1
|
Mammadli M, Suo L, Sen JM, Karimi M. TCF-1 Is Required for CD4 T Cell Persistence Functions during AlloImmunity. Int J Mol Sci 2023; 24:ijms24054326. [PMID: 36901757 PMCID: PMC10002223 DOI: 10.3390/ijms24054326] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
The transcription factor T cell factor-1 (TCF-1) is encoded by Tcf7 and plays a significant role in regulating immune responses to cancer and pathogens. TCF-1 plays a central role in CD4 T cell development; however, the biological function of TCF-1 on mature peripheral CD4 T cell-mediated alloimmunity is currently unknown. This report reveals that TCF-1 is critical for mature CD4 T cell stemness and their persistence functions. Our data show that mature CD4 T cells from TCF-1 cKO mice did not cause graft versus host disease (GvHD) during allogeneic CD4 T cell transplantation, and donor CD4 T cells did not cause GvHD damage to target organs. For the first time, we showed that TCF-1 regulates CD4 T cell stemness by regulating CD28 expression, which is required for CD4 stemness. Our data showed that TCF-1 regulates CD4 effector and central memory formation. For the first time, we provide evidence that TCF-1 differentially regulates key chemokine and cytokine receptors critical for CD4 T cell migration and inflammation during alloimmunity. Our transcriptomic data uncovered that TCF-1 regulates critical pathways during normal state and alloimmunity. Knowledge acquired from these discoveries will enable us to develop a target-specific approach for treating CD4 T cell-mediated diseases.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Liye Suo
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jyoti Misra Sen
- National Institute on Aging-National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
- Center of Aging and Immune Remodeling and Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence: ; Tel.: 315-464-2344
| |
Collapse
|
2
|
Neidemire-Colley L, Robert J, Ackaoui A, Dorrance AM, Guimond M, Ranganathan P. Role of endothelial cells in graft-versus-host disease. Front Immunol 2022; 13:1033490. [PMID: 36505438 PMCID: PMC9727380 DOI: 10.3389/fimmu.2022.1033490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
To date, the only curative treatment for high-risk or refractory hematologic malignancies non-responsive to standard chemotherapy is allogeneic hematopoietic transplantation (allo-HCT). Acute graft-versus-host disease (GVHD) is a donor T cell-mediated immunological disorder that is frequently fatal and the leading cause of non-relapse mortality (NRM) in patients post allo-HCT. The pathogenesis of acute GVHD involves recognition of minor and/or major HLA mismatched host antigens by donor T cells followed by expansion, migration and finally end-organ damage due to combination of inflammatory cytokine secretion and direct cytotoxic effects. The endothelium is a thin layer of endothelial cells (EC) that line the innermost portion of the blood vessels and a key regulator in vascular homeostasis and inflammatory responses. Endothelial cells are activated by a wide range of inflammatory mediators including bacterial products, contents released from dying/apoptotic cells and cytokines and respond by secreting cytokines/chemokines that facilitate the recruitment of innate and adaptive immune cells to the site of inflammation. Endothelial cells can also be damaged prior to transplant as well as by alloreactive donor T cells. Prolonged EC activation results in dysfunction that plays a role in multiple post-transplant complications including but not limited to veno-occlusive disease (VOD), transplant associated thrombotic microangiopathy (TA-TMA), and idiopathic pneumonia syndrome. In this mini review, we summarize the biology of endothelial cells, factors regulating EC activation and the role of ECs in inflammation and GVHD pathogenesis.
