1
|
Guo F, Song Y, Dong S, Wei J, Li B, Xu T, Wang H. Characterization and anti-tuberculosis effects of γδ T cells expanded and activated by Mycobacterium tuberculosis heat-resistant antigen. Virulence 2025; 16:2462092. [PMID: 39921673 PMCID: PMC11810100 DOI: 10.1080/21505594.2025.2462092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/01/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb) that poses a severe threat to human health. A variety of highly immunogenic tuberculosis proteins have been used as targets in vaccine development to mitigate the spread of TB. Although Th1-type immunity has long been considered a crucial part of resistance to Mtb, γδ T cells, the predominant source of IL-17, are not negligible in controlling the early stages of TB infection. In addition to classical phosphoantigens, Mycobacterium tuberculosis heat-resistant antigens (HAg), a complex containing 564 proteins obtained from live tuberculosis bacteria after heat treatment at 121 °C for 20 min, have been confirmed to be highly effective γδ T cell stimulators as well. Several studies have demonstrated that HAg-activated γδ T cells can participate in TB immunity by secreting multiple cytokines against Mtb or by interacting with other innate immune cells. In this review, we present a possible mechanism of HAg stimulation of γδ T cells and the role of HAg-activated γδ T cells in anti-TB immunity. We also highlight the limitations of studies on HAg activation of γδ T cells and suggest further research directions on the relationship between HAg and γδ T cells.
Collapse
Affiliation(s)
- Fangzheng Guo
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Yamin Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Sihang Dong
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Jing Wei
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Baiqing Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Tao Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical University, Bengbu, China
| |
Collapse
|
2
|
Liu X, Xu J, Feng Y, Wu M, Chen H, Song Y, Song H, Gu Y, Xu P. Application of γδ T cells with different memory phenotypes in clinical diagnosis of active pulmonary tuberculosis. Microb Pathog 2025; 198:107032. [PMID: 39536841 DOI: 10.1016/j.micpath.2024.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/05/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the application and clinical significance of different memory phenotypes of γδ T-cell subsets in the clinical diagnosis of pulmonary tuberculosis. METHODS In total, 42 patients with tuberculosis (TB) according to the diagnostic criteria for tuberculosis (WS288-2017) who were treated at the Infectious Diseases Hospital affiliated with Soochow University from February 2023 to July 2023 were enrolled. Additionally, 16 patients with latent TB infection (LTBI) and 20 healthy controls (HCs) were included. Flow cytometry was used to measure the expression levels of γδ T cells, Vδ1 T-cell subsets/Vδ2 T-cell subsets, naive (CD45RA + CD27+) cells, central memory (CD45RA-CD27+) cells, effector memory (CD45RA-CD27-) cells, and terminally differentiated (CD45RA + CD27-) cells in the peripheral blood. The expression levels at different stages of TB infection were compared. RESULTS There were no significant differences in peripheral blood γδ T cells or Vδ1 T cells among the HC, LTBI and TB groups. The proportion of CD45RA-CD27+Vδ2 T cells in TB patients was significantly lower than that in HCs and LTBI patients, but the proportion of CD45RA + CD27-Vδ2 T cells was greater. ROC curve analysis revealed that CD45RA-CD27+Vδ2 T cells (AUC), CD45RA + CD27-Vδ2 T cells (AUC), and the combination of both (AUC) were effective in differentiating TB patients from LTBI patients. CONCLUSION The proportions of CD45RA-CD27+Vδ2 T cells and CD45RA + CD27-Vδ2 T cells are potential biomarkers for the diagnosis of active TB infection and are helpful for distinguishing active TB infection from LTBI.
Collapse
Affiliation(s)
- Xuanmiao Liu
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, SuZhou, China
| | - Junchi Xu
- Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Yanjun Feng
- Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Meiying Wu
- Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Hui Chen
- Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Yiyan Song
- Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Huafeng Song
- Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Yanzheng Gu
- Clinical Immunology Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Xu
- The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, SuZhou, China; Key Laboratory of Infection and Immunity of Suzhou City, The Fifth People's Hospital of Suzhou, Suzhou, China.
| |
Collapse
|
3
|
Vats D, Rani G, Arora A, Sharma V, Rathore I, Mubeen SA, Singh A. Tuberculosis and T cells: Impact of T cell diversity in tuberculosis infection. Tuberculosis (Edinb) 2024; 149:102567. [PMID: 39305817 DOI: 10.1016/j.tube.2024.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 11/30/2024]
Abstract
Tuberculosis is a global threat and is still a leading cause of death due to an infectious agent. The infection is spread through inhalation of M. tb containing aerosol droplets. Bacteria after reaching the lung alveoli are engulfed by alveolar macrophages, leading to an immune response. Then, pro-inflammatory cytokines are released by these macrophages, recruiting other antigen-presenting cells like dendritic cells. These cells phagocytose the bacteria and present mycobacterial antigens to naïve T cells. After activation by DCs, T cells differentiate into various T cells subsets, viz. CD4+, CD8+, Th17, Treg, Tfh cells and others display enormous diversification in their characteristics and functions. This review comprises a comprehensive literature on conventional and unconventional T cells, highlighting the polyfunctional T cells as well, their role in controlling TB infection, and their implications in the spectrum of TB infection. While some subsets such as CD4+ T cells are extensively studied, some T cell subsets such as gamma delta T cells and Tfh cells remain poorly understood in the pathophysiology of tuberculosis, despite having significant potential implications. The goal of TB eradication can be assisted by development of better vaccines against TB, which can effectively induce a robust and long-term T cells memory. The same has been discussed in the latter part of this review. BCG being the standalone commercialised TB vaccine so far has its limitations. Strategies for the enhancement of BCG along with novel studies in vaccine development, has also been discussed in great detail. Lastly, T cells display a complex interplay of an adaptive immune response against TB, with activation and enhancement of the innate immune responses. Therefore, it is critical to fully understand the role of various T cells subsets in pathophysiology of tuberculosis to provide better therapeutic inventions and improve patient care.
Collapse
Affiliation(s)
- Deepak Vats
- All India Institute of Medical Sciences, New Delhi, India
| | - Geeta Rani
- All India Institute of Medical Sciences, New Delhi, India
| | - Alisha Arora
- All India Institute of Medical Sciences, New Delhi, India
| | - Vidushi Sharma
- All India Institute of Medical Sciences, New Delhi, India
| | - Isha Rathore
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Archana Singh
- All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Badami GD, La Manna MP, Di Carlo P, Stanek O, Linhartova I, Caccamo N, Sebo P, Dieli F. Delivery of Mycobacterium tuberculosis epitopes by Bordetella pertussis adenylate cyclase toxoid expands HLA-E-restricted cytotoxic CD8 + T cells. Front Immunol 2023; 14:1289212. [PMID: 38106407 PMCID: PMC10722248 DOI: 10.3389/fimmu.2023.1289212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Tuberculosis (TB) remains the first cause of death from infection caused by a bacterial pathogen. Chemotherapy does not eradicate Mycobacterium tuberculosis (Mtb) from human lungs, and the pathogen causes a latent tuberculosis infection that cannot be prevented by the currently available Bacille Calmette Guerin (BCG) vaccine, which is ineffective in the prevention of pulmonary TB in adults. HLA-E-restricted CD8+ T lymphocytes are essential players in protective immune responses against Mtb. Hence, expanding this population in vivo or ex vivo may be crucial for vaccination or immunotherapy against TB. Methods The enzymatically inactive Bordetella pertussis adenylate cyclase (CyaA) toxoid is an effective tool for delivering peptide epitopes into the cytosol of antigen-presenting cells (APC) for presentation and stimulation of specific CD8+ T-cell responses. In this study, we have investigated the capacity of the CyaA toxoid to deliver Mtb epitopes known to bind HLA-E for the expansion of human CD8+ T cells in vitro. Results Our results show that the CyaA-toxoid containing five HLA-E-restricted Mtb epitopes causes significant expansion of HLA-E-restricted antigen-specific CD8+ T cells, which produce IFN-γ and exert significant cytotoxic activity towards peptide-pulsed macrophages. Discussion HLA-E represents a promising platform for the development of new vaccines; our study indicates that the CyaA construct represents a suitable delivery system of the HLA-E-binding Mtb epitopes for ex vivo and in vitro expansion of HLA-E-restricted CD8+ T cells inducing a predominant Tc1 cytokine profile with a significant increase of IFN-γ production, for prophylactic and immunotherapeutic applications against Mtb.
Collapse
Affiliation(s)
- Giusto D. Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Marco P. La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Paola Di Carlo
- Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Ondrej Stanek
- Laboratory of Molecular Biology of Bacterial Pathogen, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Irena Linhartova
- Laboratory of Molecular Biology of Bacterial Pathogen, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogen, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Yan W, Dunmall LSC, Lemoine NR, Wang Y, Wang Y, Wang P. The capability of heterogeneous γδ T cells in cancer treatment. Front Immunol 2023; 14:1285801. [PMID: 38077392 PMCID: PMC10704246 DOI: 10.3389/fimmu.2023.1285801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
γδ T cells, a specialized subset of T lymphocytes, have garnered significant attention within the realm of cancer immunotherapy. Operating at the nexus between adaptive and innate immunological paradigms, these cells showcase a profound tumor discernment repertoire, hinting at novel immunotherapeutic strategies. Significantly, these cells possess the capability to directly identify and eliminate tumor cells without reliance on HLA-antigen presentation. Furthermore, γδ T cells have the faculty to present tumor antigens to αβ T cells, amplifying their anti-tumoral efficacy.Within the diverse and heterogeneous subpopulations of γδ T cells, distinct immune functionalities emerge, manifesting either anti-tumor or pro-tumor roles within the tumor microenvironment. Grasping and strategically harnessing these heterogeneous γδ T cell cohorts is pivotal to their integration in tumor-specific immunotherapeutic modalities. The aim of this review is to describe the heterogeneity of the γδ T cell lineage and the functional plasticity it generates in the treatment of malignant tumors. This review endeavors to elucidate the intricate heterogeneity inherent to the γδ T cell lineage, the consequential functional dynamics in combating malignancies, the latest advancements from clinical trials, and the evolving landscape of γδ T cell-based oncological interventions, while addressing the challenges impeding the field.
