1
|
Ren SH, Shao B, Wang HD, Zhang JY, Qin H, Sun CL, Zhu YL, Wang ZB, Lan X, Gao YC, Wang H. Oxymatrine attenuates chronic allograft rejection by modulating immune responses and inhibiting fibrosis. Eur J Pharmacol 2024; 985:177082. [PMID: 39486768 DOI: 10.1016/j.ejphar.2024.177082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Chronic rejection (CR) is a significant obstacle to long-term allograft survival. Oxymatrine (OMT) is a prominent bioactive compound widely utilized in traditional Chinese medicine for the management of inflammatory disorders and it has considerable potential as a therapeutic candidate for the treatment of CR. METHODS Well-established major histocompatibility complex (MHC) class II mismatched B6 mice. C-H-2bm12-to-C57BL/6 mouse transplantation was used as a CR model. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and Masson's trichrome staining were used to assess pathological changes in the grafts, and the percentages of immune cells were determined by flow cytometry. The effects of OMT on the regulation of CD4+ T cell differentiation and cytokine secretion were verified in vitro. RESULTS OMT effectively alleviated pathological graft damage, characterized by chronic changes in intimal lesions, vasculopathy, and fibrosis and significantly prolonged cardiac allograft survival. OMT exerted its immunomodulatory effects by inhibiting T helper 1 (Th1) and T helper 17 (Th17) cell differentiation while promoting Treg differentiation both in vivo and in vitro. Further studies revealed that OMT inhibited the phosphorylation of mammalian target of rapamycin (mTOR), which is a potential mechanism underlying its immunosuppressive effects. OMT also inhibited the activation of B cells and the production of donor-specific antibody (DSA). In addition, OMT effectively alleviated chronic changes in fibrosis in cardiac allografts, and these changes may be related to the inhibition of the transforming growth factor-β (TGF-β)-Smad 2/3 pathway. CONCLUSIONS OMT attenuated CR by modulating the immune response and inhibiting graft fibrosis. Further in-depth investigations of OMT may provide valuable insights into the development of novel therapeutic strategies for CR inhibition.
Collapse
Affiliation(s)
- Shao-Hua Ren
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-Lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-Bo Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Lan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yong-Chang Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China.
| |
Collapse
|
2
|
Huang L. The role of IL-17 family cytokines in cardiac fibrosis. Front Cardiovasc Med 2024; 11:1470362. [PMID: 39502194 PMCID: PMC11534612 DOI: 10.3389/fcvm.2024.1470362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/29/2024] [Indexed: 11/08/2024] Open
Abstract
Myocardial fibrosis is a common pathological feature in various cardiovascular diseases including myocardial infarction, heart failure, and myocarditis. Generally, persistent myocardial fibrosis correlates with poor prognosis and ranks among the leading causes of death globally. Currently, there is no effective treatment for myocardial fibrosis, partly due to its unclear pathogenic mechanism. Increasing studies have shown IL-17 family cytokines are strongly associated with the initiation and propagation of myocardial fibrosis. This review summarizes the expression, action, and signal transduction mechanisms of IL-17, focusing on its role in fibrosis associated with cardiovascular diseases such as myocardial infarction, heart failure, hypertension, diabetes, and myocarditis. It also discusses its potential as a therapeutic target, offering new insights for the clinical treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Liqing Huang
- Three Gorges University Hospital of Traditional Chinese Medicine & Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| |
Collapse
|
3
|
Wen Q, Hang G, Wang Y, Yu Z, Wang H, Chen B. Changes and Significance of Interleukin 17 Expression in Patients After Renal Transplantation. Transplant Proc 2023; 55:562-568. [PMID: 37003893 DOI: 10.1016/j.transproceed.2023.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/22/2023] [Accepted: 02/24/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND The purpose of this study was to investigate the expression and significance of interleukin (IL)-17 in acute rejection after renal transplantation. METHODS From September 2019 to December 2021, patients and healthy volunteers who underwent renal allograft transplantation and renal biopsy in our hospital were selected and divided into 4 groups: the stable group (stable) showed no obvious abnormality in renal transplantation pathology; the pathologic diagnosis of acute rejection was the rejection group; the pathologic diagnosis of renal transplantation was immunosuppressive poisoning in the drug group; and the normal group (control) was healthy volunteers. The expression of IL-17 was detected by reverse transcription-polymerase chain reaction, quantitative enzyme-linked immunosorbent assay, and immunohistochemistry. Analysis of the area under the curve and sensitivity and specificity of IL-17 for the diagnosis of acute rejection after raw transplantation was done using receiver operating characteristic curves. RESULTS Compared with those in the normal group and the stable group, the expression of IL-17 DNA in the blood, the value of IL-17 in the blood, and the integrated optical density value of IL-17 in the transplanted kidney were significantly higher in the rejection group (P < .05). There were no statistically significant differences in the expression of blood IL-17 DNA, the value of blood IL-17, or the integrated optical density value of transplanted kidney IL-17 between the normal group and the stable group (P > .05). CONCLUSION IL-17 is involved in acute rejection after renal transplantation. Increased expression of IL-17 is seen in the blood and kidneys of patients with acute rejection after renal transplantation. The detection of IL-17 may provide a theoretical basis for diagnosing and treating acute rejection in human kidney transplantation.
Collapse
Affiliation(s)
- Quan Wen
- Department of Urology, Tongliao Hospital, Inner Mongolia Autonomous Region, China
| | - Gai Hang
- Department of Urology, Tongliao Hospital, Inner Mongolia Autonomous Region, China
| | - Yuyang Wang
- Inner Mongolia Medical University, Huhehot, China
| | - ZhiYu Yu
- Inner Mongolia Medical University, Huhehot, China.
| | - Huakang Wang
- Inner Mongolia Medical University, Huhehot, China
| | - Bo Chen
- Department of Urinary Surgery, Inner Mongolia Autonomous Region, Tongliao City Hospital, Tongliao, China.
| |
Collapse
|
4
|
Weeratunga P, Moller DR, Ho LP. Immune mechanisms in fibrotic pulmonary sarcoidosis. Eur Respir Rev 2022; 31:220178. [PMID: 36543347 PMCID: PMC9879330 DOI: 10.1183/16000617.0178-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Sarcoidosis is an immune-mediated disorder. Its immunopathology has been steadily mapped out over the past few decades. Despite this, the underpinning mechanisms for progressive fibrotic sarcoidosis is an almost uncharted area. Consequently, there has been little change in the clinical management of fibrotic sarcoidosis over the decades and an unfocused search for new therapeutics. In this review, we provide a comprehensive examination of the relevant immune findings in fibrotic and/or progressive pulmonary sarcoidosis and propose a unifying mechanism for the pathobiology of fibrosis in sarcoidosis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- Oxford Sarcoidosis Clinic, Oxford Interstitial Lung Disease Service, Oxford, UK
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| | - David R Moller
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ling-Pei Ho
- Oxford Sarcoidosis Clinic, Oxford Interstitial Lung Disease Service, Oxford, UK
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Liu L, Yan H, Wang Y, Xie Y, Jiang L, Zhao J, Gao C, Li X, Wang C. Decreased absolute number of peripheral regulatory T cells in patients with idiopathic retroperitoneal fibrosis. Front Immunol 2022; 13:1012513. [PMID: 36524110 PMCID: PMC9744965 DOI: 10.3389/fimmu.2022.1012513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Objective In order to determine whether the immune balance of T helper 17(Th17)/regulatory T(Treg) is related to the pathogenesis of idiopathic retroperitoneal fibrosis (IRPF), we analyzed the differences in peripheral blood lymphocytes, CD4+T cell subsets and cytokines between patients with IRPF and healthy people to clarify the CD4+T cell subsets, especially Treg cell subsets, and the role of cytokines in the pathogenesis of IRPF. Methods This study included 22 patients with IRPF, 36 patients with IgG4-related diseases (IgG4-RD) without retroperitoneal fibrosis (RPF), and 28 healthy controls. The absolute numbers and percentage of peripheral blood lymphocyte subsets and CD4+T cell subsets in each group were detected by flow cytometry, and the serum cytokine level was detected by flow cytometric bead array (CBA). Results Compared with the healthy group, the absolute value of B cells in peripheral blood of IRPF patients was significantly decreased, and T, natural killer (NK), CD4+ and CD8+ were not significantly abnormal. The absolute numbers of Th2 cells were lower than healthy group(p=0.043). In particular, the absolute numbers of Treg cells were significantly lower than healthy group(p<0.001), while the absolute numbers of Th17 cells increased(p=0.682). Th17/Treg was significantly higher than healthy group (p< 0.001). Cytokine analysis showed that the level of interleukin (IL)-4 in IRPF patients was higher than healthy group(p=0.011), IL-6, IL-10, IL-17, TNF-α and IFN-γ were significantly higher than healthy group (all p<0.001). Receiver operating characteristic (ROC) curves showed that IL-10 and TNF-α could distinguish bilateral ureteral dilatation in IRPF patients, with areas under the ROC curve (AUCs) of 0.813 (95% CI:0.607-1.000, p=0.026) and 0.950 (95% CI:0.856-1.000, p=0.001), respectively. IL-6 could distinguish bilateral ureteral obstruction, with an AUC of 0.861 (95% CI: 0.682-1.000, p=0.015). Conclusions Our study showed that IRPF patients had reduced Treg cells and indeed had Th17/Treg imbalance, which may be related to the pathogenesis of the disease. The levels of IL-6, IL-10 and TNF-α appear to be associated with the progression of IRPF.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China,Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Huanhuan Yan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China,Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Yanyan Wang
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Yuhuan Xie
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China,Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Lei Jiang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China,Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Jinfang Zhao
- Department of Medical Statistics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China,Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China,Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China,*Correspondence: Caihong Wang,
| |
Collapse
|
6
|
Liu X, Liu D, Zhou S, Jiang W, Zhang J, Hu J, Liao G, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Zhao M, Liu Y. CARARIME: Interactive web server for comprehensive analysis of renal allograft rejection in immune microenvironment. Front Immunol 2022; 13:1026280. [DOI: 10.3389/fimmu.2022.1026280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundRenal transplantation is a very effective treatment for renal failure patients following kidney transplant. However, the clinical benefit is restricted by the high incidence of organ rejection. Therefore, there exists a wealth of literature regarding the mechanism of renal transplant rejection, including a large library of expression data. In recent years, research has shown the immune microenvironment to play an important role in renal transplant rejection. Nephrology web analysis tools currently exist to address chronic nephropathy, renal tumors and children’s kidneys, but no such tool exists that analyses the impact of immune microenvironment in renal transplantation rejection.MethodsTo fill this gap, we have developed a web page analysis tool called Comprehensive Analysis of Renal Allograft Rerejction in Immune Microenvironment (CARARIME).ResultsCARARIME analyzes the gene expression and immune microenvironment of published renal transplant rejection cohorts, including differential analysis (gene expression and immune cells), prognosis analysis (logistics regression, Univariable Cox Regression and Kaplan Meier), correlation analysis, enrichment analysis (GSEA and ssGSEA), and ROC analysis.ConclusionsUsing this tool, researchers can easily analyze the immune microenvironment in the context of renal transplant rejection by clicking on the available options, helping to further the development of approaches to renal transplant rejection in the immune microenvironment field. CARARIME can be found in http://www.cararime.com.