Collapse
Affiliation(s)
- Lotus Neidemire-Colley
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Jérémy Robert
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Antoine Ackaoui
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Adrienne M. Dorrance
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Martin Guimond
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada,Collège Bois de Boulogne, Montréal, QC, Canada,Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States,*Correspondence: Parvathi Ranganathan,
| |
Collapse
|
3
|
Mammadli M, Huang W, Harris R, Xiong H, Weeks S, May A, Gentile T, Henty-Ridilla J, Waickman AT, August A, Bah A, Karimi M. Targeting SLP76:ITK interaction separates GVHD from GVL in allo-HSCT. iScience 2021; 24:102286. [PMID: 33851101 PMCID: PMC8024657 DOI: 10.1016/j.isci.2021.102286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for hematological malignancies, due to graft-versus-leukemia (GVL) activity mediated by alloreactive donor T cells. However, graft-versus-host disease (GVHD) is also mediated by these cells. Here, we assessed the effect of attenuating TCR-mediated SLP76:ITK interaction in GVL vs. GVHD effects after allo-HSCT. CD8+ and CD4+ donor T cells from mice expressing a Y145F mutation in SLP-76 did not cause GVHD but preserved GVL effects against B-ALL cells. SLP76Y145FKI CD8+ and CD4+ donor T cells also showed less inflammatory cytokine production and migration to GVHD target organs. We developed a novel peptide to specifically inhibit SLP76:ITK interactions, resulting in decreased phosphorylation of PLCγ1 and ERK, decreased cytokine production in human T cells, and separation of GVHD from GVL effects. Altogether, our data suggest that inhibiting SLP76:ITK interaction could be a therapeutic strategy to separate GVHD from GVL effects after allo-HSCT treatment.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Hui Xiong
- Department of Radiology, Jiangxi Health Vocational College, Nanchang, 330052, China
| | - Samuel Weeks
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Adriana May
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Teresa Gentile
- Division of Hematology, translational research, SUNY Upstate Medical University, Syracuse NY 13210, USA
| | - Jessica Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Adam T. Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Abstract
Graft-vs. host disease (GVHD), both acute and chronic are among the chief non-relapse complications of allogeneic transplantation which still cause substantial morbidity and mortality despite significant advances in supportive care over the last few decades. The prevention of GVHD therefore remains critical to the success of allogeneic transplantation. In this review we briefly discuss the pathophysiology and immunobiology of GVHD and the current standards in the field which remain centered around calcineurin inhibitors. We then discuss important translational advances in GVHD prophylaxis, approaching these various platforms from a mechanistic standpoint based on the pathophysiology of GVHD including in-vivo and ex-vivo T-cell depletion alongwith methods of selective T-cell depletion, modulation of T-cell co-stimulatory pathways (checkpoints), enhancing regulatory T-cells (Tregs), targeting T-cell trafficking as well as cytokine pathways. Finally we highlight exciting novel pre-clinical research that has the potential to translate to the clinic successfully. We approach these methods from a pathophysiology based perspective as well and touch upon strategies targeting the interaction between tissue damage induced antigens and T-cells, regimen related endothelial toxicity, T-cell co-stimulatory pathways and other T-cell modulatory approaches, T-cell trafficking, and cytokine pathways. We end this review with a critical discussion of existing data and novel therapies that may be transformative in the field in the near future as a comprehensive picture of GVHD prophylaxis in 2020. While calcineurin inhibitors remain the standard, post-transplant eparinsphamide originally developed to facilitate haploidentical transplantation is becoming an attractive alternative to traditional calcinuerin inhibitor based prophylaxis due to its ability to reduce severe forms of acute and chronic GVHD without compromising other outcomes, even in the HLA-matched setting. In addition T-cell modulation, particularly targeting some important T-cell co-stimulatory pathways have resulted in promising outcomes and may be a part of GVHD prophylaxis in the future. Novel approaches including targeting early events in GVHD pathogenesis such as interactions bvetween tissue damage associated antigens and T-cells, endothelial toxicity, and T-cell trafficking are also promising and discussed in this review. GVHD prophylaxis in 2020 continues to evolve with novel exicitng therapies on the horizon based on a more sophisticated understanding of the immunobiology of GVHD.
Collapse
|
5
|
