1
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
2
|
Siverino C, Metsemakers WJ, Sutter R, Della Bella E, Morgenstern M, Barcik J, Ernst M, D'Este M, Joeris A, Chittò M, Schwarzenberg P, Stoddart M, Vanvelk N, Richards G, Wehrle E, Weisemann F, Zeiter S, Zalavras C, Varga P, Moriarty TF. Clinical management and innovation in fracture non-union. Expert Opin Biol Ther 2024; 24:973-991. [PMID: 39126182 DOI: 10.1080/14712598.2024.2391491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION With the introduction and continuous improvement in operative fracture fixation, even the most severe bone fractures can be treated with a high rate of successful healing. However, healing complications can occur and when healing fails over prolonged time, the outcome is termed a fracture non-union. Non-union is generally believed to develop due to inadequate fixation, underlying host-related factors, or infection. Despite the advancements in fracture fixation and infection management, there is still a clear need for earlier diagnosis, improved prediction of healing outcomes and innovation in the treatment of non-union. AREAS COVERED This review provides a detailed description of non-union from a clinical perspective, including the state of the art in diagnosis, treatment, and currently available biomaterials and orthobiologics.Subsequently, recent translational development from the biological, mechanical, and infection research fields are presented, including the latest in smart implants, osteoinductive materials, and in silico modeling. EXPERT OPINION The first challenge for future innovations is to refine and to identify new clinical factors for the proper definition, diagnosis, and treatment of non-union. However, integration of in vitro, in vivo, and in silico research will enable a comprehensive understanding of non-union causes and correlations, leading to the development of more effective treatments.
Collapse
Affiliation(s)
- C Siverino
- AO Research Institute Davos, Davos Platz, Switzerland
| | - W-J Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven - University of Leuven, Leuven, Belgium
| | - R Sutter
- Radiology Department, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - E Della Bella
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Morgenstern
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - J Barcik
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Ernst
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M D'Este
- AO Research Institute Davos, Davos Platz, Switzerland
| | - A Joeris
- AO Innovation Translation Center, Davos Platz, Switzerland
| | - M Chittò
- AO Research Institute Davos, Davos Platz, Switzerland
| | | | - M Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland
| | - N Vanvelk
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - G Richards
- AO Research Institute Davos, Davos Platz, Switzerland
| | - E Wehrle
- AO Research Institute Davos, Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - F Weisemann
- Department of Trauma Surgery, BG Unfallklinik Murnau, Murnau am Staffelsee, Germany
| | - S Zeiter
- AO Research Institute Davos, Davos Platz, Switzerland
| | - C Zalavras
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Varga
- AO Research Institute Davos, Davos Platz, Switzerland
| | - T F Moriarty
- AO Research Institute Davos, Davos Platz, Switzerland
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Haddad NS, Morrison-Porter A, Quehl H, Capric V, Lamothe PA, Anam F, Runnstrom MC, Truong AD, Dixit AN, Woodruff MC, Chen A, Park J, Nguyen DC, Hentenaar I, Kim CY, Kyu S, Stewart B, Wagman E, Geoffroy H, Sanz D, Cashman KS, Ramonell RP, Cabrera-Mora M, Alter DN, Roback JD, Horwath MC, O’Keefe JB, Dretler AW, Gripaldo R, Yeligar SM, Natoli T, Betin V, Patel R, Vela K, Hernandez MR, Usman S, Varghese J, Jalal A, Lee S, Le SN, Amoss RT, Daiss JL, Sanz I, Lee FEH. MENSA, a Media Enriched with Newly Synthesized Antibodies, to Identify SARS-CoV-2 Persistence and Latent Viral Reactivation in Long-COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.05.24310017. [PMID: 39006446 PMCID: PMC11245097 DOI: 10.1101/2024.07.05.24310017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Post-acute sequelae of SARS-CoV-2 (SARS2) infection (PASC) is a heterogeneous condition, but the main viral drivers are unknown. Here, we use MENSA, Media Enriched with Newly Synthesized Antibodies, secreted exclusively from circulating human plasmablasts, to provide an immune snapshot that defines the underlying viral triggers. We provide proof-of-concept testing that the MENSA technology can capture the new host immune response to accurately diagnose acute primary and breakthrough infections when known SARS2 virus or proteins are present. It is also positive after vaccination when spike proteins elicit an acute immune response. Applying the same principles for long-COVID patients, MENSA is positive for SARS2 in 40% of PASC vs none of the COVID recovered (CR) patients without any sequelae demonstrating ongoing SARS2 viral inflammation only in PASC. Additionally, in PASC patients, MENSAs are also positive for Epstein-Barr Virus (EBV) in 37%, Human Cytomegalovirus (CMV) in 23%, and herpes simplex virus 2 (HSV2) in 15% compared to 17%, 4%, and 4% in CR controls respectively. Combined, a total of 60% of PASC patients have a positive MENSA for SARS2, EBV, CMV, and/or HSV2. MENSA offers a unique antibody snapshot to reveal the underlying viral drivers in long-COVID thus demonstrating the persistence of SARS2 and reactivation of viral herpes in 60% of PASC patients.