Collapse
|
7
|
Robert M, Miossec P, Hot A. The Th17 Pathway in Vascular Inflammation: Culprit or Consort? Front Immunol 2022; 13:888763. [PMID: 35479069 PMCID: PMC9035791 DOI: 10.3389/fimmu.2022.888763] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The involvement of IL-17A in autoimmune and inflammatory diseases has prompted the development of therapeutic strategies to block the Th17 pathway. Promising results came from their use in psoriasis and in ankylosing spondylitis. IL-17A acts on various cell types and has both local and systemic effects. Considering the premature mortality observed during chronic inflammatory diseases, IL-17A action on vascular cells was studied. Both in vitro and in vivo results suggest that this cytokine favors inflammation, coagulation and thrombosis and promotes the occurrence of cardiovascular events. These observations led to study the role of IL-17A in diseases characterized by vascular inflammation, namely allograft rejection and vasculitis. Increased circulating levels of IL-17A and histological staining reveal that the Th17 pathway is involved in the pathogenesis of these diseases. Vasculitis treatment faces challenges while the use of steroids has many side effects. Regarding results obtained in giant cell arteritis with IL-6 inhibitors, a cytokine involved in Th17 differentiation, the use of anti-IL-17 is a promising strategy. However, lessons from rheumatoid arthritis and multiple sclerosis must be learnt before targeting IL-17 in vasculitis, which may be culprit, consort or both of them.
Collapse
Affiliation(s)
- Marie Robert
- Department of Clinical Immunology and Rheumatology, and Immunogenomics and Inflammation Research Unit, University of Lyon, Hôpital Edouard Herriot, Lyon, France
- Department of Internal Medicine, University of Lyon, Hôpital Edouard Herriot, Lyon, France
- *Correspondence: Marie Robert,
| | - Pierre Miossec
- Department of Clinical Immunology and Rheumatology, and Immunogenomics and Inflammation Research Unit, University of Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Arnaud Hot
- Department of Internal Medicine, University of Lyon, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
8
|
Szabo TM, Frigy A, Nagy EE. Targeting Mediators of Inflammation in Heart Failure: A Short Synthesis of Experimental and Clinical Results. Int J Mol Sci 2021; 22:13053. [PMID: 34884857 PMCID: PMC8657742 DOI: 10.3390/ijms222313053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/22/2023] Open
Abstract
Inflammation has emerged as an important contributor to heart failure (HF) development and progression. Current research data highlight the diversity of immune cells, proteins, and signaling pathways involved in the pathogenesis and perpetuation of heart failure. Chronic inflammation is a major cardiovascular risk factor. Proinflammatory signaling molecules in HF initiate vicious cycles altering mitochondrial function and perturbing calcium homeostasis, therefore affecting myocardial contractility. Specific anti-inflammatory treatment represents a novel approach to prevent and slow HF progression. This review provides an update on the putative roles of inflammatory mediators involved in heart failure (tumor necrosis factor-alpha; interleukin 1, 6, 17, 18, 33) and currently available biological and non-biological therapy options targeting the aforementioned mediators and signaling pathways. We also highlight new treatment approaches based on the latest clinical and experimental research.
Collapse
Affiliation(s)
- Timea Magdolna Szabo
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Department of Cardiology, Clinical County Hospital Mures, 540103 Targu Mures, Romania;
| | - Attila Frigy
- Department of Cardiology, Clinical County Hospital Mures, 540103 Targu Mures, Romania;
- Department of Internal Medicine IV, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540103 Targu Mures, Romania
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540394 Targu Mures, Romania
| |
Collapse
|
9
|
Bellando-Randone S, Della-Torre E, Balanescu A. The role of interleukin-17 in the pathogenesis of systemic sclerosis: Pro-fibrotic or anti-fibrotic? JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2021; 6:227-235. [PMID: 35387209 PMCID: PMC8922653 DOI: 10.1177/23971983211039421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 06/29/2024]
Abstract
Systemic sclerosis is characterized by widespread fibrosis of the skin and internal organs, vascular impairment, and dysregulation of innate and adaptive immune system. Growing evidence indicates that T-cell proliferation and cytokine secretion play a major role in the initiation of systemic sclerosis, but the role of T helper 17 cells and of interleukin-17 cytokines in the development and progression of the disease remains controversial. In particular, an equally distributed body of literature supports both pro-fibrotic and anti-fibrotic effects of interleukin-17, suggesting a complex and nuanced role of this cytokine in systemic sclerosis pathogenesis that may vary depending on disease stage, target cells in affected organs, and inflammatory milieu. Although interleukin-17 already represents an established therapeutic target for several immune-mediated inflammatory diseases, more robust experimental evidence is required to clarify whether it may become an attractive therapeutic target for systemic sclerosis as well.
Collapse
Affiliation(s)
- Silvia Bellando-Randone
- Department of Experimental and
Clinical Medicine, Division of Rheumatology, University of Florence and
Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence,
Italy
| | - Emanuel Della-Torre
- Università Vita-Salute San
Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Unit of Immunology, Rheumatology,
Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute,
Milan, Italy
| | - Andra Balanescu
- “Carol Davila” University of
Medicine and Pharmacy, Department of Internal Medicine and Rheumatology,
“Sf. Maria” Hospital, Bucharest, Romania
| |
Collapse
|
10
|
Weinhard J, Noble J, Jouve T, Malvezzi P, Rostaing L. Tocilizumab and Desensitization in Kidney Transplant Candidates: Personal Experience and Literature Review. J Clin Med 2021; 10:4359. [PMID: 34640377 PMCID: PMC8509506 DOI: 10.3390/jcm10194359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Desensitization (DES) allows kidney transplantation for highly HLA-sensitized subjects. Due to the central role of IL-6 in the immunological response, tocilizumab may improve DES efficacy. Thus, we conducted a PubMed systematic review using the MeSH terms tocilizumab, interleukin-6, kidney transplantation, and desensitization. Tocilizumab (TCZ) was first studied for DES as the second-line treatment after failure of a standard DES protocol (SP) (apheresis, rituximab +/- IVIg). Although TCZ (as a monotherapy) attenuated anti-HLA antibody rates, it did not permit transplantation. However, lymphocyte immuno-phenotyping has shown that TCZ hinders B-cell maturation and thus could improve the long-term efficacy of DES by limiting anti-HLA rebound and so avoid antibody-mediated rejection. This hypothesis is supported by a recent study where clazakizumab, a monoclonal antibody directed against IL-6, was continued after kidney transplantation in association with an SP. Nine out of ten patients were then eligible for transplantation, and there were no donor-specific antibodies at 6 months post-transplantation. In association with an SP, tocilizumab does not seem to significantly improve kidney-allograft access (short-term efficacy) vs. a SP only. However, it could improve the long-term prognosis of HLA-incompatible transplantation by hindering B-cell maturation and, thereby, avoiding donor-specific antibody rebounds post-transplantation.
Collapse
Affiliation(s)
- Jules Weinhard
- Service de Néphrologie, Hémodialyse, Aphérèses, et Transplantation Rénale, CHU Grenoble-Alpes, 38700 Grenoble, France; (J.W.); (J.N.); (T.J.); (P.M.)
| | - Johan Noble
- Service de Néphrologie, Hémodialyse, Aphérèses, et Transplantation Rénale, CHU Grenoble-Alpes, 38700 Grenoble, France; (J.W.); (J.N.); (T.J.); (P.M.)
| | - Thomas Jouve
- Service de Néphrologie, Hémodialyse, Aphérèses, et Transplantation Rénale, CHU Grenoble-Alpes, 38700 Grenoble, France; (J.W.); (J.N.); (T.J.); (P.M.)
- Faculté de Médecine, Université Grenoble-Alpes, 38700 Grenoble, France
| | - Paolo Malvezzi
- Service de Néphrologie, Hémodialyse, Aphérèses, et Transplantation Rénale, CHU Grenoble-Alpes, 38700 Grenoble, France; (J.W.); (J.N.); (T.J.); (P.M.)
| | - Lionel Rostaing
- Service de Néphrologie, Hémodialyse, Aphérèses, et Transplantation Rénale, CHU Grenoble-Alpes, 38700 Grenoble, France; (J.W.); (J.N.); (T.J.); (P.M.)
- Faculté de Médecine, Université Grenoble-Alpes, 38700 Grenoble, France
| |
Collapse
|
11
|
Zhao J, Jiang L, Uehara M, Banouni N, Al Dulaijan BS, Azzi J, Ichimura T, Li X, Jarolim P, Fiorina P, Tullius SG, Madsen JC, Kasinath V, Abdi R. ACTH treatment promotes murine cardiac allograft acceptance. JCI Insight 2021; 6:e143385. [PMID: 34236047 PMCID: PMC8410061 DOI: 10.1172/jci.insight.143385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Heart transplantation is the optimal therapy for patients with end-stage heart disease, but its long-term outcome remains inadequate. Recent studies have highlighted the importance of the melanocortin receptors (MCRs) in inflammation, but how MCRs regulate the balance between alloreactive T cells and Tregs, and whether they impact chronic heart transplant rejection, is unknown. Here, we found that Tregs express MC2R, and MC2R expression was highest among all MCRs by Tregs. Our data indicate that adrenocorticotropic hormone (ACTH), the sole ligand for MC2R, promoted the formation of Tregs by increasing the expression of IL-2Rα (CD25) in CD4+ T cells and activation of STAT5 in CD4+CD25+ T cells. ACTH treatment also improved the survival of heart allografts and increased the formation of Tregs in CD28KO mice. ACTH treatment synergized with the tolerogenic effect of CTLA-4–Ig, resulting in long-term survival of heart allografts and an increase in intragraft Tregs. ACTH administration also demonstrated higher prolongation of heart allograft survival in transgenic mouse recipients with both complete KO and conditional KO of PI3Kγ in T cells. Finally, ACTH treatment reduced chronic rejection markedly. These data demonstrate that ACTH treatment improved heart transplant outcomes, and this effect correlated with an increase in Tregs.