Mammadli M, Huang W, Harris R, Sultana A, Cheng Y, Tong W, Pu J, Gentile T, Dsouza S, Yang Q, Bah A, August A, Karimi M. Targeting Interleukin-2-Inducible T-Cell Kinase (ITK) Differentiates GVL and GVHD in Allo-HSCT. Front Immunol 2020; 11:593863. [PMID: 33324410 PMCID: PMC7726260 DOI: 10.3389/fimmu.2020.593863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a potentially curative procedure for many malignant diseases. Donor T cells prevent disease recurrence via graft-versus-leukemia (GVL) effect. Donor T cells also contribute to graft-versus-host disease (GVHD), a debilitating and potentially fatal complication. Novel treatment strategies are needed which allow preservation of GVL effects without causing GVHD. Using murine models, we show that targeting IL-2-inducible T cell kinase (ITK) in donor T cells reduces GVHD while preserving GVL effects. Both CD8+ and CD4+ donor T cells from Itk-/- mice produce less inflammatory cytokines and show decrease migration to GVHD target organs such as the liver and small intestine, while maintaining GVL efficacy against primary B-cell acute lymphoblastic leukemia (B-ALL). Itk-/- T cells exhibit reduced expression of IRF4 and decreased JAK/STAT signaling activity but upregulating expression of Eomesodermin (Eomes) and preserve cytotoxicity, necessary for GVL effect. Transcriptome analysis indicates that ITK signaling controls chemokine receptor expression during alloactivation, which in turn affects the ability of donor T cells to migrate to GVHD target organs. Our data suggest that inhibiting ITK could be a therapeutic strategy to reduce GVHD while preserving the beneficial GVL effects following allo-HSCT treatment.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.,Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Aisha Sultana
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jeffery Pu
- Department of Hematology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Teresa Gentile
- Department of Hematology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Shanti Dsouza
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Qi Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
6
|
Perkey E, Maurice De Sousa D, Carrington L, Chung J, Dils A, Granadier D, Koch U, Radtke F, Ludewig B, Blazar BR, Siebel CW, Brennan TV, Nolz J, Labrecque N, Maillard I. GCNT1-Mediated O-Glycosylation of the Sialomucin CD43 Is a Sensitive Indicator of Notch Signaling in Activated T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:1674-1688. [PMID: 32060138 DOI: 10.4049/jimmunol.1901194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Notch signaling is emerging as a critical regulator of T cell activation and function. However, there is no reliable cell surface indicator of Notch signaling across activated T cell subsets. In this study, we show that Notch signals induce upregulated expression of the Gcnt1 glycosyltransferase gene in T cells mediating graft-versus-host disease after allogeneic bone marrow transplantation in mice. To determine if Gcnt1-mediated O-glycosylation could be used as a Notch signaling reporter, we quantified the core-2 O-glycoform of CD43 in multiple T cell subsets during graft-versus-host disease. Pharmacological blockade of Delta-like Notch ligands abrogated core-2 O-glycosylation in a dose-dependent manner after allogeneic bone marrow transplantation, both in donor-derived CD4+ and CD8+ effector T cells and in Foxp3+ regulatory T cells. CD43 core-2 O-glycosylation depended on cell-intrinsic canonical Notch signals and identified CD4+ and CD8+ T cells with high cytokine-producing ability. Gcnt1-deficient T cells still drove lethal alloreactivity, showing that core-2 O-glycosylation predicted, but did not cause, Notch-dependent T cell pathogenicity. Using core-2 O-glycosylation as a marker of Notch signaling, we identified Ccl19-Cre+ fibroblastic stromal cells as critical sources of Delta-like ligands in graft-versus-host responses irrespective of conditioning intensity. Core-2 O-glycosylation also reported Notch signaling in CD8+ T cell responses to dendritic cell immunization, Listeria infection, and viral infection. Thus, we uncovered a role for Notch in controlling core-2 O-glycosylation and identified a cell surface marker to quantify Notch signals in multiple immunological contexts. Our findings will help refine our understanding of the regulation, cellular source, and timing of Notch signals in T cell immunity.
Collapse
Affiliation(s)
- Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Dave Maurice De Sousa
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Léolène Carrington
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Jooho Chung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alexander Dils
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - David Granadier
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | | | | | - Jeffrey Nolz
- Oregon Health and Sciences University, Portland, OR 97239; and
| | - Nathalie Labrecque
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
| |
Collapse
|
7
|
Cui C, Tian X, Lin Y, Su M, Chen Q, Wang SY, Lai L. In vivo administration of recombinant BTNL2-Fc fusion protein ameliorates graft-versus-host disease in mice. Cell Immunol 2018; 335:22-29. [PMID: 30389093 DOI: 10.1016/j.cellimm.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
Although hematopoietic stem cell transplantation (HSCT) has been widely used in the treatment of many diseases, graft-versus-host disease (GVHD) remains a major complication after allogeneic HSCT. Butyrophilin-like 2 (BTNL2) protein has been reported to have the ability to inhibit T cell proliferation in vitro; its ability to inhibit T cell responses in vivo has not been determined. We show here that in vivo administration of recombinant BTNL2-IgG2a Fc (rBTNL2-Ig) fusion protein ameliorates GVHD in mice. This is related to the ability of rBTNL2-Ig to inhibit T cell proliferation, activation and Th1/Th17 cytokine production in vivo. Furthermore, rBTNL2-Ig treatment increases the generation of regulatory T cells. Our results suggest that rBTNL2-Ig has the potential to be used in the prevention and treatment of patients with GVHD.
