1
|
Dixon KO, Lahore GF, Kuchroo VK. Beyond T cell exhaustion: TIM-3 regulation of myeloid cells. Sci Immunol 2024; 9:eadf2223. [PMID: 38457514 DOI: 10.1126/sciimmunol.adf2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is an important immune checkpoint molecule initially identified as a marker of IFN-γ-producing CD4+ and CD8+ T cells. Since then, our understanding of its role in immune responses has significantly expanded. Here, we review emerging evidence demonstrating unexpected roles for TIM-3 as a key regulator of myeloid cell function, in addition to recent work establishing TIM-3 as a delineator of terminal T cell exhaustion, thereby positioning TIM-3 at the interface between fatigued immune responses and reinvigoration. We share our perspective on the antagonism between TIM-3 and T cell stemness, discussing both cell-intrinsic and cell-extrinsic mechanisms underlying this relationship. Looking forward, we discuss approaches to decipher the underlying mechanisms by which TIM-3 regulates stemness, which has remarkable potential for the treatment of cancer, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Karen O Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Gonzalo Fernandez Lahore
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Yu X, Zhai X, Wu J, Feng Q, Hu C, Zhu L, Zhou Q. Evolving perspectives regarding the role of the PD-1/PD-L1 pathway in gastric cancer immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166881. [PMID: 37696462 DOI: 10.1016/j.bbadis.2023.166881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Gastric cancer (GC) is an increasing global health problem and is one of the leading cancers worldwide. Traditional therapies, such as radiation and chemotherapy, have made limited progress in enhancing their efficacy for advanced GC. The development of immunotherapy for advanced GC has considerably improved with a deeper understanding of the tumor microenvironment. Immunotherapy using checkpoint inhibitors is a new therapeutic option that has made substantial advances in the treatment of other malignancies and is increasingly used in other clinical oncology treatments. Particularly, therapeutic antibodies targeting the programmed cell death protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway have been effectively used in the clinical treatment of cancer. Monoclonal antibodies blocking the PD-1/PD-L1 pathway have been developed for cancer immunotherapy to enhance T cell function to restore the immune response and represent a breakthrough in the treatment of GC. This review provides an outline of the progress of PD-1/PD-L1 blockade therapy and its expression characteristics and clinical application in advanced GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Juan Wu
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qingbo Feng
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Affiliated Digestive Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People's Republic of China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| |
Collapse
|
3
|
Anagnostou T, Yang ZZ, Jalali S, Kim HJ, Larson DP, Tang X, Yu Y, Pritchett JC, Bisneto JV, Price-Troska TL, Mondello P, Novak AJ, Ansell SM. Characterization of immune exhaustion and suppression in the tumor microenvironment of splenic marginal zone lymphoma. Leukemia 2023; 37:1485-1498. [PMID: 37117318 DOI: 10.1038/s41375-023-01911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
The role of the tumor microenvironment (TME) and intratumoral T cells in splenic marginal zone lymphoma (sMZL) is largely unknown. In the present study, we evaluated 36 sMZL spleen specimens by single cell analysis to gain a better understanding of the TME in sMZL. Using mass cytometry (CyTOF), we observed that the TME in sMZL is distinct from that of control non-malignant reactive spleen (rSP). We found that the number of TFH cells varied greatly in sMZL, ICOS+ TFH cells were more abundant in sMZL than rSP, and TFH cells positively correlated with increased numbers of memory B cells. Treg cell analysis revealed that TIGIT+ Treg cells are enriched in sMZL and correlate with suppression of TH17 and TH22 cells. Intratumoral CD8+ T cells were comprised of subsets of short-lived, exhausted and late-stage differentiated cells, thereby functionally impaired. We observed that T-cell exhaustion was present in sMZL and TIM-3 expression on PD-1low cells identified cells with severe immune dysfunction. Gene expression profiling by CITE-seq analysis validated this finding. Taken together, our data suggest that the TME as a whole, and T-cell population specifically, are heterogenous in sMZL and immune exhaustion is one of the major factors impairing T-cell function.
Collapse
Affiliation(s)
- Theodora Anagnostou
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhi-Zhang Yang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Shahrzad Jalali
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hyo Jin Kim
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Xinyi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yue Yu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Joshua C Pritchett
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Patrizia Mondello
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Wu M, Wu A, Zhang X, Li Y, Li B, Jin S, Dong Q, Niu X, Zhang L, Zhou X, Du J, Wu Y, Zhai W, Zhou X, Qiu L, Gao Y, Zhao W. Identification of a novel small-molecule inhibitor targeting TIM-3 for cancer immunotherapy. Biochem Pharmacol 2023; 212:115583. [PMID: 37148978 DOI: 10.1016/j.bcp.2023.115583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
PD-1/PD-L1 blockade has achieved substantial clinical results in cancer treatment. However, the expression of other immune checkpoints leads to resistance and hinders the efficacy of PD-1/PD-L1 blockade. T cell immunoglobulin and mucin domain 3 (TIM-3), a non-redundant immune checkpoint, synergizes with PD-1 to mediate T cell dysfunction in tumor microenvironment. Development of small molecules targeting TIM-3 is a promising strategy for cancer immunotherapy. Here, to identify small molecule inhibitors targeting TIM-3, the docking pocket in TIM-3 was analyzed by Molecular Operating Environment (MOE) and the Chemdiv compound database was screened. The small molecule SMI402 could bind to TIM-3 with high affinity and prevent the ligation of PtdSer, HMGB1, and CEACAM1. SMI402 reinvigorated T cell function in vitro. In the MC38-bearing mouse model, SMI402 inhibited tumor growth by increasing CD8+ T and natural killing (NK) cells infiltration at the tumor site, as well as restoring the function of CD8+ T and NK cells. In conclusions, the small molecule SMI402 shows promise as a leading compound which targets TIM-3 for cancer immunotherapy.
Collapse
Affiliation(s)
- Menghan Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Aijun Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangrui Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Beibei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shengzhe Jin
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingyu Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lihan Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaowen Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lu Qiu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Immune Checkpoint Inhibitors for Vaccine Improvements: Current Status and New Approaches. Pharmaceutics 2022; 14:pharmaceutics14081721. [PMID: 36015348 PMCID: PMC9415890 DOI: 10.3390/pharmaceutics14081721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, the use of immune checkpoint inhibitors (ICIs) in combination with approved or experimental vaccines has proven to be a promising approach to improve vaccine immunogenicity and efficacy. This strategy seeks to overcome the immunosuppressive mechanisms associated with the vaccine response, thereby achieving increased immunogenicity and efficacy. Most of the information on the use of ICIs combined with vaccines derives from studies on certain anti-tumor vaccines combined with monoclonal antibodies (mAbs) against either cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or programmed death-ligand 1 (PD-L1). However, over the past few years, emerging strategies to use new-generation ICIs as molecular adjuvants are paving the way for future advances in vaccine research. Here, we review the current state and future directions of the use of ICIs in experimental and clinical settings, including mAbs and alternative new approaches using antisense oligonucleotides (ASOs), small non-coding RNAs, aptamers, peptides, and other small molecules for improving vaccine efficacy. The scope of this review mainly includes the use of ICIs in therapeutic antitumor vaccines, although recent research on anti-infective vaccines will also be addressed.
Collapse
|
6
|
Tsukimoto S, Hakata Y, Tsuji-Kawahara S, Enya T, Tsukamoto T, Mizuno S, Takahashi S, Nakao S, Miyazawa M. Distinctive High Expression of Antiretroviral APOBEC3 Protein in Mouse Germinal Center B Cells. Viruses 2022; 14:v14040832. [PMID: 35458563 PMCID: PMC9029289 DOI: 10.3390/v14040832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Tissue and subcellular localization and its changes upon cell activation of virus-restricting APOBEC3 at protein levels are important to understanding physiological functions of this cytidine deaminase, but have not been thoroughly analyzed in vivo. To precisely follow the possible activation-induced changes in expression levels of APOBEC3 protein in different mouse tissues and cell populations, genome editing was utilized to establish knock-in mice that express APOBEC3 protein with an in-frame FLAG tag. Flow cytometry and immunohistochemical analyses were performed prior to and after an immunological stimulation. Cultured B cells expressed higher levels of APOBEC3 protein than T cells. All differentiation and activation stages of freshly prepared B cells expressed significant levels of APOBEC3 protein, but germinal center cells possessed the highest levels of APOBEC3 protein localized in their cytoplasm. Upon immunological stimulation with sheep red blood cells in vivo, germinal center cells with high levels of APOBEC3 protein expression increased in their number, but FLAG-specific fluorescence intensity in each cell did not change. T cells, even those in germinal centers, did not express significant levels of APOBEC3 protein. Thus, mouse APOBEC3 protein is expressed at distinctively high levels in germinal center B cells. Antigenic stimulation did not affect expression levels of cellular APOBEC3 protein despite increased numbers of germinal center cells.
Collapse
Affiliation(s)
- Shota Tsukimoto
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Department of Anesthesiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan;
| | - Yoshiyuki Hakata
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Sachiyo Tsuji-Kawahara
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Takuji Enya
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Department of Pediatrics, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan
| | - Tetsuo Tsukamoto
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Laboratory Animal Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan;
| | - Masaaki Miyazawa
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Anti-Aging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Correspondence:
| |
Collapse
|
7
|
Ronen D, Bsoul A, Lotem M, Abedat S, Yarkoni M, Amir O, Asleh R. Exploring the Mechanisms Underlying the Cardiotoxic Effects of Immune Checkpoint Inhibitor Therapies. Vaccines (Basel) 2022; 10:vaccines10040540. [PMID: 35455289 PMCID: PMC9031363 DOI: 10.3390/vaccines10040540] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Adaptive immune response modulation has taken a central position in cancer therapy in recent decades. Treatment with immune checkpoint inhibitors (ICIs) is now indicated in many cancer types with exceptional results. The two major inhibitory pathways involved are cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and programmed cell death protein 1 (PD-1). Unfortunately, immune activation is not tumor-specific, and as a result, most patients will experience some form of adverse reaction. Most immune-related adverse events (IRAEs) involve the skin and gastrointestinal (GI) tract; however, any organ can be involved. Cardiotoxicity ranges from arrhythmias to life-threatening myocarditis with very high mortality rates. To date, most treatments of ICI cardiotoxicity include immune suppression, which is also not cardiac-specific and may result in hampering of tumor clearance. Understanding the mechanisms behind immune activation in the heart is crucial for the development of specific treatments. Histological data and other models have shown mainly CD4 and CD8 infiltration during ICI-induced cardiotoxicity. Inhibition of CTLA4 seems to result in the proliferation of more diverse T0cell populations, some of which with autoantigen recognition. Inhibition of PD-1 interaction with PD ligand 1/2 (PD-L1/PD-L2) results in release from inhibition of exhausted self-recognizing T cells. However, CTLA4, PD-1, and their ligands are expressed on a wide range of cells, indicating a much more intricate mechanism. This is further complicated by the identification of multiple co-stimulatory and co-inhibitory signals, as well as the association of myocarditis with antibody-driven myasthenia gravis and myositis IRAEs. In this review, we focus on the recent advances in unraveling the complexity of the mechanisms driving ICI cardiotoxicity and discuss novel therapeutic strategies for directly targeting specific underlying mechanisms to reduce IRAEs and improve outcomes.