Collapse
Affiliation(s)
- Jing Zhao
- Transplantation Research Center.,Renal Division, and
| | - Liwei Jiang
- Transplantation Research Center.,Renal Division, and
| | - Mayuko Uehara
- Transplantation Research Center.,Renal Division, and
| | - Naima Banouni
- Transplantation Research Center.,Renal Division, and
| | | | - Jamil Azzi
- Transplantation Research Center.,Renal Division, and
| | | | - Xiaofei Li
- Transplantation Research Center.,Renal Division, and
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Fiorina
- Department of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,International Center for Type 1 Diabetes, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy.,Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, and.,Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Reza Abdi
- Transplantation Research Center.,Renal Division, and
| |
Collapse
|
12
|
Ahmed LA, Mohamed AF, Abd El-Haleim EA, El-Tanbouly DM. Boosting Akt Pathway by Rupatadine Modulates Th17/Tregs Balance for Attenuation of Isoproterenol-Induced Heart Failure in Rats. Front Pharmacol 2021; 12:651150. [PMID: 33995066 PMCID: PMC8121023 DOI: 10.3389/fphar.2021.651150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 01/11/2023] Open
Abstract
Disruption of Th17/Tregs homeostasis plays a crucial role in governing the immune response during myocardial fibrosis and its progression to heart failure. The present study aimed to assess for the first time the possible protection afforded by rupatadine against isoproterenol-induced heart failure in rats. It also explored the role of PI3k/Akt as a possible mechanistic pathway, through which rupatadine could modulate Th17/Tregs balance to display its effect. Isoproterenol (85 and 170 mg/kg/day) was injected subcutaneously for 2 successive days, respectively and rupatadine (4 mg/kg/day) was then given orally for 14 days with or without wortmannin (PI3K/Akt inhibitor). Rupatadine succeeded to completely ameliorate isoproterenol-induced cardiac dysfunction as demonstrated by improvements of electrocardiographic and echocardiographic measurements. Moreover, rupatadine prevented the marked elevation of PAF and oxidative stress in addition to Th17 promoting cytokines (IL-6, IL-23, and TGF-β). Accordingly, rupatadine prevented Th17 stimulation or expansion as indicated by increased Foxp3/RORγt ratio and decreased production of its pro-inflammatory cytokine (IL-17). Rupatadine treatment mitigated isoproterenol-induced activation of STAT-3 signaling and the imbalance in p-Akt/total Akt ratio affording marked decrease in atrogin-1 and apoptotic biomarkers. Finally, this therapy was effective in averting cardiac troponin loss and reverting the histological alterations as assessed by myocardial fibrosis and hypertrophy grading. Contrariwise, co-administration of wortmannin mostly attenuated the protective effects of rupatadine affording more or less similar results to that of isoproterenol-untreated rats. In conclusion, rupatadine could be an effective therapy against the development of isoproterenol-induced heart failure where PI3K/Akt pathway seems to play a crucial role in its protective effect.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
13
|
Huai G, Markmann JF, Deng S, Rickert CG. TGF-β-secreting regulatory B cells: unsung players in immune regulation. Clin Transl Immunology 2021; 10:e1270. [PMID: 33815797 PMCID: PMC8017464 DOI: 10.1002/cti2.1270] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/25/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory B cells contribute to the regulation of immune responses in cancer, autoimmune disorders, allergic conditions and inflammatory diseases. Although most studies focus on regulatory B lymphocytes expressing interleukin-10, there is growing evidence that B cells producing transforming growth factor β (TGF-β) can also regulate T-cell immunity in inflammatory diseases and promote the emergence of regulatory T cells that contribute to the induction and maintenance of natural and induced immune tolerance. Most research on TGF-β+ regulatory B cells has been conducted in models of allergy, cancer and autoimmune diseases, but there has, as yet, been limited scrutiny of their role in the transplant setting. Herein, we review recent investigations seeking to understand how TGF-β-producing B cells direct the immune response in various inflammatory diseases and whether these regulatory cells may have a role in fostering tolerance in transplantation.
Collapse
Affiliation(s)
- Guoli Huai
- Organ Transplantation Center Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China.,Center for Transplantation Sciences Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - James F Markmann
- Center for Transplantation Sciences Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Shaoping Deng
- Organ Transplantation Center Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Charles Gerard Rickert
- Center for Transplantation Sciences Massachusetts General Hospital Harvard Medical School Boston MA USA
| |
Collapse
|
14
|
Salehi S, Shahi A, Afzali S, Keshtkar AA, Farashi Bonab S, Soleymanian T, Ansaripour B, Amirzargar AA. Transitional immature regulatory B cells and regulatory cytokines can discriminate chronic antibody-mediated rejection from stable graft function. Int Immunopharmacol 2020; 86:106750. [PMID: 32652501 DOI: 10.1016/j.intimp.2020.106750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The balance between inflammatory and anti-inflammatory responses of the immune system has been demonstrated to determine the fate of transplanted allografts. Here we analyzed CD19+CD24hiCD38hi immature transitional regulatory B (TRB) cells, as well as the gene and protein levels of interleukin (IL)-10 and transforming growth factor (TGF)-β in the three separate groups, include of stable transplanted subjects, chronic antibody-mediated rejection (cAMR) patients, and healthy individuals. METHOD Peripheral blood mononuclear cells (PBMCs) from stable subjects (n = 36), cAMR patients (n = 36) and healthy controls (n = 18) were isolated. Flowcytometry was performed for CD19, CD24, and CD38 surface markers. ELISA and quantitative real-time PCR were performed for IL-10 and TGF-β cytokines. RESULT The percentages of immature TRB cells were significantly decrease in cAMR patients (0.98%) versus stable recipients (2.81%) and healthy subjects (4.03%) (P = 0.001 and P < 0.001, respectively). Total lymphocytes, circulating B cells, memory and mature subsets of B cells did not show any significant difference between the groups. TGF-β mRNA was 3-fold upregulated in the cAMR group compared to stable patients (P < 0.001.), but without significant alteration at the protein level. Also, long-term survival renal transplant recipients had a higher protein but not mRNA levels of IL-10 than short-term survival renal transplant recipients. CONCLUSION It seems that immature TRB cell subpopulation might be a crucial regulator of immune system response and plays an important role in determining the transplantation outcome. Furthermore, immunosuppressive IL-10 and TGF-β cytokines might act as a double sword and can exhibit either pathogenic or protective effects against allograft.
Collapse
Affiliation(s)
- Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran; Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Farashi Bonab
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Tayebeh Soleymanian
- Nephrology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Ansaripour
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ali Akbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
15
|
Ahmed S, Misra DP, Agarwal V. Interleukin-17 pathways in systemic sclerosis-associated fibrosis. Rheumatol Int 2019; 39:1135-1143. [PMID: 31073660 DOI: 10.1007/s00296-019-04317-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
Fibrosis is unregulated tissue repair that may cause impairment of organ function, especially in end-organ damage. Systemic sclerosis (SSc) is the prototype systemic fibrosing disorder. Classical targets for fibrosis in SSc like transforming growth factor Beta (TGF-β), Interleukin-6 (IL-6), and multiple tyrosine kinases, have not yielded therapeutic benefit. There is multitude of evidence from across different tissues like the heart, lung, skin, liver, colon, and, to some extent, the kidney, that interleukin-17 (IL-17) and its downstream pathways are strongly associated with the initiation and propagation of fibrosis. Data from scleroderma patients, as well as from animal models of SSc, mirror these findings. Interestingly, hitherto unknown to be related to IL-17, newer molecules like Programmed Death-protein1 (PD-1), the phosphatase SHP2, along with known signal transducers like signal transducer and activator of transcription (STAT3), have been recently shown to be involved in the pathogenesis of fibrosis. Related molecules include the intracellular signalling molecules Ras/Erk, mammalian target organ of rapamycin (mTOR), and complement components. The biology of these pathways has not yet been fully elucidated to predict regulatory mechanisms, redundancies, and potential off-target effects. All these need to be better understood in the context of each other, in an effort to arrive at the optimal target to modulate fibrosis.
Collapse
Affiliation(s)
- Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar, 751024, India
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| |
Collapse
|
16
|
Wu H, Xu X, Li J, Gong J, Li M. TIM‑4 blockade of KCs combined with exogenous TGF‑β injection helps to reverse acute rejection and prolong the survival rate of mice receiving liver allografts. Int J Mol Med 2018; 42:346-358. [PMID: 29620252 PMCID: PMC5979939 DOI: 10.3892/ijmm.2018.3606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/23/2018] [Indexed: 01/01/2023] Open
Abstract
An acute reaction response (AR) following liver transplantation (LT) is caused by immune responses that are primarily mediated by T lymphocytes. Kupffer cells (KCs) are the largest antigen presenting cell (APC) group in vivo and are the primary modulators of the inflammatory or tolerogenic immune response in liver tissues. T cell immunoglobulin-domain and mucin-domain-4 (TIM-4), the only TIM protein not expressed on T cells, is expressed on APCs; suggesting that it mediates the various immune responses. However, to the best of our knowledge, the role of TIM-4 expressed by KCs in LT injury remains unknown. The present study aimed to explore whether and how TIM-4 expressed by KCs is involved in the AR of liver allografts. Orthotopic liver transplantation (OLT) was performed in mice to establish a model of AR and results demonstrated that LT may lead to the augmented expression of TIM-4 in activated KCs. It was also revealed that TIM-4 blockade markedly attenuated AR injury in vivo via the nuclear factor-κB (NF-κB) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways. In addition, levels of transforming growth factor-β (TGF-β) were increased following TIM-4 blockade. Furthermore, in a KC/cluster of differentiation (CD)4+ T cell co-culture system, blocking TIM-4 inhibited T helper 2 (Th2) differentiation, stimulated the conversion of naive (CD)4+ T cells into CD4+CD25+Forkhead box protein p3+ T regulatory cells and suppressed interleukin-4/signal transducer and activator of transcription 6/transcription factor gata3 signaling. These effects were enhanced following the addition of TGF-β. It was also demonstrated that LT mouse models treated with TIM-4 blockade in combination with exogenous TGF-β injections, increased the survival times of mice and enhanced the amelioration of AR in LT. These results indicate that blocking the expression of TIM-4 by KCs via exogenous TGF-β injection may be an effective therapeutic strategy to inhibit the AR of liver allografts.