Collapse
Affiliation(s)
- Cheng Cui
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States; Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Xiaohong Tian
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Yujun Lin
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Qingquan Chen
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Shao-Yuan Wang
- Fujian Institute of Hematology, Hematology Department of Fujian Medical University Union Hospital, China
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States; University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, United States.
| |
Collapse
|
8
|
Reshef R, Ganetsky A, Acosta EP, Blauser R, Crisalli L, McGraw J, Frey NV, Hexner EO, Hoxie JA, Loren AW, Luger SM, Mangan J, Stadtmauer EA, Mick R, Vonderheide RH, Porter DL. Extended CCR5 Blockade for Graft-versus-Host Disease Prophylaxis Improves Outcomes of Reduced-Intensity Unrelated Donor Hematopoietic Cell Transplantation: A Phase II Clinical Trial. Biol Blood Marrow Transplant 2018; 25:515-521. [PMID: 30315941 DOI: 10.1016/j.bbmt.2018.09.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023]
Abstract
Graft-versus-host disease (GVHD) remains the most common treatment-related complication after allogeneic hematopoietic cell transplantation (allo-HCT). Lymphocyte migration plays a critical role in the pathogenesis of GVHD. A previous phase I/II trial demonstrated that CCR5 blockade with maraviroc in the first 30days after allo-HCT resulted in a low incidence of early acute GVHD, primarily in visceral organs, but with no impact on late acute or chronic GVHD. We conducted a phase II trial to examine the efficacy of an extended course of maraviroc, administered through post-transplantation day +90 in addition to standard prophylaxis in 37 recipients of reduced-intensity-conditioned unrelated donor allo-HCT performed to treat hematologic malignancies. Extended maraviroc treatment was safe and feasible. The primary study endpoint, day +180 rate of grade II-IV acute GVHD, was 22 ± 7%, liver GVHD was not observed, and gut GVHD was uncommon. The day +180 rate of grade III-IV acute GVHD was 5 ± 4%. The 1-year rate of moderate to severe chronic GVHD was 8 ± 5% and that of disease relapse was 30 ± 8%. Overall survival at 1 year was 70 ± 8%. Compared with the previously studied short course of maraviroc, the extended course resulted in a significantly higher GVHD-free, relapse-free survival (adjusted hazard ratio [HR], .45; 95% confidence interval [CI], .25 to .82; P = .009) and overall survival (adjusted HR, .48; 95% CI, .24 to .96; P = .037). A combined analysis of both trials showed that high maraviroc trough concentrations on the day of hematopoietic cell infusion were associated with lower rates of acute GVHD. An extended course of maraviroc after reduced-intensity-conditioned unrelated donor allo-HCT is safe and effective in preventing acute and chronic GVHD and is associated with favorable survival.
Collapse
Affiliation(s)
- Ran Reshef
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology/Oncology and Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York.
| | - Alex Ganetsky
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward P Acosta
- Department of Pharmacology and Toxicology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Robin Blauser
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lisa Crisalli
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica McGraw
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noelle V Frey
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth O Hexner
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James A Hoxie
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison W Loren
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Selina M Luger
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James Mangan
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward A Stadtmauer
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rosemarie Mick
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Porter
- Abramson Cancer Center and Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Initiation of acute graft-versus-host disease by angiogenesis. Blood 2017; 129:2021-2032. [PMID: 28096092 DOI: 10.1182/blood-2016-08-736314] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/08/2017] [Indexed: 01/06/2023] Open
Abstract
The inhibition of inflammation-associated angiogenesis ameliorates inflammatory diseases by reducing the recruitment of tissue-infiltrating leukocytes. However, it is not known if angiogenesis has an active role during the initiation of inflammation or if it is merely a secondary effect occurring in response to stimuli by tissue-infiltrating leukocytes. Here, we show that angiogenesis precedes leukocyte infiltration in experimental models of inflammatory bowel disease and acute graft-versus-host disease (GVHD). We found that angiogenesis occurred as early as day+2 after allogeneic transplantation mainly in GVHD typical target organs skin, liver, and intestines, whereas no angiogenic changes appeared due to conditioning or syngeneic transplantation. The initiation phase of angiogenesis was not associated with classical endothelial cell (EC) activation signs, such as Vegfa/VEGFR1+2 upregulation or increased adhesion molecule expression. During early GVHD at day+2, we found significant metabolic and cytoskeleton changes in target organ ECs in gene array and proteomic analyses. These modifications have significant functional consequences as indicated by profoundly higher deformation in real-time deformability cytometry. Our results demonstrate that metabolic changes trigger alterations in cell mechanics, leading to enhanced migratory and proliferative potential of ECs during the initiation of inflammation. Our study adds evidence to the hypothesis that angiogenesis is involved in the initiation of tissue inflammation during GVHD.
