1
|
Liu S, Li N, Jin JJ, Yu YW. Double-edged sword of L-arginine in diabetes: Exploring anti-inflammatory and antioxidant strategies. World J Diabetes 2025; 16:104007. [PMID: 40236855 PMCID: PMC11947932 DOI: 10.4239/wjd.v16.i4.104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
The article by Mansouri et al provides a comprehensive investigation into the effects of L-arginine (L-Arg) on diabetic cardiomyopathy. The authors conclude that while a low dose (0.5 g/kg) of L-Arg improves lipid profiles and reduces body weight, higher doses (≥ 1 g/kg) exacerbate oxidative stress, inflammation, and myocardial damage. In this letter, we aim to expand on the potential role of anti-inflammatory and antioxidant strategies in mitigating these adverse effects. Specifically, we focus on nuclear factor erythroid 2-related factor 2 activation and nitric oxide synthase modulation. These strategies could enhance the clinical utility of L-Arg by preserving its metabolic benefits while reducing its cardiotoxic risks. We believe this perspective will stimulate future research on L-Arg-based therapies in patients with diabetes, with an emphasis on optimizing dosage and exploring synergistic co-therapies.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Cardiology, The First People’s Hospital of Jiashan, Jiaxing 314100, Zhejiang Province, China
| | - Ning Li
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jia-Jia Jin
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yong-Wei Yu
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
2
|
Xia M, Ling C, Ye H, Liang S, Cao Q, Wang W, Zhang C, Dong Z, Tian M, Zuo J, Zhu Y. Preparation and characterization of immunopeptides isolated from pig spleen and evaluation of their immunomodulatory properties in vitro and in vivo. Front Immunol 2025; 16:1544299. [PMID: 40170860 PMCID: PMC11959066 DOI: 10.3389/fimmu.2025.1544299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
The importance of small bioactive peptides derived from pig spleen have been used to enhance immune responses and support intestinal health. However, there is a lack of information regarding the conformational relationship and their effects on immune function of pig spleen proteins (PSPs). The objective of this study was to prepare and assess the immunomodulatory characteristics of immunopeptides from PSP. Firstly, enzymatic hydrolysates from PSP were prepared using alkaline protease and aminopeptidase, and small hydrolysate fractions with a <3 kDa were separated by SDS-PAGE and GPC. The bioactive peptides were then identified at peaks 5 to 7 (PSP-5, 6 and 7) by HPLC and TOF-MS, which were mainly composed of Pro-Glu-Leu by LC-MS. The PSP-5 and PSP-6 pronounced greater beneficial effects on cell viability and nitric oxide (NO) production than PSP-7 in macrophage, and PSP-5 exhibited a higher immunomodulatory ability than PSP-6. In vivo, the oral administration of 25-50 mg PSP-5/kg body weight (BW) protected against cyclophosphamide (CTX)-induced immunosuppression in spleen and intestine of mouse, as evidenced by increased cytokine and sIgA productions. In conclusion, a novel set of bioactive immunopeptides derived from PSP through enzymatic hydrolysis could enhance immunomodulatory properties.
Collapse
Affiliation(s)
- Minhao Xia
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chong Ling
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui Ye
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shujie Liang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingyun Cao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Weiwei Wang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Changming Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zemin Dong
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Min Tian
- Modern Agricultural College, Xiangxi National Vocational and Technical College, Jishou, China
| | - Jianjun Zuo
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongwen Zhu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Zhao Y, Deng Y, Guo T, Wu H, Lv T, Liu X. Antioxidant capacity of fermented corn gluten meal in broiler chickens: a solid-state approach with mixed microbial fermentation. Poult Sci 2024; 103:104318. [PMID: 39357236 PMCID: PMC11472618 DOI: 10.1016/j.psj.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Fermentation of feed with probiotic and biofunctional properties has gained global attention for its potential to enhance digestive absorption and improve overall functional quality. This study investigates the antioxidant capacity and expression of antioxidant-related genes in broiler chickens fed with fermented corn gluten meal (FCGM) containing mixed microbial cultures. Seventy-two male Yellow-Feathered broiler chickens were randomly assigned to 2 groups, each consisting of 3 replicates, and were fed experimental diets containing either corn gluten meal or FCGM for 42 d. The antioxidant capacity of FCGM was assessed in vivo. Chickens fed with FCGM exhibited significant increases in serum glutathione concentration, as well as enhanced activities of total superoxide dismutase, glutathione peroxidase, and catalase (CAT) in their serum. Similar trends were observed in the liver, specifically in the activities of glutathione peroxidase and CAT. Additionally, the expression levels of key antioxidant-related genes in the liver, such as glutathione synthase, superoxide dismutase 1, superoxide dismutase 2, CAT, and glutathione peroxidase 1, were examined. The results indicated that FCGM significantly enhanced antioxidant capacity in broiler chickens. This study highlights the potential benefits of utilizing solid-state fermentation with mixed microbial cultures to improve the antioxidant properties of corn gluten meal, thereby contributing to the overall health and well-being of broiler chickens.