Collapse
Affiliation(s)
- Daniel Ronen
- Department of Internal Medicine D, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Aseel Bsoul
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
| | - Michal Lotem
- Department of Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
| | - Merav Yarkoni
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Correspondence: ; Tel.: +972-2-6776564; Fax: +972-2-6411028
| |
Collapse
|
8
|
Rossetti R, Brand H, Lima SCG, Furtado IP, Silveira RM, Fantacini DMC, Covas DT, Souza LEB. Combination of genetically engineered T cells and immune checkpoint blockade for the treatment of cancer. IMMUNOTHERAPY ADVANCES 2022; 2:ltac005. [PMID: 35919489 PMCID: PMC9327125 DOI: 10.1093/immadv/ltac005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Immune checkpoint (IC) blockade using monoclonal antibodies is currently one of the most successful immunotherapeutic interventions to treat cancer. By reinvigorating antitumor exhausted T cells, this approach can lead to durable clinical responses. However, the majority of patients either does not respond or present a short-lived response to IC blockade, in part due to a scarcity of tumor-specific T cells within the tumor microenvironment. Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CARs) or engineered T cell receptors (TCRs) provide the necessary tumor-specific immune cell population to target cancer cells. However, this therapy has been considerably ineffective against solid tumors in part due to IC-mediated immunosuppressive effects within tumor microenvironment. These limitations could be overcome by associating adoptive cell transfer of genetically engineered T cells and IC blockade. In this comprehensive review, we highlight the strategies and outcomes of preclinical and clinical attempts to disrupt IC signaling in adoptive T cell transfer against cancer. These strategies include combined administration of genetically engineered T cells and IC inhibitors, engineered T cells with intrinsic modifications to disrupt IC signaling and the design of CARs against IC molecules. The current landscape indicates that the synergy of the fast-paced refinements of gene-editing technologies and synthetic biology and the increased comprehension of IC signaling will certainly translate into novel and more effective immunotherapeutic approaches to treat patients with cancer.
Collapse
Affiliation(s)
- Rafaela Rossetti
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Heloísa Brand
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Sarah Caroline Gomes Lima
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Izadora Peter Furtado
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Daianne Maciely Carvalho Fantacini
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Biotechnology nucleus - Blood Center of Ribeirão Preto, Butantan Institute, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
9
|
Barnova M, Bobcakova A, Urdova V, Kosturiak R, Kapustova L, Dobrota D, Jesenak M. Inhibitory immune checkpoint molecules and exhaustion of T cells in COVID-19. Physiol Res 2021; 70:S227-S247. [PMID: 34913354 DOI: 10.33549/physiolres.934757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 (Coronavirus Disease) is an infectious disease caused by the coronavirus SARS-CoV-2 (Severe acute respiratory syndrome Coronavirus 2), which belongs to the genus Betacoronavirus. It was first identified in patients with severe respiratory disease in December 2019 in Wuhan, China. It mainly affects the respiratory system, and in severe cases causes serious lung infection or pneumonia, which can lead to the death of the patient. Clinical studies show that SARS-CoV-2 infection in critical cases causes acute tissue damage due to a pathological immune response. The immune response to a new coronavirus is complex and involves many processes of specific and non-specific immunity. Analysis of available studies has shown various changes, especially in the area of specific cellular immunity, including lymphopenia, decreased T cells (CD3+, CD4+ and CD8+), changes in the T cell compartment associated with symptom progression, deterioration of the condition and development of lung damage. We provide a detailed review of the analyses of immune checkpoint molecules PD-1, TIM-3, LAG-3 CTLA-4, TIGIT, BTLA, CD223, IDO-1 and VISTA on exhausted T cells in patients with asymptomatic to symptomatic stages of COVID-19 infection. Furthermore, this review may help to better understand the pathological T cell immune response and improve the design of therapeutic strategies for patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- M Barnova
- Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic. and Clinic of Pneumology and Phthisiology, Clinic of Paediatrics, Department of Clinical Immunology and Allergology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
10
|
Tian T, Li Z. Targeting Tim-3 in Cancer With Resistance to PD-1/PD-L1 Blockade. Front Oncol 2021; 11:731175. [PMID: 34631560 PMCID: PMC8492972 DOI: 10.3389/fonc.2021.731175] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Programmed death receptor 1 (PD-1) or programmed death ligand 1 (PD-L1) blocking therapy has completely changed the treatment pattern of malignant tumors. It has been tested in a wide range of malignant tumors and achieved clinical success. It might be a promising cancer treatment strategy. However, one of the important disadvantages of PD-1/PD-L1 blocking therapy is that only a few patients have a positive response to it. In addition, primary or acquired drug resistance can also lead to cancer recurrence in patients with clinical response. Therefore, it is very important to overcome the resistance of PD-1/PD-L1 blocking therapy and improve the overall response rate of patients to the immunotherapy. T cell immunoglobulin and mucin domain molecule 3 (Tim-3) belongs to the co-inhibitory receptor family involved in immune checkpoint function. Due to adaptive resistance, the expression of Tim-3 is up-regulated in PD-1/PD-L1 blocking therapy resistant tumors. Therefore, blocking the immune checkpoint Tim-3 might antagonize the resistance of PD-1/PD-L1 blocking therapy. This review systematically introduces the preclinical and clinical data of combined blockade of Tim-3 and PD-1/PD-L1 in cancer immunotherapy, and discusses the prospect of overcoming the drug resistance of PD-1/PD-L1 blockade therapy through blockade of Tim-3.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Pisibon C, Ouertani A, Bertolotto C, Ballotti R, Cheli Y. Immune Checkpoints in Cancers: From Signaling to the Clinic. Cancers (Basel) 2021; 13:cancers13184573. [PMID: 34572799 PMCID: PMC8468441 DOI: 10.3390/cancers13184573] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
The immune system is known to help fight cancers. Ten years ago, the first immune checkpoint inhibitor targeting CTLA4 was approved by the FDA to treat patients with metastatic melanoma. Since then, immune checkpoint therapies have revolutionized the field of oncology and the treatment of cancer patients. Numerous immune checkpoint inhibitors have been developed and tested, alone or in combination with other treatments, in melanoma and other cancers, with overall clear benefits to patient outcomes. However, many patients fail to respond or develop resistance to these treatments. It is therefore essential to decipher the mechanisms of action of immune checkpoints and to understand how immune cells are affected by signaling to be able to understand and overcome resistance. In this review, we discuss the signaling and effects of each immune checkpoint on different immune cells and their biological and clinical relevance. Restoring the functionality of T cells and their coordination with other immune cells is necessary to overcome resistance and help design new clinical immunotherapy strategies. In this respect, NK cells have recently been implicated in the resistance to anti-PD1 evoked by a protein secreted by melanoma, ITGBL1. The complexity of this network will have to be considered to improve the efficiency of future immunotherapies and may lead to the discovery of new immune checkpoints.
Collapse
Affiliation(s)
- Céline Pisibon
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Amira Ouertani
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Corine Bertolotto
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Robert Ballotti
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Yann Cheli
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
- Correspondence:
| |
Collapse
|
12
|
Middlebrook EA, Stark DL, Cornwall DH, Kubinak JL, Potts WK. Deep Sequencing of MHC-Adapted Viral Lines Reveals Complex Recombinational Exchanges With Endogenous Retroviruses Leading to High-Frequency Variants. Front Genet 2021; 12:716623. [PMID: 34512727 PMCID: PMC8430262 DOI: 10.3389/fgene.2021.716623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Experimental evolution (serial passage) of Friend virus complex (FVC) in mice demonstrates phenotypic adaptation to specific host major histocompatibility complex (MHC) genotypes. These evolved viral lines show increased fitness and virulence in their host-genotype-of-passage, but display fitness and virulence tradeoffs when infecting unfamiliar host MHC genotypes. Here, we deep sequence these viral lines in an attempt to discover the genetic basis of FVC adaptation. The principal prediction for genotype-specific adaptation is that unique mutations would rise to high frequency in viral lines adapted to each host MHC genotype. This prediction was not supported by our sequencing data as most observed high-frequency variants were present in each of our independently evolved viral lines. However, using a multi-variate approach to measure divergence between viral populations, we show that populations of replicate evolved viral lines from the same MHC congenic mouse strain were more similar to one another than to lines derived from different MHC congenic mouse strains, suggesting that MHC genotype does predictably act on viral evolution in our model. Sequence analysis also revealed rampant recombination with endogenous murine leukemia virus sequences (EnMuLVs) that are encoded within the BALB/c mouse genome. The highest frequency variants in all six lines contained a 12 bp insertion from a recombinant EnMuLV source, suggesting such recombinants were either being favored by selection or were contained in a recombinational hotspot. Interestingly, they did not reach fixation, as if they are low fitness. The amount of background mutations linked to FVC/EnMuLV variable sites indicated that FVC/EnMuLV recombinants had not reached mutation selection equilibrium and thus, that EnMuLV sequences are likely continuously introgressing into the replicating viral population. These discoveries raise the question: is the expression of EnMuLV sequences in mouse splenocytes that permit recombination with exogenous FVC a pathogen or host adaptation?
