McKee
- STTARR Innovation Centre, University Health Network, 101 College Street Room 7-504, Toronto, Ontario M5G 1L7, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Marc A. Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
| |
Collapse
|
15
|
O’Keefe K, DeSantis K, Altrieth A, Nelson D, Taroc E, Stabell A, Pham M, Larsen M. Regional Differences following Partial Salivary Gland Resection. J Dent Res 2020; 99:79-88. [PMID: 31765574 PMCID: PMC6927217 DOI: 10.1177/0022034519889026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine aims to repair, replace, or restore function to tissues damaged by aging, disease, or injury. Partial organ resection is not only a common clinical approach in cancer therapy but also an experimental injury model used to examine mechanisms of regeneration and repair in organs. We performed a partial resection, or partial sialoadenectomy, in the female murine submandibular salivary gland (SMG) to establish a model for investigation of repair mechanisms in salivary glands (SGs). After partial sialoadenectomy, we performed whole-gland measurements over a period of 56 d and found that the gland increased slightly in size. We used microarray analysis and immunohistochemistry (IHC) to examine messenger RNA and protein changes in glands over time. Microarray analysis identified dynamic changes in the transcriptome 3 d after injury that were largely resolved by day 14. At the 3-d time point, we detected gene signatures for cell cycle regulation, inflammatory/repair response, and extracellular matrix (ECM) remodeling in the partially resected glands. Using quantitative IHC, we identified a transient proliferative response throughout the gland. Both secretory epithelial and stromal cells expressed Ki67 that was detectable at day 3 and largely resolved by day 14. IHC also revealed that while most of the gland underwent a wound-healing response that resolved by day 14, a small region of the gland showed an aberrant sustained fibrotic response characterized by increased levels of ECM deposition, sustained Ki67 levels in stromal cells, and a persistent M2 macrophage response through day 56. The partial submandibular salivary gland resection model provides an opportunity to examine a normal healing response and an aberrant fibrotic response within the same gland to uncover mechanisms that prevent wound healing and regeneration in mammals. Understanding regional differences in the wound-healing responses may ultimately affect regenerative therapies for patients.
Collapse
Affiliation(s)
- K.J. O’Keefe
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, NY, USA
- Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
| | - K.A. DeSantis
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, NY, USA
- Gen*NY*Sis Center for Excellence in Cancer, Department of Environmental Health Sciences, School of Public Health, State University of New York, University at Albany, Albany, NY, USA
| | - A.L. Altrieth
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, NY, USA
- Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
| | - D.A. Nelson
- Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
| | - E.Z.M. Taroc
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, NY, USA
- Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
| | - A.R. Stabell
- Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
- Current address: Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - M.T. Pham
- Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
- Current address: The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, UK
| | - M. Larsen
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, State University of New York, University at Albany, Albany, NY, USA
- Department of Biological Sciences, State University of New York, University at Albany, Albany, NY, USA
| |
Collapse
|
16
|
Lin X, Barravecchia M, Matthew Kottmann R, Sime P, Dean DA. Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis. Sci Rep 2019; 9:19643. [PMID: 31873099 PMCID: PMC6928213 DOI: 10.1038/s41598-019-55819-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/30/2019] [Indexed: 01/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and fatal disease and characterized by increased deposition of extracellular matrix proteins and scar formation in the lung, resulting from alveolar epithelial damage and accumulation of inflammatory cells. Evidence suggests that Caveolin-1 (Cav-1), a major component of caveolae which regulates cell signaling and endocytosis, is a potential target to treat fibrotic diseases, although the mechanisms and responsible cell types are unclear. We show that Cav-1 expression was downregulated both in alveolar epithelial type I cells in bleomycin-injured mouse lungs and in lung sections from IPF patients. Increased expression of IL-1β and caspase-1 has been observed in IPF patients, indicating inflammasome activation associated with IPF. Gene transfer of a plasmid expressing Cav-1 using transthoracic electroporation reduced infiltration of neutrophils and monocytes/macrophages and protected from subsequent bleomycin-induced pulmonary fibrosis. Overexpression of Cav-1 suppressed bleomycin- or silica-induced activation of caspase-1 and maturation of pro-IL-1β to secrete cleaved IL-1β both in mouse lungs and in primary type I cells. These results demonstrate that gene transfer of Cav-1 downregulates inflammasome activity and protects from subsequent bleomycin-mediated pulmonary fibrosis. This indicates a pivotal regulation of Cav-1 in inflammasome activity and suggests a novel therapeutic strategy for patients with IPF.
Collapse
Affiliation(s)
- Xin Lin
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Michael Barravecchia
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - R Matthew Kottmann
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Patricia Sime
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
17
|
Chuang HM, Chen YS, Harn HJ. The Versatile Role of Matrix Metalloproteinase for the Diverse Results of Fibrosis Treatment. Molecules 2019; 24:molecules24224188. [PMID: 31752262 PMCID: PMC6891433 DOI: 10.3390/molecules24224188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a type of chronic organ failure, resulting in the excessive secretion of extracellular matrix (ECM). ECM protects wound tissue from infection and additional injury, and is gradually degraded during wound healing. For some unknown reasons, myofibroblasts (the cells that secrete ECM) do not undergo apoptosis; this is associated with the continuous secretion of ECM and reduced ECM degradation even during de novo tissue formation. Thus, matrix metalloproteinases (MMPs) are considered to be a potential target of fibrosis treatment because they are the main groups of ECM-degrading enzymes. However, MMPs participate not only in ECM degradation but also in the development of various biological processes that show the potential to treat diseases such as stroke, cardiovascular diseases, and arthritis. Therefore, treatment involving the targeting of MMPs might impede typical functions. Here, we evaluated the links between these MMP functions and possible detrimental effects of fibrosis treatment, and also considered possible approaches for further applications.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Yu-Shuan Chen
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Pathology, Hualien Tzu Chi Hospital & Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +03-8561825 (ext. 15615)
| |
Collapse
|
18
|
Li RS, Xu GH, Cao J, Liu B, Xie HF, Ishii Y, Zhang CF. Alpha-Mangostin Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Mice Partly Through Activating Adenosine 5'-Monophosphate-Activated Protein Kinase. Front Pharmacol 2019; 10:1305. [PMID: 31798444 PMCID: PMC6863977 DOI: 10.3389/fphar.2019.01305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Pulmonary fibrosis (PF) is a devastating interstitial lung disease and characterized by an abnormal accumulation of extracellular matrix (ECM). Nintedanib (NDN) and pirfenidone are two approved therapies for PF, but their potential side-effects have been reported. Recently, the use of natural supplements for PF is attracting attention. Alpha-mangostin (α-MG) is an active xanthone-type compound isolated from the nutritious fruit mangosteen. Purpose: In the present study, the potential effect and underlying mechanism of α-MG were evaluated in bleomycin (BLM)-induced PF and activated primary lung fibroblasts (PLFs). Methods: Histopathological changes and collagen deposition were analyzed via hematoxylin-eosin staining and Masson staining, the expression of nicotinamide adenine dinucleotide phosphate oxidase-4 (NOX4) involved in oxidative stress in lung tissues was analyzed by immunochemistry staining. The expressions of α-smooth muscle actin (α-SMA), collagen I (Col I), p-adenosine 5′-monophosphate-activated protein kinase (AMPK)/AMPK, and NOX4 were detected by Western blot, immunofluorescence or RT-PCR, and effects of α-MG on cell viability were detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Results:In vivo results demonstrated that α-MG treatment (10 mg/kg/day) significantly ameliorated BLM-induced deposition of ECM in lung tissues. Moreover, α-MG could inhibit protein expressions of α-SMA and Col I as well as its mRNA levels. In addition, α-MG also significantly inhibited transforming growth factor-β1/Smad2/3 pathway and regulated the protein expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in lung tissues. In vitro results demonstrated that α-MG significantly increased p-AMPK/AMPK but reduced the protein expression level of α-SMA and Col I as well as NOX4 in activated PLFs. Further study demonstrated that these improvement effects were significantly blocked by compound C. Conclusion: α-MG treatment significantly decreased oxidative stress in lungs partly by activating AMPK mediated signaling pathway in BLM-induced PF and activated PLFs and decreased the deposition of ECM. The present study provides pharmacological evidence to support therapeutic application of α-MG in the treatment of PF.