Collapse
Affiliation(s)
- Hao Wu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xuesong Xu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jinzheng Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Min Li
- Department of Hepatobiliary Surgery, Suining Central Hospital, Suining, Sichuan 629099, P.R. China
| |
Collapse
|
17
|
|
18
|
Juvet SC, Moshkelgosha S, Sanderson S, Hester J, Wood KJ, Bushell A. Measurement of T Cell Alloreactivity Using Imaging Flow Cytometry. J Vis Exp 2017. [PMID: 28448002 PMCID: PMC5408926 DOI: 10.3791/55283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The measurement of immunological reactivity to donor antigens in transplant recipients is likely to be crucial for the successful reduction or withdrawal of immunosuppression. The mixed leukocyte reaction (MLR), limiting dilution assays, and trans-vivo delayed-type hypersensitivity (DTH) assay have all been applied to this question, but these methods have limited predictive ability and/or significant practical limitations that reduce their usefulness.Imaging flow cytometry is a technique that combines the multiparametric quantitative powers of flow cytometry with the imaging capabilities of fluorescent microscopy. We recently made use of an imaging flow cytometry approach to define the proportion of recipient T cells capable of forming mature immune synapses with donor antigen-presenting cells (APCs). Using a well-characterized mouse heart transplant model, we have shown that the frequency of in vitro immune synapses among T-APC membrane contact events strongly predicted allograft outcome in rejection, tolerance, and a situation where transplant survival depends on induced regulatory T cells.The frequency of T-APC contacts increased with T cells from mice during acute rejection and decreased with T cells from mice rendered unresponsive to alloantigen. The addition of regulatory T cells to the in vitro system reduced prolonged T-APC contacts. Critically, this effect was also seen with human polyclonally expanded, naturally occurring regulatory T cells, which are known to control the rejection of human tissues in humanized mouse models. Further development of this approach may allow for a deeper characterization of the alloreactive T-cell compartment in transplant recipients. In the future, further development and evaluation of this method using human cells may form the basis for assays used to select patients for immunosuppression minimization, and it can be used to measure the impact of tolerogenic therapies in the clinic.
Collapse
Affiliation(s)
- Stephen C Juvet
- Division of Respirology, Departments of Medicine and Immunology, Toronto Lung Transplant Program, Multiorgan Transplant Program, Toronto General Research Institute, University of Toronto and University Health Network;
| | - Sajad Moshkelgosha
- Latner Thoracic Surgery Laboratories, Toronto General Research Institute, University Health Network
| | - Sharon Sanderson
- National Institutes of Health Research, Oxford Biomedical Research Centre, Translational Immunology Laboratory, NDORMS, Kennedy Institute of Rheumatology, University of Oxford
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| | - Andrew Bushell
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| |
Collapse
|
19
|
Abstract
Cardiac allograft vasculopathy (CAV) has a high prevalence among patients that have undergone heart transplantation. Cardiac allograft vasculopathy is a multifactorial process in which the immune system is the driving force. In this review, the data on the immunological and fibrotic processes that are involved in the development of CAV are summarized. Areas where a lack of knowledge exists and possible additional research can be completed are pinpointed. During the pathogenesis of CAV, cells from the innate and the adaptive immune system cooperate to reject the foreign heart. This inflammatory response results in dysfunction of the endothelium and migration and proliferation of smooth muscle cells (SMCs). Apoptosis and factors secreted by both the endothelium as well as the SMCs lead to fibrosis. The migration of SMCs together with fibrosis provoke concentric intimal thickening of the coronary arteries, which is the main characteristic of CAV.
Collapse
|
20
|
Ma HY, Xu J, Liu X, Zhu Y, Gao B, Karin M, Tsukamoto H, Jeste DV, Grant I, Roberts AJ, Contet C, Geoffroy C, Zheng B, Brenner D, Kisseleva T. The role of IL-17 signaling in regulation of the liver-brain axis and intestinal permeability in Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2016; 4:27-35. [PMID: 27239399 PMCID: PMC4878828 DOI: 10.1007/s40139-016-0097-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) progresses from a normal liver, to steatosis, steatohepatitis, fibrosis and hepatocellular carcinoma (HCC). Despite intensive studies, the pathogenesis of ALD is poorly understood, in part due to a lack of suitable animal models which mimic the stages of ALD progression. Furthermore, the role of IL-17 in ALD has not been evaluated. We and others have recently demonstrated that IL-17 signaling plays a critical role in development of liver fibrosis and cancer. Here we summarize the most recent evidence supporting the role of IL-17 in ALD. As a result of a collaborative effort of Drs. Karin, Gao, Tsukamoto and Kisseleva, we developed several improved models of ALD in mice: 1) chronic-plus-binge model that mimics early stages of steatohepatitis, 2) intragastric ethanol feeding model that mimics alcoholic steatohepatitis and fibrosis, and 3) diethylnitrosamine (DEN)+alcohol model that mimics alcoholic liver cancer. These models might provide new insights into the mechanism of IL-17 signaling in ALD and help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Hsiao-Yen Ma
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Jun Xu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Xiao Liu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Yunheng Zhu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National, Institutes of Health, Bethesda, Maryland
| | - Michael Karin
- Department of Pharmacology, UC San Diego, La Jolla, CA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Department of Pathology Keck School of Medicine of USC, University of Southern California, and Department of Veterans Affairs Great Los Angeles Healthcare System, Los Angeles, CA
| | - Dilip V Jeste
- Department of Psychiatry, UC San Diego, La Jolla, CA; Stein Institute for Research on Aging, UC San Diego, La Jolla, CA
| | - Igor Grant
- Department of Psychiatry, UC San Diego, La Jolla, CA
| | - Amanda J Roberts
- Department of Molecular & Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA
| | - Candice Contet
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA
| | | | - Binhai Zheng
- Department of Neurosciences, UC San Diego, La Jolla, CA
| | | | | |
Collapse
|
21
|
Heim C, Bernhardt W, Jalilova S, Wang Z, Motsch B, Ramsperger-Gleixner M, Burzlaff N, Weyand M, Eckardt KU, Ensminger SM. Prolyl-hydroxylase inhibitor activating hypoxia-inducible transcription factors reduce levels of transplant arteriosclerosis in a murine aortic allograft model. Interact Cardiovasc Thorac Surg 2016; 22:561-70. [PMID: 26819270 DOI: 10.1093/icvts/ivv352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The development of transplant arteriosclerosis, the hallmark feature of heart transplant rejection, is associated with a chronic immune response and also influenced by an initial injury to the graft through ischaemia and reperfusion. Hypoxia-inducible transcription factor (HIF)-1 pathway signalling has a protective effect against ischaemia-reperfusion injury and has already been demonstrated to ameliorate allograft nephropathy in previous animal studies. Therefore, the aim of this study was to investigate the effect of stabilization of hypoxia-inducible transcription factors with a prolyl-hydroxylase domain (PHD) inhibitor on transplant arteriosclerosis in an experimental aortic allograft model. METHODS MHC-class I mismatched C.B10-H2(b)/LilMcdJ donor thoracic aortas were heterotopically transplanted into the abdominal aorta of BALB/c mice. Donor animals received a single dose of the PHD inhibitor 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate (ICA) (40 mg/kg) or vehicle i.p. 4 h before transplantation. Intragraft HIF accumulation after ICA treatment was detected by immunohistochemistry before and after cold ischaemia (n = 5). Grafts were harvested 30 days after transplantation and analysed by histology (n = 7) and immunofluorescence (n = 7). In addition, intragraft mRNA expression for cytokines, adhesion molecules and growth factors was determined on Day 14 (n = 7). RESULTS Donor preconditioning with ICA resulted in HIF accumulation in the aorta and induction of the HIF target genes vascular endothelial growth factor and transforming growth factor-beta. Vascular lesions were present in both experimental groups. However, there was significantly reduced intimal proliferation in preconditioned grafts when compared with vehicle controls [intimal proliferation 31.3 ± 8% (ICA) vs 55.3 ± 20% (control), P < 0.01]. In addition, experimental groups revealed a down-regulation of E-selectin (-57%) and MCP1 (-33%) expression after ICA pretreatment compared with controls, going along with decreased T-cell [1.4% CD4+ T-cell infiltration vs 8.4% (control) and 4.9% CD8+ T-cell infiltration vs 10.7% (control)], dendritic cell (0.6% dendritic cells infiltration vs 1.9% infiltration(control)] and macrophage infiltration [4.8% macrophages (ICA) vs 10.9% (control)] within vascular grafts. CONCLUSIONS These data of an animal transplant model show that the pharmaceutical activation of HIF with endogenous up-regulation of protective target genes leads to adaptation of the graft to low oxygen-saturation and hereby attenuates the development of transplant arteriosclerosis and allograft injury. Pharmaceutical inhibition of PHDs appears to be a very attractive strategy for organ preservation that deserves further clinical evaluation.
Collapse
Affiliation(s)
- Christian Heim
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Wanja Bernhardt
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sabina Jalilova
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Zhendi Wang
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Benjamin Motsch
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan M Ensminger
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany Present address: Heart and Diabetes Center NRW, Department of Thoracic and Cardiovascular Surgery, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
22
|
Ma L, Zhang H, Hu K, Lv G, Fu Y, Ayana DA, Zhao P, Jiang Y. The imbalance between Tregs, Th17 cells and inflammatory cytokines among renal transplant recipients. BMC Immunol 2015; 16:56. [PMID: 26400627 PMCID: PMC4581081 DOI: 10.1186/s12865-015-0118-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 09/02/2015] [Indexed: 12/21/2022] Open
Abstract
Background A significant barrier to organ transplantation is the cellular rejection that occurs and mediated by antibodies, T cells, and innate immune cells. This study was aimed to determine the number of CD4+CD25+Foxp3+ Treg, CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells in renal transplant recipients (RTR). Methods Renal transplantation was performed for a total of 35 patients with end-stage renal failure. The number of CD4+CD25+Foxp3+ Treg, CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells, and the serum level of IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, and IL-17 were measured in pre- and post-transplant patients and 10 healthy controls (HC) using flow cytometry and Cytometric Bead Array (CBA). The association between the number of different subsets of CD4+ T-cells and clinical parameters were analyzed among the pre- and post-transplant patients, and the healthy controls. Results The number of CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells were significantly increased in patients with End-Stage Renal Failure (ESRF) compared to the HC. Stratification analysis indicated that AMR (Acute antibody mediated acute rejection), AR (acute rejection) and CR (chronic rejection) groups displayed greater number of CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells as well as high level of serum IL-2, IFN-γ, TNF-α and IL-17. But, the AMR, AR and CR groups have shown lower level of CD4+CD25+Foxp3+ T cells and serum IL-10 compared to transplant stable (TS) patients. Moreover, the number of Tregs were negatively correlated with the number of Th17 cells in RTR patients. The number of Tregs and Th17 cells were positively correlated with the eGFR and serum creatinine values, respectively. Conclusion The imbalance between different types of CD4+ T cells and dysregulated inflammatory cytokines may contribute towards renal transplantation rejection.