Collapse
Affiliation(s)
- Earl A. Middlebrook
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Derek L. Stark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Douglas H. Cornwall
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Jason L. Kubinak
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Wayne K. Potts
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
13
|
Sun F, Guo ZS, Gregory AD, Shapiro SD, Xiao G, Qu Z. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. J Immunother Cancer 2021; 8:jitc-2019-000294. [PMID: 32461344 PMCID: PMC7254155 DOI: 10.1136/jitc-2019-000294] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade therapy fails in the majority of patients with cancer. Oncolytic viruses represent a new class of therapeutic agents, yet the therapeutic efficacy is still disappointing. Moreover, intratumoral injection of viruses is the main approach and preclinical studies mainly employ syngeneic or xenograft models. Methods Use an endogenous mouse lung cancer model that faithfully recapitulates human lung cancer, and various in vivo, ex vivo and in vitro assays, to investigate the efficacy, mechanism of action and resistance of systemically administered oncolytic vaccinia virus (oVV), immunotherapy and their combination, to find an effective therapy for refractory lung cancer. Results Resembling human lung cancers, the majority of which are largely resistant to PD-1/PD-L1 blockade and with decreased PD-L1 expression and T-cell activation by our analysis, urethane-induced endogenous lung tumors in mice show reduced PD-L1 expression, low tumor-infiltrating lymphocytes and innate resistance to PD-1/PD-L1 blockade. Intravenous administration of oVV has efficacy and synergizes with simultaneous but not single blockade of PD-1 and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) in this cancer model. Besides direct tumor cell killing, oVV induces T-cell lung recruitment, tumor infiltration, along with expression of PD-1 and TIM-3 on T cells and PD-1 and TIM-3 ligands on tumor cells and tumor-associated immune cells. Blockade of PD-1 or TIM-3 also causes their mutual induction on T cells. Conclusions While systemic administration of oVV shows efficacy in lung cancer by killing tumor cells directly and recruiting and activating T cells for indirect tumor killing, its induction of PD-1 and TIM-3 on T cells and PD-1 and TIM-3 ligands on tumors and tumor-associated immune cells as well as mutual induction of PD-1 or TIM-3 on T cells by their blockade restricts the efficacy of oVV or its combination with single PD-1 or TIM-3 blockade. The triple combination therapy is more effective for refractory lung cancer, and possibly other cold cancers as well.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven D Shapiro
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Ding QQ, Chauvin JM, Zarour HM. Targeting novel inhibitory receptors in cancer immunotherapy. Semin Immunol 2020; 49:101436. [PMID: 33288379 DOI: 10.1016/j.smim.2020.101436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
T cells play a critical role in promoting tumor regression in both experimental models and humans. Yet, T cells that are chronically exposed to tumor antigen during cancer progression can become dysfunctional/exhausted and fail to induce tumor destruction. Such tumor-induced T cell dysfunction may occur via multiple mechanisms. In particular, immune checkpoint inhibitory receptors that are upregulated by tumor-infiltrating lymphocytes in many cancers limit T cell survival and function. Overcoming this inhibitory receptor-mediated T cell dysfunction has been a central focus of recent developments in cancer immunotherapy. Immunotherapies targeting inhibitory receptor pathways such as programmed cell death 1 (PD-1)/programmed death ligand 1 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), alone or in combination, confer significant clinical benefits in multiple tumor types. However, many patients with cancer do not respond to immune checkpoint blockade, and dual PD-1/CTLA-4 blockade may cause serious adverse events, which limits its indications. Targeting novel non-redundant inhibitory receptor pathways contributing to tumor-induced T cell dysfunction in the tumor microenvironment may prove efficacious and non-toxic. This review presents preclinical and clinical findings supporting the roles of two key pathways-T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) and T cell immunoreceptor with Ig and ITIM domain (TIGIT)/CD226/CD96/CD112R-in cancer immunotherapy.
Collapse
Affiliation(s)
- Quan-Quan Ding
- Department of Medicine and Division of Hematology/Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Joe-Marc Chauvin
- Department of Medicine and Division of Hematology/Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Hassane M Zarour
- Department of Medicine and Division of Hematology/Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
D'Arrigo P, Tufano M, Rea A, Vigorito V, Novizio N, Russo S, Romano MF, Romano S. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Curr Med Chem 2020; 27:2402-2448. [PMID: 30398102 DOI: 10.2174/0929867325666181106114421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenza Vigorito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Novizio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Haratani K, Yonesaka K, Takamura S, Maenishi O, Kato R, Takegawa N, Kawakami H, Tanaka K, Hayashi H, Takeda M, Maeda N, Kagari T, Hirotani K, Tsurutani J, Nishio K, Doi K, Miyazawa M, Nakagawa K. U3-1402 sensitizes HER3-expressing tumors to PD-1 blockade by immune activation. J Clin Invest 2020; 130:374-388. [PMID: 31661465 DOI: 10.1172/jci126598] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Immunotherapy targeting programmed cell death-1 (PD-1) induces durable antitumor efficacy in many types of cancer. However, such clinical benefit is limited because of the insufficient reinvigoration of antitumor immunity with the drug alone; therefore, rational therapeutic combinations are required to improve its efficacy. In our preclinical study, we evaluated the antitumor effect of U3-1402, a human epidermal growth factor receptor 3-targeting (HER3-targeting) antibody-drug conjugate, and its potential synergism with PD-1 inhibition. Using a syngeneic mouse tumor model that is refractory to anti-PD-1 therapy, we found that treatment with U3-1402 exhibited an obvious antitumor effect via direct lysis of tumor cells. Disruption of tumor cells by U3-1402 enhanced the infiltration of innate and adaptive immune cells. Chemotherapy with exatecan derivative (Dxd, the drug payload of U3-1402) revealed that the enhanced antitumor immunity produced by U3-1402 was associated with the induction of alarmins, including high-mobility group box-1 (HMGB-1), via tumor-specific cytotoxicity. Notably, U3-1402 significantly sensitized the tumor to PD-1 blockade, as a combination of U3-1402 and the PD-1 inhibitor significantly enhanced antitumor immunity. Further, clinical analyses indicated that tumor-specific HER3 expression was frequently observed in patients with PD-1 inhibitor-resistant solid tumors. Overall, U3-1402 is a promising candidate as a partner of immunotherapy for such patients.
Collapse
Affiliation(s)
| | | | | | - Osamu Maenishi
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | - Kenji Hirotani
- Oncology Clinical Development Department, Daiichi-Sankyo, Tokyo, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo, Japan
| | | | - Katsumi Doi
- Department of Otolaryngology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | | | | |
Collapse
|
17
|
In vivo delivery of an exogenous molecule into murine T lymphocytes using a lymphatic drug delivery system combined with sonoporation. Biochem Biophys Res Commun 2020; 525:1025-1031. [PMID: 32178874 DOI: 10.1016/j.bbrc.2020.02.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Physical delivery of exogenous molecules into lymphocytes is extremely challenging because conventional methods have notable limitations. Here, we evaluated the potential use of acoustic liposomes (ALs) and sonoporation to deliver exogenous molecules into lymphocytes within a lymph node (LN). MXH10/Mo-lpr/lpr (MXH10/Mo/lpr) mice, which show systemic LN swelling, were used as the model system. After direct injection into the subiliac LN, a solution containing both ALs and TOTO-3 fluorophores (molecular weight: 1355) was able to reach the downstream proper axillary LN (PALN) via the lymphatic vessels (LVs). This led to the accumulation of a high concentration of TOTO-3 fluorophores and ALs in the lymphatic sinuses of the PALN, where a large number of lymphocytes were densely packed. Exposure of the PALN to >1.93 W/cm2 of 970-kHz ultrasound allowed the solution to extravasate into the parenchyma and reach the large number of lymphocytes in the sinuses. Flow cytometric analysis showed that TOTO-3 molecules were delivered into 0.49 ± 0.23% of CD8+7AAD- cytotoxic T lymphocytes. Furthermore, there was no evidence of tissue damage. Thus, direct administration of drugs into LVs combined with sonoporation can improve the delivery of exogenous molecules into primary lymphocytes. This technique could become a novel approach to immunotherapy.
Collapse
|
18
|
Abstract
T cell immunoglobulin and mucin domain-containing protein 3 (TIM3), a member of the TIM family, was originally identified as a receptor expressed on interferon-γ-producing CD4+ and CD8+ T cells. Initial data indicated that TIM3 functioned as a 'co-inhibitory' or 'checkpoint' receptor, but due to the lack of a definable inhibitory signalling motif, it was also suggested that TIM3 might act as a co-stimulatory receptor. Recent studies have shown that TIM3 is part of a module that contains multiple co-inhibitory receptors (checkpoint receptors), which are co-expressed and co-regulated on dysfunctional or 'exhausted' T cells in chronic viral infections and cancer. Furthermore, co-blockade of TIM3 and programmed cell death 1 (PD1) can result in tumour regression in preclinical models and can improve anticancer T cell responses in patients with advanced cancers. Here, we highlight the developments in understanding TIM3 biology, including novel ligand identification and the discovery of loss-of-function mutations associated with human disease. In addition, we summarize emerging data from human clinical trials showing that TIM3 indeed acts as a 'checkpoint' receptor and that inhibition of TIM3 enhances the antitumour effect of PD1 blockade.