Collapse
Affiliation(s)
- Yu Zhao
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 160006, China
| | - Yongping Deng
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 160006, China
| | - Tong Guo
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 160006, China
| | - Hao Wu
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 160006, China
| | - Tingpeng Lv
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 160006, China
| | - Xiaolan Liu
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 160006, China.
| |
Collapse
|
4
|
Santos MPF, Junior ECS, Bonomo RCF, Santos LS, Veloso CM. Hydrolysis of Casein by Pepsin Immobilized on Heterofunctional Supports to Produce Antioxidant Peptides. Appl Biochem Biotechnol 2024; 196:8605-8626. [PMID: 38888698 DOI: 10.1007/s12010-024-04988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
A study was carried out on the immobilization of pepsin in activated carbon functionalized by different techniques (glutaraldehyde, genipin, and metallization) aiming at its application in obtaining bioactive peptides through casein hydrolysis. Studies of the immobilized derivatives were carried out in addition to the evaluation of the antioxidant potential of the peptides. Among the pH range studied, pH 3.0 was selected due to the higher activity of the derivatives at this pH. The support modification by metallization was the method with the best results, providing a 121% increase in enzymatic activity compared to other immobilization methods. In addition, this derivative provided activity closer to the soluble enzyme activity (3.30 U) and better storage stability, and allows reuse for more than 8 cycles. In turn, the peptides from casein hydrolysis showed potential as antioxidant agents, with a DPPH radical scavenging activity higher than 70%, maximum protection against β-carotene oxidation close to 70%, and a maximum reducing power of Fe(III) into Fe(II) of 400 uM by the FRAP assay. The results showed that the new techniques for modification of activated carbon can be a promising approach for pepsin immobilization.
Collapse
Affiliation(s)
- Mateus P F Santos
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
- Applied Microbiology Laboratory - Agroindustry, Santa Cruz State University, Rod. Jorge Amado, Km 16, S/N, Ilhéus, BA, 45662-900, Brazil
| | - Evaldo C S Junior
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
| | - Renata C F Bonomo
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
| | - Leandro Soares Santos
- Laboratory of Packaging and Agro-Industrial Projects, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil
| | - Cristiane M Veloso
- Process Engineering Laboratory, State University of Southwest Bahia, BR 415, Km 04, S/N, Itapetinga, BA, 45700-000, Brazil.