Collapse
Affiliation(s)
- Natalie S. Haddad
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- MicroB-plex Inc, Atlanta, GA, 30332, USA
| | - Andrea Morrison-Porter
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- MicroB-plex Inc, Atlanta, GA, 30332, USA
| | - Hannah Quehl
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Violeta Capric
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Pedro A. Lamothe
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Fabliha Anam
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Martin C. Runnstrom
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Medicine, Atlanta Veterans Affairs Health Care System, Decatur, Georgia, 30033, USA
| | - Alex D. Truong
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Adviteeya N. Dixit
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Matthew C. Woodruff
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Anting Chen
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jiwon Park
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Ian Hentenaar
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Caroline Y. Kim
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Brandon Stewart
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth Wagman
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Hannah Geoffroy
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | | | - Kevin S. Cashman
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Richard P. Ramonell
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Asthma and Environmental Lung Health Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Monica Cabrera-Mora
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - David N. Alter
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Michael C. Horwath
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - James B. O’Keefe
- Division of General Internal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Ria Gripaldo
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Samantha M. Yeligar
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Medicine, Atlanta Veterans Affairs Health Care System, Decatur, Georgia, 30033, USA
| | - Ted Natoli
- ImmuneID, Inc Biotechnology Research, Waltham, MA, 02451, USA
| | - Viktoria Betin
- ImmuneID, Inc Biotechnology Research, Waltham, MA, 02451, USA
| | - Rahulkumar Patel
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Kennedy Vela
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Mindy Rodriguez Hernandez
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Sabeena Usman
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - John Varghese
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Anum Jalal
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Saeyun Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Sang N. Le
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - R. Toby Amoss
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | | | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
4
|
Haddad NS, Nozick S, Ohanian S, Smith R, Elias S, Auwaerter PG, Lee FEH, Daiss JL. Circulating antibody-secreting cells are a biomarker for early diagnosis in patients with Lyme disease. PLoS One 2023; 18:e0293203. [PMID: 37922270 PMCID: PMC10624293 DOI: 10.1371/journal.pone.0293203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/07/2023] [Indexed: 11/05/2023] Open
Abstract
BACKGROUND Diagnostic immunoassays for Lyme disease have several limitations including: 1) not all patients seroconvert; 2) seroconversion occurs later than symptom onset; and 3) serum antibody levels remain elevated long after resolution of the infection. INTRODUCTION MENSA (Medium Enriched for Newly Synthesized Antibodies) is a novel diagnostic fluid that contains antibodies produced in vitro by circulating antibody-secreting cells (ASC). It enables measurement of the active humoral immune response. METHODS In this observational, case-control study, we developed the MicroB-plex Anti-C6/Anti-pepC10 Immunoassay to measure antibodies specific for the Borrelia burgdorferi peptide antigens C6 and pepC10 and validated it using a CDC serum sample collection. Then we examined serum and MENSA samples from 36 uninfected Control subjects and 12 Newly Diagnosed Lyme Disease Patients. RESULTS Among the CDC samples, antibodies against C6 and/or pepC10 were detected in all seropositive Lyme patients (8/8), but not in sera from seronegative patients or healthy controls (0/24). Serum antibodies against C6 and pepC10 were detected in one of 36 uninfected control subjects (1/36); none were detected in the corresponding MENSA samples (0/36). In samples from newly diagnosed patients, serum antibodies identified 8/12 patients; MENSA antibodies also detected 8/12 patients. The two measures agreed on six positive individuals and differed on four others. In combination, the serum and MENSA tests identified 10/12 early Lyme patients. Typically, serum antibodies persisted 80 days or longer while MENSA antibodies declined to baseline within 40 days of successful treatment. DISCUSSION MENSA-based immunoassays present a promising complement to serum immunoassays for diagnosis and tracking therapeutic success in Lyme infections.