Collapse
Affiliation(s)
- Ren-Shi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Gong-Hao Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Juan Cao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Bei Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Hai-Feng Xie
- Research and Development Department, Chengdu Biopurify Phytochemicals Ltd., Chengdu, China
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Chao-Feng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Kim MH, Jung SY, Song KH, Park JI, Ahn J, Kim EH, Park JK, Hwang SG, Woo HJ, Song JY. A new FGFR inhibitor disrupts the TGF-β1-induced fibrotic process. J Cell Mol Med 2019; 24:830-840. [PMID: 31692229 PMCID: PMC6933341 DOI: 10.1111/jcmm.14793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is chronic and irreversible damage to the lung characterized by fibroblast activation and matrix deposition. Although recently approved novel anti‐fibrotic agents can improve the lung function and survival of patients with PF, the overall outcomes remain poor. In this study, a novel imidazopurine compound, 3‐(2‐chloro‐6‐fluorobenzyl)‐1,6,7‐trimethyl‐1H‐imidazo[2,1‐f]purine‐2,4(3H,8H)‐dione (IM‐1918), markedly inhibited transforming growth factor (TGF)‐β‐stimulated reporter activity and reduced the expression of representative fibrotic markers, such as connective tissue growth factor, fibronectin, collagen and α‐smooth muscle actin, on human lung fibroblasts. However, IM‐1918 neither decreased Smad‐2 and Smad‐3 nor affected p38MAPK and JNK. Instead, IM‐1918 reduced Akt and extracellular signal‐regulated kinase 1/2 phosphorylation increased by TGF‐β. Additionally, IM‐1918 inhibited the phosphorylation of fibroblast growth factor receptors 1 and 3. In a bleomycin‐induced murine lung fibrosis model, IM‐1918 profoundly reduced fibrotic areas and decreased collagen and α‐smooth muscle actin accumulation. These results suggest that IM‐1918 can be applied to treat lung fibrosis.
Collapse
Affiliation(s)
- Mi-Hyoung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.,Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Eun-Ho Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hee-Jong Woo
- Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
20
|
Ko J, Mills T, Huang J, Chen NY, Mertens TCJ, Collum SD, Lee G, Xiang Y, Han L, Zhou Y, Lee CG, Elias JA, Jyothula SSK, Rajagopal K, Karmouty-Quintana H, Blackburn MR. Transforming growth factor β1 alters the 3'-UTR of mRNA to promote lung fibrosis. J Biol Chem 2019; 294:15781-15794. [PMID: 31488543 DOI: 10.1074/jbc.ra119.009148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/27/2019] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by the pathological remodeling of air sacs as a result of excessive accumulation of extracellular matrix (ECM) proteins, but the mechanism governing the robust protein expression is poorly understood. Our recent findings demonstrate that alternative polyadenylation (APA) caused by NUDT21 reduction is important for the increased expression of fibrotic mediators and ECM proteins in lung fibroblasts by shortening the 3'-untranslated regions (3'-UTRs) of mRNAs and stabilizing their transcripts, therefore activating pathological signaling pathways. Despite the importance of NUDT21 reduction in the regulation of fibrosis, the underlying mechanisms for the depletion are unknown. We demonstrate here that NUDT21 is depleted by TGFβ1. We found that miR203, which is increased in IPF, was induced by TGFβ1 to target the NUDT21 3'-UTR, thus depleting NUDT21 in human and mouse lung fibroblasts. TGFβ1-mediated NUDT21 reduction was attenuated by the miR203 inhibitor antagomiR203 in fibroblasts. TGFβ1 transgenic mice revealed that TGFβ1 down-regulates NUDT21 in fibroblasts in vivo Furthermore, TGFβ1 promoted differential APA of fibrotic genes, including FGF14, RICTOR, TMOD2, and UCP5, in association with increased protein expression. This unique differential APA signature was also observed in IPF fibroblasts. Altogether, our results identified TGFβ1 as an APA regulator through NUDT21 depletion amplifying pulmonary fibrosis.
Collapse
Affiliation(s)
- Junsuk Ko
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030.,MD Anderson UTHealth Graduate School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Jingjing Huang
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003 Jiangsu, China
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Tinne C J Mertens
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030.,MD Anderson UTHealth Graduate School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Garam Lee
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Leng Han
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030.,MD Anderson UTHealth Graduate School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Soma S K Jyothula
- Department of Internal Medicine, McGovern Medical School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Keshava Rajagopal
- Department of Internal Medicine, McGovern Medical School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030.,MD Anderson UTHealth Graduate School, the University of Texas Health Science Center, Houston, Texas 77030
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, Houston, Texas 77030 .,MD Anderson UTHealth Graduate School, the University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
21
|
Lu Q, El-Hashash AHK. Cell-based therapy for idiopathic pulmonary fibrosis. Stem Cell Investig 2019; 6:22. [PMID: 31559309 PMCID: PMC6737434 DOI: 10.21037/sci.2019.06.09] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an example of interstitial lung diseases that is characterized by chronic, progressive, and fibrotic lung injuries. During lung fibrosis, normal healthy lung tissues are replaced by remarkably destroyed alveolar architecture and altered extracellular cell matrix. These changes eventually cause severe disruption of the tightly-controlled gas exchange process and reduction of lung compliance that ultimately lead to both respiratory failure and death. In the last decade, progress has been made toward understanding the pathogenesis of pulmonary fibrosis, and two novel disease-modifying therapies were approved. However, finding more effective treatments for pulmonary fibrosis is still a challenge, with its incidence continues to increase globally, which is associated with significantly high mortality, morbidity and economical healthcare burden. Different stem cell types have recently emerged as a promising therapy for human diseases, including lung fibrosis, with numerous studies on the identification, characterization, proliferation and differentiation of stem cells. A large body of both basic and pre-clinical research on stem cells has been recently translated to patient care worldwide. Herein, we review recent advances in our understanding of the pathophysiology of IPF, and types of cells used in IPF cell-based therapies, including alveolar and mixed lung epithelial cells, different stem cell types (MSCs, ADSCs, IPSCs…etc.), endogenous lung tissue-specific stem cells, and circulating endothelial progenitors (EPCs). We also discuss recent studies on the applications of these cells in IPF therapy and their delivery routes, effective doses for cell therapy, and timing of delivery. Finally, we discuss attractive recent and current clinical trials conducted on cell-based therapy for IPF.
