1
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
2
|
Farhat AM, Weiner AC, Posner C, Kim ZS, Orcutt-Jahns B, Carlson SM, Meyer AS. Modeling cell-specific dynamics and regulation of the common gamma chain cytokines. Cell Rep 2021; 35:109044. [PMID: 33910015 PMCID: PMC8179794 DOI: 10.1016/j.celrep.2021.109044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/01/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
The γ-chain receptor dimerizes with complexes of the cytokines interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 and their corresponding "private" receptors. These cytokines have existing uses and future potential as immune therapies because of their ability to regulate the abundance and function of specific immune cell populations. Here, we build a binding reaction model for the ligand-receptor interactions of common γ-chain cytokines, which includes receptor trafficking dynamics, enabling quantitative predictions of cell-type-specific response to natural and engineered cytokines. We then show that tensor factorization is a powerful tool to visualize changes in the input-output behavior of the family across time, cell types, ligands, and concentrations. These results present a more accurate model of ligand response validated across a panel of immune cell types as well as a general approach for generating interpretable guidelines for manipulation of cell-type-specific targeting of engineered ligands.
Collapse
Affiliation(s)
- Ali M Farhat
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Adam C Weiner
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | - Zoe S Kim
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Brian Orcutt-Jahns
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | - Aaron S Meyer
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90024, USA.
| |
Collapse
|
3
|
Gonnord P, Angermann BR, Sadtler K, Gombos E, Chappert P, Meier-Schellersheim M, Varma R. A hierarchy of affinities between cytokine receptors and the common gamma chain leads to pathway cross-talk. Sci Signal 2018; 11:11/524/eaal1253. [PMID: 29615515 DOI: 10.1126/scisignal.aal1253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines belonging to the common gamma chain (γc) family depend on the shared γc receptor subunit for signaling. We report the existence of a fast, cytokine-induced pathway cross-talk acting at the receptor level, resulting from a limiting amount of γc on the surface of T cells. We found that this limited abundance of γc reduced interleukin-4 (IL-4) and IL-21 responses after IL-7 preexposure but not vice versa. Computational modeling combined with quantitative experimental assays indicated that the asymmetric cross-talk resulted from the ability of the "private" IL-7 receptor subunits (IL-7Rα) to bind to many of the γc molecules even before stimulation with cytokine. Upon exposure of T cells to IL-7, the high affinity of the IL-7Rα:IL-7 complex for γc further reduced the amount of free γc in a manner dependent on the concentration of IL-7. Measurements of bioluminescence resonance energy transfer (BRET) between IL-4Rα and γc were reduced when IL-7Rα was overexpressed. Furthermore, in a system expressing IL-7Rα, IL-4Rα, and γc, BRET between IL-4Rα and γc increased after IL-4 binding and decreased when cells were preexposed to IL-7, supporting the assumption that IL-7Rα and the IL-7Rα:IL-7 complex limit the accessibility of γc for other cytokine receptor complexes. We propose that in complex inflammatory environments, such asymmetric cross-talk establishes a hierarchy of cytokine responsiveness.
Collapse
Affiliation(s)
- Pauline Gonnord
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bastian R Angermann
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaitlyn Sadtler
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Gombos
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pascal Chappert
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Meier-Schellersheim
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rajat Varma
- Computational Biology Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Waickman AT, Park JY, Park JH. The common γ-chain cytokine receptor: tricks-and-treats for T cells. Cell Mol Life Sci 2016; 73:253-69. [PMID: 26468051 PMCID: PMC6315299 DOI: 10.1007/s00018-015-2062-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
Originally identified as the third subunit of the high-affinity IL-2 receptor complex, the common γ-chain (γc) also acts as a non-redundant receptor subunit for a series of other cytokines, collectively known as γc family cytokines. γc plays essential roles in T cell development and differentiation, so that understanding the molecular basis of its signaling and regulation is a critical issue in T cell immunology. Unlike most other cytokine receptors, γc is thought to be constitutively expressed and limited in its function to the assembly of high-affinity cytokine receptors. Surprisingly, recent studies reported a series of findings that unseat γc as a simple housekeeping gene, and unveiled γc as a new regulatory molecule in T cell activation and differentiation. Cytokine-independent binding of γc to other cytokine receptor subunits suggested a pre-association model of γc with proprietary cytokine receptors. Also, identification of a γc splice isoform revealed expression of soluble γc proteins (sγc). sγc directly interacted with surface IL-2Rβ to suppress IL-2 signaling and to promote pro-inflammatory Th17 cell differentiation. As a result, endogenously produced sγc exacerbated autoimmune inflammatory disease, while the removal of endogenous sγc significantly ameliorated disease outcome. These data provide new insights into the role of both membrane and soluble γc in cytokine signaling, and open new venues to interfere and modulate γc signaling during immune activation. These unexpected discoveries further underscore the perspective that γc biology remains largely uncharted territory that invites further exploration.