Collapse
Affiliation(s)
| | - Sophia Nozick
- MicroB-plex, Inc., Atlanta, GA, United States of America
| | - Shant Ohanian
- MicroB-plex, Inc., Atlanta, GA, United States of America
| | - Robert Smith
- Division of Infectious Diseases, Maine Medical Center, MaineHealth Institute for Research, Portland, ME, United States of America
| | - Susan Elias
- Division of Infectious Diseases, Maine Medical Center, MaineHealth Institute for Research, Portland, ME, United States of America
| | - Paul G. Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, The Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - F. Eun-Hyung Lee
- MicroB-plex, Inc., Atlanta, GA, United States of America
- Division of Pulmonary, Allergy & Immunology, Emory University, Atlanta, GA, United States of America
| | - John L. Daiss
- MicroB-plex, Inc., Atlanta, GA, United States of America
| |
Collapse
|
5
|
Campbell MP, Mott MD, Owen JR, Reznicek JE, Beck CA, Muthukrishnan G, Golladay GJ, Kates SL. Low albumin level is more strongly associated with adverse outcomes and Staphylococcus aureus infection than hemoglobin A1C or smoking tobacco. J Orthop Res 2022; 40:2670-2677. [PMID: 35119125 PMCID: PMC9349467 DOI: 10.1002/jor.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Postsurgical deep musculoskeletal infections are a major clinical problem in Orthopaedic Surgery. A serum-based nomogram, which can objectively risk-stratify patients, and aid surgeons in delineating infection risk associated with orthopedic surgical interventions, would be immensely helpful. Here, we constructed a multi-parametric nomogram based on serum anti-Staphylococcus aureus antibody responses, patient characteristics including demographics and standard clinical tests. This nomogram was formally tested in a prospective cohort study comparing 303 hospitalized patients with culture-confirmed S. aureus infection compared with a cohort of 223 healthy screened preoperative patients. Serum anti-S. aureus antibody responses, standard of care clinical tests, and patient demographic data were utilized to perform multivariate logistic regression analysis to quantify the presence of infection and adverse outcome using odds ratios (OR) and to assess predictive ability via area under the ROC curve (AUC). At enrollment, high anti-S. aureus IgG titers were predictive of infection. Remarkably, low serum albumin was found to be significantly associated with infection (OR = 479.963, 95% CI 61.59 - 3740.33, p < 0.0001) and this finding was surprisingly higher than BMI or HbA1c-associations. Combining all risk factors in the nomogram yielded a diagnostic AUC of 0.949 for predicting S. aureus infection. Our results indicate that a serum-based multi-parametric nomogram can be useful in diagnosing S. aureus infections, and importantly, malnourishment is significantly associated with these infections.
Collapse
Affiliation(s)
- Michael P. Campbell
- Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Makinzie D. Mott
- Department of PathologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - John R. Owen
- Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Julie E. Reznicek
- Department of Infectious DiseaseVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Christopher A. Beck
- Center for Musculoskeletal ResearchUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of Biostatistics and Computational BiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | | | - Gregory J. Golladay
- Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Stephen L. Kates
- Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
6
|
Subramanian D, Natarajan J. Leveraging big data bioinformatics approaches to extract knowledge from Staphylococcus aureus public omics data. Crit Rev Microbiol 2022; 49:391-413. [PMID: 35468027 DOI: 10.1080/1040841x.2022.2065905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Staphylococcus aureus is a notorious pathogen posing challenges in the medical industry due to drug resistance and biofilm formation. The horizon of knowledge on S. aureus pathogenesis has expanded with the advancement of data-driven bioinformatics techniques. Mining information from sequenced genomes and their expression data is an economic approach that alleviates wastage of resources and redundancy in experiments. The current review covers how big data bioinformatics has been used in the analysis of S. aureus from publicly available -omics data to uncover mechanisms of infection and inhibition. Particularly, advances in the past two decades in biomarker discovery, host responses, phenotype identification, consolidation of information, and drug development are discussed highlighting the challenges and shortcomings. Overall, the review summarizes the diverse aspects of scrupulous re-analysis of S. aureus proteomic and transcriptomic expression datasets retrieved from public repositories in terms of the efforts taken, benefits offered, and follow-up actions. The detailed review thus serves as a reference and aid for (i) Computational biologists by briefing the approaches utilized for bacterial omics re-analysis concerning S. aureus and (ii) Experimental biologists by elucidating the potential of bioinformatics in biological research to generate reliable postulates in a prompt and economical manner.