Collapse
Affiliation(s)
- Qi Lu
- The University of Edinburgh-Zhejiang International campus (UoE-ZJU Institute), Haining, China
- Centre of Stem Cell and Regenerative Medicine Schools of Medicine & Basic Medicine, Hangzhou, China
| | - Ahmed H. K. El-Hashash
- The University of Edinburgh-Zhejiang International campus (UoE-ZJU Institute), Haining, China
- Centre of Stem Cell and Regenerative Medicine Schools of Medicine & Basic Medicine, Hangzhou, China
| |
Collapse
|
22
|
Nie Y, Hu Y, Yu K, Zhang D, Shi Y, Li Y, Sun L, Qian F. Akt1 regulates pulmonary fibrosis via modulating IL-13 expression in macrophages. Innate Immun 2019; 25:451-461. [PMID: 31299858 PMCID: PMC6900639 DOI: 10.1177/1753425919861774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive interstitial pneumonia characterised by fibroblast accumulation, collagen deposition and extracellular matrix (ECM) remodelling. It was reported that Akt1 mediated idiopathic pulmonary fibrosis progression through regulating the apoptosis of alveolar macrophage, while its effect on macrophage-produced cytokines remains largely unknown. In the present study, we first examined the phosphorylation of Akt1 in lung sections from idiopathic pulmonary fibrosis patients by immunohistochemistry before applying a bleomycin-induced idiopathic pulmonary fibrosis model using Akt1−/− mice and Akt1+/+ littermates. The results showed that Akt1 was remarkably up-regulated in idiopathic pulmonary fibrosis patients, while in vivo studies revealed that Akt1-deficient mice had well-preserved alveolar structure and fewer collagens, secreted fewer matrix components, including alpha smooth-muscle actin and fibronectin and survived significantly longer than Akt1+/+ littermates. Additionally, the pro-fibrogenic cytokine IL-13 was down-regulated at least twofold in Akt1−/−mice compared to the Akt1+/+group on d 3 and 7 after bleomycin treatment. Furthermore, it was found that Akt1–/– macrophages displayed down-regulation of IL-13 compared to Akt1+/+ macrophages in which Akt1 was phosphorylated in response to IL-33 stimulation. These findings indicate that Akt1 modulates pulmonary fibrosis through inducing IL-13 production by macrophages, suggesting that targeting Akt1 may simultaneously block the fibrogenic processes of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yunjuan Nie
- 1 Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Yudong Hu
- 2 Engineering Research Center of Cell and Therapeutic Ab, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, PR China
| | - Kaikai Yu
- 2 Engineering Research Center of Cell and Therapeutic Ab, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, PR China
| | - Dan Zhang
- 3 Research Center for Cancer Precision Medicine, Bengbu Medical College, PR China
| | - Yinze Shi
- 1 Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Yaolin Li
- 1 Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Lei Sun
- 2 Engineering Research Center of Cell and Therapeutic Ab, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, PR China
| | - Feng Qian
- 2 Engineering Research Center of Cell and Therapeutic Ab, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, PR China.,3 Research Center for Cancer Precision Medicine, Bengbu Medical College, PR China
| |
Collapse
|
23
|
Rehman M, Vodret S, Braga L, Guarnaccia C, Celsi F, Rossetti G, Martinelli V, Battini T, Long C, Vukusic K, Kocijan T, Collesi C, Ring N, Skoko N, Giacca M, Del Sal G, Confalonieri M, Raspa M, Marcello A, Myers MP, Crovella S, Carloni P, Zacchigna S. High-throughput screening discovers antifibrotic properties of haloperidol by hindering myofibroblast activation. JCI Insight 2019; 4:123987. [PMID: 30996132 PMCID: PMC6538355 DOI: 10.1172/jci.insight.123987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Fibrosis is a hallmark in the pathogenesis of various diseases, with very limited therapeutic solutions. A key event in the fibrotic process is the expression of contractile proteins, including α-smooth muscle actin (αSMA) by fibroblasts, which become myofibroblasts. Here, we report the results of a high-throughput screening of a library of approved drugs that led to the discovery of haloperidol, a common antipsychotic drug, as a potent inhibitor of myofibroblast activation. We show that haloperidol exerts its antifibrotic effect on primary murine and human fibroblasts by binding to sigma receptor 1, independent from the canonical transforming growth factor-β signaling pathway. Its mechanism of action involves the modulation of intracellular calcium, with moderate induction of endoplasmic reticulum stress response, which in turn abrogates Notch1 signaling and the consequent expression of its targets, including αSMA. Importantly, haloperidol also reduced the fibrotic burden in 3 different animal models of lung, cardiac, and tumor-associated fibrosis, thus supporting the repurposing of this drug for the treatment of fibrotic conditions.
Collapse
Affiliation(s)
| | | | | | - Corrado Guarnaccia
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo,” Trieste, Italy
| | - Giulia Rossetti
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | - Chiara Collesi
- Molecular Medicine, and
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Natasa Skoko
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine, and
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giannino Del Sal
- National Laboratory CIB, Area Science Park Padriciano, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marcello Raspa
- National Research Council, CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, Rome, Italy
| | | | - Michael P. Myers
- Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Sergio Crovella
- Biotechnology Development, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Paolo Carloni
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Serena Zacchigna
- Cardiovascular Biology
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
24
|
Schrumpf JA, Ninaber DK, van der Does AM, Hiemstra PS. TGF-β1 Impairs Vitamin D-Induced and Constitutive Airway Epithelial Host Defense Mechanisms. J Innate Immun 2019; 12:74-89. [PMID: 30970352 DOI: 10.1159/000497415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Airway epithelium is an important site for local vitamin D (VD) metabolism; this can be negatively affected by inflammatory mediators. VD is an important regulator of respiratory host defense, for example, by increasing the expression of hCAP18/LL-37. TGF-β1 is increased in chronic obstructive pulmonary disease (COPD), and known to decrease the expression of constitutive host defense mediators such as secretory leukocyte protease inhibitor (SLPI) and polymeric immunoglobulin receptor (pIgR). VD has been shown to affect TGF-β1-signaling by inhibiting TGF-β1-induced epithelial-to-mesenchymal transition. However, interactions between VD and TGF-β1, relevant for the understanding host defense in COPD, are incompletely understood. Therefore, the aim of the present study was to investigate the combined effects of VD and TGF-β1 on airway epithelial cell host defense mechanisms. Exposure to TGF-β1 reduced both baseline and VD-induced expression of hCAP18/LL-37, partly by increasing the expression of the VD-degrading enzyme CYP24A1. TGF-β1 alone decreased the number of secretory club and goblet cells and reduced the expression of constitutive host defense mediators SLPI, s/lPLUNC and pIgR, effects that were not modulated by VD. These results suggest that TGF-β1 may decrease the respiratory host defense both directly by reducing the expression of host defense mediators, and indirectly by affecting VD-mediated effects such as expression of hCAP18/LL-37.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands,
| | - Dennis K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Elevation of IL-6 and IL-33 Levels in Serum Associated with Lung Fibrosis and Skeletal Muscle Wasting in a Bleomycin-Induced Lung Injury Mouse Model. Mediators Inflamm 2019; 2019:7947596. [PMID: 31049028 PMCID: PMC6458868 DOI: 10.1155/2019/7947596] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Weight loss due to skeletal muscle atrophy in patients with chronic pulmonary disease is negatively correlated with clinical outcome. Pulmonary fibrosis is a chronic and progressive interstitial lung disease characterized by the dysregulated deposition of the extracellular matrix (ECM) with the destruction of normal tissue, resulting in end-stage organ failure. BLM-induced fibrosis is one of several different experimental models of pulmonary fibrosis, characterized by inflammation and excessive ECM deposition. We directly induced mouse lung injury by the intratracheal administration of bleomycin and monitored the physiological and biochemical changes in lung and skeletal muscle tissues by using lung function testing, ELISA, Western blotting, and immunohistochemistry. Here, we found that BLM-induced lung fibrosis with thickened interstitial lung tissue, including fibronectin and collagen, was correlated with the increased serum concentrations of IL-6 and IL-33 and accompanied by reduced lung function, including FRC (functional residual capacity), C chord (lung compliance), IC (inspiratory capacity), VC (vital capacity), TLC (total lung capacity), and FVC (forced vital capacity) (p < 0.05). The activity of AKT in lung tissue was suppressed, but conversely, the activity of STAT3 was enhanced during lung fibrosis in mice. In addition, we found that the amount of sST2, the soluble form of the IL-33 receptor, was dramatically decreased in lung fibrosis tissues. The skeletal muscle tissue isolated from lung injury mice increased the activation of STAT3 and AMPK, accompanied by an increased amount of Atrogin-1 protein in BLM-induced lung fibrosis mice. The mouse myoblast cell-based model showed that IL-6 and IL-33 specifically activated STAT3 and AMPK signaling, respectively, to induce the expression of the muscle-specific proteolysis markers MuRF1 and Atrogin-1. These data suggested that increased levels of IL-6 and IL-33 in the serum of mice with BLM-induced lung injury may cause lung fibrosis with thickened interstitial lung tissue accompanied by reduced lung function and muscle mass through the activation of STAT3 and AMPK signals.