Collapse
|
10
|
Hu R, Liu Y, Song Y, Su M, Lu X, Rood D, Lai L. Recombinant IL-7/HGFβ hybrid cytokine separates acute graft-versus-host-disease from graft-versus-tumour activity by altering donor T cell trafficking. Br J Haematol 2016; 175:505-516. [PMID: 27447780 DOI: 10.1111/bjh.14268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
Abstract
Given that donor T cells from a transplant contribute both the desired graft-versus-tumour (GVT) effect and detrimental graft-versus-host disease (GVHD), strategies to separate GVHD and GVT activity are a major clinical goal. We have previously demonstrated that in vivo administration of a recombinant (r)IL-7/HGFβ hybrid cytokine, consisting of interleukin-7 (IL-7, IL7) and the β-chain of hepatocyte growth factor (HGFβ), significantly inhibits the growth of cancer cells in murine tumour models. The antit-umour effect of rIL-7/HGFβ is related to a marked infiltration T cells in the tumour tissues. We have also shown that GVHD was not induced in rIL-7/HGFβ-treated T cell-depleted allogeneic haematopoietic stem cell transplantation (HSCT) recipients. We show here that, in T cell-replete allogeneic HSCT murine models, rIL-7/HGFβ attenuated acute GVHD (aGVHD), while promoting GVT activity. This was related to an alteration of donor T cell trafficking, with an increased infiltration of donor T cells into tumour tissues and the lympho-haematopoietic system but decreased number of the T cells in the GVHD target organs. Therefore, rIL-7/HGFβ may offer a new tool to alleviate aGVHD while prompting GVT, and to study the molecular regulation of T cell trafficking.
Collapse
Affiliation(s)
- Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,Guizhou Medical University, Guizhou, China
| | - Yalan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Debra Rood
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA. .,University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
11
|
Nguyen HD, Chatterjee S, Haarberg KMK, Wu Y, Bastian D, Heinrichs J, Fu J, Daenthanasanmak A, Schutt S, Shrestha S, Liu C, Wang H, Chi H, Mehrotra S, Yu XZ. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J Clin Invest 2016; 126:1337-52. [PMID: 26950421 DOI: 10.1172/jci82587] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022] Open
Abstract
Alloreactive donor T cells are the driving force in the induction of graft-versus-host disease (GVHD), yet little is known about T cell metabolism in response to alloantigens after hematopoietic cell transplantation (HCT). Here, we have demonstrated that donor T cells undergo metabolic reprograming after allogeneic HCT. Specifically, we employed a murine allogeneic BM transplant model and determined that T cells switch from fatty acid β-oxidation (FAO) and pyruvate oxidation via the tricarboxylic (TCA) cycle to aerobic glycolysis, thereby increasing dependence upon glutaminolysis and the pentose phosphate pathway. Glycolysis was required for optimal function of alloantigen-activated T cells and induction of GVHD, as inhibition of glycolysis by targeting mTORC1 or 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) ameliorated GVHD mortality and morbidity. Together, our results indicate that donor T cells use glycolysis as the predominant metabolic process after allogeneic HCT and suggest that glycolysis has potential as a therapeutic target for the control of GVHD.
Collapse
|
12
|
Sun H, Pan Y, Wu R, Lv J, Chi X, Wang X, Tu Z, Zhong J, Sun B, Liu Y, Jiang J, Niu J. CD24 Ala57Val polymorphism is associated with spontaneous viral clearance in the HCV-infected Chinese population. Liver Int 2015; 35:786-94. [PMID: 25872416 DOI: 10.1111/liv.12506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/13/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Host immune response to hepatitis C virus (HCV) is a vital factor involved in both viral clearance and liver disease pathogenesis. CD24 plays an important role in inflammation and immune response and CD24 polymorphisms are associated with risk and progression of chronic hepatitis B virus infection. Our study evaluated whether CD24 polymorphisms affect HCV clearance. METHODS We genotyped 544 chronic hepatitis C (CHC) patients, 78 spontaneous hepatitis C clearance (SHC) patients and 215 healthy controls for CD24 gene variants at positions -P534, P170, P1527 and IFNL3 rs12979860 by pyrosequencing. In CHC patients, 362 individuals were treated with a recombinant IFN-α2b/ribavirin combination for 48 weeks and were followed up for an additional 24 weeks. Lymphocyte CD24 expression was analysed by flow cytometry. RESULTS We show that P170 CT and CT/TT genotypes were over-represented in the SHC group compared to CHC patients (62.8% vs. 47.2% and 75.6% vs. 60.3%, for respective polymorphisms). In multivariate logistic analysis, P170 (CD24 Ala57Val) polymorphism was an independent predictor of SHC (adjusted OR = 2.11, 95%CI = 1.19-3.73, P = 0.010 for CT genotype; OR = 2.01, 95%CI = 1.15-3.49, P = 0.014 for CT/TT genotype). No significant associations were found between the CD24 polymorphisms and treatment-induced viral clearance in log-rank analysis and Cox regression analysis. Patients with the CT/TT genotype had greater T-cell CD24 expression than patients with the CC genotype. CONCLUSIONS Our findings suggest that CD24 Ala57Val polymorphism and associated variations in CD24 expression may be an important predictor for SHC, but have no effect on antiviral drug treatment response in Chinese CHC patients.