Collapse
Affiliation(s)
- Devika Subramanian
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| |
Collapse
|
7
|
Kyu S, Ramonell RP, Kuruvilla M, Kraft CS, Wang YF, Falsey AR, Walsh EE, Daiss JL, Paulos S, Rajam G, Wu H, Velusamy S, Lee FEH. Diagnosis of Streptococcus pneumoniae infection using circulating antibody secreting cells. PLoS One 2021; 16:e0259644. [PMID: 34767590 PMCID: PMC8589192 DOI: 10.1371/journal.pone.0259644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae infections cause morbidity and mortality worldwide. A rapid, simple diagnostic method could reduce the time needed to introduce definitive therapy potentially improving patient outcomes. METHODS We introduce two new methods for diagnosing S. pneumoniae infections by measuring the presence of newly activated, pathogen-specific, circulating Antibody Secreting Cells (ASC). First, ASC were detected by ELISpot assays that measure cells secreting antibodies specific for signature antigens. Second, the antibodies secreted by isolated ASC were collected in vitro in a novel matrix, MENSA (media enriched with newly synthesized antibodies) and antibodies against S. pneumoniae antigens were measured using Luminex immunoassays. Each assay was evaluated using blood from S. pneumoniae and non-S. pneumoniae-infected adult patients. RESULTS We enrolled 23 patients with culture-confirmed S. pneumoniae infections and 24 controls consisting of 12 non-S. pneumoniae infections, 10 healthy donors and two colonized with S. pneumoniae. By ELISpot assays, twenty-one of 23 infected patients were positive, and all 24 controls were negative. Using MENSA samples, four of five S. pneumoniae-infected patients were positive by Luminex immunoassays while all five non-S. pneumoniae-infected patients were negative. CONCLUSION Specific antibodies produced by activated ASC may provide a simple diagnostic for ongoing S. pneumoniae infections. This method has the potential to diagnose acute bacterial infections.
Collapse
Affiliation(s)
- Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard P. Ramonell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Merin Kuruvilla
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Colleen S. Kraft
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Yun F. Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ann R. Falsey
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Rochester General Hospital, Rochester, New York, United States of America
| | - Edward E. Walsh
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Rochester General Hospital, Rochester, New York, United States of America
| | - John L. Daiss
- Center for Musculoskeletal Research and Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, United States of America
- MicroB-plex, Inc., Atlanta, Georgia, United States of America
| | - Simon Paulos
- Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | | | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, United States of America
| | - Srinivasan Velusamy
- Division of Bacterial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
8
|
Klose AM, Daiss JL, Ho L, Beck CA, Striemer CC, Muthukrishnan G, Miller BL. StaphAIR: A Label-Free Antigen Microarray Approach to Detecting Anti- Staphylococcus aureus Antibody Responses in Orthopedic Infections. Anal Chem 2021; 93:13580-13588. [PMID: 34596381 DOI: 10.1021/acs.analchem.1c02658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arrayed imaging reflectometry (AIR) is an optical biosensor platform for simple, multiplex measurement of antigen-specific antibody responses in patient blood samples. Here, we report the development of StaphAIR, an 8-plex Staphylococcus aureus antigen array on the AIR platform for profiling antigen-specific anti-S. aureus humoral immune responses. Initial validation experiments with mouse and humanized monoclonal antibodies against the S. aureus autolysin glucosaminidase (Gmd) domain, and subsequent testing with dilution series of pooled positive human serum confirmed analytically robust behavior of the array, with all antigens displaying Langmuir-type dose-response curves. Testing a cohort of 82 patients with S. aureus musculoskeletal infections (MSKI) and 30 healthy individuals enabled discrimination of individual patient responses to different S. aureus antigens, with statistical significance between osteomyelitis patients and controls obtained overall for four individual antigens (IsdA, IsdB, Gmd, and SCIN). Multivariate analyses of the antibody titers obtained from StaphAIR revealed its utility as a potential diagnostic tool for detecting S. aureus MSKI (area under the receiver operating characteristic curve (AUC) > 0.85). We conclude that StaphAIR has utility as a high-throughput immunoassay for studying and diagnosing osteomyelitis in patients.