Collapse
|
26
|
Future Directions for IPF Research. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Combination Therapy with Pirfenidone plus Prednisolone Ameliorates Paraquat-Induced Pulmonary Fibrosis. Inflammation 2018; 41:134-142. [PMID: 28921394 DOI: 10.1007/s10753-017-0671-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pirfenidone is known to slow the decline in vital capacity and increase survival in idiopathic pulmonary fibrosis (IPF). Besides, administration of glucocorticoids, e.g., prednisolone has been the conventional strategy to the treatment of patients with this disease, although their efficacy is under debate. Since multiple coactivated pathways are involved in the pathogenesis of IPF, combination therapy is a foundation strategy to cover many more synergetic mechanisms and increase response. The aim of the present study was to compare the therapeutic efficacy of prednisolone plus pirfenidone with pirfenidone alone in PQ-induced lung fibrosis. After development of PQ-induced lung fibrosis, pirfenidone, prednisolone, and their combination were administered for 14 consecutive days. Lung pathological lesions, along with increased hydroxyproline were determined in the paraquat group. Paraquat also caused oxidative stress and increasing the proinflammatory and profibrotic gene expression. Pirfenidone attenuated the PQ-induced pulmonary fibrosis from the analysis of antioxidant enzymes but prednisolone had no such effect. Co-treatment with pirfenidone and prednisolone suppressed lung hydroxyproline content, TGF-β1, and TNF-α; however, prednisolone alone could not suppress pulmonary fibrosis which was significantly suppressed only by pirfenidone. Pirfenidone also suppressed the increase in MMP-2 and TIMP-1 induced by PQ. All of these effects were exaggerated when pirfenidone coadministered with prednisolone. These findings suggest that pirfenidone exerts its antifibrotic effect through regulation of hydroxyproline content, oxidative stress and proinflammatory and profibrotic gene expression during the development of PQ-induced pulmonary fibrosis in rats and combination therapy with prednisolone can represent more potent therapeutic effects.
Collapse
|
28
|
Kim HY, Kim MS, Kim SH, Joen D, Lee K. Protective Effects of Nintedanib against Polyhexamethylene Guanidine Phosphate-Induced Lung Fibrosis in Mice. Molecules 2018; 23:molecules23081974. [PMID: 30087305 PMCID: PMC6222351 DOI: 10.3390/molecules23081974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
Nintedanib (NDN), a tyrosine kinase inhibitor, has been shown to have anti-tumor, anti-inflammatory, and anti-fibrotic effects in several reports. We investigated the protective effects of NDN against polyhexamethylene guanidine phosphate (PHMG)-induced lung fibrosis in mice. The following three experimental groups were evaluated: (1) vehicle control; (2) PHMG (1.1 mg/kg); and (3) PHMG & NDN (60 mg/kg). PHMG induced pulmonary inflammation and fibrosis by intratracheal instillation in mice. In contrast, NDN treatment effectively alleviated the PHMG induced lung injury, and attenuated the number of total cells and inflammatory cells in the bronchoalveolar lavage fluid, including the fibrotic histopathological changes, and also reduced the hydroxyproline content. NDN also significantly decreased the expression of inflammatory cytokines and fibrotic factors, and the activation of the NLRP3 inflammasome in lung tissues. These results suggest that NDN may mitigate the inflammatory response and development of pulmonary fibrosis in the lungs of mice treated with PHMG.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30, Baekhak 1-gil, Jeongeup-si 56212, Korea.
- Department of Toxicology Evaluation, Graduate School of Pre-Clinical Laboratory Science, Konyang University, Daejeon 35365, Korea.
| | - Min-Seok Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30, Baekhak 1-gil, Jeongeup-si 56212, Korea.
| | - Sung-Hwan Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30, Baekhak 1-gil, Jeongeup-si 56212, Korea.
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Korea.
| | - Doin Joen
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30, Baekhak 1-gil, Jeongeup-si 56212, Korea.
| | - Kyuhong Lee
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30, Baekhak 1-gil, Jeongeup-si 56212, Korea.
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Korea.
| |
Collapse
|
29
|
Chuang HM, Shih TE, Lu KY, Tsai SF, Harn HJ, Ho LI. Mesenchymal Stem Cell Therapy of Pulmonary Fibrosis: Improvement with Target Combination. Cell Transplant 2018; 27:1581-1587. [PMID: 29991279 PMCID: PMC6299195 DOI: 10.1177/0963689718787501] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the clinical application of new drugs has been shown to be effective in slowing disease progression and improving the quality of life in patients with pulmonary fibrosis, the damaged lung tissue does not recover with these drugs. Thus, there is an urgent need to establish regenerative therapy, such as stem cell therapy or tissue engineering. Moreover, the clinical application of mesenchymal stem cell (MSC) therapy has been shown to be safe in humans with idiopathic pulmonary fibrosis (IPF). It seems that a combination of MSC transplantation and pharmaceutical therapy might have additional benefits; however, the experimental design for its efficacy is still lacking. In this review, we provide an overview of the mechanisms that were identified when IPF was treated with MSC transplantation or new drugs. To maximize the therapeutic effect, we suggest that MSC transplantation is combined with drug application for synergistic effects. This review provides clinicians and scientists with the most efficient medical options, in the hope that this will spur on future research and lead to an eventual cure for this disease.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan.,Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tina Emily Shih
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan
| | - Kang-Yun Lu
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Sheng-Feng Tsai
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan.,Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Li-Ing Ho
- Division of Respiratory Therapy, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
30
|
Fois AG, Paliogiannis P, Sotgia S, Mangoni AA, Zinellu E, Pirina P, Carru C, Zinellu A. Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: a systematic review. Respir Res 2018; 19:51. [PMID: 29587761 PMCID: PMC5872514 DOI: 10.1186/s12931-018-0754-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/19/2018] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF), a fatal lung disease of unknown origin, is characterized by chronic and progressive fibrosing interstitial pneumonia which progressively impairs lung function. Oxidative stress is one of the main pathogenic pathways in IPF. The aim of this systematic review was to describe the type of markers of oxidative stress identified in different biological specimens and the effects of antioxidant therapies in patients with IPF. METHODS We conducted a systematic search of publications listed in electronic databases (Pubmed, Web of Science, Scopus and Google Scholar) from inception to October 2017. Two investigators independently reviewed all identified articles to determine eligibility. RESULTS After a substantial proportion of the initially identified articles (n = 554) was excluded because they were duplicates, abstracts, irrelevant, or did not meet the selection criteria, we identified 30 studies. In each study, we critically appraised the type, site (systemic vs. local, e.g. breath, sputum, expired breath condensate, epithelial lining fluid, bronchoalveolar lavage, and lung tissue specimens), and method used for measuring the identified oxidative stress biomarkers. Furthermore, the current knowledge on antioxidant therapies in IPF was summarized. CONCLUSIONS A number of markers of oxidative stress, with individual advantages and limitations, have been described in patients with IPF. Nevertheless, trials of antioxidant treatments have been unable to demonstrate consistent benefits, barring recent pharmacogenomics data suggesting different results in specific genotype subgroups of patients with IPF.
Collapse
Affiliation(s)
- Alessandro G Fois
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. .,Department of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy.
| | | | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Elisabetta Zinellu
- Department of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy
| | - Pietro Pirina
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy.,Department of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
31
|
Honda H, Fujimoto M, Serada S, Urushima H, Mishima T, Lee H, Ohkawara T, Kohno N, Hattori N, Yokoyama A, Naka T. Leucine-rich α-2 glycoprotein promotes lung fibrosis by modulating TGF- β signaling in fibroblasts. Physiol Rep 2017; 5:5/24/e13556. [PMID: 29279415 PMCID: PMC5742708 DOI: 10.14814/phy2.13556] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/24/2022] Open
Abstract
TGF‐β has an important role in fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Detailed analysis of TGF‐β signaling in pulmonary fibrosis at the molecular level is needed to identify novel therapeutic targets. Recently, leucine‐rich alpha‐2 glycoprotein (LRG) was reported to function as a modulator of TGF‐β signaling in angiogenesis and tumor progression. However, the involvement of LRG in fibrotic disorders, including IPF, has not yet been investigated. In this study, we investigated the role of LRG in fibrosis by analyzing LRG knockout (KO) mice with bleomycin‐induced lung fibrosis, an animal model of pulmonary fibrosis. The amount of LRG in the lungs of wild‐type (WT) mice was increased by bleomycin administration prior to fibrosis development. In LRG KO mice, lung fibrosis was significantly suppressed, as indicated by attenuated Masson's trichrome staining and lower collagen content than those in WT mice. Moreover, in the lungs of LRG KO mice, phosphorylation of Smad2 was reduced and expression of α‐SMA was decreased relative to those in WT mice. In vitro experiments indicated that LRG enhanced the TGF‐β‐induced phosphorylation of Smad2 and the expression of Serpine1 and Acta2, the downstream of Smad2, in fibroblasts. Although endoglin, an accessory TGF‐β receptor, is essential for LRG to promote TGF‐β signaling in endothelial cells during angiogenesis, we found that endoglin did not contribute to the ability of LRG to enhance Smad2 phosphorylation in fibroblasts. Taken together, our data suggest that LRG promotes lung fibrosis by modulating TGF‐β‐induced Smad2 phosphorylation and activating profibrotic responses in fibroblasts.