Collapse
Affiliation(s)
- Wenyi Yan
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard Dunmall
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R. Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yafeng Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Vidard L. 4-1BB and cytokines trigger human NK, γδ T, and CD8 + T cell proliferation and activation, but are not required for their effector functions. Immun Inflamm Dis 2023; 11:e749. [PMID: 36705415 PMCID: PMC9753824 DOI: 10.1002/iid3.749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION This study was designed to compare the costimulatory molecules and cytokines required to trigger the proliferation and activation of natural killer (NK), γδ T, and CD8+ T cells, and gain in-depth insight into the mechanisms shifting tolerance to immunity. METHODS K562-derived artificial antigen-presenting cells (aAPCs); that is, K562 forced to express CD86 and 4-1BBL costimulatory receptors, in the presence of cytokines, were used to mimic dendritic cells (DCs) and provide signals to support the proliferation and activation of NK, γδ T, and CD8+ T cells. RESULTS Three signals are required to trigger optimal proliferation in MART-1-specific CD8+ T cells: activation of T-cell receptors (TCRs) by the major histocompatibility complex (MHC) I/peptide complexes (signal 1); 4-1BB engagement (signal 2); and IL-15 and IL-21 receptor co-signaling (signal 3). NK and γδ T cell proliferation also require three signals, but the precise nature of signal 1 involving cell-to-cell contact was not determined. Once they become effectors, only signal 1 determines the sensitivity or resistance of the target cells to cytolysis by killer lymphocytes. When freshly purified, none had effector functions, except the NK cells, which could be activated by CD16 engagement. CONCLUSIONS Therefore, lymphocytes committed to kill are produced as inactive precursors, and the license to kill is delivered by three signals, allowing for extensive proliferation and effector function acquisition. This data challenges the paradigm of anergy and supports the danger signal theory originally proposed by Polly Matzinger, which states that killer cells are tolerant by default, thereby protecting the mammalian body from autoimmunity.
Collapse
Affiliation(s)
- Laurent Vidard
- Department of Immuno‐OncologySanofiVitry‐sur‐SeineFrance
| |
Collapse
|
7
|
Gay L, Mezouar S, Cano C, Frohna P, Madakamutil L, Mège JL, Olive D. Role of Vγ9vδ2 T lymphocytes in infectious diseases. Front Immunol 2022; 13:928441. [PMID: 35924233 PMCID: PMC9340263 DOI: 10.3389/fimmu.2022.928441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
The T cell receptor Vγ9Vδ2 T cells bridge innate and adaptive antimicrobial immunity in primates. These Vγ9Vδ2 T cells respond to phosphoantigens (pAgs) present in microbial or eukaryotic cells in a butyrophilin 3A1 (BTN3) and butyrophilin 2A1 (BTN2A1) dependent manner. In humans, the rapid expansion of circulating Vγ9Vδ2 T lymphocytes during several infections as well as their localization at the site of active disease demonstrates their important role in the immune response to infection. However, Vγ9Vδ2 T cell deficiencies have been observed in some infectious diseases such as active tuberculosis and chronic viral infections. In this review, we are providing an overview of the mechanisms of Vγ9Vδ2 T cell-mediated antimicrobial immunity. These cells kill infected cells mainly by releasing lytic mediators and pro-inflammatory cytokines and inducing target cell apoptosis. In addition, the release of chemokines and cytokines allows the recruitment and activation of immune cells, promoting the initiation of the adaptive immune response. Finaly, we also describe potential new therapeutic tools of Vγ9Vδ2 T cell-based immunotherapy that could be applied to emerging infections.
Collapse
Affiliation(s)
- Laetitia Gay
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- ImCheck Therapeutics, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
| | | | | | | | - Jean-Louis Mège
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, APHM, Hôpital de la Conception, Laboratoire d’Immunologie, Marseille, France
| | - Daniel Olive
- Centre pour la Recherche sur le Cancer de Marseille (CRCM), Inserm UMR1068, Centre national de la recherche scientifique (CNRS) UMR7258, Institut Paoli Calmettes, Marseille, France
| |
Collapse
|
8
|
Gay L, Mezouar S, Cano C, Foucher E, Gabriac M, Fullana M, Madakamutil L, Mège JL, Olive D. BTN3A Targeting Vγ9Vδ2 T Cells Antimicrobial Activity Against Coxiella burnetii-Infected Cells. Front Immunol 2022; 13:915244. [PMID: 35833118 PMCID: PMC9272908 DOI: 10.3389/fimmu.2022.915244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Vγ9Vδ2 T cells have been reported to participate to the immune response against infectious diseases such as the Q fever caused by Coxiella burnetii infection. Indeed, the number and proportion of Vγ9Vδ2 T cells are increased during the acute phase of Q fever. Human Vγ9Vδ2 T cell responses are triggered by phosphoantigens (pAgs) produced by pathogens and malignant cells, that are sensed via the membrane receptors butyrophilin-3A1 (BTN3A1) and -2A1 (BTN2A1). Here, by using CRISPR-Cas9 inactivation in THP-1 cells, we show that BTN3A and BTN2A are required to Vγ9Vδ2 T cell response to C. burnetii infection, though not directly involved in the infection process. Furthermore, C. burnetii-infected monocytes display increased BTN3A and BTN2A expression and induce Vγ9Vδ2 T cell activation that can be inhibited by specific antagonist mAb. More importantly, we show that the antimicrobial functions of Vγ9Vδ2 T cells towards C. burnetii are enhanced in the presence of an BTN3A activating antibody. This supports the role of Vγ9Vδ2 T cells in the control of C. burnetii infection and argues in favor of targeting these cells as an alternative treatment strategy for infectious diseases caused by intracellular bacteria.
Collapse
Affiliation(s)
- Laetitia Gay
- Aix-Marseille University (Univ), IRD, Assistance Publique Hopitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- ImCheck Therapeutics, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille University (Univ), IRD, Assistance Publique Hopitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | | | | | | | | | | | - Jean-Louis Mège
- Aix-Marseille University (Univ), IRD, Assistance Publique Hopitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille University (Univ), Assistance Publique Hopitaux de Marseille (APHM), Hôpital de la Conception, Laboratoire d’Immunologie, Marseille, France
| | - Daniel Olive
- Centre de Recheche contre le cancer de Marseille (CRCM), Inserm UMR1068, Centre national de la recherche scientifique (CNRS) UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Daniel Olive,
| |
Collapse
|
9
|
de Oliveira Rezende A, Sabóia RS, da Costa AC, da Silva Monteiro DMP, Zagmignan A, Santiago LÂM, Carvalho RC, Pereira PVS, Junqueira-Kipnis AP, de Sousa EM. Restricted Activation of the NF-κB Pathway in Individuals with Latent Tuberculosis Infection after HIF-1α Blockade. Biomedicines 2022; 10:biomedicines10040817. [PMID: 35453567 PMCID: PMC9024452 DOI: 10.3390/biomedicines10040817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculous granuloma formation is mediated by hypoxia-inducible factor 1 alpha (HIF-1α), and is essential for establishing latent tuberculosis infection (LTBI) and its progression to active tuberculosis (TB). Here, we investigated whether HIF-1α expression and adjacent mechanisms were associated with latent or active TB infection. Patients with active TB, individuals with LTBI, and healthy controls were recruited, and the expression of cytokine genes IL15, IL18, TNFA, IL6, HIF1A, and A20 in peripheral blood mononuclear cells (PBMCs) and serum vitamin D (25(OH)D3) levels were evaluated. Additionally, nuclear factor kappa B (NF-κB) and tumor necrosis factor-alpha (TNF-α) levels were analyzed in PBMC lysates and culture supernatants, respectively, after HIF-1α blockade with 2-methoxyestradiol. We observed that IL-15 expression was higher in individuals with LTBI than in patients with active TB, while IL-18 and TNF-α expression was similar between LTBI and TB groups. Additionally, serum 25(OH)D3 levels and expression of IL-6, HIF1A, and A20 were higher in patients with active TB than in individuals with LTBI. Moreover, PBMCs from individuals with LTBI showed decreased NF-κB phosphorylation and increased TNF-α production after HIF-1α blockade. Together, these results suggest that under hypoxic conditions, TNF-α production and NF-κB pathway downregulation are associated with the LTBI phenotype.
Collapse
Affiliation(s)
- Aline de Oliveira Rezende
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (A.d.O.R.); (R.C.C.); (P.V.S.P.)
| | - Rafaella Santos Sabóia
- Graduate Program in Microbial Biology, CEUMA University—UniCEUMA, São Luís 65075-120, Brazil;
| | | | | | - Adrielle Zagmignan
- Graduate Program in Health and Services Management, CEUMA University—UniCEUMA, São Luís 65075-120, Brazil; (D.M.P.d.S.M.); (A.Z.)
| | - Luis Ângelo Macedo Santiago
- Graduate Program in Biodiversity and Biotechnology, Amazônia-BIONORTE, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil;
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (A.d.O.R.); (R.C.C.); (P.V.S.P.)
| | - Paulo Vitor Soeiro Pereira
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (A.d.O.R.); (R.C.C.); (P.V.S.P.)
| | - Ana Paula Junqueira-Kipnis
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, Brazil;
| | - Eduardo Martins de Sousa
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (A.d.O.R.); (R.C.C.); (P.V.S.P.)