Collapse
Affiliation(s)
- Alanna M Klose
- Department of Dermatology, University of Rochester, Rochester, New York 14627, United States
| | - John L Daiss
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14627, United States
| | - Lananh Ho
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Christopher A Beck
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14627, United States.,Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14627, United States
| | | | - Gowrishankar Muthukrishnan
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14627, United States
| | - Benjamin L Miller
- Department of Dermatology, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
9
|
Muthukrishnan G, Beck CA, Owen JR, Xie C, Kates SL, Daiss JL. Serum antibodies against Staphylococcus aureus can prognose treatment success in patients with bone infections. J Orthop Res 2021; 39:2169-2176. [PMID: 33325051 PMCID: PMC8286088 DOI: 10.1002/jor.24955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Prognosing life-threatening orthopedic infections caused by Staphylococcus aureus remains a major clinical challenge. To address this, we developed a multiplex assay to assess the humoral immune proteome against S. aureus in patients with musculoskeletal infections. We found initial evidence that antibodies against some antigens (autolysins: Amd, Gmd; secreted immunotoxins: CHIPS, SCIN, Hla) were associated with protection, whereas antibodies against the iron-regulated surface determinant (Isd) proteins (IsdA, IsdB, IsdH) were aligned with adverse outcomes. To formally test this, we analyzed antibody levels and 1-year clinical outcomes of 194 patients with confirmed S. aureus bone infections (AO Trauma Clinical Priority Program [CPP] Bone Infection Registry). A staggering 20.6% of the enrolled patients experienced adverse clinical outcomes (arthrodesis, reinfection, amputation, and septic death) after 1-year. At enrollment, anti-S. aureus immunoglobulin G (IgG) levels in patients with adverse outcomes were 1.35-fold lower than those in patients whose infections were successfully controlled (p < 0.0001). Overall, there was a 51%-69% reduction in adverse outcome risk for every 10-fold increase in initial IgG concentration against Gmd, Amd, IsdH, CHIPS, SCIN, and Hla (p < 0.05). Notably, anti-IsdB antibodies remained elevated in patients with adverse outcomes; for every 10-fold change in the ratio of circulating anti-Isd to anti-Atl IgG at enrollment, there was a trending 2.6-fold increased risk (odds ratio = 2.555) of an adverse event (p = 0.105). Moreover, antibody increases over time correlated with adverse outcomes and decreases with positive outcomes. These studies demonstrate the potential of the humoral immune response against S. aureus as a prognostic indicator for assessing treatment success and identifying patients requiring additional interventions.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA,Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA,Corresponding Author: John L. Daiss, Ph.D., Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY, 14642,
| |
Collapse
|
10
|
Sulovari A, Ninomiya MJ, Beck CA, Ricciardi BF, Ketonis C, Mesfin A, Kaplan NB, Soin SP, McDowell SM, Mahmood B, Daiss JL, Schwarz EM, Oh I. Clinical utilization of species-specific immunoassays for identification of Staphylococcus aureus and Streptococcus agalactiae in orthopedic infections. J Orthop Res 2021; 39:2141-2150. [PMID: 33274775 PMCID: PMC8175449 DOI: 10.1002/jor.24935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023]
Abstract
Staphylococcus aureus and Streptococcus agalactiae (Group B streptococcus, GBS) are common causes of deep musculoskeletal infections (MSKI) and result in significant patient morbidity and cost to the healthcare system. One of the major challenges with MSKI is the lack of faithful diagnostics to correctly identify the primary pathogen, as standard culture-based assays are prone to false positives in the case of polymicrobial infections, and false negatives due to limitations in sample acquisition and antibiotic use before presentation. To improve upon our current diagnostic methods for MSKI, we developed a multiplex immunoassay for antigen-specific IgGs in serum (Luminex), and medium enriched for newly synthesized antibodies (MENSA) for anti-S. aureus and GBS generated from cultured peripheral blood mononuclear cells (PBMCs) of orthopedic infection patients undergoing surgical treatment. Samples were obtained from 110 MSKI patients: 80 diabetic foot ulcer, 21 periprosthetic joint infection, 5 septic arthritis, 2 spine, 1 hand, and 1 fracture-related infection (FRI). Anti-S. aureus and anti-GBS antibody titers were compared to culture results to assess their concordance in identifying the pathogens. Immunoassay, particularly MENSA, showed high diagnostic potential for monomicrobial S. aureus and GBS orthopedic infections (AUC > 0.95). MENSA also demonstrated diagnostic potential for GBS polymicrobial orthopedic infection and for GBS DFU (AUC > 0.83 for both). Serum showed high diagnostic potential for S. aureus PJI (AUC > 0.95). Taken together, these findings support the development of species-specific immunoassays for the identification of causal pathogens in active MSKI, especially in conjunction with standard culture.