Collapse
Affiliation(s)
- Hiromi Honda
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan.,Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Minoru Fujimoto
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Hayato Urushima
- Department of Anatomy and Regenerative Biology, Osaka City University Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takashi Mishima
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Hyun Lee
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tomoharu Ohkawara
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | | | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Akihito Yokoyama
- Department of Haematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tetsuji Naka
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan.,Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| |
Collapse
|
32
|
Binks AP, Beyer M, Miller R, LeClair RJ. Cthrc1 lowers pulmonary collagen associated with bleomycin-induced fibrosis and protects lung function. Physiol Rep 2017; 5:5/5/e13115. [PMID: 28292882 PMCID: PMC5350163 DOI: 10.14814/phy2.13115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) involves collagen deposition that results in a progressive decline in lung function. This process involves activation of Smad2/3 by transforming growth factor (TGF)‐β and Wnt signaling pathways. Collagen Triple Helix Repeat‐Containing‐1 (Cthrc1) protein inhibits Smad2/3 activation. To test the hypothesis that Cthrc1 limits collagen deposition and the decline of lung function, Cthrc1 knockout (Cthrc1−/−) and wild‐type mice (WT) received intratracheal injections of 2.5 U/kg bleomycin or saline. Lungs were harvested after 14 days and Bronchoalveolar lavage (BAL) TGF‐β, IL1‐β, hydroxyproline and lung compliance were assessed. TGF‐β was significantly higher in Cthrc1−/− compared to WT (53.45 ± 6.15 ng/mL vs. 34.48 ± 11.05) after saline injection. Bleomycin injection increased TGF‐β in both Cthrc1−/− (66.37 ± 8.54 ng/mL) and WT (63.64 ± 8.09 ng/mL). Hydroxyproline was significantly higher in Cthrc1−/− compared to WT after bleomycin‐injection (2.676 ± 0.527 μg/mg vs. 1.889 ± 0.520, P = 0.028). Immunohistochemistry of Cthrc1‐/‐ lung sections showed intracellular localization and activation of β‐catenin Y654 in areas of tissue remodeling that was not evident in WT. Lung compliance was significantly reduced by bleomycin in Cthrc1−/− but there was no effect in WT animals. These data suggest Cthrc1 reduces fibrotic tissue formation in bleomycin‐induced lung fibrosis and the effect is potent enough to limit the decline in lung function. We conclude that Cthrc1 plays a protective role, limiting collagen deposition and could form the basis of a novel therapy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Andrew P Binks
- Department of Biomedical Sciences, School of Medicine, Greenville, University of South Carolina, Greenville, South Carolina
| | - Megyn Beyer
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | - Ryan Miller
- Department of Biomedical Sciences, School of Medicine, Greenville, University of South Carolina, Greenville, South Carolina.,Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine
| | - Renee J LeClair
- Department of Biomedical Sciences, School of Medicine, Greenville, University of South Carolina, Greenville, South Carolina
| |
Collapse
|
33
|
Ahamed J, Laurence J. Role of Platelet-Derived Transforming Growth Factor-β1 and Reactive Oxygen Species in Radiation-Induced Organ Fibrosis. Antioxid Redox Signal 2017; 27:977-988. [PMID: 28562065 PMCID: PMC5649128 DOI: 10.1089/ars.2017.7064] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE This review evaluates the role of platelet-derived transforming growth factor (TGF)-β1 in oxidative stress-linked pathologic fibrosis, with an emphasis on the heart and kidney, by using ionizing radiation as a clinically relevant stimulus. Current radiation-induced organ fibrosis interventions focus on pan-neutralization of TGF-β or the use of anti-oxidants and anti-proliferative agents, with limited clinical efficacy. Recent Advances: Pathologic fibrosis represents excessive accumulation of collagen and other extracellular matrix (ECM) components after dysregulation of a balance between ECM synthesis and degradation. Targets based on endogenous carbon monoxide (CO) pathways and the use of redox modulators such as N-acetylcysteine present promising alternatives to current therapeutic regimens. CRITICAL ISSUES Ionizing radiation leads to direct DNA damage and generation of reactive oxygen species (ROS), with TGF-β1 activation via ROS, thrombin generation, platelet activation, and pro-inflammatory signaling promoting myofibroblast accumulation and ECM production. Feed-forward loops, as TGF-β1 promotes ROS, amplify these profibrotic signals, and persistent low-grade inflammation insures their perpetuation. We highlight differential roles for platelet- versus monocyte-derived TGF-β1, establishing links between canonical and noncanonical TGF-β1 signaling pathways in relationship to macrophage polarization and autophagy, and define points where pharmacologic agents can intervene. FUTURE DIRECTIONS Additional studies are needed to understand mechanisms underlying the anti-fibrotic effects of current and proposed therapeutics, based on limiting platelet TGF-β1 activity, promotion of macrophage polarization, and facilitation of collagen autophagy. Models incorporating endogenous CO and selective TGF-β1 pathways that impact the initiation and progression of pathologic fibrosis, including nuclear factor erythroid 2-related factor (Nrf2) and redox, are of particular interest. Antioxid. Redox Signal. 27, 977-988.
Collapse
Affiliation(s)
- Jasimuddin Ahamed
- 1 Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, Oklahoma
| | - Jeffrey Laurence
- 2 Division of Hematology and Medical Oncology, Weill Cornell Medical College , New York, New York
| |
Collapse
|
34
|
Waghorn PA, Jones CM, Rotile NJ, Koerner SK, Ferreira DS, Chen HH, Probst CK, Tager AM, Caravan P. Molecular Magnetic Resonance Imaging of Lung Fibrogenesis with an Oxyamine-Based Probe. Angew Chem Int Ed Engl 2017; 56:9825-9828. [PMID: 28677860 DOI: 10.1002/anie.201704773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 12/13/2022]
Abstract
Fibrogenesis is the active production of extracellular matrix in response to tissue injury. In many chronic diseases persistent fibrogenesis results in the accumulation of scar tissue, which can lead to organ failure and death. However, no non-invasive technique exists to assess this key biological process. All tissue fibrogenesis results in the formation of allysine, which enables collagen cross-linking and leads to tissue stiffening and scar formation. We report herein a novel allysine-binding gadolinium chelate (GdOA), that can non-invasively detect and quantify the extent of fibrogenesis using magnetic resonance imaging (MRI). We demonstrate that GdOA signal enhancement correlates with the extent of the disease and is sensitive to a therapeutic response.