- Graduate Program in Microbial Biology, CEUMA University—UniCEUMA, São Luís 65075-120, Brazil;
- Graduate Program in Biodiversity and Biotechnology, Amazônia-BIONORTE, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil;
- Correspondence:
| |
Collapse
|
10
|
Alice AF, Kramer G, Bambina S, Bahjat KS, Gough MJ, Crittenden MR. Listeria monocytogenes-infected human monocytic derived dendritic cells activate Vγ9Vδ2 T cells independently of HMBPP production. Sci Rep 2021; 11:16347. [PMID: 34381163 PMCID: PMC8358051 DOI: 10.1038/s41598-021-95908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Gamma-delta (γδ) T cells express T cell receptors (TCR) that are preconfigured to recognize signs of pathogen infection. In primates, γδ T cells expressing the Vγ9Vδ2 TCR innately recognize (E)-4-hydroxy-3-methyl-but- 2-enyl pyrophosphate (HMBPP), a product of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway in bacteria that is presented in infected cells via interaction with members of the B7 family of costimulatory molecules butyrophilin (BTN) 3A1 and BTN2A1. In humans, Listeria monocytogenes (Lm) vaccine platforms have the potential to generate potent Vγ9Vδ2 T cell recognition. To evaluate the activation of Vγ9Vδ2 T cells by Lm-infected human monocyte-derived dendritic cells (Mo-DC) we engineered Lm strains that lack components of the MEP pathway. Direct infection of Mo-DC with these bacteria were unchanged in their ability to activate CD107a expression in Vγ9Vδ2 T cells despite an inability to synthesize HMBPP. Importantly, functional BTN3A1 was essential for this activation. Unexpectedly, we found that cytoplasmic entry of Lm into human dendritic cells resulted in upregulation of cholesterol metabolism in these cells, and the effect of pathway regulatory drugs suggest this occurs via increased synthesis of the alternative endogenous Vγ9Vδ2 ligand isoprenyl pyrophosphate (IPP) and/or its isomer dimethylallyl pyrophosphate (DMAPP). Thus, following direct infection, host pathways regulated by cytoplasmic entry of Lm can trigger Vγ9Vδ2 T cell recognition of infected cells without production of the unique bacterial ligand HMBPP.
Collapse
Affiliation(s)
- Alejandro F Alice
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Gwen Kramer
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Shelly Bambina
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Keith S Bahjat
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA.,Astellas Pharma US, 100 Kimball Way, South San Francisco, CA, 94080, USA
| | - Michael J Gough
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA. .,The Oregon Clinic, Portland, OR, 97213, USA.
| |
Collapse
|
11
|
Shen L, Huang D, Qaqish A, Frencher J, Yang R, Shen H, Chen ZW. Fast-acting γδ T-cell subpopulation and protective immunity against infections. Immunol Rev 2020; 298:254-263. [PMID: 33037700 DOI: 10.1111/imr.12927] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Unique Vγ2Vδ2 (Vγ9Vδ2) T cells existing only in human and non-human primates, account for the majority of circulating γδ T cells in human adults. Vγ2Vδ2 T cells are the sole γδ T-cell subpopulation capable of recognizing the microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) produced by selected pathogens during infections. Recent seminal studies in non-human primate models have demonstrated that the unique HMBPP-specific Vγ2Vδ2 T cells are fast-acting, multi-functional, and protective during infections. This article reviews the recent seminal observations of Vγ2Vδ2 T cells in protective mechanisms against tuberculosis and other infections.
Collapse
Affiliation(s)
- Ling Shen
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - Dan Huang
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - Arwa Qaqish
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - James Frencher
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| | - Rui Yang
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Tongji University Shanghai Pulmonary Hospital, Shanghai, China
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Tongji University Shanghai Pulmonary Hospital, Shanghai, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
La Manna MP, Orlando V, Tamburini B, Badami GD, Dieli F, Caccamo N. Harnessing Unconventional T Cells for Immunotherapy of Tuberculosis. Front Immunol 2020; 11:2107. [PMID: 33013888 PMCID: PMC7497315 DOI: 10.3389/fimmu.2020.02107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Even if the incidence of tuberculosis (TB) has been decreasing over the last years, the number of patients with TB is increasing worldwide. The emergence of multidrug-resistant and extensively drug-resistant TB is making control of TB more difficult. Mycobacterium bovis bacillus Calmette–Guérin vaccine fails to prevent pulmonary TB in adults, and there is an urgent need for a vaccine that is also effective in patients with human immunodeficiency virus (HIV) coinfection. Therefore, TB control may benefit on novel therapeutic options beyond antimicrobial treatment. Host-directed immunotherapies could offer therapeutic strategies for patients with drug-resistant TB or with HIV and TB coinfection. In the last years, the use of donor lymphocytes after hematopoietic stem cell transplantation has emerged as a new strategy in the cure of hematologic malignancies in order to induce graft-versus leukemia and graft-versus-infection effects. Moreover, adoptive therapy has proven to be effective in controlling cytomegalovirus and Epstein-Barr virus reactivation in immunocompromised patients with ex vivo expanded viral antigen-specific T cells. Unconventional T cells are a heterogeneous group of T lymphocytes with limited diversity. One of their characteristics is that antigen recognition is not restricted by the classical major histocompatibility complex (MHC). They include CD1 (cluster of differentiation 1)–restricted T cells, MHC-related protein-1–restricted mucosal-associated invariant T (MAIT) cells, MHC class Ib–reactive T cells, and γδ T cells. Because these T cells are genotype-independent, they are also termed “donor unrestricted” T cells. The combined features of low donor diversity and the lack of genetic restriction make these cells suitable candidates for T cell–based immunotherapy of TB.
Collapse
Affiliation(s)
- Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giusto D Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Cooper AJR, Lalor SJ, McLoughlin RM. Activation of Human Vδ2 + γδ T Cells by Staphylococcus aureus Promotes Enhanced Anti-Staphylococcal Adaptive Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1039-1049. [PMID: 32651220 PMCID: PMC7416323 DOI: 10.4049/jimmunol.2000143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Murine studies have shown the potential for γδ T cells to mediate immunity to Staphylococcus aureus in multiple tissue settings by the secretion of diverse cytokines. However, the role played by γδ T cells in human immune responses to S. aureus is almost entirely unknown. In this study, we establish the capacity of human Vδ2+ γδ T cells for rapid activation in response to S. aureus In coculture with S. aureus-infected monocyte-derived dendritic cells (DCs), Vδ2+ cells derived from peripheral blood rapidly upregulate CD69 and secrete high levels of IFN-γ. DCs mediate this response through direct contact and IL-12 secretion. In turn, IFN-γ released by Vδ2+ cells upregulates IL-12 secretion by DCs in a positive feedback loop. Furthermore, coculture with γδ T cells results in heightened expression of the costimulatory molecule CD86 and the lymph node homing molecule CCR7 on S. aureus-infected DCs. In cocultures of CD4+ T cells with S. aureus-infected DCs, the addition of γδ T cells results in heightened CD4+ T cell activation. Our findings identify γδ T cells as potential key players in the early host response to S. aureus during bloodstream infection, promoting enhanced responses by both innate and adaptive immune cell populations, and support their consideration in the development of host-directed anti-S. aureus treatments.
Collapse
Affiliation(s)
- Andrew J R Cooper
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Stephen J Lalor
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| |
Collapse
|
14
|
Abstract
Tuberculosis (TB) is a serious global public health challenge that results in significant morbidity and mortality worldwide. TB is caused by infection with the bacilli Mycobacterium tuberculosis (M. tuberculosis), which has evolved a wide variety of strategies in order to thrive within its host. Understanding the complex interactions between M. tuberculosis and host immunity can inform the rational design of better TB vaccines and therapeutics. This chapter covers innate and adaptive immunity against M. tuberculosis infection, including insights on bacterial immune evasion and subversion garnered from animal models of infection and human studies. In addition, this chapter discusses the immunology of the TB granuloma, TB diagnostics, and TB comorbidities. Finally, this chapter provides a broad overview of the current TB vaccine pipeline.
Collapse
|
15
|
Characterization of local and circulating bovine γδ T cell responses to respiratory BCG vaccination. Sci Rep 2019; 9:15996. [PMID: 31690788 PMCID: PMC6831659 DOI: 10.1038/s41598-019-52565-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
The Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine is administered parenterally to infants and young children to prevent tuberculosis (TB) infection. However, the protection induced by BCG is highly variable and the vaccine does not prevent pulmonary TB, the most common form of the illness. Until improved TB vaccines are available, it is crucial to use BCG in a manner which ensures optimal vaccine performance. Immunization directly to the respiratory mucosa has been shown to promote greater protection from TB in animal models. γδ T cells play a major role in host defense at mucosal sites and are known to respond robustly to mycobacterial infection. Their positioning in the respiratory mucosa ensures their engagement in the response to aerosolized TB vaccination. However, our understanding of the effect of respiratory BCG vaccination on γδ T cell responses in the lung is unknown. In this study, we used a calf model to investigate the immunogenicity of aerosol BCG vaccination, and the phenotypic profile of peripheral and mucosal γδ T cells responding to vaccination. We observed robust local and systemic M. bovis-specific IFN-γ and IL-17 production by both γδ and CD4 T cells. Importantly, BCG vaccination induced effector and memory cell differentiation of γδ T cells in both the lower airways and peripheral blood, with accumulation of a large proportion of effector memory γδ T cells in both compartments. Our results demonstrate the potential of the neonatal calf model to evaluate TB vaccine candidates that are to be administered via the respiratory tract, and suggest that aerosol immunization is a promising strategy for engaging γδ T cells in vaccine-induced immunity against TB.