| |
Collapse
|
5
|
Summart R, Imsoonthornruksa S, Yongsawatdigul J, Ketudat-Cairns M, Udomsil N. Characterization and molecular docking of tetrapeptides with cellular antioxidant and ACE inhibitory properties from cricket ( Acheta domesticus) protein hydrolysate. Heliyon 2024; 10:e35156. [PMID: 39166016 PMCID: PMC11333913 DOI: 10.1016/j.heliyon.2024.e35156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Wide-ranging bioactivities of enzymatically digested insect protein to produce peptides have been targeted for functional food development. In this study, fractionated peptides obtained from cricket (Acheta domesticus) protein hydrolysate by alcalase digestion were identified and evaluated for their bioactivities. Peptide fractions F44, F45, and F46, isolated through size exclusion chromatography, demonstrated strong cytoprotective effects on SH-SY5Y and HepG2 cells exposed to H2O2. This was evidenced by a 2-fold decrease in reactive oxygen species (ROS) accumulation in the cells and a 3-fold upregulation of genes encoding antioxidant enzymes. The F45 peptide fractions also showed chemical antioxidant activities ranging from approximately 290 to 393 mg trolox/g peptide, measured by DPPH, ABTS, and FRAP assays. Furthermore, F45 demonstrated the highest angiotensin-converting enzyme I (ACE) inhibitory activity, 57.93 %. F45 induced higher levels of Nrf2, SOD1, SOD2, CAT, GSR, and GPx4 gene expression in SH-SY5Y and HepG2 cells compared to cells treated with H2O2 and no peptides (p < 0.05). Cells treated with H2O2 and F45 exhibited significantly increased antioxidant enzyme activity, including SOD, CAT, GSR, and GPx (p < 0.05). The F45B fraction from F45 was sequenced to obtain FVEG and FYDQ tetrapeptides. Molecular docking analysis revealed their high binding affinity to cellular antioxidant enzymes (SOD, CAT, GSR, GPx1, and GPx4), an antioxidant-related protein (Keap1), and ACE. These results suggest that the novel tetrapeptides from Acheta domesticus demonstrate important biological activities, establishing them as significant cellular antioxidant activities and a potential source of antihypertensive peptides.
Collapse
Affiliation(s)
- Ratasark Summart
- Division of Food Technology, Mahidol University Kanchanaburi Campus, Kanchanaburi, 71150, Thailand
| | - Sumeth Imsoonthornruksa
- Center for Biomolecular Structure Function and Application, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Mariena Ketudat-Cairns
- Center for Biomolecular Structure Function and Application, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Natteewan Udomsil
- Division of Food Technology, Mahidol University Kanchanaburi Campus, Kanchanaburi, 71150, Thailand
| |
Collapse
|
6
|
Pol R, Rahaman A, Diwakar M, Pable A, Jagtap S, Barvkar VT, Jadhav UU. Antioxidant peptide nanohybrid: a new perspective to immobilize bioactive peptides from milk industry wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38723-38742. [PMID: 37454376 DOI: 10.1007/s11356-023-28735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
In this study, dairy industry wastewater was collected and used as a protein source. The proteins were converted into powder form using lyophilization. The proteins were digested using Bacillus subtilis (B. subtilis) NCIM 2724. The maximum degree of hydrolysis (DH) of protein was observed at pH of 7, 30 °C incubation temperature, 120 rpm shaking speed, and 96 h incubation. The tris-glycine sodium dodecyl sulfate-polyacrylamide (tris-glycine-SDS) gel electrophoresis showed the disappearance of large molecular weight proteins due to the proteolytic action of B. subtilis. The resulting digest was fractionated using a 3 kDa membrane filter. The antioxidant activity of the obtained fractions was evaluated. Antioxidant activity of digest and filtrate was found to be 12.78% (±0.040) and 49% (±0.025), respectively, at a concentration of 50 mg/mL. The 3 kDa filtrate was subjected to liquid chromatography-mass spectrometry (LCMS) analysis. Bioinformatics tools were used to predict the sequences of antioxidant peptides. Furthermore, the 3 kDa filtrate was used for the synthesis of antioxidant nanohybrid. Scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) confirmed the nanohybrid formation and encapsulation of peptides. The antioxidant nanohybrid showed enhanced antioxidant activity compared to the free peptide solution. The dairy industry has a significant environmental impact due to high water use and waste generation. This study addresses an important issue of recycling protein-containing wastewater and the potential to be used for converting these proteins into antioxidant peptides. Such practices will help to reduce environmental impact and sustainably operate the industry.
Collapse
Affiliation(s)
- Rushikesh Pol
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Alisha Rahaman
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manasi Diwakar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Anupama Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shweta Jagtap
- Department of Electronic and Instrumentation Science, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Umesh U Jadhav
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India.