Collapse
Affiliation(s)
- Philip A Waghorn
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Chloe M Jones
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Nicholas J Rotile
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Steffi K Koerner
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Diego S Ferreira
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Howard H Chen
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Clemens K Probst
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA
| |
Collapse
|
35
|
Philip K, Mills TW, Davies J, Chen NY, Karmouty-Quintana H, Luo F, Molina JG, Amione-Guerra J, Sinha N, Guha A, Eltzschig HK, Blackburn MR. HIF1A up-regulates the ADORA2B receptor on alternatively activated macrophages and contributes to pulmonary fibrosis. FASEB J 2017; 31:4745-4758. [PMID: 28701304 DOI: 10.1096/fj.201700219r] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly chronic lung disease. Extracellular accumulation of adenosine and subsequent activation of the ADORA2B receptor play important roles in regulating inflammation and fibrosis in IPF. Additionally, alternatively activated macrophages (AAMs) expressing ADORA2B have been implicated in mediating adenosine's effects in IPF. Although hypoxic conditions are present in IPF, hypoxia's role as a direct modulator of macrophage phenotype and identification of factors that regulate ADORA2B expression on AAMs in IPF is not well understood. In this study, an experimental mouse model of pulmonary fibrosis and lung samples from patients with IPF were used to examine the effects and interactions of macrophage differentiation and hypoxia on fibrosis. We demonstrate that hypoxia-inducible factor 1-α (HIF1A) inhibition in late stages of bleomycin-induced injury attenuates pulmonary fibrosis in association, with reductions in ADORA2B expression in AAMs. Additionally, ADORA2B deletion or pharmacological antagonism along with HIF1A inhibition disrupts AAM differentiation and subsequent IL-6 production in cultured macrophages. These findings suggest that hypoxia, through HIF1A, contributes to the development and progression of pulmonary fibrosis through its regulation of ADORA2B expression on AAMs, cell differentiation, and production of profibrotic mediators. These studies support a potential role for HIF1A or ADORA2B antagonists in the treatment of IPF.-Philip, K., Mills, T. W., Davies, J., Chen, N.-Y., Karmouty-Quintana, H., Luo, F., Molina, J. G., Amione-Guerra, J., Sinha, N., Guha, A., Eltzschig, H. K., Blackburn, M. R. HIF1A up-regulates the ADORA2B receptor on alternatively activated macrophages and contributes to pulmonary fibrosis.
Collapse
Affiliation(s)
- Kemly Philip
- Department of Biochemistry and Molecular Biology McGovern Medical School at UTHealth, Houston, Texas, USA.,University of Texas M. D. Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Tingting Weng Mills
- Department of Biochemistry and Molecular Biology McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; and
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Fayong Luo
- Department of Biochemistry and Molecular Biology McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Jose G Molina
- Department of Biochemistry and Molecular Biology McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Javier Amione-Guerra
- J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Neeraj Sinha
- J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Ashrith Guha
- J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology McGovern Medical School at UTHealth, Houston, Texas, USA; .,University of Texas M. D. Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
36
|
Aschner Y, Downey GP. Transforming Growth Factor-β: Master Regulator of the Respiratory System in Health and Disease. Am J Respir Cell Mol Biol 2017; 54:647-55. [PMID: 26796672 DOI: 10.1165/rcmb.2015-0391tr] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this article, we review the biology and physiological importance of transforming growth factor-β (TGF-β) to homeostasis in the respiratory system, its importance to innate and adaptive immune responses in the lung, and its pathophysiological role in various chronic pulmonary diseases including pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, and pulmonary fibrosis. The TGF-β family is responsible for initiation of the intracellular signaling pathways that direct numerous cellular activities including proliferation, differentiation, extracellular matrix synthesis, and apoptosis. When TGF-β signaling is dysregulated or essential control mechanisms are unbalanced, the consequences of organ and tissue dysfunction can be profound. The complexities and myriad checkpoints built into the TGF-β signaling pathways provide attractive targets for the treatment of these disease states, many of which are currently being investigated. This review focuses on those aspects of TGF-β biology that are most relevant to pulmonary diseases and that hold promise as novel therapeutic targets.
Collapse
Affiliation(s)
- Yael Aschner
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | - Gregory P Downey
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and.,2 Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado; and.,3 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and.,4 Departments of Pediatrics, and.,5 Biomedical Research, National Jewish Health, Denver, Colorado
| |
Collapse
|
37
|
Pharmacodynamic and pharmacokinetic assessment of pulmonary rehabilitation mixture for the treatment of pulmonary fibrosis. Sci Rep 2017; 7:3458. [PMID: 28615638 PMCID: PMC5471221 DOI: 10.1038/s41598-017-02774-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/21/2017] [Indexed: 12/31/2022] Open
Abstract
Pulmonary rehabilitation mixture (PRM), a Chinese herbal medicine formula, has been used to treat pulmonary fibrosis for decades. In this study, we systematically evaluated the pharmacodynamic and pharmacokinetic performance of PRM. The pharmacodynamic results showed that PRM could improve the condition of CoCl2-stimulated human type II alveolar epithelial cells, human pulmonary microvascular endothelial cells, human lung fibroblasts and pulmonary fibrosis rats induced by bleomycin, PRM treatment reduced the expression of platelet-derived growth factor, fibroblast growth factor, toll-like receptor 4, high-mobility group box protein 1 and hypoxia-inducible factor 1α. In the pharmacokinetic study, an accurate and sensitive ultra-high performance liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of calycosin, calycosin-7-O-glucoside, formononetin, ononin and mangiferin of PRM in the rat plasma for the first time. The method was then successfully applied to the comparative pharmacokinetic study of PRM in normal and pulmonary fibrosis rats. The five constituents could be absorbed in the blood after the oral administration of PRM and exhibited different pharmacokinetic behaviors in normal and pulmonary fibrosis rats. In summary, PRM exhibited a satisfactory pharmacodynamic and pharmacokinetic performance, which highlights PRM as a potential multi-target oral drug for the treatment of pulmonary fibrosis.
Collapse
|
38
|
Yu W, Mi L, Long T. Efficacies of rosiglitazone and retinoin on bleomycin-induced pulmonary fibrosis in rats. Exp Ther Med 2017; 14:609-615. [PMID: 28672974 PMCID: PMC5488609 DOI: 10.3892/etm.2017.4555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/26/2017] [Indexed: 01/13/2023] Open
Abstract
The present study investigated the intervention efficacies of rosiglitazone (ROS) and retinoin (RET) on bleomycin-induced pulmonary fibrosis in rats. A total of 48 rats were randomly divided into the control group (group C), the model group (group M), the dexamethasone group (group D), the ROS group (group R), the RET group (group W) and the ROS + RET group (group L). Group M and the treatment groups were intratracheally injected with 5 mg/kg bleomycin, while group C was injected with saline. The lungs of rats in each group were inspected using high resolution computed tomography (HRCT), lung tissue hematoxylin and eosin staining and Masson staining; furthermore, lung L-hydroxyproline (Hyp) content and the concentration of transforming growth factor β1 (TGF-β1) serum of each group were also determined. The fibrosis score, Hyp content and TGF-β1 concentration of each treatment group were significantly lower when compared with group M (P<0.01), while the imaging results were improved when compared with group M, with lower alveolitis and fibrosis scores. Group L, R and W exhibited significantly lower fibrosis scores, Hyp content and TGF-β1 concentrations when compared with group D (P<0.05). Imaging results for group L, R and W indicated that while the imaging results were superior to group D, group L was lower than groups R and W (P<0.05). No significant difference in the fibrosis score, Hyp content and TGF-β1 concentration was exhibited between groups R and W (P>0.05). Findings from the present study conclude that ROS and RET are able to suppress bleomycin-induced pulmonary fibrosis with improved efficacies when compared with dexamethasone; furthermore, the combination of these two pharmacological agents may exert synergistic effects.