Collapse
|
16
|
Immunization of Vγ2Vδ2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates. Proc Natl Acad Sci U S A 2019; 116:6371-6378. [PMID: 30850538 PMCID: PMC6442559 DOI: 10.1073/pnas.1811380116] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite the urgent need for a better tuberculosis (TB) vaccine, relevant protective mechanisms remain unknown. We previously defined protective phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP)–specific Vγ2Vδ2 T cells as a unique subset in primates, and, here, we immunized them selectively for protection against TB. A single respiratory vaccination of macaques with attenuated HMBPP-producing Listeria monocytogenes (Lm ΔactA prfA*), but not an HMBPP-lacking ΔgcpE Listeria strain, expanded Vγ2Vδ2 T cells, elicited Th1-like Vγ2Vδ2 T cell responses, and reduced TB infection/pathology after moderate-dose TB challenge. Such protection correlated with rapid memory-like, Th1-like Vγ2Vδ2 T cell responses, the presence of tissue-resident Vγ2Vδ2 T effectors coproducing IFN-γ/perforin and inhibiting intracellular Mycobacterium tuberculosis growth, and enhanced CD4+/CD8+ T cell responses. These findings establish a concept incorporating immunization of human Vγ2Vδ2 T cells for TB vaccine development. Tuberculosis (TB) remains a leading killer among infectious diseases, and a better TB vaccine is urgently needed. The critical components and mechanisms of vaccine-induced protection against Mycobacterium tuberculosis (Mtb) remain incompletely defined. Our previous studies demonstrate that Vγ2Vδ2 T cells specific for (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen are unique in primates as multifunctional effectors of immune protection against TB infection. Here, we selectively immunized Vγ2Vδ2 T cells and assessed the effect on infection in a rhesus TB model. A single respiratory vaccination of macaques with an HMBPP-producing attenuated Listeria monocytogenes (Lm ΔactA prfA*) caused prolonged expansion of HMBPP-specific Vγ2Vδ2 T cells in circulating and pulmonary compartments. This did not occur in animals similarly immunized with an Lm ΔgcpE strain, which did not produce HMBPP. Lm ΔactA prfA* vaccination elicited increases in Th1-like Vγ2Vδ2 T cells in the airway, and induced containment of TB infection after pulmonary challenge. The selective immunization of Vγ2Vδ2 T cells reduced lung pathology and mycobacterial dissemination to extrapulmonary organs. Vaccine effects coincided with the fast-acting memory-like response of Th1-like Vγ2Vδ2 T cells and tissue-resident Vγ2Vδ2 effector T cells that produced both IFN-γ and perforin and inhibited intracellular Mtb growth. Furthermore, selective immunization of Vγ2Vδ2 T cells enabled CD4+ and CD8+ T cells to mount earlier pulmonary Th1 responses to TB challenge. Our findings show that selective immunization of Vγ2Vδ2 T cells can elicit fast-acting and durable memory-like responses that amplify responses of other T cell subsets, and provide an approach to creating more effective TB vaccines.
Collapse
|
17
|
Wang X, Liu J, Gao H, Mo XD, Han T, Xu LP, Zhang XH, Huang XJ. Dendritic Cells Are Critical for the Activation and Expansion of Vδ2 + T Cells After Allogeneic Hematopoietic Transplantation. Front Immunol 2018; 9:2528. [PMID: 30443256 PMCID: PMC6221956 DOI: 10.3389/fimmu.2018.02528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022] Open
Abstract
γδ T cells perform antitumor and antiviral effector functions and are involved in both innate and adaptive immunity. Vδ2+ T cells represent the predominant γδ T subset in the peripheral blood of healthy subjects. Vδ2+ T cells can be selectively activated and expanded by phosphoantigens (pAgs). Dendritic cells (DCs), as potent antigen-presenting cells, are capable of mediating pAgs–triggered Vδ2+ T cells expansion. However, the association between DCs and Vδ2+ T cell recovery in the context of hematopoietic stem cell transplantation (HSCT) remains unclear. We previously demonstrated that the recovery of Vδ2+ T cells was hampered and inversely correlated with Epstein-Barr virus (EBV) reactivation in patients undergoing haploidentical HSCT (haploHSCT). Whether Vδ2+ T cells from haploHSCT recipients can be expanded by stimulation with aminobisphosphonates or pAg–presenting DCs is of particular interest. Herein, we showed that Vδ2+ T cells recovered after haploHSCT failed to expand after ex-vivo stimulation with pamidronate. In addition, we found that the recovery of DC subsets was significantly decreased, and the concentration of myeloid DCs (mDCs) correlated significantly with Vδ2+ T cell recovery in the setting of allogeneic HSCT. Furthermore, coculture of peripheral lymphocytes from recipients with monocyte-derived and pamidronate-pretreated autologous or allogeneic DCs induced the successful expansion of Vδ2+ T cells. Of note, allogeneic DCs from third-party donors stimulated a significantly higher efficiency of Vδ2+ T cell expansion than autologous DCs. More importantly, the memory features were well-retained and the cytotoxic cytokines-production capacity was significantly enhanced in the expanded Vδ2+ T cells. Taken together, these results suggest that the frequency and function of DCs are critical for the recovery of Vδ2+ T cells after allogeneic HSCT. The fact that vigorous expansions of Vδ2+ T cells were induced by phosphoantigen-pretreated DCs, especially by allogeneic third-party DCs, provides additional options for the development of individualized immunotherapy strategies that utilize the anti-viral and anti-leukemic effects of γδ T cells in the context of hematopoietic transplantation.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Beijing Hightrust Diagnostics, Co., Ltd, Beijing, China
| | - Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Haitao Gao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Tingting Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
18
|
Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. Interleukin-15-Cultured Dendritic Cells Enhance Anti-Tumor Gamma Delta T Cell Functions through IL-15 Secretion. Front Immunol 2018; 9:658. [PMID: 29692776 PMCID: PMC5902500 DOI: 10.3389/fimmu.2018.00658] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccination can be an effective post-remission therapy for acute myeloid leukemia (AML). Yet, current DC vaccines do not encompass the ideal stimulatory triggers for innate gamma delta (γδ) T cell anti-tumor activity. Promoting type 1 cytotoxic γδ T cells in patients with AML is, however, most interesting, considering these unconventional T cells are primed for rapid function and exert meaningful control over AML. In this work, we demonstrate that interleukin (IL)-15 DCs have the capacity to enhance the anti-tumoral functions of γδ T cells. IL-15 DCs of healthy donors and of AML patients in remission induce the upregulation of cytotoxicity-associated and co-stimulatory molecules on the γδ T cell surface, but not of co-inhibitory molecules, incite γδ T cell proliferation and stimulate their interferon-γ production in the presence of blood cancer cells and phosphoantigens. Moreover, the innate cytotoxic capacity of γδ T cells is significantly enhanced upon interaction with IL-15 DCs, both towards leukemic cell lines and allogeneic primary AML blasts. Finally, we address soluble IL-15 secreted by IL-15 DCs as the main mechanism behind the IL-15 DC-mediated γδ T cell activation. These results indicate that the application of IL-15-secreting DC subsets could render DC-based anti-cancer vaccines more effective through, among others, the involvement of γδ T cells in the anti-leukemic immune response.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Sébastien Anguille
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Division of Hematology, Antwerp University Hospital, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Qaqish A, Huang D, Chen CY, Zhang Z, Wang R, Li S, Yang E, Lu Y, Larsen MH, Jacobs WR, Qian L, Frencher J, Shen L, Chen ZW. Adoptive Transfer of Phosphoantigen-Specific γδ T Cell Subset Attenuates Mycobacterium tuberculosis Infection in Nonhuman Primates. THE JOURNAL OF IMMUNOLOGY 2017; 198:4753-4763. [PMID: 28526681 DOI: 10.4049/jimmunol.1602019] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/12/2017] [Indexed: 12/17/2022]
Abstract
The dominant Vγ2Vδ2 T cell subset recognizes phosphoantigen and exists only in humans and nonhuman primates. Despite the discovery of γδ T cells >30 y ago, a proof-of-concept study has not been done to prove the principle that the Vγ2Vδ2 T cell subset is protective against Mycobacterium tuberculosis and other infections. In this study, we used an adoptive cell-transfer strategy to define the protective role of Vγ2Vδ2 T cells in a primate tuberculosis (TB) model. Vγ2Vδ2 T cells for adoptive transfer displayed central/effector memory and mounted effector functions, including the production of anti-M. tuberculosis cytokines and inhibition of intracellular mycobacteria. They also expressed CXCR3/CCR5/LFA-1 trafficking/tissue-resident phenotypes and consistently trafficked to the airway, where they remained detectable from 6 h through 7 d after adoptive transfer. Interestingly, the test group of macaques receiving transfer of Vγ2Vδ2 T cells at weeks 1 and 3 after high-dose (500 CFU) M. tuberculosis infection exhibited significantly lower levels of M. tuberculosis infection burdens in lung lobes and extrapulmonary organs than did the control groups receiving PBLs or saline. Consistently, adoptive transfer of Vγ2Vδ2 T cells attenuated TB pathology and contained lesions primarily in the infection site of the right caudal lung lobe, with no or reduced TB dissemination to other lobes, spleen, or liver/kidney; in contrast, the controls showed widespread TB dissemination. The proof-of-concept finding supports the view that the dominant Vγ2Vδ2 T cell subset may be included in the rational design of a TB vaccine or host-directed therapy.
Collapse
Affiliation(s)
- Arwa Qaqish
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Crystal Y Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Zhuoran Zhang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Richard Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Shengpu Li
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Enzhuoa Yang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Yang Lu
- Department of Radiology, University of Illinois College of Medicine Chicago, Chicago, IL 60612; and
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Lixia Qian
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - James Frencher
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612;
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612;
| |
Collapse
|
20
|
Chen ZW. Protective immune responses of major Vγ2Vδ2 T-cell subset in M. tuberculosis infection. Curr Opin Immunol 2016; 42:105-112. [PMID: 27491008 DOI: 10.1016/j.coi.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023]
Abstract
Recent observation that prenyl pyrophosphates bind the Ig superfamily protein butyrophilin 3A1 (BTN3A1) suggests that modifying BTN3A1 activates major γδ T-cell subset, Vγ2Vδ2 T cells. Studies also show that microbial phosphoantigen HMBPP is required for expansion, pulmonary response, effector functions and memory polarization of Vγ2Vδ2 T cells during infections. Broad repertoires of cytokines involve expansion, recall-like expansion and effector functions of Vγ2Vδ2 T cells after Mtb infection or vaccination. Finally, mechanistic studies in nonhuman primate TB model demonstrate early expansion and differentiation of Vγ2Vδ2 T cells during Mtb infection can increase immune resistance to TB in macaques, with a potential mechanism of early/sustained IFN-γ production and CTL killing.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, 909 South Wolcott Avenue, MC790, E704, Chicago, IL 60612, United States.
| |
Collapse
|
21
|
High IL-6 and low IL-15 levels mark the presence of TB infection: A preliminary study. Cytokine 2016; 81:57-62. [PMID: 26878649 DOI: 10.1016/j.cyto.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/23/2022]
Abstract
The host immune response, apart from mycobacterial factors, is a significant determinant in the development of tuberculosis (TB). The purpose of the study was to examine whether the differential serum profiles of cytokines IL-1β, IL-2, IL-4, IL-6, IL-10, IL-15, IFN-γ, TGF-β, and TNF-α could discriminate between TB patients and healthy controls and provide insights into pathogenesis. Serum samples from TB patients, TB patient contacts and healthy controls were collected and analyzed by ELISA. The cytokine concentrations obtained were stratified into three groups: below detection limit (BDL), low values, and high values. The differences in cytokine concentrations were analyzed by Fisher's exact test. The statistically significant results were interpreted based on post-hoc analysis of the chi square contingency table using the adjusted residual method. Among the assayed cytokines, there was a statistically significant difference in the detection levels of IL-6, IL-15 and IFN-γ. Levels of IL-1β, IL-2, IL-4, IL-10, TGF-β and TNF-α did not vary. Post-hoc analysis of the significant results revealed that dynamic changes in the BDL and high values of cytokines influenced the post-infection cytokine milieu in the study subjects. The study concludes that altered balance in the levels of serum cytokines can be indicative of TB pathogenesis. Hence, profiling of dynamic changes in cytokines would facilitate effective TB diagnostic and treatment strategies.