Collapse
|
19
|
Shahbaz SK, Barabadi M, Ahmadpour P, Pourrezagholi F, Nafar M, Foroughi F, Hosseinzadeh M, Ghorbanpour M, Yekaninejad MS, Amirzargar A. Sequential monitoring of TIM-3 mRNA expression in blood and urine samples of renal transplant recipients. Transpl Immunol 2019; 54:9-16. [PMID: 30395925 DOI: 10.1016/j.trim.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND T cell immunoglobulin and mucin domain 3 (TIM-3), as a co-inhibitory receptor expressed on Th1, Th17, CD8T, FoxP3 + Treg and innate immune cells, plays an important role in suppression of T cell-mediated immune responses, tolerance induction and T cell exhaustion. In this study, we evaluated sequential alterations of TIM-3 mRNA expression level in blood and urine samples of renal transplant recipients to predict approaching clinical episodes. METHODS A total of 52 adult renal transplant recipients (31 male and 21 female) were enrolled in this study. All the patients received kidney transplant from living unrelated donors. TIM-3 mRNA expression in peripheral blood mononuclear cells (PBMCs) and urinary cells were quantified using Real Time TaqMan polymerase chain reaction (PCR) at 4 different time points (pre-transplantation, 2, 90 and 180 days post-transplantation). RESULT TIM-3 mRNA expression level on days 2, 90 and 180 after transplantation was significantly higher in blood and urine samples of patients with graft dysfunction (GD) compared with patients with well-functioning graft (WFG). Our results also showed a high correlation between blood and urinary level of TIM-3 mRNA expression. The data from Receiver Operating Characteristic (ROC) Curve Analysis showed that blood and urinary TIM-3 mRNA expression level at month 3 and 6 could discriminate graft dysfunction (GD) from well-functioning graft (WFG) with high specificity and sensitivity. CONCLUSION Our data suggested that serial monitoring of TIM-3 mRNA level in the blood and urine samples of renal transplant recipients could be a useful non-invasive biomarker for prediction and diagnosis of allograft dysfunction.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Barabadi
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pedram Ahmadpour
- Chronic Kidney Disease Research Center and Department of Nephrology, Shahid Labbafinejad Medical Center and Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourrezagholi
- Chronic Kidney Disease Research Center and Department of Nephrology, Shahid Labbafinejad Medical Center and Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohesn Nafar
- Chronic Kidney Disease Research Center and Department of Nephrology, Shahid Labbafinejad Medical Center and Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Foroughi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Morteza Hosseinzadeh
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mina Ghorbanpour
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
David P, Megger DA, Kaiser T, Werner T, Liu J, Chen L, Sitek B, Dittmer U, Zelinskyy G. The PD-1/PD-L1 Pathway Affects the Expansion and Function of Cytotoxic CD8 + T Cells During an Acute Retroviral Infection. Front Immunol 2019; 10:54. [PMID: 30804928 PMCID: PMC6370637 DOI: 10.3389/fimmu.2019.00054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. The checkpoint receptor PD-1 suppresses the functionality of virus-specific CD8+ T cells during chronic infection. However, the role of the PD-L1/PD-1 pathway during the acute phase of infections has not been well characterized. In the current study the effects of PD-1 or PD-L1 deficiency on the CD8+ T cell response against Friend retroviral (FV) infection of knockout mice was analyzed during acute infection. We observed an enhanced proliferation, functional maturation, and reduced apoptosis of effector CD8+ T cells in the absence of PD-1 or PD-L1. The knockout of PD-L1 had a stronger effect on the functionality of CD8+ T cells than that of PD-1. Augmented CTL responses were associated with an improved control of FV replication. The strong phenotype of FV-infected PD-L1 knockout mice was independent of the interaction with CD80 as an additional receptor for PD-L1. Furthermore, we performed a detailed analysis of the production of different granzymes in virus-specific CD8+ T cells and observed that especially the simultaneous production of multiple granzymes in individual T cells (multifunctionality) was under the control of the PD-1/PD-L1 pathway. The findings from this study allow for a better understanding of the development of antiviral cytotoxic immunity during acute viral infections.
Collapse
Affiliation(s)
- Paul David
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dominik A Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Tamara Kaiser
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lieping Chen
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Yasuma-Mitobe K, Matsuoka M. The Roles of Coinhibitory Receptors in Pathogenesis of Human Retroviral Infections. Front Immunol 2018; 9:2755. [PMID: 30538707 PMCID: PMC6277675 DOI: 10.3389/fimmu.2018.02755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Costimulatory and coinhibitory receptors play a key role in regulating immune responses to infection and cancer. Coinhibitory receptors include programmed cell death 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and T cell immunoglobulin and ITIM domain (TIGIT), which suppress immune responses. Coinhibitory receptors are highly expressed on exhausted virus-specific T cells, indicating that viruses evade host immune responses through enhanced expression of these molecules. Human retroviruses, human immunodeficiency virus (HIV) and human T-cell leukemia virus type 1 (HTLV-1), infect T cells, macrophages and dendritic cells. Therefore, one needs to consider the effects of coinhibitory receptors on both uninfected effector T cells and infected target cells. Coinhibitory receptors are implicated not only in the suppression of immune responses to viruses by inhibition of effector T cells, but also in the persistence of infected cells in vivo. Here we review recent studies on coinhibitory receptors and their roles in retroviral infections such as HIV and HTLV-1.
Collapse
Affiliation(s)
- Keiko Yasuma-Mitobe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Granier C, Gey A, Dariane C, Mejean A, Timsit MO, Blanc C, Verkarre V, Radulescu C, Fabre E, Vano Y, Oudard S, Badoual C, Tartour É. [Tim-3: a novel biomarker and therapeutic target in oncology]. Med Sci (Paris) 2018; 34:231-237. [PMID: 29547109 DOI: 10.1051/medsci/20183403011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
T cells harboring multiple co-inhibitory molecules lose their anti-tumoral functionality. PD-1 is a clinically approved target in cancer therapy, but its expression alone does not mean dysfunctionality. The expression of Tim-3 on numerous cell types (T cell, Treg, dendritic cell, myeloid cells) favors tumor escape to immune cells. Within many tumors, PD-1/Tim-3 coexpressing CD8-T cells lose their ability to secrete cytokines (IFNγ, IL-2, TNFα) and their intratumoral infiltration correlates with a bad prognosis. Tim-3 recently appeared as a potential biomarker of anti-PD-1 resistance. Combined blockade of PD-1 and Tim-3 axis demonstrated potent clinical efficacy in preclinical models and reinforced the rationale of using an anti-Tim-3 to override tumor resistance.
Collapse
Affiliation(s)
- Clémence Granier
- Inserm U970, université Paris Descartes Sorbonne Paris-Cité, Paris, France - Équipe labellisée Ligue contre le cancer, Paris, France
| | - Alain Gey
- Inserm U970, université Paris Descartes Sorbonne Paris-Cité, Paris, France - Hôpital européen Georges Pompidou, service d'immunologie biologique, 20, rue Leblanc, 75015 Paris, France
| | - Charles Dariane
- Inserm U970, université Paris Descartes Sorbonne Paris-Cité, Paris, France - Équipe labellisée Ligue contre le cancer, Paris, France - Hôpital européen Georges Pompidou, Service de chirurgie urologique, APHP, Paris, France
| | - Arnaud Mejean
- Hôpital européen Georges Pompidou, Service de chirurgie urologique, APHP, Paris, France
| | - Marc-Olivier Timsit
- Hôpital européen Georges Pompidou, Service de chirurgie urologique, APHP, Paris, France
| | - Charlotte Blanc
- Inserm U970, université Paris Descartes Sorbonne Paris-Cité, Paris, France
| | - Virginie Verkarre
- Hôpital européen Georges Pompidou, Service d'anatomie pathologique, APHP, Paris, France
| | | | - Elisabeth Fabre
- Hôpital européen Georges Pompidou, Service d'oncologie médicale, APHP Paris, France
| | - Yann Vano
- Hôpital européen Georges Pompidou, Service d'oncologie médicale, APHP Paris, France - Inserm U1138, université Paris Descartes Sorbonne Paris-Cité, Paris, France
| | - Stéphane Oudard
- Inserm U970, université Paris Descartes Sorbonne Paris-Cité, Paris, France - Hôpital européen Georges Pompidou, Service d'oncologie médicale, APHP Paris, France
| | - Cécile Badoual
- Inserm U970, université Paris Descartes Sorbonne Paris-Cité, Paris, France - Équipe labellisée Ligue contre le cancer, Paris, France - Hôpital européen Georges Pompidou, Service d'anatomie pathologique, APHP, Paris, France
| | - Éric Tartour
- Inserm U970, université Paris Descartes Sorbonne Paris-Cité, Paris, France - Équipe labellisée Ligue contre le cancer, Paris, France - Hôpital européen Georges Pompidou, service d'immunologie biologique, 20, rue Leblanc, 75015 Paris, France
| |
Collapse
|
23
|
Yonesaka K, Haratani K, Takamura S, Sakai H, Kato R, Takegawa N, Takahama T, Tanaka K, Hayashi H, Takeda M, Kato S, Maenishi O, Sakai K, Chiba Y, Okabe T, Kudo K, Hasegawa Y, Kaneda H, Yamato M, Hirotani K, Miyazawa M, Nishio K, Nakagawa K. B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity. Clin Cancer Res 2018. [PMID: 29530936 DOI: 10.1158/1078-0432.ccr-17-2852] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non-small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting.Experimental Design: B7-H3 expression was evaluated immunohistochemically in patients with NSCLC (n = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8+ tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry.Results: B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8+ TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8+ TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8+ TILs and recovery of effector function. CD8+ T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8+ T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction.Conclusions: B7-H3 expressed on tumor cells potentially circumvents CD8+-T-cell-mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3-expressing NSCLCs. Clin Cancer Res; 24(11); 2653-64. ©2018 AACR.
Collapse
Affiliation(s)
- Kimio Yonesaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan. .,Department of Medical Oncology, Sakai Hospital of Kindai University, Sakai, Osaka, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hitomi Sakai
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ryoji Kato
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Naoki Takegawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Sigeki Kato
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Osamu Maenishi
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Osaka, Japan
| | - Takafumi Okabe
- Department of Medical Oncology, Sakai Hospital of Kindai University, Sakai, Osaka, Japan
| | - Keita Kudo
- Department of Medical Oncology and Respiratory Medicine, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Osaka, Japan
| | - Yoshikazu Hasegawa
- Department of Medical Oncology, Izumi Municipal Hospital, Izumi, Osaka, Japan
| | - Hiroyasu Kaneda
- Department of Medical Oncology, Kishiwada City Hospital, Kishiwada, Osaka, Japan
| | - Michiko Yamato
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co. Ltd., Shinagawa-ku, Tokyo, Japan
| | - Kenji Hirotani
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co. Ltd., Shinagawa-ku, Tokyo, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
24
|
Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity 2017; 44:989-1004. [PMID: 27192565 DOI: 10.1016/j.immuni.2016.05.001] [Citation(s) in RCA: 1550] [Impact Index Per Article: 193.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 12/14/2022]
Abstract
Co-inhibitory receptors, such as CTLA-4 and PD-1, have an important role in regulating T cell responses and have proven to be effective targets in the setting of chronic diseases where constitutive co-inhibitory receptor expression on T cells dampens effector T cell responses. Unfortunately, many patients still fail to respond to therapies that target CTLA-4 and PD-1. The next wave of co-inhibitory receptor targets that are being explored in clinical trials include Lag-3, Tim-3, and TIGIT. These receptors, although they belong to the same class of receptors as PD-1 and CTLA-4, exhibit unique functions, especially at tissue sites where they regulate distinct aspects of immunity. Increased understanding of the specialized functions of these receptors will inform the rational application of therapies that target these receptors to the clinic.