Collapse
Affiliation(s)
- Adam T Waickman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Joo-Young Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Cirillo E, Giardino G, Gallo V, D'Assante R, Grasso F, Romano R, Di Lillo C, Galasso G, Pignata C. Severe combined immunodeficiency--an update. Ann N Y Acad Sci 2015; 1356:90-106. [PMID: 26235889 DOI: 10.1111/nyas.12849] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/02/2015] [Accepted: 06/19/2015] [Indexed: 12/22/2022]
Abstract
Severe combined immunodeficiencies (SCIDs) are a group of inherited disorders responsible for severe dysfunctions of the immune system. These diseases are life-threatening when the diagnosis is made too late; they are the most severe forms of primary immunodeficiency. SCID patients often die during the first two years of life if appropriate treatments to reconstitute their immune system are not undertaken. Conventionally, SCIDs are classified according either to the main pathway affected by the molecular defect or on the basis of the specific immunologic phenotype that reflects the stage where the blockage occurs during the differentiation process. However, during the last few years many new causative gene alterations have been associated with unusual clinical and immunological phenotypes. Many of these novel forms of SCID also show extra-hematopoietic alterations, leading to complex phenotypes characterized by a functional impairment of several organs, which may lead to a considerable delay in the diagnosis. Here we review the biological and clinical features of SCIDs paying particular attention to the most recently identified forms and to their unusual or extra-immunological clinical features.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Vera Gallo
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Fiorentino Grasso
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Cristina Di Lillo
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Giovanni Galasso
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| |
Collapse
|
6
|
Multhaup MM, Podetz-Pedersen KM, Karlen AD, Olson ER, Gunther R, Somia NV, Blazar BR, Cowan MJ, McIvor RS. Role of transgene regulation in ex vivo lentiviral correction of artemis deficiency. Hum Gene Ther 2015; 26:232-43. [PMID: 25738323 DOI: 10.1089/hum.2014.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Artemis is a single-stranded endonuclease, deficiency of which results in a radiation-sensitive form of severe combined immunodeficiency (SCID-A) most effectively treated by allogeneic hematopoietic stem cell (HSC) transplantation and potentially treatable by administration of genetically corrected autologous HSCs. We previously reported cytotoxicity associated with Artemis overexpression and subsequently characterized the human Artemis promoter with the intention to provide Artemis expression that is nontoxic yet sufficient to support immunodevelopment. Here we compare the human Artemis promoter (APro) with the moderate-strength human phosphoglycerate kinase (PGK) promoter and the strong human elongation factor-1α (EF1α) promoter to regulate expression of Artemis after ex vivo lentiviral transduction of HSCs in a murine model of SCID-A. Recipient animals treated with the PGK-Artemis vector exhibited moderate repopulation of their immune compartment, yet demonstrated a defective proliferative T lymphocyte response to in vitro antigen stimulation. Animals treated with the EF1α-Artemis vector displayed high levels of T lymphocytes but an absence of B lymphocytes and deficient lymphocyte function. In contrast, ex vivo transduction with the APro-Artemis vector supported effective immune reconstitution to wild-type levels, resulting in fully functional T and B lymphocyte responses. These results demonstrate the importance of regulated Artemis expression in immune reconstitution of Artemis-deficient SCID.