Collapse
Affiliation(s)
- Haibo Sun
- Department of Hepatology, The First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ghosh A, Holland AM, Dogan Y, Yim NL, Rao UK, Young LF, West ML, Singer NV, Lee H, Na IK, Tsai JJ, Jenq RR, Penack O, Hanash AM, Lezcano C, Murphy GF, Liu C, Sadelain M, Sauer MG, Sant'angelo D, van den Brink MRM. PLZF confers effector functions to donor T cells that preserve graft-versus-tumor effects while attenuating GVHD. Cancer Res 2013; 73:4687-96. [PMID: 23733752 DOI: 10.1158/0008-5472.can-12-4699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Efforts to limit GVHD mediated by alloreactive donor T cells after allogeneic bone marrow transplantation are limited by a concomitant decrease in graft-versus-tumor (GVT) activity and increased possibilities of tumor relapse. Using a novel approach, we adoptively transferred conventional T cells expressing the transcription factor promyelocytic leukemia zinc finger (PLZF), which confers effector properties resembling invariant natural killer T cells, such as copious production of cytokines under suboptimal stimulation. PLZF expression in T-cell allografts attenuates expansion of alloreactive T cells, leading to lower GVHD. Intact alloreactivity-driven antitumor cytokine responses result in preserved GVT effects, leading to improved survival. Our findings suggest that therapy with PLZF-overexpressing T cells would result in overall improved outcomes due to less GVHD and intact GVT effects.
Collapse
Affiliation(s)
- Arnab Ghosh
- Departments of Immunology and Medicine, and Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bäuerlein CA, Riedel SS, Baker J, Brede C, Garrote ALJ, Chopra M, Ritz M, Beilhack GF, Schulz S, Zeiser R, Schlegel PG, Einsele H, Negrin RS, Beilhack A. A diagnostic window for the treatment of acute graft-versus-host disease prior to visible clinical symptoms in a murine model. BMC Med 2013; 11:134. [PMID: 23692886 PMCID: PMC3665617 DOI: 10.1186/1741-7015-11-134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 04/19/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) poses a major limitation for broader therapeutic application of allogeneic hematopoietic cell transplantation (allo-HCT). Early diagnosis of aGVHD remains difficult and is based on clinical symptoms and histopathological evaluation of tissue biopsies. Thus, current aGVHD diagnosis is limited to patients with established disease manifestation. Therefore, for improved disease prevention it is important to develop predictive assays to identify patients at risk of developing aGVHD. Here we address whether insights into the timing of the aGVHD initiation and effector phases could allow for the detection of migrating alloreactive T cells before clinical aGVHD onset to permit for efficient therapeutic intervention. METHODS Murine major histocompatibility complex (MHC) mismatched and minor histocompatibility antigen (miHAg) mismatched allo-HCT models were employed to assess the spatiotemporal distribution of donor T cells with flow cytometry and in vivo bioluminescence imaging (BLI). Daily flow cytometry analysis of peripheral blood mononuclear cells allowed us to identify migrating alloreactive T cells based on homing receptor expression profiles. RESULTS We identified a time period of 2 weeks of massive alloreactive donor T cell migration in the blood after miHAg mismatch allo-HCT before clinical aGVHD symptoms appeared. Alloreactive T cells upregulated α4β7 integrin and P-selectin ligand during this migration phase. Consequently, targeted preemptive treatment with rapamycin, starting at the earliest detection time of alloreactive donor T cells in the peripheral blood, prevented lethal aGVHD. CONCLUSIONS Based on this data we propose a critical time frame prior to the onset of aGVHD symptoms to identify alloreactive T cells in the peripheral blood for timely and effective therapeutic intervention.