Collapse
Affiliation(s)
- Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Zhang H, Xiang R, Wu B, Li J, Luo G. T-cell immunoglobulin mucin-3 expression in invasive ductal breast carcinoma: Clinicopathological correlations and association with tumor infiltration by cytotoxic lymphocytes. Mol Clin Oncol 2017; 7:557-563. [PMID: 28855989 PMCID: PMC5574202 DOI: 10.3892/mco.2017.1360] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/08/2017] [Indexed: 12/31/2022] Open
Abstract
As a negative regulatory molecule, T-cell immunoglobulin and mucin domain-3 (Tim-3) is closely associated with tumor immunological tolerance. The aim of this study was to investigate Tim-3 expression in invasive ductal breast cancer (IDC), its effect on clinicopathological parameters and its association with cytotoxic lymphocyte infiltration. Tim-3 protein expression was measured in 150 paraffin-embedded IDC specimens and 100 paired normal breast tissue specimens by immunohistochemistry. It was demonstrated that the infiltration of the tumor by CD8+ T cells was significantly higher compared with that of normal tissue, and the Tim-3 expression on CD8+ T cells was higher in IDC tissue compared with that in normal tissue; the differences were statistically significant (both P-values=0.000). The median expression level of Tim-3 on tumor cells was significantly associated with clinicopathological parameters such as age, axillary lymph node metastasis and TNM stage (P=0.015, 0.001 and 0.027, respectively). The expression of Tim-3 on CD8+ T cells was correlated with lymph node metastasis, World Health Organization (WHO) grade and molecular classification (P=0.000, 0.004 and 0.000, respectively). Additionally, the number of tumor-infiltrating CD8+ T cells was associated with primary tumor size, lymph node metastasis, WHO grade, Ki-67 and molecular classification (P=0.017, 0.002, 0.007, 0.003 and 0.000, respectively). Thus, Tim-3 may promote the development and progression of breast cancer and affect the tumor microenvironment; thus, it may be used as an independent prognostic factor for IDC patients.
Collapse
Affiliation(s)
- Huan Zhang
- Department of General Surgery, The Fourth People's Hospital of Sichuan, Chengdu, Sichuan 610000, P.R. China
| | - Rong Xiang
- Department of Medicine, Nan Kai University, Tianjin 300071, P.R. China
| | - Bin Wu
- Department of Breast Surgery, Southwest Medical University Affiliated Hospital, Luzhou, Sichuan 646000, P.R. China
| | - Jinlong Li
- Department of General Surgery, The Fourth People's Hospital of Sichuan, Chengdu, Sichuan 610000, P.R. China
| | - Guilin Luo
- Department of General Surgery, The Fourth People's Hospital of Sichuan, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
26
|
Treatment with a programmed cell death-1-specific antibody has little effect on afatinib- and naphthalene-induced acute pneumonitis in mice. Biochem Biophys Res Commun 2017; 491:656-661. [PMID: 28756224 DOI: 10.1016/j.bbrc.2017.07.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 01/19/2023]
Abstract
Although several antibodies developed to target programmed cell death-1 (PD-1) and its ligand (PD-L1) have demonstrated great promise for the treatment of non-small cell lung cancer (NSCLC), and other malignancies, these therapeutic antibodies can cause pneumonitis. Furthermore, epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-induced pneumonitis was reported after treatment with anti PD-1 antibodies. We previously demonstrated that mice with naphthalene-induced airway epithelial injury developed severe gefitinib-induced pneumonitis through a neutrophil-dependent mechanism. The present study aimed to investigate whether treatment with afatinib, an EGFR-TKI that effectively targets EGFR mutation-positive NSCLC, and anti PD-1 antibodies induces pneumonitis in mice. C57BL/6J mice were treated intraperitoneally with naphthalene (200 mg/kg) on day 0. Afatinib (20 mg/kg) was administered orally on days -1 to 13. An anti-PD-1 antibody (0.2 mg/mice) was also administered intraperitoneally every 3 days from day 1 until day 13. The bronchoalveolar lavage fluid (BALF) and lung tissues were sampled on day 14. As observed previously with gefitinib, afatinib significantly increased the severity of histopathologic findings and the level of protein in BALF on day 14, compared to treatment with naphthalene alone. A combined anti-PD-1 antibody and afatinib treatment after naphthalene administration had yielded the same histopathological grade of lung inflammation as did afatinib treatment alone. Our results suggest that anti-PD-1 antibody treatment has little effect on afatinib-induced lung injury.
Collapse
|
27
|
Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 2017; 276:97-111. [PMID: 28258697 DOI: 10.1111/imr.12520] [Citation(s) in RCA: 628] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/19/2016] [Indexed: 12/13/2022]
Abstract
Immunotherapy is being increasingly recognized as a key therapeutic modality to treat cancer and represents one of the most exciting treatments for the disease. Fighting cancer with immunotherapy has revolutionized treatment for some patients and therapies targeting the immune checkpoint molecules such as CTLA-4 and PD-1 have achieved durable responses in melanoma, renal cancer, Hodgkin's diseases and lung cancer. However, the success rate of these treatments has been low and a large number of cancers, including colorectal cancer remain largely refractory to CTLA-4 and PD-1 blockade. This has provided impetus to identify other co-inhibitory receptors that could be exploited to enhance response rates of current immunotherapeutic agents and achieve responses to the cancers that are refectory to immunotherapy. Tim-3 is a co-inhibitory receptor that is expressed on IFN-g-producing T cells, FoxP3+ Treg cells and innate immune cells (macrophages and dendritic cells) where it has been shown to suppress their responses upon interaction with their ligand(s). Tim-3 has gained prominence as a potential candidate for cancer immunotherapy, where it has been shown that in vivo blockade of Tim-3 with other check-point inhibitors enhances anti-tumor immunity and suppresses tumor growth in several preclinical tumor models. This review discusses the recent findings on Tim-3, the role it plays in regulating immune responses in different cell types and the rationale for targeting Tim-3 for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Madhumita Das
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Chen Zhu
- Discovery Biology, Research and Development, Sanofi US, Cambridge, MA, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
28
|
Schofield L, Ioannidis LJ, Karl S, Robinson LJ, Tan QY, Poole DP, Betuela I, Hill DL, Siba PM, Hansen DS, Mueller I, Eriksson EM. Synergistic effect of IL-12 and IL-18 induces TIM3 regulation of γδ T cell function and decreases the risk of clinical malaria in children living in Papua New Guinea. BMC Med 2017; 15:114. [PMID: 28615061 PMCID: PMC5471992 DOI: 10.1186/s12916-017-0883-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND γδ T cells are important for both protective immunity and immunopathogenesis during malaria infection. However, the immunological processes determining beneficial or detrimental effects on disease outcome remain elusive. The aim of this study was to examine expression and regulatory effect of the inhibitory receptor T-cell immunoglobulin domain and mucin domain 3 (TIM3) on γδ T cells. While TIM3 expression and function on conventional αβ T cells have been clearly defined, the equivalent characterization on γδ T cells and associations with disease outcomes is limited. This study investigated the functional capacity of TIM3+ γδ T cells and the underlying mechanisms contributing to TIM3 upregulation and established an association with malaria disease outcomes. METHODS We analyzed TIM3 expression on γδ T cells in 132 children aged 5-10 years living in malaria endemic areas of Papua New Guinea. TIM3 upregulation and effector functions of TIM3+ γδ T cells were assessed following in vitro stimulation with parasite-infected erythrocytes, phosphoantigen and/or cytokines. Associations between the proportion of TIM3-expressing cells and the molecular force of infection were tested using negative binomial regression and in a Cox proportional hazards model for time to first clinical episode. Multivariable analyses to determine the association of TIM3 and IL-18 levels were conducted using general linear models. Malaria infection mouse models were utilized to experimentally investigate the relationship between repeated exposure and TIM3 upregulation. RESULTS This study demonstrates that even in the absence of an active malaria infection, children of malaria endemic areas have an atypical population of TIM3-expressing γδ T cells (mean frequency TIM3+ of total γδ T cells 15.2% ± 12). Crucial factors required for γδ T cell TIM3 upregulation include IL-12/IL-18, and plasma IL-18 was associated with TIM3 expression (P = 0.002). Additionally, we show a relationship between TIM3 expression and infection with distinct parasite clones during repeated exposure. TIM3+ γδ T cells were functionally impaired and were associated with asymptomatic malaria infection (hazard ratio 0.54, P = 0.032). CONCLUSIONS Collectively our data demonstrate a novel role for IL-12/IL-18 in shaping the innate immune response and provide fundamental insight into aspects of γδ T cell immunoregulation. Furthermore, we show that TIM3 represents an important γδ T cell regulatory component involved in minimizing malaria symptoms.
Collapse
Affiliation(s)
- Louis Schofield
- Walter and Eliza Hall Institute of Medical Research, Division of Population Health and Immunity, Melbourne, VIC, 3052, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Lisa J Ioannidis
- Walter and Eliza Hall Institute of Medical Research, Division of Population Health and Immunity, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Stephan Karl
- Walter and Eliza Hall Institute of Medical Research, Division of Population Health and Immunity, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Leanne J Robinson
- Walter and Eliza Hall Institute of Medical Research, Division of Population Health and Immunity, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia.,Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea.,Burnet Institute, Melbourne, VIC, 3004, Australia
| | - Qiao Y Tan
- Walter and Eliza Hall Institute of Medical Research, Division of Population Health and Immunity, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Inoni Betuela
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea
| | - Danika L Hill
- Walter and Eliza Hall Institute of Medical Research, Division of Population Health and Immunity, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka and Madang, Papua New Guinea.,School of Veterinary and Biomedical Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Diana S Hansen
- Walter and Eliza Hall Institute of Medical Research, Division of Population Health and Immunity, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Division of Population Health and Immunity, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Emily M Eriksson
- Walter and Eliza Hall Institute of Medical Research, Division of Population Health and Immunity, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia. .,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
29
|
Xu Y, Zhang H, Huang Y, Rui X, Zheng F. Role of TIM-3 in ovarian cancer. Clin Transl Oncol 2017; 19:1079-1083. [PMID: 28357631 DOI: 10.1007/s12094-017-1656-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/25/2017] [Indexed: 12/13/2022]
Abstract
Evidences have suggested that immunotherapy for ovarian cancer is effective. Immune checkpoints have emerged in the field of cancer immunotherapy. Multiple studies have shown negative regulation of TIM-3 expression on CD4+ and CD8+ T cells and other immunocytes. Overexpression of TIM-3 in innate immune cells has been found in certain types of tumor. The blockade of TIM-3 leads to sustained anti-tumor reactions. TIM-3 plays an inhibitive role for immunity in ovarian cancer. TIM-3 is involved in the development of various subtypes of ovarian cancer and thus has the potential to be a therapeutic target for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Y Xu
- Department of Gynecology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, China.