Collapse
Affiliation(s)
- Megan M Multhaup
- 1 Department of Genetics, Cell Biology, and Development, University of Minnesota , Minneapolis, MN 55455
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang S, Teng Q, Jia L, Sun X, Wu Y, Zhou J. Infectious bursal disease virus influences the transcription of chicken γc and γc family cytokines during infection. PLoS One 2014; 9:e84503. [PMID: 24416239 PMCID: PMC3887008 DOI: 10.1371/journal.pone.0084503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/20/2013] [Indexed: 01/05/2023] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes immunodeficiency in chickens. To understand cell-mediated immunity during IBDV infection, this study perform a detailed analysis of chicken γc chain (chCD132) and γc family cytokines, including interleukins 2, 4, 7, 9, and 15. The mouse anti-chCD132 monoclonal antibody (mAb) was first generated by the E.coli-expressed γc protein. Immunofluorescence assay further showed that γc was a protein located with the anti-chCD132 mAb on the surface of chicken's splenic mononuclear cells. Real-time quantitative RT-PCR revealed that the chCD132 mRNA transcript was persistently downregulated in embryo fibroblasts, spleen and thymus of chickens infected with IBDV. Correspondingly during IBDV infection, the transcription of five γc family cytokines was downregulated in the thymus and presented an imbalance in the spleen. Fluorescence-activated cell sorting analyses also indicated that the percentage of CD132+CD8+ T cells linearly decreased in the bursa of IBDV-infected chickens. These results confirmed that IBDV infection disturbed the in vivo balance of CD132 and γc family cytokine expression and that IBDV-induced immunodeficiency involved cellular networks related to the γc family.
Collapse
Affiliation(s)
- Sanying Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiaoyang Teng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lu Jia
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyuan Sun
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yongping Wu
- College of Animal Sciences and Technology, Zhejiang A&F University, Lin'an, Zhejiang, People's Republic of China
- * E-mail: (YPW); (JYZ)
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail: (YPW); (JYZ)
| |
Collapse
|
8
|
Giron-Michel J, Azzi S, Ferrini S, Chouaib S, Camussi G, Eid P, Azzarone B. Interleukin-15 is a major regulator of the cell-microenvironment interactions in human renal homeostasis. Cytokine Growth Factor Rev 2013; 24:13-22. [DOI: 10.1016/j.cytogfr.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
9
|
Capalbo D, Scala MG, Melis D, Minopoli G, Improda N, Palamaro L, Pignata C, Salerno M. Clinical Heterogeneity in two patients with Noonan-like Syndrome associated with the same SHOC2 mutation. Ital J Pediatr 2012; 38:48. [PMID: 22995099 PMCID: PMC4231415 DOI: 10.1186/1824-7288-38-48] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/18/2012] [Indexed: 02/04/2023] Open
Abstract
Noonan-like syndrome with loose anagen hair (NS/LAH; OMIM #607721) has been recently related to the invariant c.4A > G missense change in SHOC2. It is characterized by features reminiscent of Noonan syndrome. Ectodermal involvement, short stature associated to growth hormone (GH) deficiency (GHD), and cognitive deficits are common features. We compare in two patients with molecularly confirmed NS/LAH diagnosis, the clinical phenotype and pathogenetic mechanism underlying short stature. In particular, while both the patients exhibited a severe short stature, GH/IGFI axis functional evaluation revealed a different pathogenetic alteration, suggesting in one patient an upstream alteration (typical GHD) and in the other one a peripheral GH insensitivity. Since only a few cases of NS/LAH associated to SHOC2 mutations have been so far described, the complex phenotype of the syndrome and the exact mechanism impairing GH/IGFI axis still remain to be elucidated and studies on larger cohort of subjects are needed to better delineate this syndrome.
Collapse
Affiliation(s)
- Donatella Capalbo
- Department of Pediatrics, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Montella S, Maglione M, Giardino G, Di Giorgio A, Palamaro L, Mirra V, Ursini MV, Salerno M, Pignata C, Caffarelli C, Santamaria F. Hyper IgM syndrome presenting as chronic suppurative lung disease. Ital J Pediatr 2012; 38:45. [PMID: 22992442 PMCID: PMC3484017 DOI: 10.1186/1824-7288-38-45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/14/2012] [Indexed: 12/11/2022] Open
Abstract
The Hyper-immunoglobulin M syndromes (HIGM) are a heterogeneous group of genetic disorders resulting in defects of immunoglobulin class switch recombination. Affected patients show humoral immunodeficiency and high susceptibility to opportunistic infections. Elevated serum IgM levels are the hallmark of the disease, even though in few rare cases they may be in the normal range. Hyper IgM is associated with low to undetectable levels of serum IgG, IgA, and IgE. In some cases, alterations in different genes may be identified. Mutations in five genes have so far been associated to the disease, which can be inherited with an X-linked (CD40 ligand, and nuclear factor-kB essential modulator defects) or an autosomal recessive (CD40, activation-induced cytidine deaminase, and uracil-DNA glycosylase mutation) pattern. The patient herein described presented with recurrent upper and lower respiratory infections and evidence of suppurative lung disease at the conventional chest imaging. The presence of low serum IgG and IgA levels, elevated IgM levels, and a marked reduction of in vivo switched memory B cells led to a clinical and functional diagnosis of HIGM although the genetic cause was not identified.