Collapse
|
22
|
Bank I, Marcu-Malina V. Quantitative peripheral blood perturbations of γδ T cells in human disease and their clinical implications. Clin Rev Allergy Immunol 2015; 47:311-33. [PMID: 24126758 DOI: 10.1007/s12016-013-8391-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human γδ T cells, which play innate and adaptive, protective as well as destructive, roles in the immune response, were discovered in 1986, but the clinical significance of alterations of the levels of these cells in the peripheral blood in human diseases has not been comprehensively reviewed. Here, we review patterns of easily measurable changes of this subset of T cells in peripheral blood from relevant publications in PubMed and their correlations with specific disease categories, specific diagnoses within disease categories, and prognostic outcomes. These collective data suggest that enumeration of γδ T cells and their subsets in the peripheral blood of patients could be a useful tool to evaluate diagnosis and prognosis in the clinical setting.
Collapse
Affiliation(s)
- Ilan Bank
- Department of Medicine F, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, 52621, Israel,
| | | |
Collapse
|
23
|
Van Acker HH, Anguille S, Van Tendeloo VF, Lion E. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy. Oncoimmunology 2015; 4:e1021538. [PMID: 26405575 PMCID: PMC4570126 DOI: 10.1080/2162402x.2015.1021538] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 12/16/2022] Open
Abstract
Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium ; Center for Cell Therapy & Regenerative Medicine; Antwerp University Hospital ; Edegem, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium ; Center for Cell Therapy & Regenerative Medicine; Antwerp University Hospital ; Edegem, Belgium
| |
Collapse
|
24
|
Tyler CJ, Doherty DG, Moser B, Eberl M. Human Vγ9/Vδ2 T cells: Innate adaptors of the immune system. Cell Immunol 2015; 296:10-21. [PMID: 25659480 DOI: 10.1016/j.cellimm.2015.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Unconventional T cells are gaining center stage as important effector and regulatory cells that orchestrate innate and adaptive immune responses. Human Vγ9/Vδ2 T cells are amongst the best understood unconventional T cells, as they are easily accessible in peripheral blood, can readily be expanded and manipulated in vitro, respond to microbial infections in vivo and can be exploited for novel tumor immunotherapies. We here review findings that suggest that Vγ9/Vδ2 T cells, and possibly other unconventional human T cells, play an important role in bridging innate and adaptive immunity by promoting the activation and differentiation of various types of antigen-presenting cells (APCs) and even turning into APCs themselves, and thereby pave the way for antigen-specific effector responses and long-term immunological memory. Although the direct physiological relevance for most of these mechanisms still needs to be demonstrated in vivo, these findings may have implications for novel therapies, diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Christopher J Tyler
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Bernhard Moser
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
25
|
Gruenbacher G, Nussbaumer O, Gander H, Steiner B, Leonhartsberger N, Thurnher M. Stress-related and homeostatic cytokines regulate Vγ9Vδ2 T-cell surveillance of mevalonate metabolism. Oncoimmunology 2014; 3:e953410. [PMID: 25960933 DOI: 10.4161/21624011.2014.953410] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022] Open
Abstract
The potentially oncogenic mevalonate pathway provides building blocks for protein prenylation and induces cell proliferation and as such is an important therapeutic target. Among mevalonate metabolites, only isopentenyl pyrophosphate (IPP) has been considered to be an immunologically relevant antigen for primate-specific, innate-like Vγ9Vδ2 T cells with antitumor potential. We show here that Vγ9Vδ2 T cells pretreated with the stress-related, inflammasome-dependent cytokine interleukin 18 (IL-18) were potently activated not only by IPP but also by all downstream isoprenoid pyrophosphates that exhibit combined features of antigens and cell-extrinsic metabolic cues. Vγ9Vδ2 T cells induced this way effectively proliferated even under severe lymphopenic conditions and the antioxidant N-acetylcysteine significantly improved reconstitution of γδ T cells predominantly with a central memory phenotype. The homeostatic cytokine IL-15 induced the differentiation of effector cells in an antigen-independent fashion, which rapidly produced abundant interferon γ (IFNγ) upon antigen re-encounter. IL-15 induced effector γδ T cells displayed increased levels of the cytotoxic lymphocyte-associated proteins CD56, CD96, CD161 and perforin. In response to stimulation with isoprenoid pyrophosphates, these effector cells upregulated surface expression of CD107a and exhibited strong cytotoxicity against tumor cells in vitro. Our data clarify understanding of innate immunosurveillance mechanisms and will facilitate the controlled generation of robust Vγ9Vδ2 T cell subsets for effective cancer immunotherapy.
Collapse
Key Words
- BTN, butyrophilin
- CD107a
- CD56
- CFSE, carboxyfluorescein succinimidyl ester
- DMAPP, dimethylallyl pyrophosphate
- FPP, farnesyl pyrophosphate
- GGPP, geranylgeranyl pyrophosphate
- GPP, geranyl pyrophosphate
- IL-15
- IL-18
- IPP, isopentenyl pyrophosphate
- N-BP, nitrogen-containing bisphosphonate
- NAC, N-acetylcysteine
- NK, natural killer
- TCR, T cell receptor
- immune surveillance
- metabolic cues
- mevalonate pathway
- γδ T cells
Collapse
Affiliation(s)
- Georg Gruenbacher
- Cell Therapy Unit; Department of Urology; K1 Center for Personalized Cancer Medicine; Innsbruck Medical University and oncotyrol ; Innsbruck, Austria
| | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology; King's College London ; London, UK
| | - Hubert Gander
- Cell Therapy Unit; Department of Urology; K1 Center for Personalized Cancer Medicine; Innsbruck Medical University and oncotyrol ; Innsbruck, Austria
| | - Bernhard Steiner
- Cell Therapy Unit; Department of Urology; K1 Center for Personalized Cancer Medicine; Innsbruck Medical University and oncotyrol ; Innsbruck, Austria
| | - Nicolai Leonhartsberger
- Cell Therapy Unit; Department of Urology; K1 Center for Personalized Cancer Medicine; Innsbruck Medical University and oncotyrol ; Innsbruck, Austria
| | - Martin Thurnher
- Cell Therapy Unit; Department of Urology; K1 Center for Personalized Cancer Medicine; Innsbruck Medical University and oncotyrol ; Innsbruck, Austria
| |
Collapse
|
26
|
HIV infection of monocytes-derived dendritic cells inhibits Vγ9Vδ2 T cells functions. PLoS One 2014; 9:e111095. [PMID: 25340508 PMCID: PMC4207784 DOI: 10.1371/journal.pone.0111095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/26/2014] [Indexed: 12/05/2022] Open
Abstract
DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC). After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion.
Collapse
|
27
|
De Libero G, Singhal A, Lepore M, Mori L. Nonclassical T cells and their antigens in tuberculosis. Cold Spring Harb Perspect Med 2014; 4:a018473. [PMID: 25059739 DOI: 10.1101/cshperspect.a018473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I-related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response.
Collapse
Affiliation(s)
- Gennaro De Libero
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Amit Singhal
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore
| | - Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Lucia Mori
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
28
|
Baldwin CL, Hsu H, Chen C, Palmer M, McGill J, Waters WR, Telfer JC. The role of bovine γδ T cells and their WC1 co-receptor in response to bacterial pathogens and promoting vaccine efficacy: A model for cattle and humans. Vet Immunol Immunopathol 2014; 159:144-55. [DOI: 10.1016/j.vetimm.2014.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Ray Waters W. The role of gamma delta T cells in immunity to Mycobacterium bovis infection in cattle. Vet Immunol Immunopathol 2014; 159:133-43. [DOI: 10.1016/j.vetimm.2014.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
He Y, Wu K, Hu Y, Sheng L, Tie R, Wang B, Huang H. γδ T cell and other immune cells crosstalk in cellular immunity. J Immunol Res 2014; 2014:960252. [PMID: 24741636 PMCID: PMC3987930 DOI: 10.1155/2014/960252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 12/28/2022] Open
Abstract
γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell.
Collapse
Affiliation(s)
- Ying He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Kangni Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Lixia Sheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
31
|
Waters WR, Maggioli MF, McGill JL, Lyashchenko KP, Palmer MV. Relevance of bovine tuberculosis research to the understanding of human disease: historical perspectives, approaches, and immunologic mechanisms. Vet Immunol Immunopathol 2014; 159:113-32. [PMID: 24636301 DOI: 10.1016/j.vetimm.2014.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, demonstrating a profound relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due to Mycobacterium tuberculosis in humans and Mycobacterium bovis in cattle, is an exemplary model for the demonstration of this concept. Early studies with cattle were instrumental in the development of the use of Koch's tuberculin as an in vivo measure of cell-mediated immunity for diagnostic purposes. Calmette and Guerin demonstrated the efficacy of an attenuated M. bovis strain (BCG) in cattle prior to use of this vaccine in humans. The interferon-γ release assay, now widely used for TB diagnosis in humans, was developed circa 1990 for use in the Australian bovine TB eradication program. More recently, M. bovis infection and vaccine efficacy studies with cattle have demonstrated a correlation of vaccine-elicited T cell central memory (TCM) responses to vaccine efficacy, correlation of specific antibody to mycobacterial burden and lesion severity, and detection of antigen-specific IL-17 responses to vaccination and infection. Additionally, positive prognostic indicators of bovine TB vaccine efficacy (i.e., responses measured after infection) include: reduced antigen-specific IFN-γ, iNOS, IL-4, and MIP1-α responses; reduced antigen-specific expansion of CD4(+) T cells; and a diminished activation profile on T cells within antigen stimulated cultures. Delayed type hypersensitivity and IFN-γ responses correlate with infection but do not necessarily correlate with lesion severity whereas antibody responses generally correlate with lesion severity. Recently, serologic tests have emerged for the detection of tuberculous animals, particularly elephants, captive cervids, and camelids. B cell aggregates are consistently detected within tuberculous lesions of humans, cattle, mice and various other species, suggesting a role for B cells in the immunopathogenesis of TB. Comparative immunology studies including partnerships of researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in both man and animals.