| | - H Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Y Huang
- Department of Gynecology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, China
| | - X Rui
- Department of Gynecology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, China
| | - F Zheng
- Department of Gynecology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, China
| |
Collapse
|
30
|
Du W, Yang M, Turner A, Xu C, Ferris RL, Huang J, Kane LP, Lu B. TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action. Int J Mol Sci 2017; 18:ijms18030645. [PMID: 28300768 PMCID: PMC5372657 DOI: 10.3390/ijms18030645] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer immunotherapy has produced impressive clinical results in recent years. Despite the success of the checkpoint blockade strategies targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death receptor 1 (PD-1), a large portion of cancer patients have not yet benefited from this novel therapy. T cell immunoglobulin and mucin domain 3 (TIM-3) has been shown to mediate immune tolerance in mouse models of infectious diseases, alloimmunity, autoimmunity, and tumor Immunity. Thus, targeting TIM-3 emerges as a promising approach for further improvement of current immunotherapy. Despite a large amount of experimental data showing an immune suppressive function of TIM-3 in vivo, the exact mechanisms are not well understood. To enable effective targeting of TIM-3 for tumor immunotherapy, further in-depth mechanistic studies are warranted. These studies will also provide much-needed insight for the rational design of novel combination therapy with other checkpoint blockers. In this review, we summarize key evidence supporting an immune regulatory role of TIM-3 and discuss possible mechanisms of action.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Min Yang
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
- Department of Immunology, School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China.
| | - Abbey Turner
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Chunling Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Robert L Ferris
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Lawrence P Kane
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Binfeng Lu
- Department of Immunology, School of Medicine, University of Pittsburgh, EBST E1047, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
31
|
Granier C, Dariane C, Combe P, Verkarre V, Urien S, Badoual C, Roussel H, Mandavit M, Ravel P, Sibony M, Biard L, Radulescu C, Vinatier E, Benhamouda N, Peyromaure M, Oudard S, Méjean A, Timsit MO, Gey A, Tartour E. Tim-3 Expression on Tumor-Infiltrating PD-1 +CD8 + T Cells Correlates with Poor Clinical Outcome in Renal Cell Carcinoma. Cancer Res 2017; 77:1075-1082. [PMID: 27872087 DOI: 10.1158/0008-5472.can-16-0274] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 10/08/2016] [Accepted: 10/29/2016] [Indexed: 11/16/2022]
Abstract
Inhibitory receptors expressed by T cells mediate tolerance to tumor antigens, with coexpression of these receptors exacerbating this dysfunctional state. Using the VectraR automated multiparametric immunofluorescence technique, we quantified intratumoral CD8+ T cells coexpressing the inhibitory receptors PD-1 and Tim-3 from patients with renal cell carcinoma (RCC). A second validation cohort measured the same parameters by cytometry. The percentage of tumor-infiltrating CD8+ T cells coexpressing PD-1 and Tim-3 correlated with an aggressive phenotype and a larger tumor size at diagnosis. Coexpression of PD-1 and Tim-3 above the median conferred a higher risk of relapse and a poorer 36-month overall survival. Notably, other CD8+T-cell subsets did not exert a similar effect on overall survival. Moreover, only the PD-1+Tim-3+ subset of CD8+ T cells exhibited impaired function after stimulation. Our findings establish intratumoral Tim-3+PD1+CD8+ T cells as critical mediators of an aggressive phenotype in RCC. Use of the Vectra tool may be useful to identify similarly critical prognostic and predictive biomarkers in other tumor types and their response to immunotherapy. Cancer Res; 77(5); 1075-82. ©2016 AACR.
Collapse
Affiliation(s)
- Clémence Granier
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Charles Dariane
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Department of Urology, Hôpital Européen Georges Pompidou, Paris, France
| | - Pierre Combe
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Service d'Oncologie Médicale, Hôpital Européen Georges Pompidou, Paris, France
| | - Virginie Verkarre
- Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France
| | - Saïk Urien
- EA08: Evaluation des Thérapeutiques et Pharmacologie Périnatale et Pédiatrique, Unité de Recherche Clinique Paris Centre, Paris, France
- CIC 1419 INSERM Cochin-Necker, Paris, France
| | - Cécile Badoual
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Roussel
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France
| | - Marion Mandavit
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Patrice Ravel
- CNRS UMR5048 Centre de Biochimie Structurale, INSERM U554, Université de Montpellier 1 et 2, Montpellier, France
| | | | - Lucie Biard
- Université Paris Diderot Paris 7, Paris, France
| | | | - Emeline Vinatier
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Service d'Immunologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Nadine Benhamouda
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Service d'Immunologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Stéphane Oudard
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Service d'Oncologie Médicale, Hôpital Européen Georges Pompidou, Paris, France
| | - Arnaud Méjean
- Department of Urology, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Alain Gey
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
- Service d'Immunologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Eric Tartour
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France.
- Service d'Immunologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
32
|
Shim KG, Zaidi S, Thompson J, Kottke T, Evgin L, Rajani KR, Schuelke M, Driscoll CB, Huff A, Pulido JS, Vile RG. Inhibitory Receptors Induced by VSV Viroimmunotherapy Are Not Necessarily Targets for Improving Treatment Efficacy. Mol Ther 2017; 25:962-975. [PMID: 28237836 DOI: 10.1016/j.ymthe.2017.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/28/2022] Open
Abstract
Systemic viroimmunotherapy activates endogenous innate and adaptive immune responses against both viral and tumor antigens. We have shown that therapy with vesicular stomatitis virus (VSV) engineered to express a tumor-associated antigen activates antigen-specific adoptively transferred T cells (adoptive cell therapy, ACT) in vivo to generate effective therapy. The overall goal of this study was to phenotypically characterize the immune response to VSV+ACT therapy and use the information gained to rationally improve combination therapy. We observed rapid expansion of blood CD8+ effector cells acutely following VSV therapy with markedly high expression of the immune checkpoint molecules PD-1 and TIM-3. Using these data, we tested a treatment schedule incorporating mAb immune checkpoint inhibitors with VSV+ACT treatment. Unlike clinical scenarios, we delivered therapy at early time points following tumor establishment and treatment. Our goal was to potentiate the immune response generated by VSV therapy to achieve durable control of metastatic disease. Despite the high frequency of endogenous PD-1+ TIM-3+ CD8+ T cells following virus administration, antibody blockade did not improve survival. These findings provide highly significant information about response kinetics to viroimmunotherapy and juxtapose the clinical use of checkpoint inhibitors against chronically dysfunctional T cells and the acute T cell response to oncolytic viruses.
Collapse
Affiliation(s)
- Kevin G Shim
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Shane Zaidi
- Targeted Therapy Laboratory, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JJ, UK
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tim Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Karishma R Rajani
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew Schuelke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Amanda Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
33
|
Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal 2017; 15:1. [PMID: 28073373 PMCID: PMC5225559 DOI: 10.1186/s12964-016-0160-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system is capable of distinguishing between danger- and non-danger signals, thus inducing either an appropriate immune response against pathogens and cancer or inducing self-tolerance to avoid autoimmunity and immunopathology. One of the mechanisms that have evolved to prevent destruction by the immune system, is to functionally silence effector T cells, termed T cell exhaustion, which is also exploited by viruses and cancers for immune escape In this review, we discuss some of the phenotypic markers associated with T cell exhaustion and we summarize current strategies to reinvigorate exhausted T cells by blocking these surface marker using monoclonal antibodies.
Collapse
Affiliation(s)
- Kemal Catakovic
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Eckhard Klieser
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Daniel Neureiter
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria. .,Salzburg Cancer Research Institute, Salzburg, Austria.
| |
Collapse
|
34
|
Yang Y, Han Q, Zhang C, Xiao M, Zhang J. Hepatitis B virus antigens impair NK cell function. Int Immunopharmacol 2016; 38:291-7. [PMID: 27341035 DOI: 10.1016/j.intimp.2016.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/30/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022]
Abstract
An inadequate immune response of the host is thought to be a critical factor causing chronic hepatitis B virus (CHB) infection. Natural killer (NK) cells, as one of the key players in the eradication and control of viral infections, were functionally impaired in CHB patients, which might contribute to viral persistence. Here, we reported that HBV antigens HBsAg and HBeAg directly inhibited NK cell function. HBsAg and/or HBeAg blocked NK cell activation, cytokine production and cytotoxic granule release in human NK cell-line NK-92 cells, which might be related to the downregulation of activating receptors and upregulation of inhibitory receptor. Furthermore, the underlying mechanisms likely involved the suppression of STAT1, NF-κB and p38 MAPK pathways. These findings implicated that HBV antigen-mediated inhibition of NK cells might be an efficient strategy for HBV evasion, targeting the early antiviral responses mediated by NK cells and resulting in the establishment of chronic virus infection. Therefore, this study revealed the relationship between viral antigens and human immune function, especially a potential important interaction between HBV and innate immune responses.
Collapse
Affiliation(s)
- Yinli Yang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong University, China; Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Min Xiao
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong University, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, China.
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China.
| |
Collapse
|
35
|
Li X, Hu W, Zheng X, Zhang C, Du P, Zheng Z, Yang Y, Wu J, Ji M, Jiang J, Wu C. Emerging immune checkpoints for cancer therapy. Acta Oncol 2015; 54:1706-13. [PMID: 26361073 DOI: 10.3109/0284186x.2015.1071918] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors has emerged as promising treatment modality for cancer based on the success of anti-CTLA-4 and -PD-1/PD-L1 antibodies. LAG-3 and TIM-3 are two new immune checkpoints. The aim of this work is to review the role and application of LAG-3 and TIM-3 for cancer immunotherapy. MATERIAL AND METHODS Literatures were searched and collected in Medline/PubMed. RESULTS LAG-3 is presented as a CD4 homolog type I transmembrane protein which binds MHC class II molecules. LAG-3 negatively regulates T cell proliferation, homeostasis and function. IMP321 is formed of an extracellular portion of human LAG-3 fused to the Fc fraction of human IgG1 and has shown increased T cell responses and tolerability in phase I studies on advanced renal cell cancer. When combined with paclitaxel, IMP321 has exerted immune enhancement and tumor inhibition with no significant IMP321-related adverse events. TIM-3 belongs to the TIM family and mainly negatively regulates Th1 immunity. The TIM-3/galectin-9 pathway contributes to the suppressive tumor microenvironment. TIM-3 overexpression is associated with poor prognosis in a variety of cancers. Both LAG-3 and TIM-3 are coexpressed with other immune checkpoints. The application of LAG-3 or TIM-3 does play an important role in anti-tumor responses, and maybe better when combing with anti-CTLA-4 and anti-PD-1/L1 antibodies. CONCLUSIONS These two immune checkpoints play crucial roles in cancer development and may be used in future clinical practice of cancer therapy.