| |
Collapse
|
7
|
Igbokwe CJ, Feng Y, Louis H, Benjamin I, Quaisie J, Duan Y, Tuly JA, Cai M, Zhang H. Novel antioxidant peptides identified from coix seed by molecular docking, quantum chemical calculations and invitro study in HepG2 cells. Food Chem 2024; 440:138234. [PMID: 38145582 DOI: 10.1016/j.foodchem.2023.138234] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The aim of the study was to identify potent antioxidant peptides sourced from coix seed, analyze the structure-activity relationship through molecular docking and quantum chemical calculation. Molecular docking results showed that among thirteen peptides selected in silico, eight had favourable binding interaction with the Keap1-Kelch domain (2FLU). Promising peptides with significant binding scores were further evaluated using quantum calculation. It was shown that peptide FFDR exhibited exceptional stability, with a high energy gap of 5.24 eV and low Highest Occupied Molecular Orbitals (HOMO) and Lowest Unoccupied Molecular Orbitals (LUMO) values. Furthermore, FFDR displayed the capacity to enhance the expression of Nrf2-Keap1 antioxidant genes (CAT, SOD, GSH-Px) and improved cellular redox balance by increasing reduced glutathione (GSH) while reducing oxidized glutathione (GSSG) and malonaldehyde (MDA) levels. These findings highlight the potential of coix seed peptides in developing novel, effective and stable antioxidant-based functional foods.
Collapse
Affiliation(s)
- Chidimma Juliet Igbokwe
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Department of Food Science and Technology, University of Nigeria Nsukka, Nigeria
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Janet Quaisie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Chemistry and Nutrition Research Division, Food Research Institute, Accra, Ghana
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Jamila A Tuly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haihua Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
8
|
Liu C, Wang J, Hong D, Chen Z, Li S, Ma A, Jia Y. Preparation, Isolation and Antioxidant Function of Peptides from a New Resource of Rumexpatientia L. × Rumextianshanicus A. Los. Foods 2024; 13:981. [PMID: 38611286 PMCID: PMC11011613 DOI: 10.3390/foods13070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Rumexpatientia L. ×Rumextianshanicus A. Los (RRL), known as "protein grass" in China, was recognized as a new food ingredient in 2021. However, the cultivation and product development of RRL are still at an early stage, and no peptide research has been reported. In this study, two novel antioxidant peptides, LKPPF and LPFRP, were purified and identified from RRL and applied to H2O2-induced HepG2 cells to investigate their antioxidant properties. It was shown that 121 peptides were identified by ultrafiltration, gel filtration chromatography, and LC-MS/MS, while computer simulation and molecular docking indicated that LKPPF and LPFRP may have strong antioxidant properties. Both peptides were not cytotoxic to HepG2 cells at low concentrations and promoted cell growth, which effectively reduced the production of intracellular ROS and MDA, and increased cell viability and the enzymatic activities of SOD, GSH-Px, and CAT. Therefore, LKPPF and LPFRP, two peptides, possess strong antioxidant activity, which provides a theoretical basis for their potential as food additives or functional food supplements, but still need to be further investigated through animal models as well as cellular pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (C.L.); (J.W.); (D.H.); (Z.C.); (S.L.); (A.M.)
| |
Collapse
|
9
|
Egbujor MC, Olaniyan OT, Emeruwa CN, Saha S, Saso L, Tucci P. An insight into role of amino acids as antioxidants via NRF2 activation. Amino Acids 2024; 56:23. [PMID: 38506925 PMCID: PMC10954862 DOI: 10.1007/s00726-024-03384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024]
Abstract
Oxidative stress can affect the protein, lipids, and DNA of the cells and thus, play a crucial role in several pathophysiological conditions. It has already been established that oxidative stress has a close association with inflammation via nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Amino acids are notably the building block of proteins and constitute the major class of nitrogen-containing natural products of medicinal importance. They exhibit a broad spectrum of biological activities, including the ability to activate NRF2, a transcription factor that regulates endogenous antioxidant responses. Moreover, amino acids may act as synergistic antioxidants as part of our dietary supplementations. This has aroused research interest in the NRF2-inducing activity of amino acids. Interestingly, amino acids' activation of NRF2-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway exerts therapeutic effects in several diseases. Therefore, the present review will discuss the relationship between different amino acids and activation of NRF2-KEAP1 signaling pathway pinning their anti-inflammatory and antioxidant properties. We also discussed amino acids formulations and their applications as therapeutics. This will broaden the prospect of the therapeutic applications of amino acids in a myriad of inflammation and oxidative stress-related diseases. This will provide an insight for designing and developing new chemical entities as NRF2 activators.