Collapse
Affiliation(s)
- Silvia Montella
- Department of Pediatrics, Federico II University, via Pansini 5, Naples, 80131, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Palamaro L, Giardino G, Santamaria F, Romano R, Fusco A, Montella S, Salerno M, Ursini MV, Pignata C. Interleukin 12 receptor deficiency in a child with recurrent bronchopneumonia and very high IgE levels. Ital J Pediatr 2012; 38:46. [PMID: 22992471 PMCID: PMC3485094 DOI: 10.1186/1824-7288-38-46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/14/2012] [Indexed: 12/13/2022] Open
Abstract
Interleukin-12 (IL-12) is involved in cellular immune responses against intracellular pathogens by promoting the generation of T naive in T helper 1 (Th1) cells and by increasing interferon-gamma (IFN-gamma) production from T and natural killer (NK) cells. A defective induction of a Th1 response may lead to a higher risk of infections, and, in particular, infections due to typical and atypical Mycobacteria. We report on the case of a girl with suffering from recurrent bronchopneumonia associated with very high serum IgE levels, who exhibited a profound impairment of the Th1 generation associated with a novel mutation in the exon 5 of the IL-12R β1 gene (R156H). Our data suggest that in children with severe and recurrent infections, even in the absence of a mycobacterial infection, functional and/or genetic alterations of the molecular mechanisms governing Th1/Th2 homeostasis might be responsible for an atypical immunodeficiency and, therefore, should be investigated in these patients.
Collapse
Affiliation(s)
| | | | | | - Rosa Romano
- Department of Pediatrics, “Federico II” University, Naples, Italy
| | - Anna Fusco
- Department of Pediatrics, “Federico II” University, Naples, Italy
| | - Silvia Montella
- Department of Pediatrics, “Federico II” University, Naples, Italy
| | | | | | - Claudio Pignata
- Department of Pediatrics, “Federico II” University, Naples, Italy
- Unit of Immunology, Department of Pediatrics, “Federico II” University, Via S. Pansini 5-80131, Naples, 80127, Italy
| |
Collapse
|
12
|
Palamaro L, Giardino G, Santamaria F, Ramenghi U, Dianzani U, Pignata C. Altered regulatory mechanisms governing cell survival in children affected with clustering of autoimmune disorders. Ital J Pediatr 2012; 38:42. [PMID: 22971828 PMCID: PMC3469397 DOI: 10.1186/1824-7288-38-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 11/12/2022] Open
Abstract
Clustering of Autoimmune Diseases (CAD) is now emerging as a novel clinical entity within monogenic immune defects with a high familial occurrence. Aim of this study is to evaluate the regulatory mechanisms governing cell survival, paying a particular attention to Fas-induced apoptosis, in a cohort of 23 children affected with CAD. In 14 patients, Fas stimulation failed to induce cell apoptosis and in 1 case it was associated with Fas gene mutation. Our study highlights the importance to evaluate cell apoptosis in the group of children with CAD, which, with this regard, represents a distinct clinical entity.