Collapse
Affiliation(s)
- Xiaodong Li
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| | - Wenwei Hu
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| | - Xiao Zheng
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| | - Chu Zhang
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
| | - Peng Du
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| | - Zhuojun Zheng
- d Department of Hematology , The Third Affiliated Hospital of Soochow University , Changzhou , China
| | - Yan Yang
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
| | - Jun Wu
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
| | - Mei Ji
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
| | - Jingting Jiang
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| | - Changping Wu
- a Department of Oncology , The Third Affiliated Hospital of Soochow University , Changzhou , China
- b Department of Tumor Biological Treatment , The Third Affiliated Hospital of Soochow University , Changzhou , China
- c Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou , China
| |
Collapse
|
36
|
Śledzińska A, Menger L, Bergerhoff K, Peggs KS, Quezada SA. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol 2015; 9:1936-65. [PMID: 26578451 DOI: 10.1016/j.molonc.2015.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
The term 'inhibitory checkpoint' refers to the broad spectrum of co-receptors expressed by T cells that negatively regulate T cell activation thus playing a crucial role in maintaining peripheral self-tolerance. Co-inhibitory receptor ligands are highly expressed by a variety of malignancies allowing evasion of anti-tumour immunity. Recent studies demonstrate that manipulation of these co-inhibitory pathways can remove the immunological brakes that impede endogenous immune responses against tumours. Antibodies that block the interactions between co-inhibitory receptors and their ligands have delivered very promising clinical responses, as has been shown by recent successful trials targeting the CTLA-4 and PD-1 pathways. In this review, we discuss the mechanisms of action and expression pattern of co-inhibitory receptors on different T cells subsets, emphasising differences between CD4(+) and CD8(+) T cells. We also summarise recent clinical findings utilising immune checkpoint blockade.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | - Laurie Menger
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | | | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK.
| | | |
Collapse
|
37
|
Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer. Sci Rep 2015; 5:15659. [PMID: 26493689 PMCID: PMC4616166 DOI: 10.1038/srep15659] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/29/2015] [Indexed: 12/28/2022] Open
Abstract
TIM-3 functions to enforce CD8+ T cell exhaustion, a dysfunctional state associated with the tolerization of tumor microenvironment. Here we report apoptosis of IFN-γ competent TIM-3+ population of tumor-infiltrating CD8+ T cells in colon cancer. In humans suffering from colorectal cancer, TIM-3+ population is higher in cancer tissue-resident relative to peripheral blood CD8+ T cells. Both the TIM-3+ and TIM-3- cancer tissue-resident CD8+ T cells secrete IFN-γ of comparable levels, although apoptotic cells are more in TIM-3+ compared to TIM-3- population. In mouse CT26 colon tumor model, majority of tumor-infiltrating CD8+ T cells express TIM-3 and execute cytolysis function with higher effector cytokine secretion and apoptosis in TIM-3+ compared to TIM-3- population. The tumor cells secrete galectin-9, which increases apoptosis of tumor-infiltrating CD8+ T cells. Galectin-9/TIM-3 signaling blockade with anti-TIM-3 antibody reduces the apoptosis and in addition, inhibits tumor growth in mice. The blockade increases therapeutic efficacy of cyclophosphamide to treat tumor in mice as well. These results reveal a previously unexplored role of TIM-3 on tumor-infiltrating CD8+ T cells in vivo.
Collapse
|
38
|
Akhmetzyanova I, Drabczyk M, Neff CP, Gibbert K, Dietze KK, Werner T, Liu J, Chen L, Lang KS, Palmer BE, Dittmer U, Zelinskyy G. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing. PLoS Pathog 2015; 11:e1005224. [PMID: 26484769 PMCID: PMC4617866 DOI: 10.1371/journal.ppat.1005224] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 09/22/2015] [Indexed: 01/22/2023] Open
Abstract
Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.
Collapse
Affiliation(s)
- Ilseyar Akhmetzyanova
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Malgorzata Drabczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - C. Preston Neff
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kathrin Gibbert
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kirsten K. Dietze
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lieping Chen
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Karl S. Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Brent E. Palmer
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
39
|
Le Mercier I, Lines JL, Noelle RJ. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators. Front Immunol 2015; 6:418. [PMID: 26347741 PMCID: PMC4544156 DOI: 10.3389/fimmu.2015.00418] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.
Collapse
Affiliation(s)
- Isabelle Le Mercier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - J Louise Lines
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| |
Collapse
|
40
|
Selective Involvement of the Checkpoint Regulator VISTA in Suppression of B-Cell, but Not T-Cell, Responsiveness by Monocytic Myeloid-Derived Suppressor Cells from Mice Infected with an Immunodeficiency-Causing Retrovirus. J Virol 2015; 89:9693-8. [PMID: 26157131 DOI: 10.1128/jvi.00888-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Inhibition of T-cell responses in tumor microenvironments by myeloid-derived suppressor cells (MDSCs) is widely accepted. We demonstrated augmentation of monocytic MDSCs whose suppression of not only T-cell, but also B-cell, responsiveness paralleled the immunodeficiency during LP-BM5 retrovirus infection. MDSCs inhibited T cells by inducible nitric oxide synthase (iNOS)/nitric oxide (NO), but uniquely, inhibition of B cells was ~50% dependent each on iNOS/NO and the MDSC-expressed negative-checkpoint regulator VISTA. Blockade with a combination of iNOS/NO and VISTA caused additive or synergistic abrogation of MDSC-mediated suppression of B-cell responsiveness.
Collapse
|
41
|
Sehgal A, Whiteside TL, Boyiadzis M. Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opin Biol Ther 2015; 15:1191-203. [PMID: 26036819 DOI: 10.1517/14712598.2015.1051028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Immune checkpoints are regulatory pathways induced in activated T lymphocytes that regulate antigen responsiveness. These immune checkpoints are hijacked by tumors to promote dysfunction of anti-tumor effector cells and consequently of tumor escape from the host immune system. AREAS COVERED Programmed death-1/programmed death ligand (PD-1/PDL-1), a checkpoint pathway, has been extensively investigated in leukemia mouse models. Expression of PD-1 on the surface of activated immune cells and of its ligands, PD-L1 and PD-L2, on leukemic blasts has been documented. Clinical trials with PD-1 inhibitors in patients with hematological malignancies are ongoing with promising clinical responses. EXPERT OPINION Therapy of hematological cancers with antibodies blocking inhibitory receptors is expected to be highly clinically effective. Checkpoint inhibitory receptors and their ligands are co-expressed on hematopoietic cells found in the leukemic milieu. Several distinct immunological mechanisms are likely to be engaged by antibody-based checkpoint blockade. Co-expression of multiple inhibitory receptors on hematopoietic cells offers an opportunity for combining blocking antibodies to achieve more effective therapy. Up-regulation of receptor/ligand expression in the leukemic milieu may provide a blood marker predictive of response. Finally, chemotherapy-induced up-regulation of PD-1 on T cells after conventional leukemia therapy creates a solid rationale for application of checkpoint blockade as a follow-up therapy.
Collapse
Affiliation(s)
- Alison Sehgal
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Division of Hematology/Oncology , 5150 Centre Avenue, Pittsburgh, PA 15232 , USA
| | | | | |
Collapse
|
42
|
Abstract
Tim-3 is a member of the T cell immunoglobulin and mucin domain (Tim) family of proteins, which are expressed by several cell types in the immune system, including CD4 and CD8 T cells activated under certain conditions. These molecules are generally thought to act as receptors for multiple ligands and thus to function by engaging intracellular signaling pathways in a ligand-dependent manner. In recent years, the function of the Tim-3 protein has been studied in some detail, particularly with respect to its role in the regulation of CD4 and CD8 T cell responses. Here, we review the structural features of Tim-3, known ligands for this molecule and the links established between Tim-3 and signal transduction pathways. In addition, we review the current literature regarding the role of Tim-3 in the regulation of effector responses by CD4 and CD8 T cells. Overall, findings published thus far strongly support the conclusion that Tim-3 functions to inhibit T cell responses, particularly under conditions involving chronic stimulation. Conversely, some reports have provided evidence that Tim-3 can stimulate T cells under conditions involving acute stimulation, suggesting that the role of Tim-3 may vary depending on context. Further study of Tim-3 is likely to advance our understanding of how CD4 and CD8 T cell responses are regulated and could uncover novel approaches for manipulating T cell function for therapeutic benefit.
Collapse
|
43
|
The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun 2015; 6:6340. [PMID: 25790768 PMCID: PMC4383004 DOI: 10.1038/ncomms7340] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/22/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammation is closely related to the extent of damage following cerebral ischaemia, and the targeting of this inflammation has emerged as a promising therapeutic strategy. Here, we present that hypoxia-induced glial T-cell immunoglobulin and mucin domain protein (TIM)-3 can function as a modulator that links inflammation and subsequent brain damage after ischaemia. We find that TIM-3 is highly expressed in hypoxic brain regions of a mouse cerebral hypoxia-ischaemia (H/I) model. TIM-3 is distinctively upregulated in activated microglia and astrocytes, brain resident immune cells, in a hypoxia-inducible factor (HIF)-1-dependent manner. Notably, blockade of TIM-3 markedly reduces infarct size, neuronal cell death, oedema formation and neutrophil infiltration in H/I mice. Hypoxia-triggered neutrophil migration and infarction are also decreased in HIF-1α-deficient mice. Moreover, functional neurological deficits after H/I are significantly improved in both anti-TIM-3-treated mice and myeloid-specific HIF-1α-deficient mice. Further understanding of these insights could serve as the basis for broadening the therapeutic scope against hypoxia-associated brain diseases.
Collapse
|
44
|
Blake SJP, Ching ALH, Kenna TJ, Galea R, Large J, Yagita H, Steptoe RJ. Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment. PLoS One 2015; 10:e0119483. [PMID: 25741704 PMCID: PMC4351071 DOI: 10.1371/journal.pone.0119483] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/19/2015] [Indexed: 12/22/2022] Open
Abstract
Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells.