Collapse
Affiliation(s)
- W Ray Waters
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States.
| | - Mayara F Maggioli
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Ames, IA, United States
| | | | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
32
|
Sabbione F, Gabelloni ML, Ernst G, Gori MS, Salamone G, Oleastro M, Trevani A, Geffner J, Jancic CC. Neutrophils suppress γδ T-cell function. Eur J Immunol 2013; 44:819-30. [DOI: 10.1002/eji.201343664] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/09/2013] [Accepted: 11/20/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Florencia Sabbione
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina; Buenos Aires Argentina
| | - María L. Gabelloni
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina; Buenos Aires Argentina
| | - Glenda Ernst
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS); Buenos Aires Argentina
| | - María S. Gori
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina; Buenos Aires Argentina
| | - Gabriela Salamone
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina; Buenos Aires Argentina
- Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Matías Oleastro
- Hospital Nacional de Pediatría “Juan P. Garrahan”; Buenos Aires Argentina
| | - Analía Trevani
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina; Buenos Aires Argentina
- Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS); Buenos Aires Argentina
- Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Carolina C. Jancic
- Instituto de Medicina Experimental (IMEX) CONICET - Academia Nacional de Medicina; Buenos Aires Argentina
| |
Collapse
|
33
|
Chen CY, Yao S, Huang D, Wei H, Sicard H, Zeng G, Jomaa H, Larsen MH, Jacobs WR, Wang R, Letvin N, Shen Y, Qiu L, Shen L, Chen ZW. Phosphoantigen/IL2 expansion and differentiation of Vγ2Vδ2 T cells increase resistance to tuberculosis in nonhuman primates. PLoS Pathog 2013; 9:e1003501. [PMID: 23966854 PMCID: PMC3744401 DOI: 10.1371/journal.ppat.1003501] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/31/2013] [Indexed: 01/11/2023] Open
Abstract
Dominant Vγ2Vδ2 T-cell subset exist only in primates, and recognize phosphoantigen from selected pathogens including M. tuberculosis(Mtb). In vivo function of Vγ2Vδ2 T cells in tuberculosis remains unknown. We conducted mechanistic studies to determine whether earlier expansion/differentiation of Vγ2Vδ2 T cells during Mtb infection could increase immune resistance to tuberculosis in macaques. Phosphoantigen/IL-2 administration specifically induced major expansion and pulmonary trafficking/accumulation of phosphoantigen-specific Vγ2Vδ2 T cells, significantly reduced Mtb burdens and attenuated tuberculosis lesions in lung tissues compared to saline/BSA or IL-2 controls. Expanded Vγ2Vδ2 T cells differentiated into multifunctional effector subpopulations capable of producing anti-TB cytokines IFNγ, perforin and granulysin, and co-producing perforin/granulysin in lung tissue. Mechanistically, perforin/granulysin-producing Vγ2Vδ2 T cells limited intracellular Mtb growth, and macaque granulysin had Mtb-bactericidal effect, and inhibited intracellular Mtb in presence of perforin. Furthermore, phosphoantigen/IL2-expanded Vγ2Vδ2 T effector cells produced IL-12, and their expansion/differentiation led to enhanced pulmonary responses of peptide-specific CD4+/CD8+ Th1-like cells. These results provide first in vivo evidence implicating that early expansion/differentiation of Vγ2Vδ2 T effector cells during Mtb infection increases resistance to tuberculosis. Thus, data support a rationale for conducting further studies of the γδ T-cell-targeted treatment of established TB, which might ultimately help explore single or adjunctive phosphoantigen expansion of Vγ2Vδ2 T-cell subset as intervention of MDR-tuberculosis or HIV-related tuberculosis. Tuberculosis(TB), caused by Mycobacterium tuberculosis(Mtb), remains a leading cause of morbidity and mortality worldwide. While CD4+/CD8+ T cells are protective, role of γδ T cells in TB and other infections remains unknown in humans. Vγ2Vδ2 T cells exist only in primates, represent a dominant circulating γδ T-cell subpopulation, and recognize phosphoantigen from Mtb and some selected pathogens. Here, we determined whether earlier expansion/differentiation of Vγ2Vδ2 T cells during Mtb infection increased resistance to TB in macaques. Phosphoantigen plus IL-2 administration induced expansion and pulmonary accumulation of Vγ2Vδ2 T cells, significantly reduced Mtb counts and attenuated TB lesions in lung tissues. Expanded Vγ2Vδ2 T cells produced anti-TB cytokines IFNγ, perforin and granulysin, and co-produced perforin and granulysin in lung tissue. Perforin/granulysin-co-producing Vγ2Vδ2 T cells limited intracellular Mtb growth, and macaque granulysin killed Mtb bacteria, and inhibited intracellular Mtb in presence of perforin. Furthermore, expansion of Vγ2Vδ2 T effectors enhanced pulmonary responses of peptide-specific CD4+/CD8+ T cells, which correlated with the ability of Vγ2Vδ2 T effector cells to produce IL-12. These results provide first evidence implicating a protective role of Vγ2Vδ2 T effector cells in TB, supporting a rationale to explore Vγ2Vδ2 T-cell-targeted treatment of drug-resistant TB or HIV-related TB.
Collapse
Affiliation(s)
- Crystal Y. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Shuyu Yao
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Herman B. Wells Center for Pediatric Research Indiana University, Indianapolis, Indiana, United States of America
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Huiyong Wei
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | | | - Gucheng Zeng
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Hassan Jomaa
- Institut für Klinische Chemie und Pathobiochemie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Richard Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Norman Letvin
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Yun Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Liyou Qiu
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Ling Shen
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
34
|
Anergic pulmonary tuberculosis is associated with contraction of the Vd2+T cell population, apoptosis and enhanced inhibitory cytokine production. PLoS One 2013; 8:e71245. [PMID: 23936496 PMCID: PMC3732239 DOI: 10.1371/journal.pone.0071245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022] Open
Abstract
Objective To study the association of anergic pulmonary tuberculosis with Vδ2+ T cells and related cytokine levels. Methods 82 pulmonary tuberculosis patients were divided into two groups according to their purified protein derivative tuberculin skin test (TST) results: 39 with TST-negative anergic pulmonary tuberculosis and 43 with TST-positive pulmonary tuberculosis, while 40 healthy volunteers were used as control. Based on chest X-ray results, the tuberculosis lesions were scored according to their severity, with a score of ≤ 2.5 ranking as mild, 2.5-6 as moderate and ≥ 6 as severe. The Vδ2+ T cell percentage and their expression levels of the apoptosis-related membrane surface molecule FasL in peripheral blood and bronchoalveolar lavage fluids (BALF) were analyzed by flow cytometry, while IL-2, IL-4, IL-6 and IL-10 cytokine and γ-interferon (γ-IFN) concentrations in peripheral blood were determined by ELISA. Results Most of the patients with chest X-ray lesion scores higher than 6 belonged to the anergic tuberculosis group (P<0.05). Anergic pulmonary tuberculosis patients displayed reduced peripheral blood Vδ2+ T cell counts (P<0.05) and higher FasL expression in peripheral blood Vδ2 + T cells (P <0.05). The Vδ2+ T cell percentages in the BALF of all tuberculosis patients were lower than in their peripheral blood (P <0.05), and IL-4 and IL-10 concentrations in peripheral blood of anergic tuberculosis patients were higher than in TST-positive tuberculosis patients and healthy controls (P <0.05). Conclusion Anergic pulmonary tuberculosis is accompanied by reduced Vδ2+ T cell percentage, and elevated Vδ2+ T cell FasL expression as well as enhanced IL-4 and IL-10 levels in peripheral blood.
Collapse
|
35
|
Fabrik I, Härtlova A, Rehulka P, Stulik J. Serving the new masters - dendritic cells as hosts for stealth intracellular bacteria. Cell Microbiol 2013; 15:1473-83. [PMID: 23795643 DOI: 10.1111/cmi.12160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/14/2013] [Accepted: 05/23/2013] [Indexed: 02/01/2023]
Abstract
Dendritic cells (DCs) serve as the primers of adaptive immunity, which is indispensable for the control of the majority of infections. Interestingly, some pathogenic intracellular bacteria can subvert DC function and gain the advantage of an ineffective host immune reaction. This scenario appears to be the case particularly with so-called stealth pathogens, which are the causative agents of several under-diagnosed chronic diseases. However, there is no consensus how less explored stealth bacteria like Coxiella, Brucella and Francisella cross-talk with DCs. Therefore, the aim of this review was to explore the issue and to summarize the current knowledge regarding the interaction of above mentioned pathogens with DCs as crucial hosts from an infection strategy view. Evidence indicates that infected DCs are not sufficiently activated, do not undergo maturation and do not produce expected proinflammatory cytokines. In some cases, the infected DCs even display immunosuppressive behaviour that may be directly linked to the induction of tolerogenicity favouring pathogen survival and persistence.