Collapse
Affiliation(s)
- Loredana Palamaro
- Department of Pediatrics, “Federico II” University, Pansini 5, 80131, Naples, Italy
| | - Giuliana Giardino
- Department of Pediatrics, “Federico II” University, Pansini 5, 80131, Naples, Italy
| | - Francesca Santamaria
- Department of Pediatrics, “Federico II” University, Pansini 5, 80131, Naples, Italy
| | - Ugo Ramenghi
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) and Department of Medical Science, “A. Avogadro” University, Eastern Piedmont, Novara, Italy
| | - Umberto Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) and Department of Medical Science, “A. Avogadro” University, Eastern Piedmont, Novara, Italy
| | - Claudio Pignata
- Department of Pediatrics, “Federico II” University, Pansini 5, 80131, Naples, Italy
| |
Collapse
|
13
|
From murine to human nude/SCID: the thymus, T-cell development and the missing link. Clin Dev Immunol 2012; 2012:467101. [PMID: 22474479 PMCID: PMC3303720 DOI: 10.1155/2012/467101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/09/2011] [Indexed: 11/17/2022]
Abstract
Primary immunodeficiencies (PIDs) are disorders of the immune system, which lead to increased susceptibility to infections. T-cell defects, which may affect T-cell development/function, are approximately 11% of reported PIDs. The pathogenic mechanisms are related to molecular alterations not only of genes selectively expressed in hematopoietic cells but also of the stromal component of the thymus that represents the primary lymphoid organ for T-cell differentiation. With this regard, the prototype of athymic disorders due to abnormal stroma is the Nude/SCID syndrome, first described in mice in 1966. In man, the DiGeorge Syndrome (DGS) has long been considered the human prototype of a severe T-cell differentiation defect. More recently, the human equivalent of the murine Nude/SCID has been described, contributing to unravel important issues of the T-cell ontogeny in humans. Both mice and human diseases are due to alterations of the FOXN1, a developmentally regulated transcription factor selectively expressed in skin and thymic epithelia.
Collapse
|
14
|
Giron-Michel J, Azzi S, Khawam K, Mortier E, Caignard A, Devocelle A, Ferrini S, Croce M, François H, Lecru L, Charpentier B, Chouaib S, Azzarone B, Eid P. Interleukin-15 plays a central role in human kidney physiology and cancer through the γc signaling pathway. PLoS One 2012; 7:e31624. [PMID: 22363690 PMCID: PMC3283658 DOI: 10.1371/journal.pone.0031624] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 01/16/2012] [Indexed: 12/16/2022] Open
Abstract
The ability of Interleukin-15 (IL-15) to activate many immune antitumor mechanisms renders the cytokine a good candidate for the therapy of solid tumors, particularly renal cell carcinoma. Although IL-15 is being currently used in clinical trials, the function of the cytokine on kidney's components has not been extensively studied; we thus investigated the role of IL-15 on normal and tumor renal epithelial cells. Herein, we analyzed the expression and the biological functions of IL-15 in normal renal proximal tubuli (RPTEC) and in their neoplastic counterparts, the renal clear cell carcinomas (RCC). This study shows that RPTEC express a functional heterotrimeric IL-15Rαβγc complex whose stimulation with physiologic concentrations of rhIL-15 is sufficient to inhibit epithelial mesenchymal transition (EMT) commitment preserving E-cadherin expression. Indeed, IL-15 is not only a survival factor for epithelial cells, but it can also preserve the renal epithelial phenotype through the γc-signaling pathway, demonstrating that the cytokine possess a wide range of action in epithelial homeostasis. In contrast, in RCC in vitro and in vivo studies reveal a defect in the expression of γc-receptor and JAK3 associated kinase, which strongly impacts IL-15 signaling. Indeed, in the absence of the γc/JAK3 couple we demonstrate the assembly of an unprecedented functional high affinity IL-15Rαβ heterodimer, that in response to physiologic concentrations of IL-15, triggers an unbalanced signal causing the down-regulation of the tumor suppressor gene E-cadherin, favoring RCC EMT process. Remarkably, the rescue of IL-15/γc-dependent signaling (STAT5), by co-transfecting γc and JAK3 in RCC, inhibits EMT reversion. In conclusion, these data highlight the central role of IL-15 and γc-receptor signaling in renal homeostasis through the control of E-cadherin expression and preservation of epithelial phenotype both in RPTEC (up-regulation) and RCC (down-regulation).