Collapse
Affiliation(s)
- Melford C Egbujor
- Department of Chemistry, Federal University Otuoke, Otuoke, Bayelsa, Nigeria
| | | | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| |
Collapse
|
10
|
Gomaa MAE, Allam MG, Mokhtar E, Ayad EHE, Darwish SM, Darwish AMG. Nano casein-pectin complex: exploring physicochemical, organoleptic properties, and LAB viability in skimmed milk and low-fat yoghurt. Front Nutr 2024; 10:1288202. [PMID: 38268670 PMCID: PMC10806235 DOI: 10.3389/fnut.2023.1288202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein complexes with a nutritional value, heat stability, and gelling properties with no negative impact on culture viability have promising application prospects in the fermentation industry. The aim of the study was to investigate the possibility of applying physical modification seeking high-protein-fortified yoghurt production using the nano casein-pectin NCP complex as an active colloidal system with enhanced structural and thermal properties and monitor the quality properties of the physicochemical, heat stability, rheological, starter culture viability and sensory evaluation of fortified products comparing with the plain control throughout the cold storage. High-energy ball milling (HEBM) technique was used to produce nanoparticles of casein powder and smaller particles of pectin individually, and particle size and zeta potential was assessed. Deferent Nano casein-pectin (NCP) complex formulations were prepared, their physicochemical properties were assessed including protein quality via Amino Acid Analyzer (AAA), viscosity, thermogravimetric analysis (TGA), and then used in fortification of skimmed milk and low-fat yoghurt to monitor the fortification effects. The particle sizes showed to be ≈166 nm and 602.6 nm for nano-casein and pectin, respectively. Milk fortification with the NCP complex has significantly increased the nutritional value represented in increased protein content (7.19 g/100 g in NCP5); Ca, P, and S content (2,193.11, 481.21, and 313.77 ppm); and amino acid content with first limiting amino acids; histidine (0.89 mg/g), methionine (0.89 mg/g), and low content of hydrophobic amino acids (HAAs) may cause aggregation. NPC fortification enhanced physicochemical properties announced in enhanced viscosity (62. mP.s in NCP5) and heat stability (up to 200°C) compared with control skimmed milk (SM). NCP yoghurt fortification significantly increased protein content to 11 mg/100 g in T5, enhanced viscosity to 48.44 mP.s in T3, decreased syneresis to 16% in T5, and enhanced LAB viability which was translated in preferable sensorial properties. Applying fortification with nanoparticles of the casein-pectin (NCP) complex balanced the amino acid content and improved physicochemical, rheological, nutritional, and sensorial properties and LAB viability, which can be recommended further in functional food applications.
Collapse
Affiliation(s)
- Mohamed A. E. Gomaa
- Food Science Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Marwa G. Allam
- Food Science Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Esraa Mokhtar
- Food Science Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Eman H. E. Ayad
- Food Science Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Saeid M. Darwish
- Food Science Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Amira M. G. Darwish
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
11
|
Aziz T, Hussain N, Hameed Z, Lin L. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: recent challenges and future recommendations. Gut Microbes 2024; 16:2297864. [PMID: 38174551 PMCID: PMC10773664 DOI: 10.1080/19490976.2023.2297864] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
A healthy balanced diet is crucial in protecting the immune system against infections and diseases. Poor diets, such as the Western diet, contribute to the development of metabolic diseases, hypertension, and obesity. Microbiota, primarily composed of different microorganisms and residing in the gastrointestinal tract (GIT), also play a significant role in maintaining gut health. Polyphenols and probiotics found in fruits, vegetables, whole grains, legumes, nuts, and seeds promote gut health and support the growth of beneficial bacteria. Different types of diets, their categories, and their impact on health are also mentioned. The relationship between diet, gut health, and the risk of developing obesity, cardiovascular diseases, and inflammatory diseases is discussed in this review article. The rationale behind the review concludes future recommendations for maintaining gut health and reducing the occurrence of obesity, cardiometabolic diseases, and other inflammatory diseases. There is also the need for standardized research methods, long-term studies, and translating scientific knowledge into practical dietary recommendations.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Nageen Hussain