Collapse
Affiliation(s)
- Liang Ma
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Department of Gastroenterology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, 213003, China.
| | - Huimao Zhang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Kebang Hu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Guoyue Lv
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yaowen Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China.
| | | | - Pingwei Zhao
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Wang WB, Yen ML, Liu KJ, Hsu PJ, Lin MH, Chen PM, Sudhir PR, Chen CH, Chen CH, Sytwu HK, Yen BL. Interleukin-25 Mediates Transcriptional Control of PD-L1 via STAT3 in Multipotent Human Mesenchymal Stromal Cells (hMSCs) to Suppress Th17 Responses. Stem Cell Reports 2015; 5:392-404. [PMID: 26321145 PMCID: PMC4618596 DOI: 10.1016/j.stemcr.2015.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 02/08/2023] Open
Abstract
Multipotent human mesenchymal stromal cells (hMSCs) harbor immunomodulatory properties that are therapeutically relevant. One of the most clinically important populations of leukocytes is the interleukin-17A (IL-17A)-secreting T (Th17) lymphocytes. However, mechanisms of hMSC and Th17 cell interactions are incompletely resolved. We found that, along with Th1 responses, hMSCs strongly suppressed Th17 responses and this required both IL-25—also known as IL-17E—as well as programmed death ligand-1 (PD-L1), a potent cell surface ligand for tolerance induction. Knockdown of IL-25 expression in hMSCs abrogated Th17 suppression in vitro and in vivo. However, IL-25 alone was insufficient to significantly suppress Th17 responses, which also required surface PD-L1 expression. Critically, IL-25 upregulated PD-L1 surface expression through the signaling pathways of JNK and STAT3, with STAT3 found to constitutively occupy the proximal region of the PD-L1 promoter. Our findings demonstrate the complexities of hMSC-mediated Th17 suppression, and highlight the IL-25/STAT3/PD-L1 axis as a candidate therapeutic target. hMSC-secreted IL-25 suppress Th17 responses in vitro and in vivo IL-25 alone is insufficient to significantly suppress Th17 responses IL-25 upregulates PD-L1 expression in hMSCs to suppress Th17 cells IL-25-mediated PD-L1 expression can be driven by STAT3
Collapse
Affiliation(s)
- Wei-Bei Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 35053, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University Hospital and School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Tainan 70403, Taiwan; Taipei Medical University, Taipei 10031, Taiwan.
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 35053, Taiwan
| | - Ming-Hong Lin
- Graduate Institute of Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Pei-Min Chen
- Department of Obstetrics/Gynecology, National Taiwan University Hospital and School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | - Chein-Hung Chen
- Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan
| | | | - Huei-Kang Sytwu
- Graduate Institute of Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 35053, Taiwan; Department of Obstetrics/Gynecology, Cathay General Hospital Shiji, Taipei 21174, Taiwan.
| |
Collapse
|
24
|
Zhang C, Zhang X, Chen XH. Inhibition of the interleukin-6 signaling pathway: a strategy to induce immune tolerance. Clin Rev Allergy Immunol 2015; 47:163-73. [PMID: 24647663 DOI: 10.1007/s12016-014-8413-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that is multifunctional, with multifaceted effects. IL-6 signaling plays a vital role in the control of the differentiation and activation of T lymphocytes by inducing different pathways. In particular, IL-6 controls the balance between Th17 cells and regulatory T (Treg) cells. An imbalance between Treg and Th17 cells is thought to play a pathological role in various immune-mediated diseases. Deregulated IL-6 production and signaling are associated with immune tolerance. Therefore, methods of inhibiting IL-6 production, receptors, and signaling pathways are strategies that are currently being widely pursued to develop novel therapies that induce immune tolerance. This survey aims to provide an updated account of why IL-6 inhibitors are becoming a vital class of drugs that are potentially useful for inducing immune tolerance as a treatment for autoimmune diseases and transplant rejection. In addition, we discuss the effect of targeting IL-6 in recent experimental and clinical studies on autoimmune diseases and transplant rejection.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China,
| | | | | |
Collapse
|
25
|
Wood S, Feng J, Chung J, Radojcic V, Sandy-Sloat AR, Friedman A, Shelton A, Yan M, Siebel CW, Bishop DK, Maillard I. Transient blockade of delta-like Notch ligands prevents allograft rejection mediated by cellular and humoral mechanisms in a mouse model of heart transplantation. THE JOURNAL OF IMMUNOLOGY 2015; 194:2899-908. [PMID: 25687759 DOI: 10.4049/jimmunol.1402034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rejection remains a major clinical challenge limiting allograft survival after solid organ transplantation. Both cellular and humoral immunity contribute to this complication, with increased recognition of Ab-mediated damage during acute and chronic rejection. Using a mouse model of MHC-mismatched heart transplantation, we report markedly protective effects of Notch inhibition, dampening both T cell and Ab-driven rejection. T cell-specific pan-Notch blockade prolonged heart allograft survival and decreased IFN-γ and IL-4 production by alloreactive T cells, especially when combined with depletion of recipient CD8(+) T cells. These effects were associated with decreased infiltration by conventional T cells and an increased proportion of regulatory T cells in the graft. Transient administration of neutralizing Abs specific for delta-like (Dll)1/4 Notch ligands in the peritransplant period led to prolonged acceptance of allogeneic hearts, with superior outcome over Notch inhibition only in T cells. Systemic Dll1/4 inhibition decreased T cell cytokines and graft infiltration, germinal center B cell and plasmablast numbers, as well as production of donor-specific alloantibodies and complement deposition in the transplanted hearts. Dll1 or Dll4 inhibition alone provided partial protection. Thus, pathogenic signals delivered by Dll1/4 Notch ligands early after transplantation promote organ rejection through several complementary mechanisms. Transient interruption of these signals represents an attractive new therapeutic strategy to enhance long-term allograft survival.
Collapse
Affiliation(s)
- Sherri Wood
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Jiane Feng
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Jooho Chung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Vedran Radojcic
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Ashley R Sandy-Sloat
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Amy Shelton
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080
| | - Minhong Yan
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA 94080; and
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080
| | - D Keith Bishop
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109;
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
26
|
A Crucial Role of IL-17 in Bone Resorption During Rejection of Fresh Bone Xenotransplantation in Rats. Cell Biochem Biophys 2014; 71:1043-9. [DOI: 10.1007/s12013-014-0307-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Xu J, Liu X, Gao B, Karin M, Tsukamoto H, Brenner D, Kisseleva T. New Approaches for Studying Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2014; 2:171-183. [PMID: 26594598 DOI: 10.1007/s40139-014-0053-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is major cause of chronic liver injury which results in liver fibrosis and cirrhosis. According to the surveillance report published by the National Institute on Alcohol Abuse and Alcoholism, liver cirrhosis is the 12th leading cause of death in the United States with 48 % of these deaths being attributed to excessive alcohol consumption. ALD includes a spectrum of disorders from simple steatosis to steatohepatitis, fibrosis, and hepatocellular carcinoma. Several mechanisms play a critical role in the pathogenesis of ALD. These include ethanol-induced oxidative stress and depletion of glutathione, pathological methionine metabolism, increased gut permeability and release of endotoxins into the portal blood, recruitment and activation of inflammatory cells including bone marrow-derived and liver resident macrophages (Kupffer cells). Chronic alcohol consumption results in liver damage and activation of hepatic stellate cells (HSCs) and myofibroblasts, leading to liver fibrosis. Here we discuss the current view on factors that are specific for different stages of ALD and those that regulate its progression, including cytokines and chemokines, alcohol-responsive intracellular signaling pathways, and transcriptional factors. We also review recent studies demonstrating that alcohol-mediated changes can be regulated on an epigenetic level, including microRNAs. Finally, we discuss the reversibility of liver fibrosis and inactivation of HSCs as a potential strategy for treating alcohol-induced liver damage.
Collapse
Affiliation(s)
- Jun Xu
- Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Xiao Liu
- Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Michael Karin
- Department of Pharmacology, UC San Diego, San Diego, CA, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Department of Pathology Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - David Brenner
- Department of Medicine, UC San Diego, San Diego, CA, USA
| | | |
Collapse
|
28
|
Zou H, Yang Y, Gao M, Zhang B, Ming B, Sun Y, Chen H, Tang X, Chen Z, Xiong P, Xu Y, Fang M, Tan Z, Gong F, Zheng F. HMGB1 is involved in chronic rejection of cardiac allograft via promoting inflammatory-like mDCs. Am J Transplant 2014; 14:1765-77. [PMID: 24984831 DOI: 10.1111/ajt.12781] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/25/2023]
Abstract
Chronic rejection that leads to diffuse narrowing and occlusion of graft vessels is the most important cause of morbidity and mortality following cardiac transplantation. The role and underlying mechanism of high-mobility group box 1 (HMGB1), as an established inflammatory mediator in acute rejection, remains poorly understood in chronic rejection. Here, we assessed the effects and mechanisms of HMGB1 on the chronic rejection using single MHC Class II-mismatched mouse cardiac transplantation model. It was found that HMGB1 was increased accompanying with the development of chronic rejection, while blockade of HMGB1 with specific neutralizing mAb substantially ameliorated chronic rejection-mediated vasculopathy and fibrosis of allograft, as well as markedly decreased T cell infiltration and production of IL-17A and interferon-gamma in allograft and recipient's spleen. Further, anti-HMGB1 antibody treatment significantly declined the number and frequency of mature dendritic cells (DCs) in allograft and recipient's spleen, especially CD11b(+) Ly6C(high) matured DCs that share the phenotypes with inflammatory-DCs. These findings indicate that HMGB1 contributes to chronic rejection, and HMGB1 blockade may be a novel mean to disrupt the proinflammatory loop after heart transplantation.