Collapse
Affiliation(s)
- Julien Giron-Michel
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Sandy Azzi
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Krystel Khawam
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Erwan Mortier
- INSERM UMRS 892, Institut de Recherche Thérapeutique de l'Université de Nantes (IRT UN), Nantes, France
| | - Anne Caignard
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris, France
| | - Aurore Devocelle
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Silvano Ferrini
- Laboratory of Immunotherapy, Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Michela Croce
- Laboratory of Immunotherapy, Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Hélène François
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Lola Lecru
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Bernard Charpentier
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Salem Chouaib
- INSERM UMR 753, Université de Paris-Sud, Institut Gustave Roussy (IGR), Villejuif, France
| | - Bruno Azzarone
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
- * E-mail: (BA); (PE)
| | - Pierre Eid
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
- * E-mail: (BA); (PE)
| |
Collapse
|
15
|
Aloj G, Giardino G, Valentino L, Maio F, Gallo V, Esposito T, Naddei R, Cirillo E, Pignata C. Severe Combined Immunodeficiences: New and Old Scenarios. Int Rev Immunol 2012; 31:43-65. [DOI: 10.3109/08830185.2011.644607] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Vigliano I, Palamaro L, Bianchino G, Fusco A, Vitiello L, Grieco V, Romano R, Salvatore M, Pignata C. Role of the common γ chain in cell cycle progression of human malignant cell lines. Int Immunol 2012; 24:159-67. [PMID: 22223761 DOI: 10.1093/intimm/dxr114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The γ-chain (γc) is a transducing element shared between several cytokine receptors whose alteration causes X-linked severe combined immunodeficiency. Recently, a direct involvement of γc in self-sufficient growth in a concentration-dependent manner was described, implying a direct relationship between the amount of the molecule and its role in cell cycle progression. In this study, we evaluate whether γc expression could interfere in cell cycle progression also in malignant hematopoietic cells. Here, we first report that in the absence of γc expression, lymphoblastoid B-cell lines (BCLs) die at a higher extent than control cells. This phenomenon is caspase-3 independent and is associated to a decreased expression of the antiapoptotic Bcl-2 family members. By contrast, increased expression of γc protein directly correlates with spontaneous cell growth in several malignant hematopoietic cell lines. We, also, find that the knockdown of γc protein through short interfering RNA is able to decrease the cell proliferation rate in these malignancies. Furthermore, an increased expression of all D-type cyclins is found in proliferating neoplastic cells. In addition, a direct correlation between the amount of γc and cyclins A2 and B1 expression is found. Hence, our data demonstrate that the amount of the γc is able to influence the transcription of genes involved in cell cycle progression, thus being directly involved in the regulatory control of cell proliferation of malignant hematopoietic cells.
Collapse
Affiliation(s)
- Ilaria Vigliano
- Department of Pediatrics, "Federico II" University, Naples 80131, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Multhaup MM, Gurram S, Podetz-Pedersen KM, Karlen AD, Swanson DL, Somia NV, Hackett PB, Cowan MJ, McIvor RS. Characterization of the human artemis promoter by heterologous gene expression in vitro and in vivo. DNA Cell Biol 2011; 30:751-61. [PMID: 21663454 DOI: 10.1089/dna.2011.1244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Artemis is an endonucleolytic enzyme involved in nonhomologous double-strand break repair and V(D)J recombination. Deficiency of Artemis results in a B- T- radiosensitive severe combined immunodeficiency, which may potentially be treatable by Artemis gene transfer into hematopoietic stem cells. However, we recently found that overexpression of Artemis after lentiviral transduction resulted in global DNA damage and increased apoptosis. These results imply the necessity of effecting natural levels of Artemis expression, so we isolated a 1 kilobase DNA sequence upstream of the human Artemis gene to recover and characterize the Artemis promoter (APro). The sequence includes numerous potential transcription factor-binding sites, and several transcriptional start sites were mapped by 5' rapid amplification of cDNA ends. APro and deletion constructs conferred significant reporter gene expression in vitro that was markedly reduced in comparison to expression regulated by the human elongation factor 1-α promoter. Ex vivo lentiviral transduction of an APro-regulated green fluorescent protein (GFP) construct in mouse marrow supported GFP expression throughout hematopoeitic lineages in primary transplant recipients and was sustained in secondary recipients. The human Artemis promoter thus provides sustained and moderate levels of gene expression that will be of significant utility for therapeutic gene transfer into hematopoeitic stem cells.