- Institute of Microbiology and Molecular Genetics, New Campus, University of the Punjab, Punjab, Lahore
| | - Zunaira Hameed
- Institute of Microbiology and Molecular Genetics, New Campus, University of the Punjab, Punjab, Lahore
| | - Lin Lin
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Liu E, Yang M, Li Q, Cheng Q, Wang Y, Ye L, Tian F, Ding H, Ling Y, Xia M, Ji ZS, Li W. Antitumor activity of a whey peptide-based enteral diet in C26 colon tumor-bearing mice. J Food Sci 2023; 88:4275-4288. [PMID: 37615996 DOI: 10.1111/1750-3841.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
The antitumor effects of a whey peptide-based enteral diet, whose main components are whey peptides and yogurt fermented by Lactobacillus delbureckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, were investigated in mice. Our results indicated that the tumor weight in C26 carcinoma-transplanted mice was significantly smaller at day 16 post-implantation in the whey peptide-based enteral diet group (1.36 ± 0.54 g) than in the control group (1.83 ± 0.89 g) (p < 0.05). The whey peptide-based enteral diet group exhibited higher tumor cell apoptosis, lower cell proliferation, and inactive angiogenesis indicating by higher degree of TUNEL, lower positive rates of Ki-67, VEGF, and CD34 than control group. It also attenuated inflammatory cell infiltration of spleen and liver as indicated by the decreased spleen index (10.89 ± 2.06 vs. 12.85 ± 2.92, p < 0.05) and increased liver index (58.09 ± 11.37 vs. 53.19 ± 6.67, p < 0.05) in the whey peptide-based enteral diet group than the control diet group. These results proved the inhibitory effect of the whey peptide-based enteral diet on tumor growth, which might be attributed to the whey peptides component. PRACTICAL APPLICATION: A whey peptide-based enteral diet (MEIN® ), containing cheese whey and multiple nutrients, was selected to verify the anti-tumor effect by animal experiments. The tumor weight growth, tumor cell proliferation, inflammatory cell infiltration of spleen and liver in tumor model mice was significantly attenuated by the whey peptide-based enteral diet, that might be attributed to its whey peptides component. These results provided an additive direction for cancer therapy and need a further study including clinical trials.
Collapse
Affiliation(s)
- Enuo Liu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qilin Li
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qianqian Cheng
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Yuzhu Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Luyi Ye
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Fang Tian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Hao Ding
- Shanghai Tongyuan Food Science and Technology Co., Ltd., Shanghai, China
| | - Yiqun Ling
- Department of Nutrition, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Minjie Xia
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Zai-Si Ji
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
- Shanghai Tongyuan Food Science and Technology Co., Ltd., Shanghai, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| |
Collapse
|
13
|
Xu Z, Hu Q, Xie M, Liu J, Su A, Xu H, Yang W. Protective effects of peptide KSPLY derived from Hericium erinaceus on H2O2-induced oxidative damage in HepG2 cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
14
|
Targeting Nrf2 with Probiotics and Postbiotics in the Treatment of Periodontitis. Biomolecules 2022; 12:biom12050729. [PMID: 35625655 PMCID: PMC9139160 DOI: 10.3390/biom12050729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a destructive disease of the tooth-surrounding tissues. Infection is the etiological cause of the disease, but its extent and severity depend on the immune–inflammatory response of the host. Immune cells use reactive oxygen species to suppress infections, and there is homeostasis between oxidative and antioxidant mechanisms during periodontal health. During periodontitis, however, increased oxidative stress triggers tissue damage, either directly by activating apoptosis and DNA damage or indirectly by activating proteolytic cascades. Periodontal treatment aims to maintain an infection and inflammation-free zone and, in some cases, regenerate lost tissues. Although mechanical disruption of the oral biofilm is an indispensable part of periodontal treatment, adjunctive measures, such as antibiotics or anti-inflammatory medications, are also frequently used, especially in patients with suppressed immune responses. Recent studies have shown that probiotics activate antioxidant mechanisms and can suppress extensive oxidative stress via their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this narrative review is to describe the essential role of Nrf2 in the maintenance of periodontal health and to propose possible mechanisms to restore the impaired Nrf2 response in periodontitis, with the aid of probiotic and postbiotics.