Collapse
Affiliation(s)
- Wencheng Yu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Liyun Mi
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Teng Long
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
39
|
Magnini D, Montemurro G, Iovene B, Tagliaboschi L, Gerardi RE, Lo Greco E, Bruni T, Fabbrizzi A, Lombardi F, Richeldi L. Idiopathic Pulmonary Fibrosis: Molecular Endotypes of Fibrosis Stratifying Existing and Emerging Therapies. Respiration 2017; 93:379-395. [DOI: 10.1159/000475780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
40
|
El Agha E, Moiseenko A, Kheirollahi V, De Langhe S, Crnkovic S, Kwapiszewska G, Szibor M, Kosanovic D, Schwind F, Schermuly RT, Henneke I, MacKenzie B, Quantius J, Herold S, Ntokou A, Ahlbrecht K, Braun T, Morty RE, Günther A, Seeger W, Bellusci S. Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis. Cell Stem Cell 2017; 20:261-273.e3. [PMID: 27867035 PMCID: PMC5291816 DOI: 10.1016/j.stem.2016.10.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 09/02/2016] [Accepted: 10/06/2016] [Indexed: 01/13/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange. Here we investigated the origin of activated myofibroblasts and the molecular mechanisms governing fibrosis formation and resolution. Genetic engineering in mice enables the time-controlled labeling and monitoring of lipogenic or myogenic populations of lung fibroblasts during fibrosis formation and resolution. Our data demonstrate a lipogenic-to-myogenic switch in fibroblastic phenotype during fibrosis formation. Conversely, we observed a myogenic-to-lipogenic switch during fibrosis resolution. Analysis of human lung tissues and primary human lung fibroblasts indicates that this fate switching is involved in IPF pathogenesis, opening potential therapeutic avenues to treat patients.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Alena Moiseenko
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Vahid Kheirollahi
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Stijn De Langhe
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Center for Medical Research, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Center for Medical Research, 8010 Graz, Austria
| | - Marten Szibor
- Institute of Biotechnology, FinMIT Cluster of Excellence, Viikinkaari 5, FI-00790 Helsinki, Finland
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Felix Schwind
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ingrid Henneke
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - BreAnne MacKenzie
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Jennifer Quantius
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Susanne Herold
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Aglaia Ntokou
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Katrin Ahlbrecht
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Rory E Morty
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China.
| |
Collapse
|
41
|
Zeng X, Huang C, Senavirathna L, Wang P, Liu L. miR-27b inhibits fibroblast activation via targeting TGFβ signaling pathway. BMC Cell Biol 2017; 18:9. [PMID: 28095798 PMCID: PMC5240426 DOI: 10.1186/s12860-016-0123-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs are a group of small RNAs that regulate gene expression at the posttranscriptional level. They regulate almost every aspect of cellular processes. In this study, we investigated whether miR-27b regulates pulmonary fibroblast activation. Results We found that miR-27b was down-regulated in fibrotic lungs and fibroblasts from an experimental mouse model of pulmonary fibrosis. The overexpression of miR-27b with a lentiviral vector inhibited TGFβ1-stimulated mRNA expression of collagens (COL1A1, COL3A1, and COL4A1) and alpha-smooth muscle actin, and protein expression of Col3A1 and alpha-smooth muscle actin in LL29 human pulmonary fibroblasts. miR-27b also reduced contractile activity of LL29. TGFβ receptor 1 and SMAD2 were identified as the targets of miR-27b by 3’-untranslated region luciferase reporter and western blotting assays. Conclusions Our results suggest that miR-27b is an anti-fibrotic microRNA that inhibits fibroblast activation by targeting TGFβ receptor 1 and SMAD2. This discovery may provide new targets for therapeutic interventions of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiangming Zeng
- Department of Immunology and Microbiology, Medical School of Jinan University, Guangdong, China.,Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Stillwater, OK, USA
| | - Chaoqun Huang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Stillwater, OK, USA.,Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
| | - Lakmini Senavirathna
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Stillwater, OK, USA.,Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA
| | - Pengcheng Wang
- Department of Immunology and Microbiology, Medical School of Jinan University, Guangdong, China.
| | - Lin Liu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Stillwater, OK, USA. .,Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
42
|
Liu YM, Nepali K, Liou JP. Idiopathic Pulmonary Fibrosis: Current Status, Recent Progress, and Emerging Targets. J Med Chem 2016; 60:527-553. [DOI: 10.1021/acs.jmedchem.6b00935] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yi-Min Liu
- School of Pharmacy, College
of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College
of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College
of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
43
|
Wahyudi H, Reynolds AA, Li Y, Owen SC, Yu SM. Targeting collagen for diagnostic imaging and therapeutic delivery. J Control Release 2016; 240:323-331. [PMID: 26773768 PMCID: PMC4936964 DOI: 10.1016/j.jconrel.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 12/22/2022]
Abstract
As the most abundant protein in mammals and a major structural component in extracellular matrix, collagen holds a pivotal role in tissue development and maintaining the homeostasis of our body. Persistent disruption to the balance between collagen production and degradation can cause a variety of diseases, some of which can be fatal. Collagen remodeling can lead to either an overproduction of collagen which can cause excessive collagen accumulation in organs, common to fibrosis, or uncontrolled degradation of collagen seen in degenerative diseases such as arthritis. Therefore, the ability to monitor the state of collagen is crucial for determining the presence and progression of numerous diseases. This review discusses the implications of collagen remodeling and its detection methods with specific focus on targeting native collagens as well as denatured collagens. It aims to help researchers understand the pathobiology of collagen-related diseases and create novel collagen targeting therapeutics and imaging modalities for biomedical applications.
Collapse
Affiliation(s)
- Hendra Wahyudi
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda A Reynolds
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Shawn C Owen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
44
|
Delivery of RNAi Therapeutics to the Airways-From Bench to Bedside. Molecules 2016; 21:molecules21091249. [PMID: 27657028 PMCID: PMC6272875 DOI: 10.3390/molecules21091249] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a potent and specific post-transcriptional gene silencing process. Since its discovery, tremendous efforts have been made to translate RNAi technology into therapeutic applications for the treatment of different human diseases including respiratory diseases, by manipulating the expression of disease-associated gene(s). Similar to other nucleic acid-based therapeutics, the major hurdle of RNAi therapy is delivery. Pulmonary delivery is a promising approach of delivering RNAi therapeutics directly to the airways for treating local conditions and minimizing systemic side effects. It is a non-invasive route of administration that is generally well accepted by patients. However, pulmonary drug delivery is a challenge as the lungs pose a series of anatomical, physiological and immunological barriers to drug delivery. Understanding these barriers is essential for the development an effective RNA delivery system. In this review, the different barriers to pulmonary drug delivery are introduced. The potential of RNAi molecules as new class of therapeutics, and the latest preclinical and clinical studies of using RNAi therapeutics in different respiratory conditions are discussed in details. We hope this review can provide some useful insights for moving inhaled RNAi therapeutics from bench to bedside.
Collapse
|
45
|
Zhao H, Bian H, Bu X, Zhang S, Zhang P, Yu J, Lai X, Li D, Zhu C, Yao L, Su J. Targeting of Discoidin Domain Receptor 2 (DDR2) Prevents Myofibroblast Activation and Neovessel Formation During Pulmonary Fibrosis. Mol Ther 2016; 24:1734-1744. [PMID: 27350126 DOI: 10.1038/mt.2016.109] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal human disease with short survival time and few treatment options. Herein, we demonstrated that discoidin domain receptor 2 (DDR2), a receptor tyrosine kinase that predominantly transduces signals from fibrillar collagens, plays a critical role in the induction of fibrosis and angiogenesis in the lung. In vitro cell studies showed that DDR2 can synergize the actions of both transforming growth factor (TGF)-β and fibrillar collagen to stimulate lung fibroblasts to undergo myofibroblastic changes and vascular endothelial growth factor (VEGF) expression. In addition, we confirmed that late treatment of the injured mice with specific siRNA against DDR2 or its kinase inhibitor exhibited therapeutic efficacy against lung fibrosis. Thus, this study not only elucidated novel mechanisms by which DDR2 controls the development of pulmonary fibrosis, but also provided candidate target for the intervention of this stubborn disease.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Huan Bian
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xin Bu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shuya Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Pan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiangtian Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaofeng Lai
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Di Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chuchao Zhu
- Department of Human Anatomy, Histology, and Embryology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Libo Yao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jin Su
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
46
|
Abuelezz SA, Hendawy N, Osman WM. Aliskiren attenuates bleomycin-induced pulmonary fibrosis in rats: focus on oxidative stress, advanced glycation end products, and matrix metalloproteinase-9. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:897-909. [PMID: 27154762 DOI: 10.1007/s00210-016-1253-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023]
Abstract
Pulmonary fibrosis is a progressive lung disorder with high mortality rate and limited successful treatment. This study was designed to assess the potential anti-oxidant and anti-fibrotic effects of aliskiren (Alsk) during bleomycin (BLM)-induced pulmonary fibrosis. Male Wistar rats were used as control untreated or treated with the following: a single dose of 2.5 mg/kg of BLM endotracheally and BLM and Alsk (either low dose 30 mg/kg/day or high dose 60 mg/kg/day), and another group was given Alsk 60 mg/kg/day alone. Alsk was given by gavage. Alsk anti-oxidant and anti-fibrotic effects were assessed. BLM significantly increased relative lung weight and the levels of lactate dehydrogenase and total and differential leucocytic count in bronchoalveolar lavage that was significantly ameliorated by high-dose Alsk treatment. As markers of oxidative stress, BLM caused a significant increase in the levels of lipid peroxides and nitric oxide accompanied with a significant decrease of superoxide dismutase and glutathione transferase enzymes. High-dose Alsk treatment restored these markers toward normal values. Alsk counteracted the overexpression of advanced glycation end products, matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 in lung tissue induced by BLM. Fibrosis assessed by measuring hydroxyproline content, which markedly increased in the BLM group, was also significantly reduced by Alsk. These were confirmed by histopathological and immunohistochemical examination which revealed that Alsk attenuates signs of pulmonary fibrosis and decreased the overexpressed MMP-9 and transforming growth factor β1. Collectively, these findings indicate that Alsk has a potential anti-fibrotic effect beside its anti-oxidant activity.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt.