Collapse
Affiliation(s)
- Megan M Multhaup
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Almarza E, Zhang F, Santilli G, Blundell M, Howe S, Thornhill S, Bueren J, Thrasher A. Correction of SCID-X1 Using an EnhancerlessVavPromoter. Hum Gene Ther 2011; 22:263-70. [DOI: 10.1089/hum.2010.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- E. Almarza
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) y Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, España
- Centre for Immunodeficiency, Institute of Child Health, University College London, WC1N 1EH, London, U.K
| | - F. Zhang
- Centre for Immunodeficiency, Institute of Child Health, University College London, WC1N 1EH, London, U.K
| | - G. Santilli
- Centre for Immunodeficiency, Institute of Child Health, University College London, WC1N 1EH, London, U.K
| | - M.P. Blundell
- Centre for Immunodeficiency, Institute of Child Health, University College London, WC1N 1EH, London, U.K
| | - S.J. Howe
- Centre for Immunodeficiency, Institute of Child Health, University College London, WC1N 1EH, London, U.K
| | - S.I. Thornhill
- Centre for Immunodeficiency, Institute of Child Health, University College London, WC1N 1EH, London, U.K
| | - J.A. Bueren
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) y Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), 28040 Madrid, España
| | - A.J. Thrasher
- Centre for Immunodeficiency, Institute of Child Health, University College London, WC1N 1EH, London, U.K
- Great Ormond Street Hospital NHS Trust, WC1N 3JH, London, U.K
| |
Collapse
|
20
|
Vigliano I, Fusco A, Palamaro L, Aloj G, Cirillo E, Salerno MC, Pignata C. γ Chain transducing element: A shared pathway between endocrine and immune system. Cell Immunol 2011; 269:10-5. [DOI: 10.1016/j.cellimm.2011.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/08/2011] [Indexed: 12/20/2022]
|
21
|
Multhaup M, Karlen AD, Swanson DL, Wilber A, Somia NV, Cowan MJ, McIvor RS. Cytotoxicity associated with artemis overexpression after lentiviral vector-mediated gene transfer. Hum Gene Ther 2010; 21:865-75. [PMID: 20163250 DOI: 10.1089/hum.2009.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artemis is a hairpin-opening endonuclease involved in nonhomologous end-joining and V(D)J recombination. Deficiency of Artemis results in radiation-sensitive severe combined immunodeficiency (SCID) characterized by complete absence of T and B cells due to an arrest at the receptor recombination stage. We have generated several lentiviral vectors for transduction of the Artemis sequence, intending to complement the deficient phenotype. We found that transduction by a lentiviral vector in which Artemis is regulated by a strong EF-1alpha promoter resulted in a dose-dependent loss of cell viability due to perturbed cell cycle distribution, increased DNA damage, and increased apoptotic cell frequency. This toxic response was not observed in cultures exposed to identical amounts of control vector. Loss of cell viability was also observed in cells transfected with an Artemis expression construct, indicating that toxicity is independent of lentiviral transduction. Reduced toxicity was observed when cells were transduced with a moderate-strength phosphoglycerate kinase promoter to regulate Artemis expression. These results present a novel challenge in the establishment of conditions that support Artemis expression at levels that are nontoxic yet sufficient to correct the T(-)B(-) phenotype, crucial for preclinical studies and clinical application of Artemis gene transfer in the treatment of human SCID-A.
Collapse
Affiliation(s)
- Megan Multhaup
- Gene Therapy Program, Institute of Human Genetics, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Chang S, Wang L, Lin X, Xiang F, Chen B, Chen Z. Blockade of gammac signals in combination with donor-specific transfusion induces cardiac allograft acceptance in murine models. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2010; 30:421-4. [PMID: 20714863 DOI: 10.1007/s11596-010-0442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Indexed: 11/24/2022]
Abstract
The gammac cytokines play an important role in proliferation and survival of T cells. Blocking the gammac signals can cause the activated donor-reactive T cells losing the ability to proliferate, and getting into apoptosis pathway, which contributes to induction of the peripheral tolerance. In this study, we induced the transplant tolerance through blocking the gammac in combination with donor-specific transfusion (DST) in the cardiac transplantation. Following DST, on the day 2, 4 and 6, C57BL/6 recipients received anti-gammac monoclonal antibodies (mAbs) injection, and those in control group were not given anti-gammac mAbs. On the day 7, Balb/c cardiac allografts were transplanted. All recipients in experimental group accepted cardiac allografts over 30 days, and two of them accepted allografts without rejection until sacrifice on the 120 day. Animals only receiving DST rejected grafts within 5 days, and the mice receiving cardiac transplantation alone rejected grafts within 9 days. Our study showed that blockade of gammac signaling combined with DST significantly prolonged allograft survival, which was probably associated with inhibition of antigen-specific T-cell proliferation and induction of apoptosis.