Collapse
Affiliation(s)
- Ivo Fabrik
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
36
|
Chemotherapy sensitizes colon cancer initiating cells to Vγ9Vδ2 T cell-mediated cytotoxicity. PLoS One 2013; 8:e65145. [PMID: 23762301 PMCID: PMC3675136 DOI: 10.1371/journal.pone.0065145] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/23/2013] [Indexed: 11/19/2022] Open
Abstract
Colon cancer comprises a small population of cancer initiating stem cells (CIC) that is responsible for tumor maintenance and resistance to anti-cancer therapies, possibly allowing for tumor recapitulation once treatment stops. Combinations of immune-based therapies with chemotherapy and other anti-tumor agents may be of significant clinical benefit in the treatment of colon cancer. However, cellular immune-based therapies have not been experimented yet in the population of colon CICs. Here, we demonstrate that treatment with low concentrations of commonly used chemotherapeutic agents, 5-fluorouracyl and doxorubicin, sensitize colon CICs to Vγ9Vδ2 T cell cytotoxicity. Vγ9Vδ2 T cell cytotoxicity was largely mediated by TRAIL interaction with DR5, following NKG2D-dependent recognition of colon CIC targets. We conclude that in vivo activation of Vγ9Vδ2 T cells or adoptive administration of ex-vivo expanded Vγ9Vδ2 T cells at suitable intervals after chemotherapy may substantially increase anti-tumor activities and represent a novel strategy for colon cancer immunotherapy.
Collapse
|
37
|
El Daker S, Sacchi A, Montesano C, Altieri AM, Galluccio G, Colizzi V, Martini F, Martino A. An abnormal phenotype of lung Vγ9Vδ2 T cells impairs their responsiveness in tuberculosis patients. Cell Immunol 2013; 282:106-12. [PMID: 23770719 DOI: 10.1016/j.cellimm.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/02/2013] [Indexed: 01/27/2023]
Abstract
Antigen-specific γδ T cells represent an early innate defense known to play an important role in anti-mycobacterial immunity. We have investigated the immune functions of Vγ9Vδ2 T cells from Broncho-Alveolar lavages (BAC) samples of active TB patients. We observed that BAC Vγ9Vδ2 T cells presented a strong down-modulation of CD3 expression compared with Vγ9Vδ2 T cells from peripheral blood. Furthermore, Vγ9Vδ2 T cells mainly showed a central memory phenotype, expressed high levels of NK inhibitory receptors and TEMRA cells showed low expression of CD16 compared to circulating Vγ9Vδ2 T cells. Interestingly, the ability of BAC Vγ9Vδ2 T cells to respond to antigen stimulation was dramatically reduced, differently from blood counterpart. These observations indicate that γδ T cell functions are specifically impaired in situ by active TB, suggesting that the alveolar ambient during tuberculosis may affect resident γδ T cells in comparison to circulating cells.
Collapse
Affiliation(s)
- Sary El Daker
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cairo C, Sagnia B, Cappelli G, Colizzi V, Leke RGF, Leke RJ, Pauza CD. Human cord blood γδ T cells expressing public Vγ2 chains dominate the response to bisphosphonate plus interleukin-15. Immunology 2013. [PMID: 23181340 DOI: 10.1111/imm.12039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Compared with adults, the circulating Vγ2Vδ2 T-cell population in cord blood is present at low levels and does not show the strong bias for Vγ2-Jγ1.2 rearrangements. These features may be a result of limited exposure to stimulatory phosphoantigens, lack of T-cell-derived interleukin-2 (IL-2) or both. In cord blood mononuclear cell cultures, a single round of stimulation, using aminobisphosphonates to elevate phosphoantigen levels, resulted in expansion of adult-like Vγ2 chains and accumulation of memory cells with cytotoxic potential. Selection was similar using IL-2 or myeloid-derived IL-15. The Vγ2Vδ2 T cells present in neonates are capable of generating potent immune responses even when relying on IL-15.
Collapse
Affiliation(s)
- Cristiana Cairo
- Institute of Human Virology, University of Maryland Baltimore, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Cordova A, Toia F, La Mendola C, Orlando V, Meraviglia S, Rinaldi G, Todaro M, Cicero G, Zichichi L, Donni PL, Caccamo N, Stassi G, Dieli F, Moschella F. Characterization of human γδ T lymphocytes infiltrating primary malignant melanomas. PLoS One 2012; 7:e49878. [PMID: 23189169 PMCID: PMC3506540 DOI: 10.1371/journal.pone.0049878] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
T lymphocytes are often induced naturally in melanoma patients and infiltrate tumors. Given that γδ T cells mediate antigen-specific killing of tumor cells, we studied the representation and the in vitro cytokine production and cytotoxic activity of tumor infiltrating γδ T cells from 74 patients with primary melanoma. We found that γδ T cells represent the major lymphocyte population infiltrating melanoma, and both Vδ1(+) and Vδ2(+) cells are involved. The majority of melanoma-infiltrating γδ cells showed effector memory and terminally-differentiated phenotypes and, accordingly, polyclonal γδ T cell lines obtained from tumor-infiltrating immune cells produced IFN-γ and TNF-α and were capable of killing melanoma cell lines in vitro. The cytotoxic capability of Vδ2 cell lines was further improved by pre-treatment of tumor target cells with zoledronate. Moreover, higher rate of γδ T cells isolation and percentages of Vδ2 cells correlate with early stage of development of melanoma and absence of metastasis. Altogether, our results suggest that a natural immune response mediated by γδ T lymphocytes may contribute to the immunosurveillance of melanoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cytokines/biosynthesis
- Cytotoxicity, Immunologic
- Female
- Humans
- Immunologic Memory
- Immunophenotyping
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/pathology
- Middle Aged
- Neoplasm Staging
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Adriana Cordova
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Francesca Toia
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Carmela La Mendola
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Valentina Orlando
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Serena Meraviglia
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Gaetana Rinaldi
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Matilde Todaro
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Giuseppe Cicero
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Leonardo Zichichi
- Unità Operativa di Dermatologia, Azienda Ospedaliera “S. Antonio Abate”, Trapani, Italy, 4 Dipartimento di Scienze Economiche, Aziendali e Finanziarie, Università di Palermo, Palermo, Italy
| | | | - Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Giorgio Stassi
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Francesco Moschella
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Palermo, Italy
| |
Collapse
|
40
|
Chen ZW. Multifunctional immune responses of HMBPP-specific Vγ2Vδ2 T cells in M. tuberculosis and other infections. Cell Mol Immunol 2012; 10:58-64. [PMID: 23147720 DOI: 10.1038/cmi.2012.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vγ2Vδ2 T (also known as Vγ9Vδ2 T) cells exist only in primates, and in humans represent a major γδ T-cell sub-population in the total population of circulating γδ T cells. Results from recent studies suggest that while (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen from Mycobacterium tuberculosis (Mtb) and other microbes activates and expands primate Vγ2Vδ2 T cells, the Vγ2Vδ2 T-cell receptor (TCR) recognizes and binds to HMBPP on antigen-presenting cells (APC). In response to HMBPP stimulus, Vγ2Vδ2 TCRs array to form signaling-related nanoclusters or nanodomains during the activation of Vγ2Vδ2 T cells. Primary infections with HMBPP-producing pathogens drive the evolution of multieffector functional responses in Vγ2Vδ2 T cells, although Vγ2Vδ2 T cells display different patterns of responses during the acute and chronic phases of Mtb infection and in other infections. Expanded Vγ2Vδ2 T cells in primary Mtb infection can exhibit a broader TCR repertoire and a greater clonal response than previously assumed, with different distribution patterns of Vγ2Vδ2 T-cell clones in lymphoid and non-lymphoid compartments. Emerging in vivo data suggest that HMBPP activation of Vγ2Vδ2 T cells appears to impact other immune cells during infection.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
41
|
Soriano-Sarabia N, Sandvold H, Jomaa H, Kubin T, Bein G, Hackstein H. Primary MHC-class II(+) cells are necessary to promote resting Vδ2 cell expansion in response to (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate and isopentenyl pyrophosphate. THE JOURNAL OF IMMUNOLOGY 2012; 189:5212-22. [PMID: 23105138 DOI: 10.4049/jimmunol.1200093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human Vγ9δ2 (Vδ2) T cells represent a unique effector T cell population in humans and primates detecting nonpeptid phosphoantigens, playing an important role in antimicrobial and antitumor immunity. Currently, it is believed that various leukocyte subsets can promote phosphoantigen-driven Vδ2 cell expansion, but the essential cell type required remains elusive. We have used high purity cell sorting to analyze the cellular requirements for (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate (HMBPP)-driven Vδ2 cell expansion. To our knowledge, we show for the first time that primary human MHC-class II(+) cells are indispensable for HMBPP- and isopentenylpyrophosphate-driven Vδ2 cell expansion. In contrast, MHC-class II(-) cells are unable to promote Vδ2 cell expansion. Moreover, purified primary human TCRαβ(+) T cells, CD4(+), or CD8(+) T cells also failed to promote HMBPP-mediated Vδ2 expansion. Depletion of CD4(+)CD25(+) T cells demonstrated that inability of TCRαβ(+) cells to expand Vδ2 cells was not related to the presence of regulatory T cells. Separation of MHC-class II(+) cells into dendritic cells, monocytes, and B cells revealed that dendritic cells were the most potent Vδ2 expanders. Pulsing experiments demonstrated that HMBPP transforms MHC-class II(+) but not negative cells into Vδ2 expanders. MHC-class II-blocking experiments with mAbs and secondary MHC-class II induction on CD4(+) T cells after CD3/CD28 costimulation indicated that MHC-class II is necessary, but not sufficient to promote Vδ2 expansion. Our results provide novel insight into the primary cell-specific requirements for human Vδ2 expansion.
Collapse
Affiliation(s)
- Natalia Soriano-Sarabia
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig University Giessen, Member of German Center for Lung Research, D-35390 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
γδ-T cells represent a small population of immune cells, but play an indispensable role in host defenses against exogenous pathogens, immune surveillance of endogenous pathogenesis and even homeostasis of the immune system. Activation and expansion of γδ-T cells are generally observed in diverse human infectious diseases and correlate with their progression and prognosis. γδ-T cells have both 'innate' and 'adaptive' characteristics in the immune response, and their anti-infection activities are mediated by multiple pathways that are under elaborate regulation by other immune components. In this review, we summarize the current state of the literature and the recent advancements in γδ-T cell-mediated immune responses against common human infectious pathogens. Although further investigation is needed to improve our understanding of the characteristics of different γδ-T cell subpopulations under specific conditions, γδ-T cell-based therapy has great potential for the treatment of infectious diseases.