Collapse
|
15
|
Wang Q, Wang Y, Zhang J, Pan S, Liu S. Silencing MR-1 Protects against Myocardial Injury Induced by Chronic Intermittent Hypoxia by Targeting Nrf2 through Antioxidant Stress and Anti-Inflammation Pathways. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3471447. [PMID: 35028117 PMCID: PMC8749373 DOI: 10.1155/2022/3471447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Patients with obstructive sleep apnea hypopnea syndrome (OSAHS) often have cardiac insufficiency mainly due to hypoxia/reperfusion injury caused by chronic intermittent hypoxia (CIH). Inflammation and oxidative stress are involved in the cardiovascular events of OSAHS patients. Studies have found that myofibrillation regulator-1 (MR-1) participates in the pathological process of OSAHS-induced myocardial injury, but the specific mechanism is still unclear. METHODS We used a CIH-induced rat model to simulate the process of OSAHS disease. Indices of myocardial injury, inflammation, and oxidative stress were detected using quantitative PCR and enzyme-linked immunosorbent assay (ELISA). After administration of adenoassociated viral vector (AAV) encoding silencing RNA against MR-1, we examined expression of the classic antioxidant stress pathway protein NF-E2-related factor 2 (Nrf2) using western blotting. RESULTS We found that levels of serum inflammatory factors tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 were increased, and we further observed disturbance of the oxidative stress system, in which the content of reactive oxygen species (ROS), superoxide dismutase (SOD), reduced glutathione (GSH), and malondialdehyde (MDA) was enhanced in CIH-induced rats. Subsequently, we detected that expression of Nrf2 and heme oxygenase-1 (HO-1) was slightly increased, while the expression of Kelch-like ECH-associated protein 1 (Keap-1) was significantly increased in the CIH model. Interestingly, after administration of silencing MR-1 AAV, the elevated levels of inflammatory factors were reduced, and the disordered oxidative stress system was corrected. Additionally, the expression of Nrf2 and HO-1 was distinctly increased, but the high expression of Keap-1 was decreased. CONCLUSIONS Our research results demonstrate that silencing MR-1 rescued the myocardium the injury from inflammatory and oxidative stress in CIH-induced rats by administration of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qixue Wang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Yue Wang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Jiner Zhang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Shuo Pan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| |
Collapse
|
16
|
Jia Y, Li J, Liu P, Si M, Jin Y, Wang H, Ma D, Chu L. Based on Activation of p62-Keap1-Nrf2 Pathway, Hesperidin Protects Arsenic-Trioxide-Induced Cardiotoxicity in Mice. Front Pharmacol 2021; 12:758670. [PMID: 34721041 PMCID: PMC8548645 DOI: 10.3389/fphar.2021.758670] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Hesperidin (HES) is a flavonoid glycoside found in the tangerine peel and has antioxidant properties. Arsenic trioxide (ATO) is an anti-tumour drug; however, its serious cardiotoxicity limits its clinical application. In addition, the protection of HES against ATO-induced cardiotoxicity has not been explored. Objective: The study aims to investigate and identify the underlying effect and mechanism of HES on ATO-induced cardiotoxicity. Methods: Fifty mice were randomly assigned to five groups. Mice were orally given HES:100 or 300 mg/kg/day concurrently and given ATO intraperitoneal injections: 7.5 mg/kg/day for 1 week. Blood and heart tissues were collected for examination. Evaluated in serum was the levels of creatine kinase (CK), lactate dehydrogenase (LDH) and cardiac troponin I (cTnI). In addition, evaluated in heart tissues were the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), Caspase-3, cleaved-Caspase-3, p62, Kelch-like ECH-associated protein 1 (Keap1), and nuclear factor erythroid 2-related factor 2 (Nrf2). The heart tissues were also examined for histopathology and mitochondrial ultrastructure. Results: Compared with the ATO group, the HES treatment groups reduced the levels of CK, LDH, cTnI, ROS, MDA, TNF-α, IL-6, Bax, Caspase-3, cleaved-Caspase-3 and Keap1 and enhanced the levels of SOD, GSH, CAT, Bcl-2, p62 and Nrf2. Conclusions: The results demonstrate that HES protects against ATO-induced cardiotoxicity, through inhibiting oxidative stress, and subsequent inflammation and apoptosis. The underlying results are closely related to the regulation of the p62-Keap1-Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Yuxin Jia
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Panpan Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Mingdong Si
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yanyu Jin
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|