Collapse
Affiliation(s)
- Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | | | | | | | |
Collapse
|
23
|
Orr SJ, Roessler S, Quigley L, Chan T, Ford JW, O'Connor GM, McVicar DW. Implications for gene therapy-limiting expression of IL-2R gamma c delineate differences in signaling thresholds required for lymphocyte development and maintenance. THE JOURNAL OF IMMUNOLOGY 2010; 185:1393-403. [PMID: 20592278 DOI: 10.4049/jimmunol.0903528] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
X-linked SCID patients are deficient in functional IL-2Rgamma(c) leading to the loss of IL-2/IL-4/IL-7/IL-9/IL-15/IL-21 signaling and a lack of NK and mature T cells. Patients treated with IL-2Rgamma(c) gene therapy have T cells develop; however, their NK cell numbers remain low, suggesting antiviral responses may be compromised. Similarly, IL-2Rgamma(c)(-/-) mice reconstituted with IL-2Rgamma(c) developed few NK cells, and reconstituted T cells exhibited defective proliferative responses suggesting incomplete recovery of IL-2Rgamma(c) signaling. Given the shift toward self-inactivating long terminal repeats with weaker promoters to control the risk of leukemia, we assessed NK and T cell numbers and function in IL-2Rgamma(c)(-/-) mice reconstituted with limiting amounts of IL-2Rgamma(c). Reconstitution resulted in lower IL-2/-15-mediated STAT5 phosphorylation and proliferation in NK and T cells. However, TCR costimulation restored cytokine-driven T cell proliferation to wild-type levels. Vector modifications that improved IL-2Rgamma(c) levels increased cytokine-induced STAT5 phosphorylation in both populations and increased NK cell proliferation demonstrating that IL-2Rgamma(c) levels are limiting. In addition, although the half-lives of both NK and T cells expressing intermediate levels of IL-2Rgamma(c) are reduced compared with wild-type cells, the reduction in NK cell half-live is much more severe than in T cells. Collectively, these data indicate different IL-2Rgamma(c) signaling thresholds for lymphocyte development and proliferation making functional monitoring imperative during gene therapy. Further, our findings suggest that IL-2Rgamma(c) reconstituted T cells may persist more efficiently than NK cells due to compensation for suboptimal IL-2Rgamma(c) signaling by the TCR.
Collapse
Affiliation(s)
- Selinda J Orr
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Anti-gamma chain and anti-IL-2Rbeta mAbs in combination with donor splenocyte transfusion induce H-Y skin graft acceptance in murine model. Transplant Proc 2009; 41:3913-5. [PMID: 19917411 DOI: 10.1016/j.transproceed.2009.06.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 03/03/2009] [Accepted: 06/01/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND The common cytokine receptor gamma chain signals regulate proliferation, differentiation, and apoptosis of peripheral T cells. OBJECTIVE To investigate whether simultaneous blockade of IL-2Rbeta and gamma chain signaling in combination with donor splenocyte transfusion (DST) induces transplant tolerance. MATERIALS AND METHODS C57BL/6 (H-2b) mice were randomly divided into 5 groups. In group 1, female mice received only H-Y skin grafts. In group 2, female mice received transfused splenocytes (5 x 10(6) cells) from syngeneic male mice on day 7 before H-Y skin grafting. In group 3, on days 2 and 4 after DST, female mice received intraperitoneal injections of a mixture of anti-IL-2Rbeta monoclonal antibody (mAb) and anti-gamma chain mAbs (4G3, 3E12, and TUGm2; 0.5 mg). After DST, group 4 received an intraperitoneal injection of the mixture of anti-gamma chain mAbs, and group 5 received intraperitoneal injection of anti-IL-2Rbeta mAb (TM-beta1). On day 7, H-Y skin grafting was performed. RESULTS Group 3 recipients accepted H-Y skin grafts for more than 100 days compared with group 1 (mean survival time [MST], 33.42 days), group 2 (MST, 14.71 days), group 4 (MST, 58.71 days), and group 5 (MST, 17.29 days). Statistical differences (P < .05) were observed between any 2 groups except groups 2 and 5. CONCLUSION Blockade of gamma chain signaling rather than IL-2Rbeta signaling combined with DST prolongs H-Y skin graft survival. Simultaneous blockade of IL-2Rbeta and gamma chain signaling may strengthen this effect.
Collapse
|