Collapse
Affiliation(s)
- Aron Sulovari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark J. Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F. Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Constantinos Ketonis
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Addisu Mesfin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Nathan B. Kaplan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Sandeep P. Soin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Susan M. McDowell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Bilal Mahmood
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Owen J, Campbell M, Mott M, Beck C, Xie C, Muthukrishnan G, Daiss J, Schwarz E, Kates S. IgG4-specific responses in patients with Staphylococcus aureus bone infections are not predictive of postoperative complications. Eur Cell Mater 2021; 42:156-165. [PMID: 34549414 PMCID: PMC8886799 DOI: 10.22203/ecm.v042a12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The most prevalent pathogen in bone infections is Staphylococcus aureus; its incidence and severity are partially determined by host factors. Prior studies showed that anti-glucosaminidase (Gmd) antibodies are protective in animals, and 93.3 % of patients with culture-confirmed S. aureus osteomyelitis do not have anti-Gmd levels > 10 ng/mL in serum. Infection in patients with high anti-Gmd remains unexplained. Are anti-Gmd antibodies in osteomyelitis patients of the non-opsonising, non-complement-fixing IgG4 isotype? The relative amounts of IgG4 and total IgG against Gmd and 7 other S. aureus antigens: iron-surface determinants (Isd) IsdA, IsdB, and IsdH, amidase (Amd), α-haemolysin (Hla), chemotaxis inhibitory protein from S. aureus (CHIPS), and staphylococcal-complement inhibitor (SCIN) were determined in sera from healthy controls (Ctrl, n = 92), osteomyelitis patients whose surgical treatment resulted in infection control (IC, n = 95) or an adverse outcome (AD, n = 40), and post-mortem (PM, n = 7) blood samples from S. aureus septic-death patients. Anti-Gmd IgG4 levels were generally lower in infected patients compared to controls; however, levels among the infected were higher in AD than IC patients. Anti-IsdA, IsdB and IsdH IgG4 levels were increased in infected patients versus controls, and Jonckheere-Terpstra tests of levels revealed an increasing order of infection (Ctrl < IC < AD < PM) for anti-Isd IgG4 antibodies and a decreasing order of infection (Ctrl > IC > AD > PM) for anti-autolysin (Atl) IgG4 antibodies. Collectively, this does not support an immunosuppressive role of IgG4 in S. aureus osteomyelitis but is consistent with a paradigm of high anti-Isd and low anti-Atl responses in these patients.