| | - Nevien Hendawy
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Wesam M Osman
- Pathology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
47
|
Banakh I, Lam A, Tiruvoipati R, Carney I, Botha J. Imatinib for bleomycin induced pulmonary toxicity: a case report and evidence-base review. Clin Case Rep 2016; 4:486-90. [PMID: 27190613 PMCID: PMC4856242 DOI: 10.1002/ccr3.549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 11/26/2022] Open
Abstract
The evidence supporting therapy with imatinib for bleomycin‐induced pneumonitis (BIP) is equivocal. Further experience is needed to establish its role in BIP management. While it may be considered in the management of BIP, it is important to be mindful of the adverse effects including thrombocytopenia and gastrointestinal bleeding.
Collapse
Affiliation(s)
- Iouri Banakh
- Department of Pharmacy Frankston Hospital Peninsula Health Frankston Vic. Australia
| | - Alice Lam
- Department of Pharmacy Frankston Hospital Peninsula Health Frankston Vic. Australia
| | - Ravindranath Tiruvoipati
- Department of Intensive Care Medicine Frankston Hospital Frankston Vic.3199 Australia; School of Public Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton Vic. 3800 Australia
| | - Ian Carney
- Department of Intensive Care Medicine Frankston Hospital Frankston Vic.3199 Australia; School of Public Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton Vic. 3800 Australia
| | - John Botha
- Department of Intensive Care Medicine Frankston Hospital Frankston Vic.3199 Australia; School of Public Health Faculty of Medicine, Nursing and Health Sciences Monash University Clayton Vic. 3800 Australia
| |
Collapse
|
48
|
Herro R, Croft M. The control of tissue fibrosis by the inflammatory molecule LIGHT (TNF Superfamily member 14). Pharmacol Res 2015; 104:151-5. [PMID: 26748035 DOI: 10.1016/j.phrs.2015.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022]
Abstract
The TNF Superfamily member LIGHT (TNFSF14) has recently emerged as a potential target for therapeutic interventions aiming to halt tissue fibrosis. In this perspective, we discuss how LIGHT may influence the inflammatory and remodeling steps that characterize fibrosis, relevant for many human diseases presenting with scarring such as asthma, idiopathic pulmonary fibrosis, systemic sclerosis, and atopic dermatitis. LIGHT acts through two receptors in the TNF receptor superfamily, HVEM (TNFRSF14) and LTβR (TNFRSF3), which are broadly expressed on hematopoietic and non-hematopoietic cells. LIGHT can regulate infiltrating T cells, macrophages, and eosinophils, controlling their trafficking or retention in the inflamed tissue, their proliferation, and their ability to produce cytokines that amplify fibrotic processes. More interestingly, LIGHT can act on structural cells, namely epithelial cells, fibroblasts, smooth muscle cells, adipocytes, and endothelial cells. By signaling through either HVEM or LTβR expressed on these cells, LIGHT can contribute to their proliferation and expression of chemokines, growth factors, and metalloproteinases. This will lead to hyperplasia of epithelial cells, fibroblasts, and smooth muscle cells, deposition of extracellular matrix proteins, vascular damage, and further immune alterations that in concert constitute fibrosis. Because of its early expression by T cells, LIGHT may be an initiator of fibrotic diseases, but other sources in the immune system could also signify a role for LIGHT in maintaining or perpetuating fibrotic activity. LIGHT may then be an attractive prognostic marker as well as an appealing target for fibrosis therapies relevant to humans.
Collapse
Affiliation(s)
- Rana Herro
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Zhou XM, Cao ZD, Xiao N, Shen Q, Li JX. Inhibitory effects of amines from Citrus reticulata on bleomycin-induced pulmonary fibrosis in rats. Int J Mol Med 2015; 37:339-46. [PMID: 26675886 PMCID: PMC4716790 DOI: 10.3892/ijmm.2015.2435] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/07/2015] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease for which, thus far, there are no effective treatments. The pericarp of Citrus reticulata, as a traditional herbal drug, has been used for the clinical treatment of lung-related diseases in China for many years. In the present study, the amines from the pericarp of Citrus reticulata were isolated, and their hydrochlorides were prepared. The results of screening using cultured human embryonic lung fibroblasts (hELFs) revealed that, of the amines, 4-methoxyphenethylamine hydrochloride (designated as amine hydrochloride 1) possessed the most potent inhibitory effect. Further in vivo experiments using a rat model of bleomycin-induced pulmonary fibrosis demonstrated that the oral administration of amine hydrochloride 1 significantly lowered the hydroxyproline content in both serum and lung tissue, and alleviated pulmonary alveolitis and fibrosis. Immunohistochemical analysis revealed that amine hydrochloride 1 exerted its inhibitory effect against IPF through the downregulation of lung transforming growth factor (TGF)-β1 protein expression. Our results demonstrated that amine hydrochloride 1 prevented the development of bleomycin‑induced lung fibrosis in rats. Thus, our data suggest that the amines from the pericarp of Citrus reticulata have therapeutic potential for use in the treatment of IPF.
Collapse
Affiliation(s)
- Xian-Mei Zhou
- Department of Respiratory Medicine, The Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Zhen-Dong Cao
- Department of Respiratory Medicine, The Second Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210017, P.R. China
| | - Na Xiao
- Department of Respiratory Medicine, The Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
50
|
Chu X, Wei X, Lu S, He P. Autotaxin-LPA receptor axis in the pathogenesis of lung diseases. Int J Clin Exp Med 2015; 8:17117-17122. [PMID: 26770305 PMCID: PMC4694205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a small lipid which mediates a variety of cellular functions via the activation of LPA receptors. LPA is generated from lysophosphatidylcholine by the extracellular enzyme, autotaxin (ATX). Elevated ATX expression, LPA production and their signaling pathways have been reported in multiple pathological conditions of lung tissue, including inflammation, fibrosis and cancer. Emerging evidence has highlighted the importance of ATX and LPA receptors in the pathogenesis of lung diseases. Here, we briefly review the current knowledge of different roles of the ATX-LPA receptor axis in lung diseases focusing on inflammation, fibrosis and cancer.
Collapse
Affiliation(s)
| | - Xiaojie Wei
- People’s Hospital of RizhaoRizhao, Shandong, China
| | - Shaolin Lu
- People’s Hospital of RizhaoRizhao, Shandong, China
| | - Peijian He
- Department of Internal Medicine, Emory UniversityAtlanta, Georgia, USA
| |
Collapse
|