Collapse
Affiliation(s)
- Carina A Bäuerlein
- Department of Medicine II, Würzburg University Clinics, Zinklesweg 10, Würzburg, D-97078, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Valenzuela NM, Hong L, Shen XD, Gao F, Young SH, Rozengurt E, Kupiec-Weglinski J, Fishbein MC, Reed EF. Blockade of p-selectin is sufficient to reduce MHC I antibody-elicited monocyte recruitment in vitro and in vivo. Am J Transplant 2013; 13:299-311. [PMID: 23279566 PMCID: PMC3563267 DOI: 10.1111/ajt.12016] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/19/2012] [Accepted: 10/24/2012] [Indexed: 01/25/2023]
Abstract
Donor-specific HLA antibodies significantly lower allograft survival, but as yet there are no satisfactory therapies for prevention of antibody-mediated rejection. Intracapillary macrophage infiltration is a hallmark of antibody-mediated rejection, and macrophages are important in both acute and chronic rejection. The purpose of this study was to investigate the Fc-independent effect of HLA I antibodies on endothelial cell activation, leading to monocyte recruitment. We used an in vitro model to assess monocyte binding to endothelial cells in response to HLA I antibodies. We confirmed our results in a mouse model of antibody-mediated rejection, in which B6.RAG1(-/-) recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies. Our findings demonstrate that HLA I antibodies rapidly increase intracellular calcium and endothelial presentation of P-selectin, which supports monocyte binding. In the experimental model, donor-specific MHC I antibodies significantly increased macrophage accumulation in the allograft. Concurrent administration of rPSGL-1-Ig abolished antibody-induced monocyte infiltration in the allograft, but had little effect on antibody-induced endothelial injury. Our data suggest that antagonism of P-selectin may ameliorate accumulation of macrophages in the allograft during antibody-mediated rejection.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Longsheng Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Xiu-Da Shen
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Feng Gao
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Steven H. Young
- Division of Digestive Diseases, Department of Medicine, Center for Ulcer Research and Education, Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, Center for Ulcer Research and Education, Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
,University of California Los Angeles (UCLA) Immunogenetics Center
,Correspondence should be addressed to: Immunogenetics Center Department of Pathology and Laboratory Medicine David Geffen School of Medicine University of California Los Angeles 1000 Veteran Ave Los Angeles, CA 90095 Phone: 310-794-4943, Fax: 310-206-3216
| |
Collapse
|
16
|
Abstract
Allogeneic haematopoietic stem cell transplantation is used to treat a variety of disorders, but its efficacy is limited by the occurrence of graft-versus-host disease (GVHD). The past decade has brought impressive advances in our understanding of the role of stimulatory and suppressive elements of the adaptive and innate immune systems from both the donor and the host in GVHD pathogenesis. New insights from basic immunology, preclinical models and clinical studies have led to novel approaches for prevention and treatment. This Review highlights the recent advances in understanding the pathophysiology of GVHD and its treatment, with a focus on manipulations of the immune system that are amenable to clinical application.
Collapse
|
17
|
Castor MGM, Pinho V, Teixeira MM. The role of chemokines in mediating graft versus host disease: opportunities for novel therapeutics. Front Pharmacol 2012; 3:23. [PMID: 22375119 PMCID: PMC3285883 DOI: 10.3389/fphar.2012.00023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/08/2012] [Indexed: 11/25/2022] Open
Abstract
Bone marrow transplantation (BMT) is the current therapy of choice for several malignancies and severe autoimmune diseases. Graft versus host disease (GVHD) is the major complication associated with BMT. T lymphocytes and other leukocytes migrate into target organs during GVHD, become activated and mediate tissue damage. Chemokines are well known inducers of leukocyte trafficking and activation and contribute to the pathogenesis of GVHD. Here, we review the major animal models used to study GVHD and the role of chemokines in mediating tissue damage in these models. The role of these molecules in promoting potential beneficial effects of the graft, especially graft versus leukemia, is also discussed. Finally, the various pharmacological strategies to block the chemokine system or downstream signaling events in the context of GVHD are discussed.