Collapse
Affiliation(s)
| | - Alan L. H. Ching
- UQ Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Tony J. Kenna
- UQ Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Ryan Galea
- UQ Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Justin Large
- UQ Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Raymond J. Steptoe
- UQ Diamantina Institute, University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
45
|
Sakuishi K, Ngiow SF, Sullivan JM, Teng MWL, Kuchroo VK, Smyth MJ, Anderson AC. TIM3 +FOXP3 + regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncoimmunology 2014; 2:e23849. [PMID: 23734331 PMCID: PMC3654601 DOI: 10.4161/onci.23849] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 02/08/2023] Open
Abstract
T-cell immunoglobulin mucin 3 (TIM3) is an inhibitory molecule that has emerged as a key regulator of dysfunctional or exhausted CD8+ T cells arising in chronic diseases such as cancer. In addition to exhausted CD8+ T cells, highly suppressive regulatory T cells (Tregs) represent a significant barrier against the induction of antitumor immunity. We have found that the majority of intratumoral FOXP3+ Tregs express TIM3. TIM3+ Tregs co-express PD-1, are highly suppressive and comprise a specialized subset of tissue Tregs that are rarely observed in the peripheral tissues or blood of tumor-bearing mice. The co-blockade of the TIM3 and PD-1 signaling pathways in vivo results in the downregulation of molecules associated with TIM3+ Treg suppressor functions. This suggests that the potent clinical efficacy of co-blocking TIM3 and PD-1 signal transduction cascades likely stems from the reversal of T-cell exhaustion combined with the inhibition of regulatory T-cell function in tumor tissues. Interestingly, we find that TIM3+ Tregs accumulate in the tumor tissue prior to the appearance of exhausted CD8+ T cells, and that the depletion of Tregs at this stage interferes with the development of the exhausted phenotype by CD8+ T cells. Collectively, our data indicate that TIM3 marks highly suppressive tissue-resident Tregs that play an important role in shaping the antitumor immune response in situ, increasing the value of TIM3-targeting therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Kaori Sakuishi
- Center of Neurologic Diseases; Department of Neurology; Brigham and Women's Hospital; Harvard Medical School; Boston, MA USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Fujita T, Burwitz BJ, Chew GM, Reed JS, Pathak R, Seger E, Clayton KL, Rini JM, Ostrowski MA, Ishii N, Kuroda MJ, Hansen SG, Sacha JB, Ndhlovu LC. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2014; 193:5576-83. [PMID: 25348621 DOI: 10.4049/jimmunol.1400961] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The T cell Ig- and mucin domain-containing molecule-3 (Tim-3) negative immune checkpoint receptor demarcates functionally exhausted CD8(+) T cells arising from chronic stimulation in viral infections like HIV. Tim-3 blockade leads to improved antiviral CD8(+) T cell responses in vitro and, therefore, represents a novel intervention strategy to restore T cell function in vivo and protect from disease progression. However, the Tim-3 pathway in the physiologically relevant rhesus macaque SIV model of AIDS remains uncharacterized. We report that Tim-3(+)CD8(+) T cell frequencies are significantly increased in lymph nodes, but not in peripheral blood, in SIV-infected animals. Tim-3(+)PD-1(+)CD8(+) T cells are similarly increased during SIV infection and positively correlate with SIV plasma viremia. Tim-3 expression was found primarily on effector memory CD8(+) T cells in all tissues examined. Tim-3(+)CD8(+) T cells have lower Ki-67 content and minimal cytokine responses to SIV compared with Tim-3(-)CD8(+) T cells. During acute-phase SIV replication, Tim-3 expression peaked on SIV-specific CD8(+) T cells by 2 wk postinfection and then rapidly diminished, irrespective of mutational escape of cognate Ag, suggesting non-TCR-driven mechanisms for Tim-3 expression. Thus, rhesus Tim-3 in SIV infection partially mimics human Tim-3 in HIV infection and may serve as a novel model for targeted studies focused on rejuvenating HIV-specific CD8(+) T cell responses.
Collapse
Affiliation(s)
- Tsuyoshi Fujita
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Manoa, HI 96813; Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Glen M Chew
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Manoa, HI 96813
| | - Jason S Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Reesab Pathak
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Elizabeth Seger
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Kiera L Clayton
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - James M Rini
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mario A Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Marcelo J Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006;
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Manoa, HI 96813;
| |
Collapse
|
47
|
Gautron AS, Dominguez-Villar M, de Marcken M, Hafler DA. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur J Immunol 2014; 44:2703-2711. [PMID: 24838857 PMCID: PMC4165702 DOI: 10.1002/eji.201344392] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/07/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
T-cell immunoglobulin and mucin domain 3 (TIM-3) is an Ig-superfamily member expressed on IFN-γ-secreting Th1 and Tc1 cells and was identified as a negative regulator of immune tolerance. TIM-3 is expressed by a subset of activated CD4(+) T cells, and anti-CD3/anti-CD28 stimulation increases both the level of expression and the number of TIM-3(+) T cells. In mice, TIM-3 is constitutively expressed on natural regulatory T (Treg) cells and has been identified as a regulatory molecule of alloimmunity through its ability to modulate CD4(+) T-cell differentiation. Here, we examined TIM-3 expression on human Treg cells to determine its role in T-cell suppression. In contrast to mice, TIM-3 is not expressed on Treg cells ex vivo but is upregulated after activation. While TIM-3(+) Treg cells with increased gene expression of LAG3, CTLA4, and FOXP3 are highly efficient suppressors of effector T (Teff) cells, TIM-3(-) Treg cells poorly suppressed Th17 cells as compared with their suppression of Th1 cells; this decreased suppression ability was associated with decreased STAT-3 expression and phosphorylation and reduced gene expression of IL10, EBI3, GZMB, PRF1, IL1Rα, and CCR6. Thus, our results suggest that TIM-3 expression on Treg cells identifies a population highly effective in inhibiting pathogenic Th1- and Th17-cell responses.
Collapse
Affiliation(s)
- Anne-Sophie Gautron
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06520
| | | | - Marine de Marcken
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06520
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
48
|
Tandon R, Chew GM, Byron MM, Borrow P, Niki T, Hirashima M, Barbour JD, Norris PJ, Lanteri MC, Martin JN, Deeks SG, Ndhlovu LC. Galectin-9 is rapidly released during acute HIV-1 infection and remains sustained at high levels despite viral suppression even in elite controllers. AIDS Res Hum Retroviruses 2014; 30:654-64. [PMID: 24786365 DOI: 10.1089/aid.2014.0004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Galectin-9 (Gal-9) is a β-galactosidase-binding lectin that promotes apoptosis, tissue inflammation, and T cell immune exhaustion, and alters HIV infection in part through engagement with the T cell immunoglobulin mucin domain-3 (Tim-3) receptor and protein disulfide isomerases (PDI). Gal-9 was initially thought to be an eosinophil attractant, but is now known to mediate multiple complex signaling events that affect T cells in both an immunosuppressive and inflammatory manner. To understand the kinetics of circulating Gal-9 levels during HIV infection we measured Gal-9 in plasma during HIV acquisition, in subjects with chronic HIV infection with differing virus control, and in uninfected individuals. During acute HIV infection, circulating Gal-9 was detected as early as 5 days after quantifiable HIV RNA and tracked plasma levels of interleukin (IL)-10, tumor necrosis factor (TNF)-α, and IL-1β. In chronic HIV infection, Gal-9 levels positively correlated with plasma HIV RNA levels (r=0.29; p=0.023), and remained significantly elevated during suppressive antiretroviral therapy (median: 225.3 pg/ml) and in elite controllers (263.3 pg/ml) compared to age-matched HIV-uninfected controls (54 pg/ml). Our findings identify Gal-9 as a novel component of the first wave of the cytokine storm in acute HIV infection that is sustained at elevated levels in virally suppressed subjects and suggest that Gal-9:Tim-3 crosstalk remains active in elite controllers and antiretroviral (ARV)-suppressed subjects, potentially contributing to ongoing inflammation and persistent T cell dysfunction.
Collapse
Affiliation(s)
- Ravi Tandon
- Hawaii Center for AIDS, Department of Tropical Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii
| | - Glen M. Chew
- Hawaii Center for AIDS, Department of Tropical Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii
| | - Mary M. Byron
- Hawaii Center for AIDS, Department of Tropical Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Jason D. Barbour
- Hawaii Center for AIDS, Department of Tropical Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii
| | - Philip J. Norris
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California
| | | | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California
| | - Steven G. Deeks
- HIV/AIDS Division, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California
| | - Lishomwa C. Ndhlovu
- Hawaii Center for AIDS, Department of Tropical Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii
| |
Collapse
|
49
|
CD8+ T cells are essential for controlling acute friend retrovirus infection in C57BL/6 mice. J Virol 2014; 88:5200-1. [PMID: 24707025 DOI: 10.1128/jvi.00312-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Liao J, Zhang Q, Liao Y, Cai B, Chen J, Li L, Wang L. Association of T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) polymorphisms with susceptibility and disease progression of HBV infection. PLoS One 2014; 9:e98280. [PMID: 24867713 PMCID: PMC4035322 DOI: 10.1371/journal.pone.0098280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/30/2014] [Indexed: 02/05/2023] Open
Abstract
PURPOSE T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) plays an important role in regulating T cells in hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). However, few researches have reported the association of Tim-3 genetic variants with susceptibility and progression of HBV infection. In this study, we focused on the association of Tim-3 polymorphisms with HBV infection, HBsAg seroclearance and hepatocellular carcinoma. METHODS A total of 800 subjects were involved in this study. Four groups were studied here, including HBV, HBsAg seroclearance, HBV-associated HCC and healthy controls. Three single-nucleotide polymorphisms (SNPs) of Tim-3, rs246871, rs25855 and rs31223 were genotyped to analyze the association of Tim-3 polymorphisms with susceptibility and disease progression of HBV infection. RESULTS Our study found that rs31223 and rs246871 were associated with disease progression of HBV infection, while none of the three SNPs was relevant to HBV susceptibility. The minor allele "C" of rs31223 was found to be associated with an increased probability of HBsAg seroclearance (P = 0.033) and genotype "CC" of rs246871 to be associated with an increased probability of HBV-associated HCC (P = 0.007). In accordance, haplotypic analysis of the three polymorphisms also showed that the haplotype block CGC* and TGC* were significantly associated with HBsAg seroclearance (P<0.05) while haplotype block CAT*, CGT*, TAC* and TGT* were significantly associated with HBV-associated HCC (all P<0.05). CONCLUSIONS Genetic variants of Tim-3 have an important impact on disease progression of HBV infection. With specific Tim-3 polymorphisms, patients infected with HBV could be potential candidates of HCC and HBsAg seroclearance.
Collapse
Affiliation(s)
- Jingyu Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lixin Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|