Collapse
|
43
|
Full restoration of Brucella-infected dendritic cell functionality through Vγ9Vδ2 T helper type 1 crosstalk. PLoS One 2012; 7:e43613. [PMID: 22928003 PMCID: PMC3425473 DOI: 10.1371/journal.pone.0043613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/23/2012] [Indexed: 12/23/2022] Open
Abstract
Vγ9Vδ2 T cells play an important role in the immune response to infectious agents but the mechanisms contributing to this immune process remain to be better characterized. Following their activation, Vγ9Vδ2 T cells develop cytotoxic activity against infected cells, secrete large amounts of cytokines and influence the function of other effectors of immunity, notably cells playing a key role in the initiation of the adaptive immune response such as dendritic cells. Brucella infection dramatically impairs dendritic cell maturation and their capacity to present antigens to T cells. Herein, we investigated whether V T cells have the ability to restore the full functional capacities of Brucella-infected dendritic cells. Using an in vitro multicellular infection model, we showed that: 1/Brucella-infected dendritic cells activate Vγ9Vδ2 T cells through contact-dependent mechanisms, 2/activated Vγ9Vδ2 T cells induce full differentiation into IL-12 producing cells of Brucella-infected dendritic cells with functional antigen presentation activity. Furthermore, phosphoantigen-activated Vγ9Vδ2 T cells also play a role in triggering the maturation process of dendritic cells already infected for 24 h. This suggests that activated Vγ9Vδ2 T cells could be used to modulate the outcome of infectious diseases by promoting an adjuvant effect in dendritic cell-based cellular therapies.
Collapse
|
44
|
Cooper AM, Torrado E. Protection versus pathology in tuberculosis: recent insights. Curr Opin Immunol 2012; 24:431-7. [PMID: 22613092 DOI: 10.1016/j.coi.2012.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/30/2012] [Indexed: 01/23/2023]
Abstract
Recent studies have revisited the roles of prime players in the immune response to tuberculosis (TB) and have highlighted novel functions of these players. Specifically, immunoregulatory mechanisms mediated by IFNγ have been delineated as well as a novel role for neutrophils in promoting antigen presentation. New insights into the interaction between the bacterium and phagocyte indicate that the bacterium actively promotes phagocyte necrosis rather than apoptosis and that this impacts generation of the acquired response. There are also many new examples of how the phagocyte responds to the bacteria and how it mediates control. The phenotype of protective T cells is also being re-examined. These developments provide promise for improved vaccine design and highlight the complexity of this disease.
Collapse
Affiliation(s)
- Andrea M Cooper
- The Trudeau Institute, Inc. 154 Algonquin Ave., Saranac Lake, NY 12983, United States.
| | | |
Collapse
|
45
|
Li Z, Peng H, Xu Q, Ye Z. Sensitization of human osteosarcoma cells to Vγ9Vδ2 T-cell-mediated cytotoxicity by zoledronate. J Orthop Res 2012; 30:824-30. [PMID: 22025284 DOI: 10.1002/jor.21579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/06/2011] [Indexed: 02/04/2023]
Abstract
Despite improvements in the treatment of osteosarcoma, there is a need for new therapeutic strategies, in particular for the treatment of recurrent tumors and metastases. Adoptive immunotherapy with Vγ9Vδ2 T lymphocytes represents an attractive strategy. We have investigated combining adoptive immunotherapy with Vγ9Vδ2 T cells and zoledronate to optimize osteosarcoma therapy. Vγ9Vδ2 T cells, from healthy volunteers and patients with osteosarcoma, cultures alone demonstrated moderate or poor cytotoxic activity against osteosarcoma cell lines, respectively. The addition of zoledronate further increased cytotoxicity in vitro. This enhancement was largely dependent on the granule exocytose and partly on TRAIL pathways, was TCR-mediated and partly NKG2D-mediated. These data suggest that combined treatment of human osteosarcoma with zoledronate and Vγ9Vδ2 T cells may be an effective complement to current chemotherapies.
Collapse
Affiliation(s)
- Zhaoxu Li
- Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | | | | | | |
Collapse
|
46
|
Perera PY, Lichy JH, Waldmann TA, Perera LP. The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use. Microbes Infect 2012; 14:247-61. [PMID: 22064066 PMCID: PMC3270128 DOI: 10.1016/j.micinf.2011.10.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/18/2011] [Indexed: 01/02/2023]
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine with a broad range of biological functions in many diverse cell types. It plays a major role in the development of inflammatory and protective immune responses to microbial invaders and parasites by modulating immune cells of both the innate and adaptive immune systems. This review provides an overview of the mechanisms by which IL-15 modulates the host response to infectious agents and its utility as a cytokine adjuvant in vaccines against infectious pathogens.
Collapse
Affiliation(s)
- Pin-Yu Perera
- Veterans Affairs Medical Center, Washington D.C. 20422
| | - Jack H. Lichy
- Veterans Affairs Medical Center, Washington D.C. 20422
| | - Thomas A. Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Liyanage P. Perera
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
47
|
Ramadan G. In vitro expansion of human γδ and CD56(+) T-cells by Aspergillus-antigen loaded fast dendritic cells in the presence of exogenous interleukin-12. Immunopharmacol Immunotoxicol 2011; 34:309-16. [PMID: 21854188 DOI: 10.3109/08923973.2011.603339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aspergillus fumigatus (Af) infection is especially prevalent after allogenic bone marrow transplantation (BMT) and causes invasive pulmonary aspergillosis. Human γδ T-cells have essential role in maintaining immune homeostasis and in the resistance of pathogens and tumors. Also, γδ T-cells may facilitate stem cells engraftment and decrease a life-threatening graft versus host disease after allogenic BMT. Moreover, expression of CD56 molecules on γδ T-cells increases their antitumor cytotoxic activity. This study reveals that Af-pulsed fast dendritic cells (fast-DCs, which generated within only 72 h) plus IL-12 and then IL-2 can propagate autologous γδ and CD56(+) T-cells in vitro and this expansion is sustained by repeating the stimulation (107.5 ± 13.9-fold and 37.6 ± 2.2-fold increase for γδ and CD56(+) T-cells, respectively, after three primings). Many of the expanded γδ and CD56(+) T-cells expressed CD8 molecules (29.6%-68.6%), while few of them expressed CD4 molecules (2.3%-17.5%). Also, ∼28% of the expanded γδ T-cells were CD56(+). On the other hand, the proliferation of γδ and CD56(+) T-cells significantly decreased (p < 0.001, <19-fold and 12-fold, respectively) in the absence of either Af-pulsed fast-DCs or IL-12 or in the presence of un-pulsed fast-DCs, indicating the importance of Af-antigens and IL-12 in inducing this expansion. The expansion of γδ and CD56(+) T-cells did not hamper the generation of Af-specific αβ T-cell effectors. The methodology described in this study, utilizing autologous Af-pulsed fast-DCs and IL-12, permits the rapid generation of Af-specific αβ T-cell effectors and propagation of γδ and CD56(+) T-cells in vitro.
Collapse
Affiliation(s)
- Gamal Ramadan
- Biological Science Department, College of Science, King Faisal University, Al-Hufof, Kingdom of Saudi Arabia.
| |
Collapse
|
48
|
Chen ZW. Immune biology of Ag-specific γδ T cells in infections. Cell Mol Life Sci 2011; 68:2409-17. [PMID: 21667064 DOI: 10.1007/s00018-011-0703-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Accumulating evidence suggests that human γδ T cells act as non-classical T cells and contribute to both innate and adaptive immune responses in infections. Vγ2 Vδ2 T (also termed Vγ9 Vδ2 T) cells exist only in primates, and in humans represent a dominant circulating γδ T-cell subset. Primate Vγ2 Vδ2 T cells are the only γδ T cell subset capable of recognizing microbial phosphoantigen. Since nonhuman primate Vγ2 Vδ2 T cells resemble their human counterparts, in-depth studies have been undertaken in macaques to understand the biology and function of human Vγ2 Vδ2 T cells. This article reviews the recent progress for immune biology of Vγ2 Vδ2 T cells in infections.
Collapse
Affiliation(s)
- Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
49
|
Li Z, Xu Q, Peng H, Cheng R, Sun Z, Ye Z. IFN-γ enhances HOS and U2OS cell lines susceptibility to γδ T cell-mediated killing through the Fas/Fas ligand pathway. Int Immunopharmacol 2011; 11:496-503. [PMID: 21238618 DOI: 10.1016/j.intimp.2011.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 11/17/2022]
Abstract
Osteosarcoma is the second highest cause of cancer-related death in children and adolescents, partly due to dysfunction of the Fas/FasL signaling pathway, which leads to develop fatal metastasis. Since presenting no or low levels of Fas expression, resisting Fas ligand-induced apoptosis, and lack of FasL in the host environment, osteosarcoma cells always promote metastases growth and proliferate in the lungs. Therefore, agents, which up-regulate tumor cell surface Fas expression and function, in combination with immune cells, may be effective in treating osteosarcoma, especially lung metastases. The aim of this work was to investigate the effect of γδ T cells in combination with IFN-γ in treating osteosarcoma in vitro. In the present study, we found that IFN-γ up-regulated the expression of Fas in osteosarcoma cell lines, HOS and U2OS, resulting in an enhanced susceptibility of cells to γδ T cells lyses. Moreover, this cytotoxicity was prevented by treatment with FasL-blocking antibodies. These data suggest that adoptive transfer of γδ T cells in combination with IFN-γ may substantially increase anti-osteosarcoma activities and represent a novel strategy for osteosarcoma adjunct immunotherapy.
Collapse
Affiliation(s)
- Zhaoxu Li
- Department of Orthopaedics, the Second Affiliated Hospital, College of Medicine, Zhejiang University, NO 88, Jiefang Road, Hangzhou 310009, PR China
| | | | | | | | | | | |
Collapse
|
50
|
γδ T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011; 2011:587315. [PMID: 21253470 PMCID: PMC3022180 DOI: 10.1155/2011/587315] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/27/2010] [Accepted: 12/09/2010] [Indexed: 11/17/2022]
Abstract
Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated antigen presenting cells. To date, many aspects of mycobacterial immunity have shown that innate cells could be the key elements that substantially may influence the subsequent adaptive host response. During the early phases of infection, innate lymphocyte subsets play a pivotal role in this context. Here we summarize the findings of recent investigations on γδ T lymphocytes and their role in tuberculosis immunity.
Collapse
|