Collapse
Affiliation(s)
- H Zou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jones SA, Fraser DJ, Fielding CA, Jones GW. Interleukin-6 in renal disease and therapy. Nephrol Dial Transplant 2014; 30:564-74. [DOI: 10.1093/ndt/gfu233] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
30
|
Interleukin 1 (IL-1)- and IL-23-mediated expansion of filarial antigen-specific Th17 and Th22 cells in filarial lymphedema. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:960-5. [PMID: 24807054 DOI: 10.1128/cvi.00257-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lymphatic filarial disease is known to be associated with elevated Th1 responses and normal or diminished Th2 responses to parasite-specific antigens. The roles of Th17 cells and the recently described Th22 cells have not been examined in detail in either filarial infection itself or in filarial disease (e.g., lymphedema and elephantiasis). To explore the roles of Th17 and Th22 cells and their subsets, we examined the frequencies of these cells in individuals with filarial lymphedema (chronic pathology [CP]), in clinically asymptomatic infected (INF) individuals, and in uninfected (UN) individuals ex vivo and in response to parasite and nonparasite antigens. Those with disease (CP) had significantly expanded frequencies of Th17 and Th22 cells, compared with either INF or UN individuals, at baseline (ex vivo) and in response to parasite antigens. This antigen-driven expansion of Th17 and Th22 cells was dependent on interleukin 1 (IL-1), IL-23, and, to lesser extent, transforming growth factor β (TGF-β), as blockade of any of these cytokines resulted in significantly diminished frequencies of Th17 and Th22 cells. Our findings, therefore, suggest that filarial parasite-driven expansion of Th17 and Th22 cells is associated with the pathogenesis of filarial infections and disease.
Collapse
|
31
|
Shi X, Zhang M, Liu F, Wang Z, Zhang L, Cheng H, Zhang S, Fei T, Guo M, Bian J, Wang Q, Ding G. Tim-1-Fc suppresses chronic cardiac allograft rejection and vasculopathy by reducing IL-17 production. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:509-520. [PMID: 24551271 PMCID: PMC3925895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
Previously, we demonstrated that Tim-1-Fc prevents acute cardiac graft rejection by inhibiting Th1 response. In the present report, we tackled the impact of Tim-1-Fc on Th17 cells in a model of cardiac chronic rejection. Administration of Tim-1-Fc did not result in a detectable impact on innate immunity and regulatory T cells, while it provided protection for Bm12-derive cardiac grafts against chronic rejection in B6 recipients, as manifested by the reduction of inflammatory infiltration along with less severity of vasculopathy. Studies in T-bet(-/-) recipients by implanting Bm12-derived cardiac grafts further revealed that Tim-1-Fc significantly protected cardiac grafts from chronic rejection along with attenuated production of IL-17 producing T cells. Depletion of CD4 and CD8 T cells or blockade of IL-17 in T-bet(-/-) recipients demonstrated that Tim-1-Fc selectively suppresses Th17 differentiation along with attenuated IL-17 secretion. Together, our data suggest that Tim-1-Fc protects cardiac grafts from chronic rejection by suppressing CD4 Th17 development and functionality. Therefore, Tim-1-Fc might be a potential immunosuppressive agent in the setting of cardiac transplantation.
Collapse
Affiliation(s)
- Xiaoming Shi
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Mingjian Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical UniversityShanghai, China
| | - Fang Liu
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Zhengxing Wang
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Luding Zhang
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Haifei Cheng
- Department of Pharmacology, 411 Naval Medical HospitalShanghai, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Teng Fei
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Meng Guo
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Jun Bian
- Department of Pharmacology, 411 Naval Medical HospitalShanghai, China
| | - Quanxing Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical UniversityShanghai, China
| | - Guoshan Ding
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| |
Collapse
|
32
|
IL-13 signaling via IL-13Rα2 triggers TGF-β1-dependent allograft fibrosis. Transplant Res 2013; 2:16. [PMID: 24143891 PMCID: PMC4016099 DOI: 10.1186/2047-1440-2-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/10/2013] [Indexed: 11/25/2022] Open
Abstract
Background Allograft fibrosis still remains a critical problem in transplantation, including heart transplantation. The IL-13/TGF-β1 interaction has previously been identified as a key pathway orchestrating fibrosis in different inflammatory immune disorders. Here we investigate if this pathway is also responsible for allograft fibrosis and if interference with the IL-13/TGF-β1 interaction prevents allograft fibrosis. Methods FVB or control DBA/1 donor hearts were transplanted heterotopically into DBA/1 recipient mice and hearts were explanted at day 60 and 100 post-transplantation. Cardiac tissue was examined by Masson’s trichrome staining and immunohistochemistry for CD4, CD8, CD11b, IL-13, Fas ligand, matrix metalloproteinase (MMP)-1, MMP-13, β2-microglobulin, and Gremlin-1. Graft-infiltrating cells were isolated and analyzed by flow cytometry. IL-13 and TGF-β1 levels were determined by enzyme-linked immunosorbent assay (ELISA) and the amount of collagen was quantified using a Sircol assay; IL-13Rα2 expression was detected by Western blotting. In some experiments IL-13/ TGF-β1 signaling was blocked with specific IL-13Rα2 siRNA. Additionally, a PCR array of RNA isolated from the allografts was performed to analyze expression of multiple genes involved in fibrosis. Results Both groups survived long-term (>100 days). The allogeneic grafts were infiltrated by significantly increased numbers of CD4+ (P <0.0001), CD8+ (P <0.0001), and CD11b+ cells (P = 0.0065) by day 100. Furthermore, elevated IL-13 levels (P = 0.0003) and numbers of infiltrating IL-13+ cells (P = 0.0037), together with an expression of IL-13Rα2, were detected only within allografts. The expression of IL-13 and IL-13Rα2 resulted in significantly increased TGF-β1 levels (P <0.0001), higher numbers of CD11bhighGr1intermediateTGF-β1+ cells, and elevated cardiac collagen deposition (P = 0.0094). The allograft fibrosis found in these experiments was accompanied by upregulation of multiple profibrotic genes, which was confirmed by immunohistochemical stainings of allograft tissue. Blockage of the IL-13/TGF-β1 interaction by IL-13Rα2 siRNA led to lower numbers of CD11bhighGr1intermediateTGF-β1+, CD4+, CD8+, and CD11b+ cells, and prevented collagen deposition (P = 0.0018) within these allografts. Conclusions IL-13 signaling via IL-13Rα2 induces TGF-β1 and causes allograft fibrosis in a murine model of chronic transplant rejection. Blockage of this IL-13/TGF-β1 interaction by IL-13Rα2 siRNA prevents cardiac allograft fibrosis. Thus, IL-13Rα2 may be exploitable as a future target to reduce allograft fibrosis in organ transplantation.
Collapse
|
33
|
Yeung MY, McGrath MM, Nakayama M, Shimizu T, Boenisch O, Magee CN, Abdoli R, Akiba H, Ueno T, Turka LA, Najafian N. Interruption of dendritic cell-mediated TIM-4 signaling induces regulatory T cells and promotes skin allograft survival. THE JOURNAL OF IMMUNOLOGY 2013; 191:4447-55. [PMID: 24038092 DOI: 10.4049/jimmunol.1300992] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dendritic cells (DCs) are the central architects of the immune response, inducing inflammatory or tolerogenic immunity, dependent on their activation status. As such, DCs are highly attractive therapeutic targets and may hold the potential to control detrimental immune responses. TIM-4, expressed on APCs, has complex functions in vivo, acting both as a costimulatory molecule and a phosphatidylserine receptor. The effect of TIM-4 costimulation on T cell activation remains unclear. In this study, we demonstrate that Ab blockade of DC-expressed TIM-4 leads to increased induction of induced regulatory T cells (iTregs) from naive CD4(+) T cells, both in vitro and in vivo. iTreg induction occurs through suppression of IL-4/STAT6/Gata3-induced Th2 differentiation. In addition, blockade of TIM-4 on previously activated DCs still leads to increased iTreg induction. iTregs induced under TIM-4 blockade have equivalent potency to control and, upon adoptive transfer, significantly prolong skin allograft survival in vivo. In RAG(-/-) recipients of skin allografts adoptively transferred with CD4(+) T cells, we show that TIM-4 blockade in vivo is associated with a 3-fold prolongation in allograft survival. Furthermore, in this mouse model of skin transplantation, increased induction of allospecific iTregs and a reduction in T effector responses were observed, with decreased Th1 and Th2 responses. This enhanced allograft survival and protolerogenic skewing of the alloresponse is critically dependent on conversion of naive CD4(+) to Tregs in vivo. Collectively, these studies identify blockade of DC-expressed TIM-4 as a novel strategy that holds the capacity to induce regulatory immunity in vivo.
Collapse
Affiliation(s)
- Melissa Y Yeung
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02445
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schiechl G, Brunner SM, Kesselring R, Martin M, Ruemmele P, Mack M, Hirt SW, Schlitt HJ, Geissler EK, Fichtner-Feigl S. Inhibition of innate co-receptor TREM-1 signaling reduces CD4(+) T cell activation and prolongs cardiac allograft survival. Am J Transplant 2013; 13:1168-80. [PMID: 23463907 DOI: 10.1111/ajt.12186] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 01/25/2023]
Abstract
The innate receptor "triggering-receptor-expressed-on-myeloid-cells-1" (TREM-1) enhances downstream signaling of "pattern recognition receptor" (PRR) molecules implicated in inflammatory responses. However the mechanistic role of TREM-1 in chronic heart rejection has yet to be elucidated. We examined the effect of TREM-1(+) antigen-presenting cells (APC) on alloreactive CD4(+) lymphocytes. Bm12 donor hearts were transplanted into wild-type MHC-class-II-mismatched C57BL/6J recipient mice. Progressive allograft rejection of bm12-donor hearts with decreased organ function, severe vasculopathy and allograft fibrosis was evident within 4 weeks. TREM-1(+) CD11b(+) MHC-II(+) F4/80(+) CCR2(+) APC and IFNγ-producing CD4(+) cells were detected during chronic rejection. Peptide inhibition of TREM-1 attenuated graft vasculopathy, reduced graft-infiltrating leukocytes and prolonged allograft survival, while being accompanied by sustained low levels of CD4(+) and CD8(+) cell infiltration. Remarkably, temporary inhibition of TREM-1 during early immune activation was sufficient for long-term allograft survival. Mechanistically, TREM-1 inhibition leads to reduced differentiation and proliferation of IFNγ-producing Th1 cells. In conclusion, TREM-1 influences chronic heart rejection by regulating the infiltration and differentiation of CD4(+) lymphocytes.