Collapse
Affiliation(s)
- Marina G M Castor
- Immunopharmacology, Department of Immunology and Biochemistry, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | | | | |
Collapse
|
18
|
Andrade D, Redecha PB, Vukelic M, Qing X, Perino G, Salmon JE, Koo GC. Engraftment of peripheral blood mononuclear cells from systemic lupus erythematosus and antiphospholipid syndrome patient donors into BALB-RAG-2-/- IL-2Rγ-/- mice: a promising model for studying human disease. ARTHRITIS AND RHEUMATISM 2011; 63:2764-73. [PMID: 21560114 PMCID: PMC3168580 DOI: 10.1002/art.30424] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To construct a humanized mouse model of systemic lupus erythematosus (SLE) that resembles the human disease in order to define the pathophysiology and targets for treatments. METHODS We infused peripheral blood mononuclear cells (PBMCs) from SLE patients into BALB- RAG-2-/- IL-2Rγ-/- double-knockout (DKO) mice, which lack T cells, B cells, and natural killer cells. PBMCs from 5 SLE patients and 4 normal donors were infused intravenously/intraperitoneally at a density of 3-5×10(6) cells per animal into nonirradiated 4-5-week-old mice. We evaluated the engraftment of human CD45+ cells and monitored the plasma levels of human IgG, anti-double-stranded DNA (anti-dsDNA) antibody, and anticardiolipin antibody (aCL), as well as proteinuria and kidney histology. RESULTS There was 100% successful engraftment in 40 DKO mice infused with human PBMCs. In the PBMC fraction from SLE PBMC-infused DKO (SLE-DKO) mice and normal donor PBMC-infused DKO (ND-DKO) mice, an average of 41% and 53% human CD45+ cells, respectively, were observed at 4 weeks postengraftment, with 70-90% CD3+ cells. There were fewer CD3+CD4+ cells (mean±SEM 5.5±2.1%) and more CD3+CD8+ cells (79.4±3.6%) in the SLE-DKO mice as in the SLE patients from which the PBMCs were derived. CD19+ B cells and CD11c+ monocytic cells were found in the spleen, lung, liver, and bone marrow. There was no significant difference in plasma levels of human IgG and anti-dsDNA antibodies between SLE-DKO and ND-DKO mice. Levels of aCL were significantly higher in all SLE-DKO mice infused with PBMCs from an SLE patient who had high titers of aCL. SLE-DKO mice had proteinuria, human IgG deposits in the kidneys, and a shorter life span. In SLE-DKO mice engrafted with PBMCs from the aCL-positive patient, we found microthrombi and infiltration of CD3+, CD8+, and CD19+ cells in the glomeruli, recapitulating the human antiphospholipid syndrome in these mice. CONCLUSION We established a novel humanized SLE-DKO mouse exhibiting many of the immunologic and clinical features of human SLE.
Collapse
|
19
|
Trummer A, De Rop C, Stadler M, Ganser A, Buchholz S. P-selectin glycoprotein ligand-1 positive microparticles in allogeneic stem cell transplantation of hematologic malignancies. Exp Hematol 2011; 39:1047-55. [PMID: 21864485 DOI: 10.1016/j.exphem.2011.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/26/2011] [Accepted: 08/13/2011] [Indexed: 12/31/2022]
Abstract
P-selectin and its receptor P-selectin glycoprotein ligand-1 (PSGL-1) mediate adhesion between leukocytes, tumor cells (including leukemias and lymphomas), and platelets, and play an important role in hematopoiesis, T cell activation, and cancer growth and metastasis. As microparticles (MPs) are released from activated or apoptotic cells, there should be significant numbers of circulating PSGL-1-bearing MPs in the blood of patients undergoing allogeneic stem cell transplantation (alloSCT). We enumerated PSGL-1-expressing MPs in plasma samples from 30 consecutive patients with hematologic disorders at different time points during the course of alloSCT by flow cytometry and analyzed their relation to cell counts, patient characteristics, and clinical outcome. Median follow-up time of surviving patients was 1,772 days (range 1272-1981 days). Nineteen patients (63.3%) died, 10 due to progression of disease (33.3%). The PSGL-1 MPs significantly declined during conditioning therapy but increased again after transfusion of donor cells and even more at the time of engraftment. Numbers >250/μL after graft transfusion were associated with a shorter time to engraftment for patients receiving fresh peripheral stem cell grafts (median, 15 vs. 21 days; p = 0.049). Furthermore, low PSGL-1 MP values at those two time points were associated with a higher risk of progress/relapse in univariate analysis (p = 0.008-0.014; hazard ratio [HR] = 15.0-42.0) with cumulative incidences at 5 years of 81.8% versus 28.6% and 85.7% versus 20.0%, respectively. In conclusion, PSGL-1 microparticles show a characteristic course during alloSCT and their possible association with relapse/progress requires further evaluation of the PSGL-1/P-selectin interaction in leukemias and lymphomas.
Collapse
Affiliation(s)
- Arne Trummer
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Germany.
| | | | | | | | | |
Collapse
|