Collapse
Affiliation(s)
- J.R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - M.P. Campbell
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - M.D. Mott
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - C.A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - C. Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - G. Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - J.L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - E.M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - S.L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA,Address for correspondence: Stephen L. Kates, MD, Professor and Chairman, Department of Orthopaedic Surgery, Virginia Commonwealth University, 1200 E. Broad St., Richmond, VA 23298, USA. Telephone number: +1 8048281311
| |
Collapse
|
12
|
Muthukrishnan G, Wallimann A, Rangel-Moreno J, Bentley KLDM, Hildebrand M, Mys K, Kenney HM, Sumrall ET, Daiss JL, Zeiter S, Richards RG, Schwarz EM, Moriarty TF. Humanized Mice Exhibit Exacerbated Abscess Formation and Osteolysis During the Establishment of Implant-Associated Staphylococcus aureus Osteomyelitis. Front Immunol 2021; 12:651515. [PMID: 33815412 PMCID: PMC8012494 DOI: 10.3389/fimmu.2021.651515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is the predominant pathogen causing osteomyelitis. Unfortunately, no immunotherapy exists to treat these very challenging and costly infections despite decades of research, and numerous vaccine failures in clinical trials. This lack of success can partially be attributed to an overreliance on murine models where the immune correlates of protection often diverge from that of humans. Moreover, S. aureus secretes numerous immunotoxins with unique tropism to human leukocytes, which compromises the targeting of immune cells in murine models. To study the response of human immune cells during chronic S. aureus bone infections, we engrafted non-obese diabetic (NOD)-scid IL2Rγnull (NSG) mice with human hematopoietic stem cells (huNSG) and analyzed protection in an established model of implant-associated osteomyelitis. The results showed that huNSG mice have increases in weight loss, osteolysis, bacterial dissemination to internal organs, and numbers of Staphylococcal abscess communities (SACs), during the establishment of implant-associated MRSA osteomyelitis compared to NSG controls (p < 0.05). Flow cytometry and immunohistochemistry demonstrated greater human T cell numbers in infected versus uninfected huNSG mice (p < 0.05), and that T-bet+ human T cells clustered around the SACs, suggesting S. aureus-mediated activation and proliferation of human T cells in the infected bone. Collectively, these proof-of-concept studies underscore the utility of huNSG mice for studying an aggressive form of S. aureus osteomyelitis, which is more akin to that seen in humans. We have also established an experimental system to investigate the contribution of specific human T cells in controlling S. aureus infection and dissemination.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | - Alexandra Wallimann
- AO Research Institute Davos, Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Karen Mys
- AO Research Institute Davos, Davos, Switzerland
| | - H Mark Kenney
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | - John L Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | | | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | |
Collapse
|
13
|
Nishitani K, Ishikawa M, Morita Y, Yokogawa N, Xie C, de Mesy Bentley KL, Ito H, Kates SL, Daiss JL, Schwarz EM. IsdB antibody-mediated sepsis following S. aureus surgical site infection. JCI Insight 2020; 5:141164. [PMID: 33004694 PMCID: PMC7566716 DOI: 10.1172/jci.insight.141164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is prevalent in surgical site infections (SSI) and leads to death in approximately 1% of patients. Phase IIB/III clinical trial results have demonstrated that vaccination against the iron-regulated surface determinant protein B (IsdB) is associated with an increased mortality rate in patients with SSI. Thus, we hypothesized that S. aureus induces nonneutralizing anti-IsdB antibodies, which facilitate bacterial entry into leukocytes to generate "Trojan horse" leukocytes that disseminate the pathogen. Since hemoglobin (Hb) is the primary target of IsdB, and abundant Hb-haptoglobin (Hb-Hp) complexes in bleeding surgical wounds are normally cleared via CD163-mediated endocytosis by macrophages, we investigated this mechanism in vitro and in vivo. Our results demonstrate that active and passive IsdB immunization of mice renders them susceptible to sepsis following SSI. We also found that a multimolecular complex containing S. aureus protein A-anti-IsdB-IsdB-Hb-Hp mediates CD163-dependent bacterial internalization of macrophages in vitro. Moreover, IsdB-immunized CD163-/- mice are resistant to sepsis following S. aureus SSI, as are normal healthy mice given anti-CD163-neutralizing antibodies. These genetic and biologic CD163 deficiencies did not exacerbate local infection. Thus, anti-IsdB antibodies are a risk factor for S. aureus sepsis following SSI, and disruption of the multimolecular complex and/or CD163 blockade may intervene.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/adverse effects
- Antibodies, Monoclonal/adverse effects
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cation Transport Proteins/immunology
- Female
- Haptoglobins/immunology
- Haptoglobins/metabolism
- Hemoglobins/immunology
- Hemoglobins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Sepsis/etiology
- Sepsis/metabolism
- Sepsis/pathology
- Staphylococcal Infections/complications
- Staphylococcal Infections/immunology
- Staphylococcal Infections/microbiology
- Staphylococcus aureus/immunology
- Surgical Wound Infection/complications
- Surgical Wound Infection/immunology
- Surgical Wound Infection/microbiology
Collapse
Affiliation(s)
- Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Noriaki Yokogawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
| |
Collapse
|