Collapse
Affiliation(s)
- G Schiechl
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abadja F, Sarraj B, Ansari MJ. Significance of T helper 17 immunity in transplantation. Curr Opin Organ Transplant 2013; 17:8-14. [PMID: 22186097 DOI: 10.1097/mot.0b013e32834ef4e4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an overview of significance of T helper 17 (Th17) immunity in acute, chronic and antibody-mediated allograft rejection. The role of Th17 immunity in development of de-novo autoimmunity following transplantation is outlined. It will also consider the impact of Th17 immunity on transplantation tolerance. Potential therapies to target Th17 immunity are discussed. RECENT FINDINGS Interleukin17 (IL-17) is produced by a wide variety of immune and non-immune cells in response to injury. IL-17 production by tubular epithelial cells in response to complement activation in acute antibody-mediated rejection may perpetuate immune injury. Th17-dependent de-novo autoimmunity contributes to chronic allograft rejection. Targeting IL-17 not only inhibits Th17 immunity but also attenuates Th1 immunity by affecting the initial recruitment of immune cells to sites of inflammation and modulates innate and adaptive immune responses that ultimately lead to tissue destruction. SUMMARY Th17 immunity is now beginning to be appreciated as a set of responses mediated not only by CD4 Th17 cells but a variety of immune cells and a plethora of cytokines that collaborate to mediate immune disorders, including transplant rejection. Development and contribution of de-novo autoimmunity to chronic rejection is increasingly appreciated. The developmental plasticity of Tregs and Th17 cells is a major hurdle to Treg-based cellular therapies for transplantation. Several biologics targeting Th17 immunity are under evaluation for autoimmune disease. It remains to be determined whether these can be used in transplantation to improve outcomes.
Collapse
Affiliation(s)
- Farida Abadja
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Zhongmin Liu
- Department of Cardiovascular and Thoracic Surgery; Shanghai East Hospital of Tongji University; Shanghai; China
| | - Huimin Fan
- Department of Cardiovascular and Thoracic Surgery; Shanghai East Hospital of Tongji University; Shanghai; China
| | | |
Collapse
|
37
|
Abstract
Rejection is the major barrier to successful transplantation and usually results from the integration of multiple mechanisms. Activation of elements of the innate immune system, triggered as a consequence of tissue injury sustained during cell isolation or organ retrieval as well as ischemia-reperfusion, will initiate and amplify the adaptive response. For cell mediated rejection, T cells require multiple signals for activation, the minimum being two signals; antigen recognition and costimulation. The majority of B cells require help from T cells to initiate alloantibody production. Antibodies reactive to donor HLA molecules, minor histocompatibility antigens, endothelial cells, red blood cells, or autoantigens can trigger or contribute to rejection early as well as late after transplantation.
Collapse
Affiliation(s)
- Kathryn J Wood
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
38
|
Duffield JS, Lupher M, Thannickal VJ, Wynn TA. Host responses in tissue repair and fibrosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:241-76. [PMID: 23092186 DOI: 10.1146/annurev-pathol-020712-163930] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Myofibroblasts accumulate in the spaces between organ structures and produce extracellular matrix (ECM) proteins, including collagen I. They are the primary "effector" cells in tissue remodeling and fibrosis. Previously, leukocyte progenitors termed fibrocytes and myofibroblasts generated from epithelial cells through epithelial-to-mesenchymal transition (EMT) were considered the primary sources of ECM-producing myofibroblasts in injured tissues. However, genetic fate mapping experiments suggest that mesenchyme-derived cells, known as resident fibroblasts, and pericytes are the primary precursors of scar-forming myofibroblasts, whereas epithelial cells, endothelial cells, and myeloid leukocytes contribute to fibrogenesis predominantly by producing key fibrogenic cytokines and by promoting cell-to-cell communication. Numerous cytokines derived from T cells, macrophages, and other myeloid cell populations are important drivers of myofibroblast differentiation. Monocyte-derived cell populations are key regulators of the fibrotic process: They act as a brake on the processes driving fibrogenesis, and they dismantle and degrade established fibrosis. We discuss the origins, modes of activation, and fate of myofibroblasts in various important fibrotic diseases and describe how manipulation of macrophage activation could help ameliorate fibrosis.
Collapse
Affiliation(s)
- Jeremy S Duffield
- Division of Nephrology, Center for Lung Biology, and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98019, USA
| | | | | | | |
Collapse
|
39
|
Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, Österreicher CH, Stickel F, Ley K, Brenner DA, Kisseleva T. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143:765-776.e3. [PMID: 22687286 PMCID: PMC3635475 DOI: 10.1053/j.gastro.2012.05.049] [Citation(s) in RCA: 551] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/06/2012] [Accepted: 05/30/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Interleukin (IL)-17 signaling has been implicated in lung and skin fibrosis. We examined the role of IL-17 signaling in the pathogenesis of liver fibrosis in mice. METHODS Using cholestatic and hepatotoxic models of liver injury, we compared the development of liver fibrosis in wild-type mice with that of IL-17RA(-/-) mice and of bone marrow chimeric mice devoid of IL-17 signaling in immune and Kupffer cells (IL-17RA(-/-) to wild-type and IL-17A(-/-) to wild-type mice) or liver resident cells (wild-type to IL-17RA(-/-) mice). RESULTS In response to liver injury, levels of Il-17A and its receptor increased. IL-17A increased appeared to promote fibrosis by activating inflammatory and liver resident cells. IL-17 signaling facilitated production of IL-6, IL-1, and tumor necrosis factor-α by inflammatory cells and increased the expression of transforming growth factor-1, a fibrogenic cytokine. IL-17 directly induced production of collagen type I in hepatic stellate cells by activating the signal transducer and activator of transcription 3 (Stat3) signaling pathway. Mice devoid of Stat3 signaling in hepatic stellate cells (GFAPStat3(-/-) mice) were less susceptible to fibrosis. Furthermore, deletion of IL-23 from immune cells attenuated liver fibrosis, whereas deletion of IL-22 exacerbated fibrosis. Administration of IL-22 and IL-17E (IL-25, a negative regulator of IL-23) protected mice from bile duct ligation-induced liver fibrosis. CONCLUSIONS IL-17 induces liver fibrosis through multiple mechanisms in mice. Reagents that block these pathways might be developed as therapeutics for patients with cirrhosis.
Collapse
MESH Headings
- Animals
- Bile Ducts/surgery
- Bone Marrow Transplantation
- Carbon Tetrachloride
- Cell Line
- Collagen Type I/metabolism
- Disease Progression
- Gene Expression Regulation
- Genotype
- Hepatic Stellate Cells/immunology
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Humans
- Inflammation Mediators/administration & dosage
- Inflammation Mediators/metabolism
- Interleukin-1/metabolism
- Interleukin-17/administration & dosage
- Interleukin-17/deficiency
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukin-23/deficiency
- Interleukin-23/genetics
- Interleukin-6/metabolism
- Interleukins/administration & dosage
- Interleukins/deficiency
- Interleukins/genetics
- Kupffer Cells/immunology
- Kupffer Cells/metabolism
- Kupffer Cells/pathology
- Ligation
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Alcoholic/immunology
- Liver Cirrhosis, Alcoholic/pathology
- Liver Cirrhosis, Experimental/etiology
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/immunology
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Receptors, Interleukin-17/deficiency
- Receptors, Interleukin-17/genetics
- STAT3 Transcription Factor/deficiency
- STAT3 Transcription Factor/genetics
- Signal Transduction
- Time Factors
- Transforming Growth Factor beta1/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Fanli Meng
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Department of Hepatology, Qilu Hospital, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Shandong University, Jinan, China
| | - Tomonori Aoyama
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Sergei I Grivennikov
- Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California
| | - YongHan Paik
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - David Scholten
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Min Cong
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Keiko Iwaisako
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiao Liu
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Mingjun Zhang
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Christoph H Österreicher
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Felix Stickel
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Visceral Surgery and Medicine, Inselspital Bern, Switzerland
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - David A Brenner
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Tatiana Kisseleva
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California.
| |
Collapse
|
40
|
Abstract
Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases.
Collapse
|
41
|
Abstract
Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases.
Collapse
Affiliation(s)
- Thomas A Wynn
- Immunopathogenesis Section, Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
42
|
Yu X, Jiang Y, Lu L, Gong X, Sun X, Xuan Z, Lu L. A crucial role of IL-17 and IFN-γ during acute rejection of peripheral nerve xenotransplantation in mice. PLoS One 2012; 7:e34419. [PMID: 22479627 PMCID: PMC3316676 DOI: 10.1371/journal.pone.0034419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 02/28/2012] [Indexed: 11/23/2022] Open
Abstract
Nerve injuries causing segmental loss require nerve grafting. However, autografts and allografts have limitations for clinical use. Peripheral nerve xenotransplantation has become an area of great interest in clinical surgery research as an alternative graft strategy. However, xenotransplant rejection is severe with cellular immunity, and Th1 cells play an important role in the process. To better understand the process of rejection, we used peripheral nerve xenografts from rats to mice and found that mononuclear cells expressing IFN-γ and IL-17 infiltrated around the grafts, and IFN-γ and IL-17 producing CD4+ and CD8+ T cells increased during the process of acute rejection. The changes of IL-4 level had no significant difference between xenotransplanted group and sham control group. The rejection of xenograft was significantly prevented after the treatment of IL-17 and IFN-γ neutralizing antibodies. These data suggest that Th17 cells contribute to the acute rejection process of peripheral nerve xenotransplant in addition to Th1 cells.
Collapse
Affiliation(s)
- Xin Yu
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| | - Yanfang Jiang
- Department of Central Laboratory, the Second Part of First Hospital, Jilin University, Changchun, China
| | - Lu Lu
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| | - Xu Gong
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| | - Xiguang Sun
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| | - Zhaopeng Xuan
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| | - Laijin Lu
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
43
|
Abstract
Rejection is the major barrier to successful transplantation. The immune response to an allograft is an ongoing dialogue between the innate and adaptive immune system that if left unchecked will lead to the rejection of transplanted cells, tissues, or organs. Activation of elements of the innate immune system, triggered as a consequence of tissue injury sustained during cell isolation or organ retrieval and ischemia reperfusion, will initiate and amplify the adaptive response. T cells require a minimum of two signals for activation, antigen recognition, and costimulation. The activation requirements of naive T cells are more stringent than those of memory T cells. Memory T cells are present in the majority of transplant recipients as a result of heterologous immunity. The majority of B cells require help from T cells to initiate antibody production. Antibodies reactive to donor human leukocyte antigen molecules, minor histocompatibility antigens, endothelial cells, RBCs, or autoantigens can trigger or contribute to rejection early and late after transplantation. Antibody-mediated rejection triggered by alloantibody binding and complement activation is recognized increasingly as a significant contribution to graft loss. Even though one component of the immune system may dominate and lead to rejection being described in short hand as T cell or antibody mediated, it is usually multifactorial resulting from the integration of multiple mechanisms. Identifying the molecular pathways that trigger tissue injury, signal transduction and rejection facilitates the identification of targets for the development of immunosuppressive drugs.
Collapse
|
44
|
Booth AJ, Grabauskiene S, Wood SC, Lu G, Burrell BE, Bishop DK. IL-6 promotes cardiac graft rejection mediated by CD4+ cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:5764-71. [PMID: 22025555 DOI: 10.4049/jimmunol.1100766] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL-6 mediates numerous immunologic effects relevant to transplant rejection; however, its specific contributions to these processes are not fully understood. To this end, we neutralized IL-6 in settings of acute cardiac allograft rejection associated with either CD8(+) or CD4(+) cell-dominant responses. In a setting of CD8(+) cell-dominant graft rejection, IL-6 neutralization delayed the onset of acute rejection while decreasing graft infiltrate and inverting anti-graft Th1/Th2 priming dominance in recipients. IL-6 neutralization markedly prolonged graft survival in the setting of CD4(+) cell-mediated acute rejection and was associated with decreased graft infiltrate, altered Th1 responses, and reduced serum alloantibody. Furthermore, in CD4(+) cell-dominated rejection, IL-6 neutralization was effective when anti-IL-6 administration was delayed by as many as 6 d posttransplant. Finally, IL-6-deficient graft recipients were protected from CD4(+) cell-dominant responses, suggesting that IL-6 production by graft recipients, rather than grafts, is necessary for this type of rejection. Collectively, these observations define IL-6 as a critical promoter of graft infiltration and a shaper of T cell lineage development in cardiac graft rejection. In light of these findings, the utility of therapeutics targeting IL-6 should be considered for preventing cardiac allograft rejection.
Collapse
Affiliation(s)
- Adam Jared Booth
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
45
|
Wilke CM, Bishop K, Fox D, Zou W. Deciphering the role of Th17 cells in human disease. Trends Immunol 2011; 32:603-11. [PMID: 21958759 DOI: 10.1016/j.it.2011.08.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/07/2011] [Accepted: 08/10/2011] [Indexed: 12/14/2022]
Abstract
Since their identification in 2005, T helper (Th)17 cells have been proposed to play important roles in several human diseases, including various autoimmune conditions, allergy, the development and progression of tumors, and the acceptance or rejection of transplanted organs and bone marrow. Focusing on human studies, here we review recent developments regarding Th17 biology and function in each of these fields. Th17 cells actively participate in the pathogenesis of autoimmune disease, allergy and transplantation rejection. Th17 cells contribute to protective antitumor immunity in human epithelial malignancy, whereas Th17-associated cytokines may also be associated with tumor initiation and growth in the context of chronic inflammation and infection. Also discussed is how the in vivo plasticity of Th17 cells may be an important feature of Th17 cell biology in human disease.
Collapse
Affiliation(s)
- Cailin Moira Wilke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
46
|
Chadha R, Heidt S, Jones ND, Wood KJ. Th17: contributors to allograft rejection and a barrier to the induction of transplantation tolerance? Transplantation 2011; 91:939-45. [PMID: 21378605 DOI: 10.1097/tp.0b013e3182126eeb] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T helper (Th) type 17 cells are a recently described CD4 T-cell subset that may contribute to allograft rejection and act as a barrier to the induction of transplant tolerance. This review examines the involvement of Th17 cells in transplant rejection, how immunosuppressive medication may affect their induction and maintenance and the potential plasticity of developing Th17 cells. It also addresses the complex interplay between the Th17 and regulatory T-cell developmental pathways and the susceptibility of Th17 cells to regulation. Despite accumulating evidence, the precise impact of Th17 cells on transplant rejection and the induction of tolerance require further clarification.
Collapse
|
47
|
Shen C, He Y, Cheng K, Zhang D, Miao S, Zhang A, Meng F, Miao F, Zhang J. Killer artificial antigen-presenting cells deplete alloantigen-specific T cells in a murine model of alloskin transplantation. Immunol Lett 2011; 138:144-55. [PMID: 21513739 DOI: 10.1016/j.imlet.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 11/19/2022]
Abstract
FasL-expressing killer antigen-presenting cells (KAPCs) have the ability to delete antigen-specific T cells and, therefore, could potentially be used for the treatment of allograft rejection and autoimmunity; however, their cellular nature markedly limits their clinical use. Novel bead-based killer artificial antigen-presenting cells (KaAPCs), which are generated by coupling major histocompatibility complex (MHC) class I antigens together with the apoptosis-inducing anti-Fas monoclonal antibody (mAb) onto magnetic beads, have recently attracted more attention. KaAPCs have a number of advantages over KAPCs and are able to deplete specific T cells in cocultures. However, it remains unknown whether bead-based KaAPCs can also induce apoptosis of alloreactive or autoreactive T cells and, consequently, generate hyporesponsiveness in vivo. In this study, H-2K(b)/peptide monomers and anti-Fas mAb have been covalently coupled to latex beads and administered intravenously into BALB/c mice (H-2K(d)) that had previously been grafted with skin squares from C57BL/6 mice (H-2K(b)). Alloskin graft survival was prolonged for 6 days. A 60% decrease of H-2K(b) antigen-alloreactive T cells was demonstrated by several measures 2 days after each injection of KaAPCs, but intact immune function, including antitumor activity, was maintained. These data provide the first in vivo evidence that bead-based KaAPCs can selectively deplete antigen-specific T cells without the loss of overall immune responsiveness and, therefore, highlight the therapeutic potential of this novel strategy for the treatment of allograft rejection and autoimmune disorders.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Murine-Derived
- Antigen-Presenting Cells/chemistry
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Apoptosis/drug effects
- Artificial Cells/chemistry
- Artificial Cells/cytology
- Artificial Cells/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation/drug effects
- Fas Ligand Protein/antagonists & inhibitors
- Fas Ligand Protein/immunology
- Fas Ligand Protein/metabolism
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Graft Survival/immunology
- Histocompatibility Antigens Class I/immunology
- Immune Tolerance
- Immunoconjugates/chemistry
- Immunoconjugates/immunology
- Immunoconjugates/pharmacology
- Injections, Intravenous
- Lymphocyte Depletion
- Magnetics/methods
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microspheres
- Models, Animal
- Skin Transplantation/immunology
- Transplantation, Homologous
Collapse
Affiliation(s)
- Chuanlai Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Landmark-Høyvik H, Dumeaux V, Reinertsen KV, Edvardsen H, Fosså SD, Børresen-Dale AL. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis. Int J Radiat Oncol Biol Phys 2011; 79:875-83. [DOI: 10.1016/j.ijrobp.2010.09.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 10/18/2022]
|
49
|
Role of Th17 cells and IL-17 in lung transplant rejection. Semin Immunopathol 2011; 33:129-34. [PMID: 21279808 DOI: 10.1007/s00281-011-0257-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/14/2011] [Indexed: 01/06/2023]
Abstract
In the past decade, advances in immunology have led to the recognition that T cell differentiation is not simply Th1 or Th2 but involves differentiation to other subsets, such as T regulatory cells, T follicular helper cells, and Th17 cells. Th17 cells, characterized by production of IL-17, IL-22, and IL-21, have been implicated in the pathogenesis of autoimmune diseases, like rheumatoid arthritis and multiple sclerosis, but also play an important role in host defense and mucosal immunity. IL-17, with its pleiotropic effects on stromal cells, as well as hematopoietic cells, has long been recognized as a possible mediator of rejection after lung transplantation. Recent data have implicated IL-17 and Th17 cells in the development of autoimmunity and chronic rejection after lung transplantation in both animal models and humans. In this review, we will discuss the current data on Th17 and the prospects for the future for lung transplantation.
Collapse
|
50
|
Chambers DC, Hodge S, Hodge G, Yerkovich ST, Kermeen FD, Reynolds P, Holmes M, Hopkins PMA. A novel approach to the assessment of lymphocytic bronchiolitis after lung transplantation--transbronchial brush. J Heart Lung Transplant 2010; 30:544-51. [PMID: 21194972 DOI: 10.1016/j.healun.2010.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/28/2010] [Accepted: 10/21/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Lymphocytic bronchiolitis (LB) is the strongest risk factor for subsequent allograft loss due to bronchiolitis obliterative syndrome (BOS); however, it is poorly assessed by transbronchial biopsy (TBBx) because of sampling error, interpretation error and the presence of non-alloimmune airway inflammation. We hypothesized that flow cytometric evaluation of bronchiolar brushings (transbronchial brush, TBBr) may be a better approach. METHODS Transbronchial brushings (2 to 3 cm from the pleural surface under radiologic guidance) were obtained prior to TBBx in 32 patients and analyzed by flow cytometry. We assessed the proportion of nucleated cells that were CD3(+)CD103(+) (epithelial-specific T cells). RESULTS No adverse events occurred; 0.5% (0.27 to 0.84) of the cells were epithelial-specific T cells and numbers increased with episodes of Grade A1 rejection (p < 0.01) and in patients with BOS (p = 0.02). Viral and invasive fungal infection were associated with marked infiltration with CD103(-) T cells (p < 0.01). CONCLUSION TBBr is simple to obtain, low risk, quantitative, and can discriminate between infective and alloimmune LB. It may be a valuable addition to current lung allograft assessment.
Collapse
Affiliation(s)
- Daniel C Chambers
- Queensland Centre for Pulmonary Transplantation and Vascular Disease, The Prince Charles Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|